
Piecewise-Velocity Model for Learning Continuous-time
Dynamic Node Representations

Abdulkadir Çelikkanat, Nikolaos Nakis, Morten Mørup
Technical University of Denmark

Kongens Lyngby 2800, Denmark
abce@dtu.dk nnak@dtu.dk mmor@dtu.dk

Abstract

Networks have become indispensable and ubiquitous structures in many fields
to model the interactions among different entities, such as friendship in social
networks or protein interactions in biological graphs. A major challenge is to
understand the structure and dynamics of these systems. Although networks evolve
through time, most existing graph representation learning methods target only
static networks. Whereas approaches have been developed for the modeling of
dynamic networks, there is a lack of efficient continuous time dynamic graph repre-
sentation learning methods that can provide accurate network characterization and
visualization in low dimensions while explicitly accounting for prominent network
characteristics such as homophily and transitivity. In this paper, we propose the
PIecewise-VElocity Model (PIVEM) for the representation of continuous-time
dynamic networks. It learns dynamic embeddings in which the temporal evolution
of nodes is approximated by piecewise linear interpolations based on a latent dis-
tance model with piecewise constant node-specific velocities. The model allows
for analytically tractable expressions of the associated Poisson process likelihood
with scalable inference invariant to the number of events. We further impose a scal-
able Kronecker structured Gaussian Process prior to the dynamics accounting for
community structure, temporal smoothness, and disentangled (uncorrelated) latent
embedding dimensions optimally learned to characterize the network dynamics.
We show that PIVEM can successfully represent network structure and dynamics
in ultra-low two-dimensional embedding spaces. We further extensively evaluate
the performance of the approach on various networks of different types and sizes
and find that it outperforms existing relevant state-of-art methods in downstream
tasks such as link prediction. In summary, PIVEM enables easily interpretable
dynamic network visualizations and characterizations that can further improve our
understanding of the intrinsic dynamics of time-evolving networks.

1 Introduction
With technological advancements in data storage and production systems, we have witnessed the
massive growth of graph (or network) data in recent years, with many prominent examples, including
social, technological, and biological networks from diverse disciplines [1]. They propose an exquisite
way to store and represent the interactions among data points and machine learning techniques on
graphs have thus gained considerable attention to extract meaningful information from these complex
systems and perform various predictive tasks. In this regard, Graph Representation Learning (GRL)
techniques have become a cornerstone in the field through their exceptional performance in many
downstream tasks such as node classification and edge prediction. Unlike the classical techniques
relying on the extraction and design of handcrafted feature vectors peculiar to given networks, GRL
approaches aim to design algorithms that can automatically learn features optimally preserving
various characteristics of networks in their induced latent space.
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Many networks evolve through time and are liable to modifications in structure with newly arriving
nodes or emerging connections, the GRL methods have primarily addressed static networks, in other
words, a snapshot of the networks at a specific time. However, recent years have seen increasing
efforts toward modeling dynamic complex networks, see also [2] for a review. Whereas most
approaches have concentrated their attention on discrete-time temporal networks, which have built
upon a collection of time-stamped networks (c.f. [2–10]) modeling of networks in continuous time
has also been studied (c.f. [11–14]). These approaches have been based on latent class [3, 4, 11–13]
and latent feature modeling approaches [2, 5–10, 14], including advanced dynamic graph neural
network representations [15, 16].

Although these procedures have enabled the characterization of evolving networks for downstream
tasks such as link prediction and node classification, existing dynamic latent feature models are either
in discrete time or do not explicitly account for network homophily and transitivity in terms of their
latent representations. Whereas latent class models typically provide interpretable representations at
the level of groups, latent feature models in general rely on high-dimensional latent representations
that are not easily amenable to visualization and interpretation. A further complication of most
existing dynamic modeling approaches is their scaling typically growing in complexity by the number
of observed events and number of network dyads.

This work addresses the embedding problem of nodes in a continuous-time latent space and seeks to
model network interaction patterns using low-dimensional representations accurately. We model the
node interactions with Nonhomogeneous Poisson Point Processes whose densities are defined based
on the relative distances among the node trajectories in the latent space. The node movements are
characterized by node-specific piecewise velocity vectors, such that each node acquires a dynamic
representation pursuing a continuous path in the latent space throughout the timeline. The main
contributions of the paper can be summarized as follows:

• We propose a novel scalable GRL method, the PIecewise-VElocity Model (PIVEM), to flexibly
learn continuous-time dynamic node representations. The temporal evolutions of networks are
represented by piecewise linear motions of the nodes’ embeddings in the latent space.

