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ABSTRACT

Convolutional neural networks (CNNs) are known to be effective tools in many deep learning ap-
plication areas. Despite CNN’s good performance in terms of classical evaluation metrics such as
accuracy and loss, quantifying and ensuring a high degree of trustworthiness of such models re-
mains an unsolved problem raising questions in applications where trust is an important factor. In
this work, we propose a framework to evaluate the trustworthiness of CNNs. Towards this end, we
develop a trust-based pooling layer for CNNs to achieve higher accuracy and trustworthiness in ap-
plications with noise in input features. We further propose TrustCNets consisting of trustworthiness-
aware CNN building blocks, i.e., one or more conv layers followed by a trust-based pooling layer.
TrustCNets can stack together as a trust-aware CNN architecture or be plugged into deep learning
architectures to improve performance. In our experiments, we evaluate the trust of popular CNN
building blocks and demonstrate the performance of TrustCNet empirically with multiple datasets.

1 INTRODUCTION

Within the recent rapid developments of deep learning (DL), the convolutional neural networks (CNNs) emerged as
a critical component in various computer vision, machine learning, and cyber-physical systems tasks including the
novel view synthesis Zhou et al. (2016), SARS-CoV-2 vaccine design Yang et al. (2021), SARS-CoV-2 misinforma-
tion combating Cheng et al. (2021a), or perception and decision making modules of autonomous systems Gkioxari
et al. (2019); Zhu et al. (2015); Cheng et al. (2021c); Luo et al. (2018); Phillips et al. (2021). Although numerous
evaluation metrics for the analysis of neural networks (e.g., accuracy, precision-recall, area under the curve) exist, they
fail to provide a measure of trust / trustworthiness when quality of the dataset and the degree of noise are unknown.
Consequently, to overcome the challenges related to unknown corrupted or imprecisely curated training datasets as
well as to account for the intrinsic uncertainty of dynamic environments not captured in training datasets, the trustwor-
thiness and fairness become critical evaluation metrics for characterizing the performance of DL models Jiang et al.
(2018); Eshete (2021); Du et al. (2020); Mehrabi et al. (2021).

Fairness-, robustness-, and trustworthiness-related research has received an increasing amount of attention in recent
years. Such efforts include fairness-aware dataset and model development Hazirbas et al. (2021); Mehrabi et al. (2021);
Bobadilla et al. (2020), robust model and training methods developed for achieving better generalization Madry et al.
(2017); Cohen et al. (2019); Salman et al. (2019); Yang et al. (2020), as well as trust-aware model design in various
application areas Deng et al. (2017); Bernabe et al. (2016); Cheng et al. (2021b). A robust model should be able to
generalize well to adversarial and out-of-distribution (OOD) samples Uwimana & Senanayake (2021), especially for
real-world and open-world applications. Fairness in DL has also been linked to OOD literature Creager et al. (2021)
and classical approaches from OOD field are applicable to fairness issues. According to Shen et al. (2021), if the
invariance assumption adopted for OOD could be seen as a fairness notion, then pursuing OOD could be considered as
pursuing fairness. Trustworthiness concept can also be linked to OOD issues. For example, OOD generalization can
be realized through domain generalization using feature normalization methods to constrain the domain discrepancy
Pan et al. (2018). One can adopt trustworthiness measures to make a trust-aware feature normalization to capture
and eliminate domain variance and distill trustworthy task-related features. Note that the evaluation of the OOD
generalization performance remains challenging. It is shown empirically that the test accuracy evaluation metric in
a single environment would mislead the judgment Ye et al. (2021), hence, we argue that trustworthiness as another
evaluation metric could be useful in such scenarios.
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Trustworthiness quantification in DL models has emphasized the limitations of relying solely on accuracy when deal-
ing with unknown noise sources. For instance, a recent work from Google research proposes to quantify the trust score
of a classifier’s prediction on a specific test sample by measuring the agreement between the classifier and a modified
nearest-neighbor classifiers Jiang et al. (2018). This work does not consider the inner architecture of a classifier nor
the trustworthiness of datasets. The DeepTrust Cheng et al. (2020) framework provides analytical strategies for quanti-
fying the trustworthiness of deep neural networks (DNNs) by exploiting a binomial subjective opinion Jgsang (2016).
While DeepTrust quantifies the trustworthiness for classical DNNs and is innovative, it is not directly applicable to
CNNs and does not utilize trust values in inference.

To overcome these shortcomings, in this work, we develop a trustworthiness evaluation framework for CNN building
blocks and evaluate the trustworthiness of several popular CNN architectures. We further propose trust-aware CNN
blocks (TrustCNets) composed of one or more conv layers followed by a trust-based max-pooling layer. The trust-
based pooling layer works on the evaluated trustworthiness maps, while the traditional pooling layers work on feature
maps. The main contributions of this work are as follows:

* We develop an analytical framework for quantifying the trustworthiness of conv and max-pooling layers in CNNs.

* We evaluate and compare the trustworthiness of popular CNN building blocks and CNN architectures, e.g., VGG16
and AlexNet.

* We propose a max-trust-pooling layer which operates based on the trust map instead of the feature map. In addition,
we empirically show that with this max-trust-pooling, the trained CNNs achieve higher trustworthiness and accuracy
in some cases and possess specific noise-tolerant properties.

This paper is organized as follows. Sections 2 and 3 introduce the related work and preliminaries on trust and opinion
definition. The proposed trust evaluation framework for CNNs, and trust-aware CNN building blocks (TrustCNets)
involving max-trust-pooling are introduced in Sec. 4 and Sec. 5. We evaluate the trust of popular DL model building
blocks in Sec. 6, and then study the impact of max-trust-pooling and TrustCNet in Sec. 7. Sec. 8 concludes this work.

2 RELATED WORK

Trust modeling and quantification. To model and quantify trust / trustworthiness in various Al decisions, early
efforts led to the Dempster-Shafer theory (DST) and more recently to the subjective logic (SL) formalism. In SL, the
probability density function is used to quantify a so called opinion Jgsang (2016). In order to form an opinion from
a subject, the theory of belief functions, DST, is used for modeling epistemic uncertainty — a mathematical theory
of evidence Shafer (1976). However, the corresponding fusion operators in DST are controversial and confusing
Smarandache (2004). Therefore, we propose to use the flexible operators in SL for trust and opinion calculations.
Note that the core of our work is to quantify trust of CNNs and propose trust-aware CNN building blocks, which is
significantly beyond the realm of SL.