• We present a framework balancing the trade-off between the smoothness of node trajectories in
the latent space and model capacity accounting for the temporal evolution.

• We show that the PIVEM can embed nodes accurately in very low dimensional spaces, i.e.,
D = 2, such that it serves as a dynamic network visualization tool facilitating human insights
into networks’ complex, evolving structures.

• The performance of the introduced approach is extensively evaluated in various downstream
tasks, such as network reconstruction and link prediction. We show that it outperforms well-
known baseline methods on a wide range of datasets. Besides, we propose an efficient model
optimization strategy enabling the PIVEM to scale to large networks.

Source code and other materials. The datasets, the implementation, and all the generated animations
can be found at the address: https://abdcelikkanat.github.io/projects/pivem/.

2 Related Work
The work on dynamic modeling of complex networks has spurred substantial attention in recent years
and covers approaches for the modeling of dynamic structures at the level of groups (i.e., latent class
models) and dynamic representation learning approaches based on latent feature models, including
graph neural networks (GNNs). Whereas most attention has been given to discrete-time dynamic
networks, a substantial body of work has also covered continuous-time modeling, as outlined below.

Dynamic Latent Class Models. Initial efforts for modeling continuously evolving networks has
combined latent class models defined by the stochastic block models [17, 18] with Hawkes processes
[19, 20]. In the work of [11], co-dependent (through time) Hawkes processes were combined with
the Infinite Relational Model [21] (Hawkes IRM), yielding a non-parametric Bayesian approach
capable of expressing reciprocity between inferred groups of actors. A drawback of such a model
is the computational cost of the imposed Markov-chain Monte-Carlo optimization, as well as, its
limitation on modeling only reciprocation effects. Scalability issues were addressed in [12] via the
Block Hawkes Model (BHM), which utilizes variational inference and simplifies the Hawkes IRM
model by associating only the inferred block structure pairs with a univariate point process. Recently,
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the BHM model was extended to decoupling interactions between different pairs of nodes belonging
to the same block pair, through the use of independent univariate Hawkes processes, defining the
Community Hawkes Independent Pairs model [13]. Whereas the above works have been based
on continuous time modeling of dynamic networks, the dynamic-IRM (dIRM) of [3] focused on
the modeling of discrete-time networks by inducing an infinite Hidden Markov Model (IHMM) to
account for transitions over time of nodes between communities. In [4], a dynamic hierarchical block
model was proposed based on the modeling of change points admitting dynamic node relocation
within a Gibbs fragmentation tree. Despite the various advantages of such models, networks are
constrained to be regarded and analyzed at a block level which in many cases is restrictive.

Dynamic Latent Feature Models. Prominent works around node-level representations of continuous-
time networks [22, 23] have originally considered feature propagation within the discrete time
network topology [5] or extended the random-walk frameworks [6, 7] to the temporal case yielding
the CTDNE [24] model. CTDNE provides a single temporal-aware node embedding, meaning that
network and node evolution are unable to be visualized and explored. A more flexible approach was
designed in [15] (DYREP), where temporal node embeddings are learned under a so-called latent
mediation process, combining an association process describing the dynamics of the network with a
communication process describing the dynamics on the network. It uses deep recurrent architectures
to parameterize the intensity function of the point process, and thus the embedding space suffers from
a lack of explainability. HTNE [25] introduces a model utilizing a Hawkes process relying on node
embeddings. Unlike many approaches concentrating only on the structural modifications occurring
between nodes, MMDNE [26] explicitly considers such pairwise micro, and network scale macro
dynamics and uses a temporal node representation learning algorithm relying on a temporal attention
point process. Graph neural networks (GNNs) can be extended to the analysis of continuous networks
via the Temporal Graph Network (TGN) [16] where the classical encoder-decoder architecture is
coupled with a memory cell.