Trust in DL. Several evidence theory and trust propagation methods in the online reputation systems and network
systems are proposed in the literature Guha et al. (2004); Su et al. (2014); Urena et al. (2019). However, these methods
are not applicable to the field of Al and DL. Uncertainty, on the other hand, has been studied in DL research, like
uncertainty propagation in deep neural networks in Titensky et al. (2018), piece-wise exponential approximation in
Astudillo & Neto (2011), and evidential DL in Sensoy et al. (2018). DeepTrust Cheng et al. (2020), an SL-inspired
framework, is proposed to evaluate the trustworthiness of DNNs, however, trust is not embedded in the network
architecture or utilized in inference. In contrast, in this work, we propose a trust framework for CNNs and design a
new trust-based max-pooling function to improve CNNs’ performance in some cases. We leverage trust information in
the training and inference of CNNs. In addition, one of the biggest limitations of DeepTrust mentioned by the authors
is the requirement of data’s trustworthiness. However, we don’t have this limitation as discussed in Sec. 6.2.

Uncertainty quantification. Uncertainty quantification (UQ) is a well-studied field in deep learning and machine
learning. Generally speaking, there are two sources of uncertainty Gawlikowski et al. (2021); Hiillermeier & Waege-
man (2021), namely model uncertainty and data uncertainty. Model uncertainty is known as epistemic uncertainty
and is reducible with infinite data. Data uncertainty is known as aleatory uncertainty and usually is irreducible, such
as label noise or attribute noise. Bayesian approximation such as variational inference Hinton & Van Camp (1993);
Barber & Bishop (1998); Gal & Ghahramani (2016), and ensemble learning techniques such as weight sharing Gal
et al. (2017) are two popular methods in UQ. In Bayesian methods, model parameters are modeled as random vari-
ables, and the parameters are sampled from a distribution in a single forward pass Abdar et al. (2021). In ensemble
methods, there are multiple models, and the prediction is the combination of several models’ outputs. In contrast,
our framework works with one neural network model and collects evidence for each parameter to measure an opin-
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ion (which includes belief mass, disbelief mass, and uncertainty mass). However, our uncertainty mass in opinion is
a second-order uncertainty, while epistemic and aleatory uncertainty are first-order uncertainties. More specifically,
second-order uncertainty represents a probability density function (PDF) over the first-order probabilities (e.g, p(x)).
According to the Beta binomial model in SL, a binomial opinion is equivalent to a Beta PDF (Beta(p(x))) under a
specific bijective mapping. The density expresses where the probability p(x) is believed to be along the continuous
interval [0, 1]. The probability density, is then to be interpreted as second-order probability. This interpretation is
the foundation for mapping high probability density in Beta PDFs into high belief mass in opinions, therefore, flat
probability density in Beta PDFs is represented as uncertainty in opinions Jgsang (2016). Since this evidence-based
uncertainty reflects the vacuity of information, it is reducible as we collect information during training.

The uncertainty mass in opinions is an evidence-based uncertainty and can be characterized by the spread of the Beta or
Dirichlet PDFs Shi et al. (2020); Corbiere et al. (2021). Perhaps the closest uncertainty notion to our work is grounded
in a recently developed family of models: Dirichlet-based uncertainty family (DBU) Kopetzki et al. (2021). Evidential
deep learning (EDL) Sensoy et al. (2018) is one of the works in DBU models, proposed to quantify classification
uncertainty. Given a standard neural network classifier, the softmax output of the classifier for a single sample is
interpreted as a probability assignment over the available classes. The density of each of such probability assignments
is represented by a Dirichlet distribution, and it models second-order probabilities and uncertainty. It has been shown
that data, model, and distributional uncertainty, can all be quantified from Dirichlet distributions; and these DBU
measures show outstanding performance in the detection of OOD samples Malinin & Gales (2018); Sensoy et al.
(2018); Corbiere et al. (2021). In our experiments, we find that OOD and adversarial samples are less trustworthy
compared to clean in-distribution data, and this could be further explored in future works for OOD detection and
generalization studies.

Pooling functions. The classical general pooling functions, such as max-pooling and average pooling are frequently
used in CNN architectures. The forward propagation of max-pooling is to pass the largest value in the patch to the next
layer, which reduces the computational cost and provides basic translation invariance to the internal representation.
Although many novel pooling methods have been proposed along the years, such as global second order pooling Cai
etal. (2017); Gao et al. (2016), overlapping-pooling Krizhevsky et al. (2012), spatial pyramid pooling He et al. (2015),
background-aware pooling Oh et al. (2021), they still perform the operation of pooling functions based on feature
values. In this work, we propose to define a new pooling function based on CNNs’ trust values, to achieve higher
trustworthiness and accuracy after training.

3 BACKGROUND

An opinion can be seen as a summary of experience / evidence, e.g., we have opinions about a restaurant based on
our past experience or collected evidence, and a good experience leads to a positive opinion. Then, trustworthiness is
formed from opinions. In this work, given a DL model, with the values of each neuron, cell, and weight known, we
would like to assign a trustworthiness value and an opinion to these components and build a framework to quantify
the trustworthiness of CNNs. The definitions of opinion and trust are described as follows:

Definition 3.1 (Opinion Jgsang (2016)) Formally, an opinion about the truth or presence of x is defined as a tuple
containing 4 components: W, = [by, dy, Uz, az], where by + dy + uy = 1, by, dy, Uy, and a, are belief, disbelief,
uncertainty, and base rate, respectively. Each ranges [0, 1].

Definition 3.2 (Trustworthiness Cheng et al. (2020)) With opinion, we can further calculate the trustworthiness
value of the object x as belief mass plus uncertainty multiplied by the base rate, i.e., trustworthiness p, = by + Uz *ay.

There are several extreme cases, e.g., if the belief mass takes the maximum value of 1, it represents full belief, for which
the trust value reaches the maximum value of 1. Similarly, if the disbelief mass takes the maximum value, it represents
full disbelief and the trust value reaches the minimum value of 0. After introducing opinion and trustworthiness, we
now describe how to quantify an opinion of an object x from evidence. In the previous restaurant example, good
experience broadly leads to positive opinion, and this mapping between opinion and evidence is defined as follows:

Definition 3.3 (Evidence Jgsang (2016)) Given an object x, if its behavior satisfies some pre-defined property, a
positive evidence r is quantified, otherwise, a negative evidence s is quantified. With collected evidence about x, we
can map the evidences to an opinions using the following equations: by = ;7 do = 7373w Y = rrermm
where W is a non-informative prior weight, which has a default value of 2 to ensure that the prior Beta PDF is the
uniform PDF whenr = s = 0 and a, = 0.5.
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Figure 1: Trustworthiness quantification in conv and max-pooling layers. Trust calculation and feature calculation are
accomplished at the same time. In conv layer, the feature calculation includes a convolution calculated as shown in
(a), and the trust calculation includes a fusion calculation done in parallel as shown in (b). Note that the feature map
in (a) is the same as in classical CNNs, and the trust map in (b) is our contribution. The resulting feature map and
trust map have the same shape. A max-pooling layer with 2x2 window size then takes the feature map in layer [ + 1
and outputs the maximum feature value (e.g., 6.0) in the window. The corresponding cell in the trust map contains the
trust value 0.4, which is the trust value of cell 6.0 in feature map.

4 TRUSTWORTHINESS EVALUATION IN CNNS

In this section, we introduce our opinion and trustworthiness quantification framework for CNN building blocks, i.e.,
conv and pooling layers. We demonstrate our trustworthiness evaluation with a simple CNN architecture as shown in
Fig. 1, which consists of one conv layer using same padding method and one 2 x 2 classical max-pooling layer followed
by fully-connected layers. We perform trustworthiness evaluation along with neural network training. Fig. la shows a
normal CNN calculation and Fig. 1b shows the trust calculation. In each layer, there are ordinary feature values saved
in cells / neurons and weights, as well as trust values and opinions corresponding to cells / neurons and weights. We
denote a neuron or a cell by IV, and its feature and opinion / trust values are denoted by C and W , respectively.

4.1 OPINION AND TRUST EVALUATION IN CNNSs

The trust of an object as defined in Sec. 3 is calculated from an opinion. Hence, the trust evaluation is dependent on
opinion quantification. To determine the opinion of a CNN, we first evaluate the opinion of output neurons. On a high
level, the opinion of a CNN comes from opinions of the output neurons, i.e., neurons in the output layer. We denote the
opinion of a CNN as W ¢y v and the opinion of an output neuron as W ¢y ron (0r W in short). With output neurons’
opinions known, we calculate the opinion of a CNN by combining or fusing all output opinions together utilizing the
average fusion operator':

WCNN = fUSion(Wncuronla ey Wneuronn)a (1)
where n is the total number of output neurons. Generally speaking, the fusion operators combine the opinions together
and take care of the conflict information expressed in these opinions. Out of many fusion operators defined in SL, we
use average fusion here to combine the opinions from output neurons as they hold opinions over the same variable
/ object, a CNN, and there exist dependencies within opinions. In what follows, we will (i) review how to evaluate
the opinion of a single neuron in a dense layer, then introduce how to evaluate opinion of (ii) a conv layer, and (iii) a
max-pooling layer.

4.2 OPINION EVALUATION OF A SINGLE NEURON

Inspired by forward and backward propagation, the authors in Cheng et al. (2020) proposed that the opinion calculation
of a single neuron in DNNSs is quantified in a procedure called opinion propagation. Similarly in CNNs, for an output

neuron, the opinion of neuron (W ,,¢,,r0n) combines the forward passing opinion (I¥ »;) and backward updating opinion

"Mathematical details of fusion operators can be found in Appendix Sec. A.2.2.
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(Wﬁ) as defined in Eq. 7. For a hidden neuron, the opinion calculation only contains the forward pass opinion. (More

detailed description can be found in Appendix Sec. A.3). In the following sections, we introduce the calculations of
Wi, Wﬁ, and opinions of weights W ,,’s (where w is short for weight).

4.3 FORWARD OPINION PROPAGATION

For a neuron N' in layer [, it takes input from the previous layer, and we denote the opinion of an input from the
. —F o =—=F . . —
previous layer as W y:-1. For neurons connected with input layer, W -1 is the opinion of input features (W ., we

will introduce how to initialize it in Sec. 7), and for neurons in other layers, W 5.1 is the calculated opinion of neuron
in the previous layer. Note that only the neurons in output layer have backward opinions, and neurons in all hidden
layers only have forward opinions.

Layer [ Output layer

[Forward feature calculation]

In this section, we study frequently used layers in

CNNs, namely, fully connected layer, conv layer, Feature 8: O Ci*' = softmax(},; w;;C})
oA i Backpropagation
S

and pooling layer. The opinion evaluation in these
architectures is different. We use two examples Q)| |Feature i Labely &
opinion of y " —B
Opinion W i

shown in Fig. 1 and 2 to illustrate the framework. O

backpropagation

Forward propagation in fully connected layer.
Given a neuron ¢ in layer /, we assume its feature O

Q0O

o —F
value and forward opinion are C! and W y:, re-

__F —
- O WN;H = quiOl’l\-/,-(Ww‘JNif)

Wwi,
spectively, as shown in Fig. 2. To calculate the Forward . l_
opinion of a neuron j in the next layer, we fol- opinion 17 Wcenn — . —F —8B
low Cheng et al. (2020) and get inspiration from Ni g W neuron = fusion(W y, W)

ordinary forward propagation calculation in dense  Figure 2: Opinion calculation in a dense layer. Layer [ is a dense
layers, e.g., O = f(32, w; ;C!), where f(-) is layer and each neuron in this layer has a feature value and a cor-
an activation f{lnction and w; ;s are weights. The responding opinion and trust value. Both opinions of neurons and
opinion calculation of neuron j in layer [ + 1 takes opinions of weights are used to calculate the forward opinion of
similar form: a neuron in the next layer using Eq. 2. If the next layer is the

_F _ _ output layer, backward opinion is also calculated using Eq. 5.
Wyt = fusion(sz1 Ny Wt wN1)s 2
J 27 n,J n

where Wi yt = Wi - W;z, Vi, j, is an opinion multiplication (for details please see Appendix Sec. A.2.1).
i,j7 1 i,7 i

‘th th

Opinion W, represents the opinion of a weight passing from ‘" neuron in layer [ to the j*" neuron in layer [ + 1.
7

To replace the addition operation in ), w; ; C!, we use fusion operator fusion(-). For neurons in hidden layers, they
only have forward opinion updated along with the training process, and for neurons in the output layer, both forward

L. w==F .. =—B .. — .
opinion W and backward opinion W, are used to calculate the final opinion of an output neuron W ,,¢yr0n. We will
introduce the backward opinion calculation in Sec. 4.4.

Forward propagation in conv layer. Operations in conv layer are nothing more but multiplication and addition,
therefore, the forward propagation in conv layer is very similar to that in fully connected layer. As shown in Fig. 1b,
we calculate the opinion of a neuron in cony layer by taking inputs from one filter window, e.g., an m x m filter, and
multiplying corresponding weights. Formally, the forward opinion of a neuron / cell j in layer [ 4 1 reads:

W§;+l = fusion(Ww{N{,...,W j L) 3)

wWLXTrLNme

Forward propagation in max-pooling layer. The classical pooling layers are sometimes sandwiched between conv
layers to compress the amount of data and parameters. Its operations are similar as that of the conv layers, except that
the core of the pooling function is to take the maximum value or the average value of the corresponding position for
maximum or average pooling, respectively. Max-pooling outputs the maximum value in the pooling window (e.g., a
2x2 window) and its corresponding opinion reads:

—F —F  w=F =—F —F
Wit = max Wyt Wyt Wi Wit ). 4)
i feature i1 0,2 i3 i4

. . . . —F  =—F  =—F  =—F . .
Fig. | shows that the max-pooling takes input opinions (W N w NIt w N1, w N1 ) from a 2 x2 pooling window

in layer [ + 1, and outputs Wiwz, the opinion of the i'" cell in the layer [ + 2.
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Latency analysis. The latency of the proposed trust network come from feature and trust calculation as shown in Fig.
1. The trust calculation latency takes similar form as convolution operation. For an image with M x N size and a filter
with k X k size, the number of operations of convolution is O(M Nkk). In our trust calculation, if the trust calculation
in each computation operation is O(c), then the latency of trust calculation is O(M Nkkc). Therefore, the latency of
trust network in theory is O(M Nkkc). Further acceleration techniques are available but not the focus of this work.