In the context of latent feature dynamic network models, Gaussian Processes (GP) have been used
to characterize the smoothness of the temporal dynamics. This includes the discrete-time dynamic
models considered in [8] in which latent factors were endowed a GP prior based on radial basis
kernels imposing temporal smoothness within the latent representation. The approach was extended
in [9] to impose stochastic differential equations for the evolution of latent factors. In [14], GPs were
used for the modeling of continuous-time dynamic networks based on Poisson and Hawkes processes,
including exogenous as well as endogenous features specified by a radial basis function prior.

Latent Distance Models (LDM) [27] have recently been shown to outperform prominent GRL methods
utilizing very-low dimensions in the static case [28, 29]. LDMs for temporal networks have been
mostly studied in the discrete case [2], considering mainly diffusion dynamics to make predictions, as
firstly studied in [30] and extended with popularity and activity effects [10]. While all these models
express homophily and transitivity in the dynamic case, they fail to account for continuous dynamics.

Our work is inspired by these previous approaches for the modeling of dynamic complex networks.
Specifically, we make use of the latent distance model formulation to account for homophily and
transitivity, the Poisson Process for the characterization of continuous-time dynamics, and a Gaussian
Process prior based on the radial-basis-function kernel to account for temporal smoothness within
the latent representation. Inspired by latent class models, we further impose a structured low-rank
representation of nodes based on soft-assigning nodes to communities exhibiting similar temporal
dynamics. Notably, we exploit how LDMs as opposed to GNN approaches in general, can provide
easily interpretable yet accurate network representations in ultra-low dimensional spaces (D = 2),
facilitating accurate dynamic network visualization and interpretation.

3 Proposed Approach
Our main objective is to represent every node of a given network, G = (V; E), into a low-dimensional
metric space, (X; dX), in which the pairwise node proximities will be characterized by their distances
in a continuous-time latent space (Objective 3.1). Since we address the continuous-time dynamic net-
works, the interactions among nodes through time can vary, with new links appearing or disappearing
at any time. More precisely, we will presently consider undirected continuous-time networks:
Definition 3.1. A continuous-time dynamic undirected graph on a time interval IT := [0; T ] is an
ordered pair G = (V; E) where V = f1; : : : ; Ng is a set of nodes and E � ffi; j; tg 2 V2 � IT j1 �
i < j � Ng is a set of events or edges.
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We will use the symbol,N , to denote the number of nodes in the vertex set andEij [t l ; tu ] � E to
indicate the set of edges between nodesi andj occurring on the interval[t l ; tu ] � I T .

3.1 Nonhomogeneous Poisson Point Processes

ThePoisson Point Processes (PPP)sare one of the natural choices widely used to model the number
of random events occurring in time or the locations in a spatial space. PPPs are parameterized
by a quantity known as the rate or the intensity indicating the average density of the points in the
underlying space of the Poisson process. If the intensity depends on the time or location, the point
process is calledNonhomogeneous PPP(Defn. 3.2), and it is typically adapted for applications in
which the event points are not uniformly distributed [31].
De�nition 3.2. [Nonhomogeneous PPP] A counting processf M (t); t � 0g is called anonhomoge-
neous Poisson processwith intensity function� (t), t � 0 if (i) M (0) = 0 , (ii) M (t) has independent
increments: i.e.,

�
M (t1) � M (t0)

�
; : : : ;

�
M (tB ) � M (tB � 1)

�
are independent random variables

for each0 � t0 < � � � < t B , and(iii) M (tu ) � M (t l ) is Poisson distributed with mean
Rt u

t l
� (t)dt.

In this paper, we consider continuous-time dynamic undirected networks such that the events (or
links/edges) among nodes can occur at any point in time. As we will examine in the following
sections, these interactions do not necessarily exhibit any recurring characteristics; instead, they
vary over time in many real networks. In this regard, we assume that the number of links,M [t l ; tu ],
between a pair of nodes(i; j ) 2 V 2 (i < j since the graph is undirected) follows a nonhomogeneous
Poisson point process (NHPP) with intensity function� ij (t) on the time interval[t l ; tu ), and the
log-likelihood function can be written by

L (
) := log p(Gj
) =
X

i<j
i;j 2V

0

B
@

X

eij 2E ij

log � ij (eij ) �
Z T

0
� ij (t)dt

1

C
A (1)

whereEi;j � E [0; T] is the set of links of node pair(i; j ) 2 V 2 on the timelineI T := [0 ; T] for a
networkG = ( V; E), and
 = f � ij g1� i<j � N indicates the set of intensity functions.