4.4 BACKWARD OPINION PROPAGATION

In classical neural network training process, model parameters are updated in back propagation. Inspired by this, we
L. T .. =B . . .
update the parameter opinion W, and backward neuron opinion W ; in the backward opinion propagation phase.

Update parameter opinion. Weights and bias (parameters) are attached with opinions and their opinions and trust
values are updated during training. In the beginning, parameters are initialized to have maximum uncertainty opinions
(i.e., uncertainty mass equals to 1) due to lack of evidence, and later on they are updated based on partial derivative
of the cost function %. We track the gradient of a parameter, and if a gradient is in a tolerance range, i.e., %‘ <7
(where 7 is the mean of all gradients), we count it as a positive evidence r to formulate the opinion of W, based on
evidence theory (Def. 3.3). Otherwise, it contributes to a negative evidence s. In simpler terms, if weights are updated
by a larger step, it contributes to lower belief and trustworthiness. Intuitively, r and s represent the magnitude of
parameters change between the current value and the optimal value. Positive evidences indicate that current parameter
values are getting close to the optimal parameters.

Update output neuron opinion. Besides the parameter opinions, the backward opinion Wf, of a neuron in an output
layer needs to be updated during the training process. It is formulated based on the absolute error |y’ — y| between
neuron’ output 3’ (i.e., confidence value after softmax function) and the one-hot encoded ground truth label y. The
evidence for conditional backward opinion formulation of a neuron (W ,,)) on each update is determined as follows:
a positive evidence r is counted when |y’ — y| < 7, and a negative evidence s is counted when |y’ — y| > 7. After

calculating the Wy/ |y» We update Wﬁ as follows:

—B — — —
Wy=Wy =Wy, -W,, (5)
where W, is the opinion of true label y and it is initialized based on the quality of dataset, e.g., for dataset without

label noise, Wy could have the maximum belief mass. With backward opinion updated, we update output neurons’
opinions following Eq. 7 as demonstrated in Fig. 2.

5 TRUSTCNET FRAMEWORK Feature map, layer / Feature and trust map
é Choose maximum after max pooling

. . . feature value
In this section, we first propose a novel trustworthiness- ‘ ‘

based max-pooling (max-trust-pooling) layer. Then, c ] !
we take a CNN block and substitute the classic max- ;Izg —»{ Max pooling |— o
pooling layer with our max-trust-pooling layer to build
our TrustCNet block, a novel trust-aware CNN block. jgm%"ae” Trust and feature map
Choose maximum  after max trust pooling

5.1 MAX-TRUST-POOLING _F

Wy
Pooling layers usually follow conv layers and take the gjgf »| Max trust pooling |

average or maximum value in a window based on fea-
ture values. With opinion and trust evaluation, a conv
layer has a trust map in addition to the feature map as
shown in Fig. 3. Besides the feature-based pooling func-
tions, trust-based pooling comes naturally. Therefore,
we propose max-trust-pooling, a new pooling layer func-
tion based on trustworthiness values instead of feature
values. Classical max-pooling selects maximum values
from filters based on input values to extract most impor-
tant features. We argue that with trustworthiness consid-
erations, features can be selected according to their trust
values to improve both trustworthiness of the CNN and accuracy under certain circumstances. We can interpret this as
choosing the most trusted items in every window.

Figure 3: Max-trust-pooling layer. Different than max-
pooling layer that operates on feature maps, a max-trust-
pooling layer generates output based on trust map. In this
example, with 2x2 window size, a max-pooling function
will output the maximum value in feature window, which
is 6.0 with the trust value of 0.1. A max-trust-pooling func-
tion in this case will output feature value 5.3 because it has
the maximum trust value of 0.4. This demonstrates the dif-
ference between max-pooling and max-trust-pooling.
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A comparison between max-pooling and max-trust-
pooling is shown in Fig. 3. Given a feature map C" and
a trust map Wy in layer [, a 2x2 max-pooling function
selects the maximum feature value, and the resulting cell
in the next layer contains a feature of value 6.0 and its
corresponding trust value is 0.1. If we replace the max-
pooling by our proposed max-trust-pooling, the pooling
function then looks into the trust map (instead of feature

Algorithm 1 Max-trust-pooling function

Require:

Feature map in layer I, C", trust map in layer I, W y:, window
size, m X m, and pooling stride, s.

Ensure:

Feature map and trust map in next layer, C'** and W yu+1,
shape = (H, W).
fori=1: H do

forj=1:W do
Calculate sliding position:
vertical_start =1 * s
vertical_end = vertical_start +m
horizontal_start = m x s
horizontal_end = horizon_start +m
Slide two windows of size m X m in both feature map c'
and trust map W n: based on the calculated position.
Select the maximum value in trustworthiness window and
cache the index (id;, id;).
CUi][j] = C'[ids][id;)
W i [i][j] = Wy [ids][id;]
end for
end for
return CHY Wi

map), and the resulting cell in the next layer contains a
trust value of 0.4 (and its corresponding feature value is
5.3). The pseudo code of max-trust-pooling is shown in
Alg. 1.

As implied by Alg. 1, max-trust-pooling does not require
much more storage space, and all the computation can
be realized based on trust framework. We only need to
replace the basic opinion propagation method in pooling
layer with:

—F —F —F —F —F
Wiyt+1 = max(W y: 2 Wy o Wy " Wi 4)- (6)

trust

5.2 TRUSTCNET BLOCK

Our TrustCNet-n block is built based on a plain CNN network, e.g., g —
n conv layers followed by a max-pooling layer, and we replace the S

max-pooling with our proposed max-trust-pooling. As shown in Fig. Qo <n Slao| %] |&=
4, conv layers have feature maps and trust maps, then a max-trust- 2(8 28 = =5

. — (|t - PSP E S| T

pooling layer takes the trust map and generates output. In the pro- gl= gl= T ‘3” 3
cess of training, the parameters of the model and the corresponding HE S S [BI°
opinions and trust maps should be updated synchronously. As an a

architecture that operates based on trust values, TrustCNet-n is a ba-
sic building block that can be stacked together to form a trust-aware
CNN, i.e., TrustCNet. By collecting and amplifying more trustwor-
thy feature values in layers, the trust-aware model learns different

Fi 4: TrustCNet-n: a block with
information and features than the plain deep learning models. e rustetn: @ Block Wik n cony

layers followed by one max-trust-pooling layer.