3.2 Problem Formulation

Without loss of generality, it can be assumed that the timeline starts from0 and is bounded by
T 2 R+ . Since the interactions among nodes can occur at any time point onI T = [0 ; T], we would
like to identify an accurate continuous-time node representationf r (i; t )g( i;t )2V�I T de�ned using
a low-dimensional latent spaceRD (D � N ) wherer : V � I T ! RD is a map indicating the
embedding or representation of nodei 2 V at time pointt 2 I T . We de�ne our objective more
formally as follows:
Objective 3.1. LetG = ( V; E) be a continuous-time dynamic network and� � : V2 � I T �! R be
an unknown intensity function of a nonhomogeneous Poisson point process. For a given metric space
(X; dX), our purpose is to learn a function or representationr : V � I T ! X satisfying

1
(tu � t l )

Z t u

t l

 +
�

dX
�
r (i; t ); r (j; t )

� �
dt �

1
(tu � t l )

Z t u

t l

� � (i; j; t )dt (2)

for a continuous function + : R ! R+ for all (i; j ) 2 V 2 pairs, and for every interval[t l ; tu ] � I T .

In this work, we consider the Euclidean metric on aD-dimensional real vector space,X := RD and
the embedding of nodei 2 V at timet 2 I T will be denoted byr i (t) 2 RD .

3.3 PI VEM: Piecewise-Velocity Model For Learning Continuous-time Embeddings

We learn continuous-time node representations by employing the canonical exponential link-function
de�ning the intensity function as

� ij (t) := exp
�

� i + � j � jj r i (t) � r j (t)jj2
�

(3)

wherer i (t) 2 RD and� i 2 R denote the embedding vector at timet and the bias term of nodei 2 V ,
respectively. Importantly, for a pair of nodes, we would like to have embeddings close enough to
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each other when they have high interactions during a particular time interval and far away from each
other if they have less or no links. For given bias terms, it can be seen by the following Lemma 3.1,
that the de�nition of the intensity function provides a guarantee for our goal given in Equation (2).
Lemma 3.1. For given �xed bias termsf � i gi 2V , the node embeddings,f r i (t)gi 2V , learned by the
objective given in Equation 1 within a bounded set of radiusRt during a time interval[t l ; tu ] satisfy

log

 
(tu � t l )
� logp0

ij

!

+( � i + � j ) �
1

(tu � t l )

Z t u

t l

jj r i (t) � r j (t)jj2dt � log

 
(tu � t l )

� log(1 � p>
ij )

!

+( � i + � j )+ Rt

wherep0
ij andp>

ij are the probabilities of having zero and more than zero links for the nodesi andj .

Proof. Please see the appendix for the proof.

When we take a look at the lower bound provided in Lemma 3.1 for a pair of nodes having no links
(p0

ij ! 1) within a particular time interval[t l ; tu ], the lower bound converges to in�nity, so nodes are
positioned in distant locations. Similarly, the upper bound provides us an intuition about the position
of the nodes for the case in which they exhibit a high number of interactions (p>

ij ! 1). The log
term squeezes the distance, and the nodes are forced to be positioned close to each other. As we will
see in the following parts, we restrict the node representations within a bounded region of radiusRt
by imposing a prior function in order to restrain the movements in the latent space. We utilize the
squared Euclidean distance in Equation(3), which is not a metric, but we presently impose it as a
distance [29, 32] for computational convenience, see Lemma A.4 in Appendix.

Notably, constraining the approximation of the unknown intensity function by a metric space imposes
the homophily property (i.e., similar nodes in the graph are placed close to each other in embedding
space). It can also be seen that the transitivity property holds up to some extent (i.e., if nodei is
similar toj andj similar tok, theni should also be similar tok) since we can bound the squared
Euclidean distance [29, 33]. Note that the bias termsf � i gi 2V are responsible for the node-speci�c
effects such as degree heterogeneity [28, 33], and they provide additional �exibility to the model by
acting as scaling factor for the corresponding nodes so that, for instance, a hub node might have a
high number of interactions simultaneously without getting close to the others in the latent space.

Since our primary purpose is to learn continuous-time node representations in a latent space, we
de�ne the representation of nodei 2 V at timet 2 I T based on a linear model byr i (t) := x (0)

i + v i t .
Here,x (0)

i can be considered as the initial position andv i the velocity of the corresponding node.
However, the linear model provides a minimal capacity for tracking the nodes and modeling their
representations. Therefore, we reinterpret the given timelineI T := [0 ; T] by dividing it into B
equally-sized bins,[tb� 1; tb), (1 � b � B ) such that[0; T] = [0 ; t1) [ � � � [ [tB � 1; tB ] wheret0 := 0
andtB := T. By applying the linear model for each subinterval, we obtain a piecewise linear
approximation of general intensity functions strengthening the models' capacity. As a result, we can
write the position of nodei at timet 2 I T as follows:

r i (t) := x (0)
i + � B v (1)

i + � B v (2)
i + � � � + ( t mod(� B ))v

(bt= � B c+1 )
i (4)

where� B indicates the bin widths,T=B, andmod(�) is the modulo operation used to compute the
remaining time. Note that the piece-wise interpretation of the timeline allows us to track better the
path of the nodes in the embedding space, and it can be seen by Theorem 3.2 that we can obtain more
accurate trails by augmenting the number of bins.
Theorem 3.2. Let f (t) : [0; T] ! RD be a continuous embedding of a node. For any given� > 0,
there exists a continuous, piecewise-linear node embedding,r (t), satisfyingjj f (t) � r (t)jj2 < � for
all t 2 [0; T] wherer (t) := r (b) (t) for all (b � 1)� B � t < b � B , r (t) := r (B ) (t) for t = T and
� B = T=B for someB 2 N+ .

Proof. Please see the appendix for the proof.

Prior probability. In order to control the smoothness of the motion in the latent space, we employ
a Gaussian Process (GP) [34] prior over the initial positionx (0) 2 RN � D and velocity vectors
v 2 RB � N � D . Hence, we suppose thatvect(x (0) ) � vect(v ) � N (0; � ) where� := � 2(� 2

� I + K )
is the covariance matrix with a scaling factor� 2 R. We utilize, � � 2 R, to denote the noise
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of the covariance, andvect(z) is the vectorization operator stacking the columns to form a sin-
gle vector. To reduce the number of parameters of the prior and enable scalable inference, we
de�ne K as a Kronecker product of three matricesK := B 
 C 
 D respectively account-
ing for temporal-, node-, and dimension speci�c covariance structures. Speci�cally, we de�ne
B :=

�
cx 0

�
�

�
exp(� (cb � ~c~b)2=2� 2

B )
�

1� b;~b� B is a(B + 1) � (B + 1) matrix intending to capture

the smoothness of velocities across time-bins wherecb = t b� 1 + t b

2 is the center of the corresponding
bin, and the matrix is constructed by combining the radial basis function kernel (RBF) with a scalar
termcx 0 corresponding to the initial position being decoupled from the structure of the velocities.
The node speci�c matrix,C 2 RN � N , is constructed as a product of a low-rank matrixC := QQ >

where the row sums ofQ 2 RN � k equals to1 (k � N ), and it aims to extract covariation pat-
terns of the motion of the nodes. Finally, we simply set the dimensionality matrix to the identity:
D := I 2 RD � D in order to have uncorrelated dimensions.

To sum up, we can express our objective relying on the piecewise velocities with the prior as follows:


̂ = arg max



X

i<j
i;j 2V

0

B
@

X

eij 2E ij

log � ij (eij ) �
Z T

0
� ij (t)dt

1

C
A + log N

 �
x (0)

v

�
; 0; �

!

(5)

where
 = f � ; x (0) ; v ; � � ; � B ; cx 0 ; Qg is the set of hyper-parameters, and� ij (t) is the intensity
function as de�ned in Equation (3) based on the node embeddings,r i (t) 2 RD .

Figure 1: Illustrative comparison of the ground-truth embeddings, the adjacency matrices here for
illustrative purposes constructed based on aggregating the links appearing within the corresponding
time intervals and learned node representations.