6 TRUST QUANTIFICATION OF CNNS AND DATA

Deep learning model architecture design is an active research area and researchers develop various CNN models
throughout the years to achieve higher performance in multiple application areas. Many successful models become
benchmarks such as AlexNet Krizhevsky et al. (2012), VGG Simonyan & Zisserman (2014), ResNet He et al. (2016),
Inception Szegedy et al. (2016), EfficientNet Tan & Le (2019), etc. Various evaluation metrics have been proposed
and used in evaluating the deep learning models. However, trustworthiness evaluation is still lacking. Therefore, in
this section, we use the framework we proposed in Sec. 4 to quantify trustworthiness of several frequently used CNN
building blocks. For example, n conv layers followed by a max-pooling layer, where n € {1,2,3}, and we denote
these CNN blocks as convxn-max-pool. We also evaluate trustworthiness of a CNN residual block. In addition, we
provide trustworthiness evaluation of deeper CNNs such as VGG16 and AlexNet. Furthermore, we compare with the
state-of-the-art trust quantification framework DeepTrust Cheng et al. (2020).

Besides model design, data quality also influences the final results of experiments. While prior research efforts have
proposed multiple evaluation metrics for data quality, in this work, we would like to quantify trustworthiness of data
and provide a demonstration of how to quantify trustworthiness of data using the framework we proposed in Sec. 4.4.
Although data trustworthiness quantification is not the focus of this work, we would like to show that our framework
has the flexibility to be modified and utilized in other application areas, such as future online healthcare and legal
service, cyber physics systems involving human agents, and hope to provide inspirations to many other directions.
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6.1 QUANTIFY TRUST OF CNNSs

Experiment setup. In this experiment, we train and test all six CNNs with the same procedure using a subset of
ImageNet dataset Russakovsky et al. (2015); van den Oord et al. (2016). Training / test split is 80%/20%. We pre-
process the input by scaling the feature values in range [0, 1] and resizing the image shape to (180, 180, 3). For the
CNN building blocks, Adam optimizer is used with 0.0005 learning rate and a sparse categorical cross entropy loss
is used. ReL.U activation function Fukushima (1969) is used in all conv layers. We develop CNNs containing n conv
layers followed by a max-pooling layer and a fully connected output layer. For deeper CNNs, we experiment with
VGG16 and AlexNet. The architecture details of CNN blocks are as follows:

* 1 conv layer followed by 1 max-pooling (n = 1): conv (kernel window 3 x 3, stride 1, same padding, filter number
32) - max-pooling (kernel window 2x2, stride 2) - fully connected. This block type has been seen in AlexNet,

ResNet, Inception, EfficientNet, etc.

* 2 cony layers followed by 1 max-pooling (n = 2): conv (kernel window 3 %3, stride 1, same padding, filter number
32) - conv (kernel window 3 x 3, stride 1, same padding, filter number 64) - max-pooling (kernel window 2x 2, stride
2) - fully connected. This block type has been used in VGG, Inception, EfficientNet, etc.

* 3 conv layers followed by 1 max-pooling (n = 3): conv (kernel window 3 x3, stride 1, same padding, filter number
32) - conv (kernel window 33, stride 1, same padding, filter number 64) - conv (kernel window 33, stride 1, same
padding, filter number 64) - max-pooling (kernel window 2x 2, stride 2) - fully connected. This block type has been

used in AlexNet, VGG, etc.
¢ Residual block: we use the first residual block architecture from ResNet He et al. (2016).

EXpeI‘lmelltal results. CNN Block Residual block

. .. —— Conv x1 + max-pool Evaluation Metric
Results on CNN blocks. Fig. 5 shows the training accuracy and Conv x2 + max-pool  —— Accuracy

trustworthiness results of four CNN building blocks we consid- Conv x3 + max-poal === Trustworthiness
ered in this section. During the training process, training accu-
racy improves and trustworthiness also increases. The final test
results of this experiment are listed in Tab. 1. After inspecting
the results, we find that residual block’s performance is not ideal,
and conv x 2-max-pool evolves to be a clear winner as it achieves
the highest accuracy and trustworthiness. These results could be
useful in future deep learning model design works.

o
w
|
T
o
w

Accuracy
[=] [=] [=]
N B o
L L L
T T T
o o o ;
M = (=]
Trustworthiness

Results on deeper CNNs. The results of test accuracy and trust-
worthiness are shown in Fig. 6a. (Training results can be found in 0.0 : : : . _roo
Appendix Sec. A.4.1.) We observe that VGG16 although results 0 200 400 600 800 1000

in lower accuracy than AlexNet, it achieves higher trustworthi- Training Step

ness. This result shows that accuracy and trustworthiness are not

necessarily positively related.

Figure 5: Accuracy and trustworthiness evaluation
of CNN blocks. Conv x 2 - max-pool architecture is
Comparison with DeepTrust. We further quantify the trustwor- the best among the four blocks tested as it achieves
thiness of VGG16 using modified DeepTrust and our framework. the highest trustworthiness and accuracy.

The comparison of trustworthiness results is shown in Fig. 6b.

We find that DeepTrust generates much higher trustworthiness values than our method. The difference is caused
by the difference in parameter opinion evaluation. Our evaluation considers difference of weight in training while
DeepTrust is more output-dominated as its trust of weight is set to be the same as the backward opinion of output.

Besides the empirical difference, our framework differs from Table 1: Test accuracy and trustworthiness results
DeepTrust in many aspects. First of all, DeepTrust is designed of CNN blocks.
specifically for neural networks with only dense layers, and it is

not directly applicable to CNNss. It does not utilize trust values in | Accuracy  Trustworthiness
inference or training and only quantifies trust values and does not ~ convx1 - max-pool | 0.5342 0.5167
use the trust values to improve performance. Our framework can ~ convx2 - max-pool | 0.5522 0.5506
quantify trust of networks and also provide a way to utilize trust ~ €OnVx3 - max-pool | 0.5248 0.5174

values for improvement. Secondly, DeepTrust requires opinion Residual block 0.1178 0.0694

or trust of dataset as a priori. Our framework does not have this

restriction and further provide a way to quantify trust of data as discussed in Sec. 6.2. Furthermore, we calculate the
parameter opinion differently than DeepTrust. In DeepTrust, the opinion of a parameter is the same as the backward
opinion of output, which means all weights and bias receive the same opinion and trustworthiness. To address this, our
framework calculates opinion of weight based on their gradients during training, which assigns different trust value to
different weight. This allows our framework to consider differences in parameters.
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Figure 6: a. Accuracy and trustworthiness evaluation of VGG16 and AlexNet. b. Comparison between DeepTrust and
our framework. Results are evaluated on VGG16.