We provide the general overview of thePIVEM method in Figure 1. The �rst row shows how the
ground truth node embeddings evolve through time, and the dashed curves in the latent space show
the paths they have followed. The middle row represents the adjacency matrices of the network
constructed by aggregating the links occurring within the corresponding time intervals[t init ; t last ] for
illustrative purposes (notably, the model operates in continuous time and accounts for the temporal
position of each edge). Each entry of the adjacency matrices is shaded with respect to the number
of links in the intervals, so darker regions represent a higher number of links. Finally, the last row
illustrates the learned representations and their motion histories in the latent space.

3.4 Optimization

Our objective given in Equation(5) is not a convex function, so the learning strategy that we follow is
of great signi�cance in order to escape from the local minima and for the quality of the representations.
We start by randomly initializing the model's hyper-parameters from[� 1; 1] except for the velocity
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tensor, which is set to0 at the beginning. We adapt the sequential learning strategy in learning these
parameters. In other words, we �rst optimize the initial position and bias terms together,f x (0) ; � g,
for a given number of epochs; then, we include the velocity tensor,f vg, in the optimization process
and repeat the training for the same number of epochs. Finally, we add the prior parameters and learn
all model hyper-parameters together. We have employedAdam optimizer[35] with learning rate0:1.

Computational issues and complexity.Note that we need to evaluate the log-intensity term in
Equation(5) for each(i; j ) 2 V 2 and event timeeij 2 Eij . Therefore, the computational cost required
for the whole network is bounded byO

�
jVj2jEj

�
. However, we can alleviate the computational

cost by pre-computing certain coef�cients at the beginning of the optimization process so that the
complexity can be reduced toO

�
jVj2B

�
. We also have an explicit formula for the computation of

the integral term since we utilize the squared Euclidean distance so that it can be computed in at
mostO(jVj2) operations. Instead of optimizing the whole network at once, we apply a batching
strategy over the set of nodes in order to reduce the memory requirements. As a result, we sampleS
nodes for each epoch. Hence, the overall complexity for the log-likelihood function isO

�
S2B I

�

whereI is the number of epochs andS � jVj . Similarly, the prior can be computed in at most
O(B 3D 3K 2S) operations by using various algebraic properties such asWoodbury matrix identity
and Matrix Determinant lemma[36]. To sum up, the complexity of the proposed approach is
O(B S2I + B 3D 3K 2SI ) (Please see the appendix for the derivations and other details).

4 Experiments

In this section, we extensively evaluate the performance of the proposedPIecewise-VElocity Model
with respect to the well-known baselines in challenging tasks over various datasets of sizes and types.
We consider all networks as undirected, and the event times of links are scaled to the interval[0; 1]
for the consistency of experiments. We use the �nest granularity level of the given input timestamps,
such as seconds and milliseconds. We provide a brief summary of the networks below, but more
details and various statistics are reported in Table 4 in the appendix. For all the methods, we learn
node embeddings in two-dimensional space(D = 2) since one of the objectives of this work is to
produce dynamic node embeddings facilitating human insights into a complex network.

Experimental Setup.We �rst split the networks into two sets, such that the events occurring in the
last10%of the timeline are taken out for the prediction. Then, we randomly choose10%of the node
pairs among all possible dyads in the network for the graph completion task, and we ensure that each
node in the residual network contains at least one event keeping the number of nodes �xed. If a pair
of nodes only contains events in the prediction set and if these nodes do not have any other links
during the training time, they are removed from the networks.

For conducting the experiments, we generate the labeled dataset of links as follows: For the positive
samples, we construct small intervals of length2� 10� 3 for each event time (i.e.,[e� 10� 3; e+ 103]
wheree is an event time). We randomly sample an equal number of time points and corresponding
node pairs to form negative instances. If a sampled event time is not located inside the interval of a
positive sample, we follow the same strategy to build an interval for it, and it is considered a negative
instance. Otherwise, we sample another time point and a dyad. Note that some networks might
contain a very high number of links, which leads to computational problems for these networks.
Therefore, we subsample104 positive and negative instances if they contain more than this.

Synthetic networks. We generate two arti�cial networks in order to evaluate the behavior of the
models in controlled experimental settings.(i) Synthetic(� ) is sampled from the prior distribution
stated in Subsection 3.2. The hyper-parameters,� , K andB are set to0, 20and100, respectively.
(ii) Synthetic(� ) is constructed based on the temporal block structures. The timeline is divided into
10sub-intervals, and the nodes are randomly split into20groups for each interval. The links within
each group are sampled from the Poisson distribution with the constant intensity of5.

Real networks.The(iii) Hypertextnetwork [37] was built on the radio badge records showing the
interactions of the conference attendees for2:5 days, and each event time indicates20 seconds of
active contact. Similarly,(iv) theContactsnetwork [38] was generated concerning the interactions of
the individuals in an of�ce environment.(v) Forum[39] is comprised of the activity data of university
students on an online social forum system.(vi) College[40] indicates the private messages among
the students on an online social platform. Finally,(vii) Email [41] was constructed based on the
exchanged e-mail information among the members of European research institutions.
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Table 1: The performance evaluation for the network reconstruction experiment over various datasets.

Synthetic(� ) Synthetic(� ) College Contacts Email Forum Hypertext

ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR

LDM :563 :539 :669 :642 :951 :944 :860 :835 :954 :948 :909 :897 :818 :797
NODE2VEC :519 :507 :503 :509 :711 :655 :812 :756 :853 :828 :677 :619 :696 :648

CTDNE :613 :580 :539 :544 :661 :622 :787 :760 :854 :840 :657 :622 :725 :725
HTNE :614 :591 :599 :571 :721 :683 :846 :823 :871 :867 :723 :691 :775 :787

MMDNE :582 :565 :600 :576 :725 :692 :844 :825 :867 :863 :737 :712 :778 :787
PIVEM :762 :713 :905 :869 :948 :948 :938 :938 :978 :977 :907 :902 :830 :823

Table 2: The performance evaluation for the network completion experiment over various datasets.

Synthetic(� ) Synthetic(� ) College Contacts Email Forum Hypertext

ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR

LDM :535 :529 :646 :631 :931 :926 :836 :799 :948 :942 :863 :858 :761 :738
NODE2VEC :519 :511 :747 :677 :685 :637 :787 :744 :818 :777 :635 :592 :596 :588

CTDNE :608 :573 :531 :539 :601 :556 :752 :703 :831 :812 :568 :539 :554 :537
HTNE :605 :583 :573 :557 :673 :651 :792 :759 :853 :834 :596 :581 :602 :633

MMDNE :587 :570 :592 :571 :677 :662 :819 :811 :844 :829 :596 :570 :587 :614
PIVEM :750 :696 :874 :851 :935 :934 :873 :864 :951 :953 :879 :875 :770 :712

Baselines.We compare the performance of our method with �ve baselines. We include (i)LDM
with Poisson rate with node-speci�c biases [33, 42] since it is a static method having the closest
formulation to ours. We randomly initialize the embeddings and bias terms, and train the model with
the Adam optimizer [35] for 500epochs and a learning rate of0:1. A very well-known GRL method,
(ii) NODE2VEC [7] relies on the explicit generation of the random walks by starting from each node
in the network, then it learns node embeddings by inspiring from the SkipGram [43] algorithm. It
optimizes the softmax function for the nodes lying within a �xed window region with respect to a
chosen center node over the produced node sequences. In our experiments, we tune the model's
parameters (p, q) from f 0:25; 0:5; 1; 2; 4g. Since it has the ability to run over the weighted networks,
we also constructed a weighted graph based on the number of links through time and reported the best
score of both versions of the networks. (iii)CTDNE [24] is a dynamic node embedding approach
performing temporal random walks over the network. (iv)HTNE [25] learns embeddings based
on the Hawkes process modeling the neighborhood formation sequence induced from the network
structure. (v)MMDNE [26] introduces a temporal attention point process to model the newly
established links and proposes a general dynamics equation relying on latent node representations to
capture the network scale evolutions.

The continuous-time baseline methods are unable to produce instantaneous node representations
and they produce embeddings only for a given time. Therefore, we have utilized the last time of the
training set to obtain the representations. We have chosen the recommended values for the common
hyper-parameters ofNODE2VEC andCTDNE, so the number of walks, walk length, and window
size parameters have been set to10, 80, and10, respectively. We used the implementation provided
by the StellarGraph Python package to produce the embeddings forCTDNE. Similarly, we have
adapted the suggested hyperparameter settings for MMDNE and CTDNE with100epochs.