6.2 QUANTIFY TRUST OF DATA

It has been shown that gradients and saliency maps are useful in providing explainability, distinguishing difficult
samples, such as mislabeled, noisy, output of distribution samples, in computer vision tasks. As shown in Sec. 4.4,
our trust quantification framework works on gradients. Therefore, we propose to evaluate opinion / trust of data as
this information is often missing from the dataset. Our data trustworthiness quantification process is as follows. Given
a CNN, we retrieve its saliency maps, then for each sample, its trustworthiness is calculated based on our evidence
framework in Sec. 4.4, i.e., given a threshold, gradients larger / smaller than the threshold contributes to the negative /
positive evidence. Once evidence is quantified, opinion and trustworthiness of data are evaluated accordingly.

Experiment setup. In this experiment, we train a CNN with 18M parameters on CIFAR10 dataset. We consider clean,
mislabeled, out-of-distribution (OOD), and adversarial data. In all experiments, we train a CNN with clean data and
make modification to test set and quantify trustworthiness of test data. We want to mimic the scenario where we have
a pre-trained model deployed in non-ideal environment. For example, the test data fed to the model could include
noise or even adversarial attacks. For adversarial samples we consider the following attacks: FGSM Goodfellow et al.
(2014), Random FGSM (RFGSM) Tramer et al. (2017), One Step Least Likely (Step 1.1.) Kurakin et al. (2016), Basic
Iterative Method (BIM) Kurakin et al. (2018), and Iterative Least Likely (ILL) Kurakin et al. (2018). For OOD data,
we follow Liang et al. (2017); Agarwal et al. (2020) and consider Gaussian noise with A'(0, 1). For mislabeled data,
we follow Pleiss et al. (2020) and reassign labels from c to ¢ + 1. The trustworthiness of data is evaluated per sample
and we report the averaged trust values.

Experimental results and discussion. Evaluated mean trust of the clean data and contaminated data are shown in Tab.
2. From the results, we find it is clear that the clean data has the highest trust value, while contaminated data all result
in relatively lower trust values. Note that we do not claim that our data trustworthiness quantification can identify data
attacks, but we do want to show the results and hope to inspire more followup works on data attack detection, OOD
detection, and OOD generalization using trust values.

Table 2: Averaged trustworthiness evaluation results of clean and contaminated data.
Data \ Clean FGSM RFGSM Stepll. BIM ILL OOD Mislabeled
Trust \ 0.66 0.49 0.50 0.50 048 051 0.61 0.54

7 EVALUATION OF TRUSTCNET

In the previous section, we showed that our trust framework generated higher values for clean data and much lower
values for damaged or noisy data. In applications where input data are damaged or noisy, deep learning models could
generate sub-optimal results. Trust-aware CNNs that operate on both feature maps and trust maps might be able to
dampen the effect of the noise infused in data, and therefore output better results compared to their non-trust-aware
versions. Note that we do not focus on adversarial defense but only provide a study involving noisy data. In this
section, we develop a CNN architecture, and then utilize TrustCNet blocks and construct a trust-aware version to
compare them in terms of both accuracy and trustworthiness. For noise in dataset, we study three difficulty levels:
given input data, (i) we know both the position and intensity of the noise, (ii) we know the position but not intensity of
the injected noise, and (iii) both position and intensity are unknown. In addition, we further test our TrustCNet with
three different noises under the highest difficulty level.
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7.1 How MucH Do WE KNOW?

Noisy data is a frequent issue seen in machine learning and DL. Noise can affect either the labels, features, or both.
Here, we consider feature noise, e.g., noise in input images in computer vision tasks, and the difficulty level of the prob-
lem depends on how much noise information (or prior knowledge of the noise) we know in the test phase. We assume
that in training phase, the training data may or may not contain noise and we don’t know this information. There-
fore, in training phase, opinions of input feature and input label are W, = [f,0,1 — f,0.5] and W, = [1,0,0,0.5],
respectively, where f is normalized feature value. Then, in test phase, we consider three difficulty levels as follows.

I. Known position and known intensity. To calculate the opinion of CNNs, we propose the trust quantification
framework in Sec. 4.1, and it needs opinions’ of input features (W) for initialization and updates opinions in prop-
agation. If we know the location and intensity of noise, in the phase of opinion initialization, we set the opinion
tuple of the input features without noise as W, = [f,0,1 — f,0.5], where f is the normalized feature value, and the
opinion of features with noise reads W, = [f * (1 —t),1 — f * (1 — t),0,0.5], where ¢ is the intensity of noise.
Intuitively, features without noise obtain a belief value based on the feature value, and features with noise obtain a
belief value dampened by the noise level, and they also obtain a disbelief value to fulfill the opinion requirement
belief + disbelie f + uncertainty = 1.

I1. Known position and unknown intensity. When working with noisy input, case I is nearly perfect as we know a
lot of useful information about noise. However, sometimes we only know the location information of noise. This key
information is also proved to be functional. The opinion initialization of input in this case is as follows. Given a input,
we set the opinion of all features with noise to W, = [f,1 — f,0,0.5], (where f is feature value) and the opinion of
all features without noise is W, = [f,0,1 — f,0.5]. This setup intuitively represents that, on the premise of knowing
the location of noisy features, we disbelieve those positions containing noise and hence a low degree of trust on them
is propagated during the convolutional trustworthiness computation.

II1. Unknown position and unknown intensity. Another common situation when dealing with noise is that we lack
information about noise type. In such situation, we set the opinion of all input features as W, = [f,0,1 — f,0.5].
By assigning the rest part of mass to the uncertainty mass, the TrustCNet learns to update parameters in the training
processing in order to obtain the maximum trustworthiness.