For our method, we set the parameterK = 25, and bins countB = 100 to have enough capacity to
track node interactions. For the regularization term (� ) of the prior, we �rst mask20%of the dyads in
the optimization of Equation(5). Furthermore, we train the model by starting with� = 106, and then
we reduce it to one-tenth after each100epoch. The same procedure is repeated until� = 10 � 6, and
we choose the� value minimizing the log-likelihood of the masked pairs. The �nal embeddings are
then obtained by performing this annealing strategy without any mask until this� value. We repeat
this procedure5 times, and we consider the best-performing method in learning the embeddings. The
Coef�cient of Variation (CV) of the experiments is always less than0:5, and Figure 2a shows an
illustrative example for tuning� over theSynthetic(� ) dataset with5 random runs.

For the performance comparison of the methods, we provide the Area Under Curve (AUC) scores for
the Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves [44]. We compute the
intensity of a given instance forLDM andPIVEM for the similarity measure of the node pair. Since
NODE2VEC andCTDNE rely on the SkipGram architecture [43], we use cosine similarity for them.
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Table 3: The performance evaluation for the link prediction experiment over various datasets.

Synthetic(� ) Synthetic(� ) College Contacts Email Forum Hypertext

ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR

LDM :562 :539 :498 :642 :951 :944 :860 :835 :954 :948 :909 :897 :819 :797
NODE2VEC :518 :506 :498 :502 :705 :676 :783 :716 :825 :807 :635 :605 :748 :739

CTDNE :680 :629 :481 :487 :691 :711 :842 :815 :824 :815 :664 :642 :699 :734
HTNE :573 :569 :491 :493 :715 :684 :864 :824 :838 :837 :764 :747 :785 :820

MMDNE :591 :575 :506 :515 :717 :703 :874 :847 :827 :832 :762 :746 :795 :813
PIVEM :716 :689 :474 :485 :891 :887 :876 :884 :964 :964 :894 :895 :756 :767

(a) Annealing strategy (b) In�uence of dimension (c) In�uence of bin count

Figure 2: In�uence of the model hyperparameters over theSynthetic(� ) dataset.

Network Reconstruction. Our goal is to see how accurately a model can capture the interaction
patterns among nodes and generate embeddings exhibiting their temporal relationships in a latent
space. In this regard, we train the models on the residual network and generate sample sets as described
previously. The performance of the models is reported in Table 1. Comparing the performance of
PIVEM against the baselines, we observe favorable results across all networks, highlighting the
importance and ability of PIVEM to account for and detect structure in a continuous time manner.

Network Completion. The network completion experiment is a relatively more challenging task
than the reconstruction. Since we hide10%of the network, the dyads containing events are also
viewed as non-link pairs, and the temporal models should place these nodes in distant locations of the
embedding space. However, it might be possible to predict these events accurately if the network links
have temporal triangle patterns through certain time intervals. In Table 2, we report the AUC-ROC
and PR-AUC scores for the network completion experiment. Once more,PIVEM outperforms the
baselines (in most cases signi�cantly). We again discovered evidence supporting the necessity for
modeling and tracking temporal networks with time-evolving embedding representations.

Future Prediction. Finally, we examine the performance of the models in the future prediction task.
Here, the models are asked to forecast the10%future of the timeline. ForPIVEM, the similarity
between nodes is obtained by calculating the intensity function for the timeline of the training set (i.e.,
from 0 to 0:9), and we keep our previously described strategies for the baselines since they generate
the embeddings only for the last training time. Table 3 presents the performances of the models. It is
noteworthy that whilePIVEM outperforms the baselines signi�cantly on theSynthetic(� ) network,
it does not show promising results onSynthetic(� ). Since the �rst network is compatible with our
model, it successfully learns the dominant link pattern of the network. However, the second network
con�icts with our model: it forms a completely different structure for every0:1 second. For the real
datasets, we observe mostly on-par results, especially withLDM. Some real networks contain link
patterns that become "static" with respect to the future prediction task.

We have previously described how we set the prior coef�cient,� , and now we will examine the
in�uence of the other hyperparameters over theSynthetic(� ) dataset for network reconstruction.

In�uence of dimension size (D ). We report the AUC-ROC and AUC-PR scores in Figure 2b. When
we increase the dimension size, we observe a constant increase in performance. It is not a surprising
result because we also increase the model's capacity depending on the dimension. However, the
two-dimensional space still provides comparable performances in the experiments, facilitating human
insights into networks' complex, evolving structures.
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