7.2 EXPERIMENT SETUP

The TrustCNet model we develop and test in this section contains a TrustCNet-1 block (i.e., 1 conv layer followed
by 1 max-trust-pooling layer), a 3x3 conv layer followed by a 2x2 max-pooling layer, and fully connected layer.
The conv layer in TrustCNet-1 has 8 filters with 3x3 window size, stride 2 using same padding and the max-trust-
pooling’s window size is 2x2 with stride 2. The non-trust-aware version of this TrustCNet has the same architecture
but with the max-trust-pooling layer replaced by a normal max-pooling layer. We use MNIST LeCun et al. (1998)
and CIFAR-10 Krizhevsky et al. (2009) datasets and insert a self-defined Gaussian-distributed noise to input features
following Zhang et al. (2017) in training and testing. We randomly add Gaussian noise to a certain number of pixels
in input images. Adam optimizer is used with 0.001 learning rate and sparse categorical cross entropy loss is used to
update the parameters during batch training process. ReLLU activation is used in all conv layers. We use accuracy (and
accuracy improvement), trust (and trust improvement) as evaluation metrics to compare TrustCNet and its non-trust-
aware version. Improvement is calculated as the increase divided by the original value. We conduct the experiments
5 times and report mean and standard deviation results. We also provide comparison results between TrustCNets and
their non-trust-aware variants under 4 different types of noise in Appendix Sec. A.4.2.

7.3 EXPERIMENTAL RESULTS

The comparison results of TrustCNet and its non-trust-aware version are shown in Tab. 3. Non-trust-aware CNNs
achieve similar results in terms of both accuracy and trustworthiness when facing with noisy input, the slight differ-
ences are contributed by random initialization. While with clean data, TrustCNets and its non-trust-aware versions
perform similarly, TrustCNets perform much better than the non-trust-aware ones when there is noise involved in data,
and different prior noise information leads to different results.

Case 1. With known noise position and intensity, TrustCNets achieve much better accuracy and trustworthiness results
compared to their non-trust-aware versions. Max-trust-pooling-based TrustCNets operate on both feature map and
trust map, hence achieve better results in terms of trustworthiness. The feature value-based input opinion initialization
contributes to the outperformance of accuracy and shows that TrustCNets have noise-tolerant ability.
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Table 3: Comparison between TrustCNets and their non-trust-aware variants under noisy datasets. In case I, position
and intensity information of noisy input are used in input opinion initialization. In case II, only position information
is used, and in case III, no noise information is used in opinion initialization.

Max-pooling Max-trust-pooling (TrustCNet)
Dataset Level Accuracy Trustworthiness Accuracy Improvement  Trustworthiness  Improvement
Clean | 0.9757 +£0.0144 0.9836 £ 0.0116 | 0.9643 £ 0.0124 - 0.9540 4 0.0158 -
MNIST Casel | 0.7515£0.0184 0.7450 £0.0166 | 0.9398 £ 0.0125 25.05% 1 0.9417 4+ 0.0104 26.40% 1
Case Il | 0.7824 £0.0186 0.7784 4+0.0118 | 0.9130 4 0.0174 16.69% 1 0.9363 +0.0174 20.28% 1
Case Il | 0.757540.0146  0.7341 £0.0132 | 0.9027 £ 0.0178 19.16% t 0.9228 4 0.0169 25.70% 1
Clean | 0.7210 £0.0106 0.7003 £0.0192 | 0.7047 £ 0.0189 - 0.7124 4+ 0.0177 -
CIFAR-10 Casel | 0.3445£0.0196 0.3211 £0.0246 | 0.5078 £ 0.0191 47.40% T 0.5133 £ 0.0247 59.85% 1
Case I | 0.3390 £0.0243 0.3674 4 0.0285 | 0.5062 %= 0.0233 49.32% 1 0.5128 4+ 0.0182 39.57% 1
Case III | 0.337540.0214 0.3036 & 0.0197 | 0.4816 £ 0.0243 42.69% 1 0.5112 4 0.0260 68.37% 1

Case II. As we expected, taking location information of the noisy features as a priori in opinion initialization helps the
model operate on reliable features and achieve higher trustworthiness and accuracy. The benefit comes from assigning
disbelief mass to noisy features, which greatly affects the feature propagation in max-trust-pooling layer.

Case II1. Finally, with the least amount of information known about the noise, TrustCNets manage to improve accu-
racy and trustworthiness compared to its non-trust-aware variants by assigning uncertainty mass to all input features.
The results show that TrustCNets in case III have lower numbers than in case I and II, which is reasonable because
both location and intensity of noise are unknown in case III.

Furthermore, we also find that TrustCNets have certain noise-tolerant ability when used alone or placed towards the
beginning of the neural network (close to the input layer). When placed after non-trust-aware layers, TrustCNets do
not possess this ability anymore. This is because that the noise is processed by the proceeding layers and TrustCNet
does not have direct access to noise information anymore; hence, it could not improve the results.

Discussion. In this section, we demonstrated that TrustCNets with max-trust-pooling layers are useful in cases involv-
ing attribute noise. Besides those CNN architectures containing max-pooling layers, there are many modern network
designs do not contain a max-pooling. We would like to briefly discuss some potential future directions on how to
utilize trust maps without max-pooling. Max-trust-pooling is a straight-forward way to leverage the quantified trust
values in neural network training or design by pooling with trust values. We can also combine trust with dropout layer,
to make a trust-guided dropout; or to use it for model architecture selection or tuning, e.g., keep only the essential
and trustworthy parts of the architecture to save resource; or we can infuse trust evaluation in continual learning tasks,
to identify parameters that are more important and trustworthy during training to reduce catastrophic forgetting and
improve model trustworthiness. We believe the trust map and the whole trust quantification framework are worth
exploring and useful in many future directions.

8 CONCLUSIONS AND DISCUSSION

In this work, we propose a trustworthiness quantification framework for CNNs and use it to evaluate popular CNN
building blocks and deeper CNN architectures. We design a trust-based max-pooling layer and develop TrustCNet,
a building block for trust-aware CNN construction. When compared with their non-trust-aware variants, TrustCNets
achieves higher accuracy and trust values in cases involving noise in the data. We anticipate this approach will inspire
more works on trustworthy DL model design. As part of our future work, we plan to apply our trust quantification
framework to state-of-the-art deep learning models employed in cyber-physical systems. We plan to explore the impact
of trustworthiness on continual learning. A great deal of effort has been focused on solving catastrophic forgetting,
such as EWC (elastic weight consolidation) Kirkpatrick et al. (2017). One of the ideas of such methods is to analyze
the impact of various parameters, e.g., the Fisher information matrix is used in EWC to identify which parameters are
more important to task A than task B. We believe our trust measure could be adaptive in such cases. For example,
when learning new tasks, we identify which parameters are more trustworthy and apply higher weights to them. This
could further link to developing trust-aware models and methods for OOD generalization. In summary, we believe
this work provides an innovative aspect and is useful in DL model evaluation and design. We hope to inspire more
works to use trust in continual learning applications and scenarios involving imperfect data, such as OOD detection
and generalization, adversarial attack defense, and noise-resistant and robust deep learning architecture design.
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A APPENDIX

This section includes introduction the concepts of related subjective logic (SL) knowledge we used in the main text,
such as beta distribution (Sec. A.l) and related SL operators (Sec. A.2), related prior works for readability of the
manuscript (Sec. A.3), and additional experimental results (Sec. A.4.2). Code to our experiments is in the Supple-
mentary Materials zip file, we will release the Github link once this work get published.
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A.1 BETA DISTRIBUTION AND TRUSTWORTHINESS

A binomial opinion in SL Jgsang (2016) can be interpreted as Beta probability density function. Considering a random
variable X which drawn from binary domain {x, Z} has a continuous probability function p. Letp : X — [0,1] and
p(z) + p(Z) = 1. The corresponding Beta probability density function (p(x), c, 3) shows as:

Beta(p(), a, ) = m@(x»a*(l —p(@)’ L,
a=ry;+a,W,

B=25;+(1—a,)W,

where «, 8 represent evidence of X = z, X = Z. We can get the projected probability of a binomial opinion,
trustworthiness value, as p, = b, + uza,, which is equal to expected probability of Beta probability density function
E[x] _ _o . rptaW

atB = rots.tw — Pz

A.2 RELATED SL OPINION OPERATORS

The following 2 parts introduce main operators for constructing trust model. Notice that the average fusion operator
takes multiple source opinions as inputs.

A.2.1 MULTIPLICATION OPERATOR

To obtain conjunction of two opinions = A y, the following equation is used Jgsang (2016):
bm/\y _ bzby + (1—ag)aybguy+az(l—ay)byus

l—agzay
duny = dy + dy — dpdy,
1—ay)byuy+(1—agz)byus
l—azay ’

_ (
Ugpy = UgUy +

Azpy = Qgzy.

A.2.2 AVERAGING FUSION OPERATOR

Let C = {C1,C5,...Cn} be a frame of N sources with the respective opinions w%,w%, .. .w)C(N over the same

variable X. Let C denote a specific source C' € C. The averaging merger of all the sources in the source frame C is

denoted ¢(C). The opinion w%(c) = (b%((c)7 u%(c), a)%(c)) is the averaging fused opinion expressed as Wang et al.

(2017).
Case I: Elu)C( 0,

bg((C) (x) _ Ecec(b)c((w) Hcﬂég u?)
X ZCEC (Hcﬂsc uxj)
uﬁ(c) _ NHcec u)c(
X

a ZCGc(Hcﬂéc “?)
Case II: ug’; =0, VCeC,
C
by () = Yoec 1505 ()
W3 =0
X C

¢ = lim, ¢ —tx -

gl u$—0 Se, e e

A.3 OPINION EVALUATION OF A SINGLE NEURON

For a single neuron in neural networks, during the forward propagation, it takes inputs and weights and produces an
output, and in the backward propagation, weights are updated based on gradients. Inspired by this process, the opinion
calculation of a single neuron is quantified in a procedure called opinion propagation Cheng et al. (2020). Similarly in
classical neural networks, opinion forward propagation is nothing but another “feature” propagation, where the feature
is an opinion. Each weight is attached with an opinion as well. In opinion backward propagation, the opinions of

weights are updated. For an output neuron, the opinion (W ,,c..;-0n) combines the forward passing opinion (WZ) and
backward updating opinion (Wﬁ):

= . =—=F —B

W neuron = fUSZOTL(WN, WN)v (7
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where N is short for neuron. For a hidden neuron, the opinion calculation is simpler as it only contains the forward
pass opinion.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

A.4.1 TRUST QUANTIFICATION RESULTS FOR DEEPER CNNS
VGG16 AlexNet
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Figure 7: Accuracy and trustworthiness evaluation of VGG16 and AlexNet.

We follow the experiment setup in Sec. 6.1 and perform the same experiment on VGG16 and AlexNet, the results of
training / test accuracy and trustworthiness are shown in Fig. 7. We find that with similar accuracy results, trust values
are different. For example, VGG16 and AlexNet both achieve similar training accuracy, but their trustworthiness
in training is very different. Furthermore, VGG16 results in lower test accuracy compared to AlexNet, but the test
trust values of VGG16 is clearly higher. From these observations we find that trust and accuracy are not necessarily
positively correlated.

A.4.2 ADDITIONAL RESULTS FOR TRUSTCNET EVALUATION

Table 4: Comparison between TrustCNets and their non-trust-aware variants under 4 different types of noise.

Max-pooling Max-trust-pooling (TrustCNet)

Noise Accuracy Trustworthiness Accuracy Improvement  Trustworthiness  Improvement
MNIST (Gaussian) | 0.6577 +0.0146 0.6638 & 0.0132 | 0.7659 &+ 0.0178 16.45% 1 0.7543 £ 0.0169 13.63% t
MNIST (localvar) 0.6477 £0.0387  0.6453 +0.0279 | 0.9337 £ 0.0340 44.15% 1 0.9228 £0.0173 43.00% 1
MNIST (salt) 0.5548 £ 0.0147  0.5276 +0.0234 | 0.6948 + 0.0226 25.23% 1 0.6871 £ 0.0154 30.23% 1
MNIST (s&p) 0.6901 +0.0236  0.6890 & 0.0165 | 0.7658 +0.0171 10.96% t 0.7748 £ 0.0235 12.45% t
CIFARI10 (Gaussian) | 0.3068 £0.0165 0.2898 £+ 0.0143 | 0.4290 £+ 0.0167 39.83% 1 0.4235 £ 0.0134 46.13% 1
CIFARI10 (localvar) | 0.5484 +0.0324 0.5214 +0.0314 | 0.5770 £ 0.0161 8.47% 1 0.5634 £ 0.0247 8.05% 1
CIFAR10 (salt) 0.3985+£0.0174 0.3437 +£0.0194 | 0.4437 £0.0139 11.34% t 0.4561 £0.0177  32.70% T
CIFARI10 (s&p) 0.3597 £0.0289 0.3137 +£0.0127 | 0.4317 £0.0116 20.01% 1 0.4431 £0.0168 41.24% 1

Evaluation of TrustCNet with different noises. From the previous experiments, we see that TrustCNets are able to
improve trust and accuracy when there is Gaussian noise. In this section, we further study the noise-tolerant ability
of TrustCNets and include a variety of noise interference. We follow Zhang et al. (2017) for noise setup and add four
types of noise to the whole image: (i) Gaussian with 0 mean and 0.2 variance, (ii) Gaussian-distributed additive noise
(localvar), (iii) salt noise with 0.2 intensity, and (iv) salt and pepper (s&p) noise with 0.2 intensity. We consider the
hardest case III in this experiment and the results are shown in Tab. 4. From the results, we see that TrustCNets achieves
better results in all cases, and this demonstrates the noise-tolerant ability of TrustNets when facing with simple noises.
TrustCNets with max-trust-pooling managed to learn useful information from noisy features, and taking both feature
map and trust map into consideration in learning proves to be beneficial in terms of accuracy and trust.
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