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ABSTRACT

Correlations between factors of variation are prevalent in real-world data. Exploiting such correlations
may increase predictive performance on noisy data; however, often correlations are not robust (e.g.,
they may change between domains, datasets, or applications) and models that exploit them do
not generalize when correlations shift. Disentanglement methods aim to learn representations
which capture different factors of variation in latent subspaces. A common approach involves
minimizing the mutual information between latent subspaces, such that each encodes a single
underlying attribute. However, this fails when attributes are correlated. We solve this problem by
enforcing independence between subspaces conditioned on the available attributes, which allows
us to remove only dependencies that are not due to the correlation structure present in the training
data. We achieve this via an adversarial approach to minimize the conditional mutual information
(CMI) between subspaces with respect to categorical variables. We first show theoretically that CMI
minimization is a good objective for robust disentanglement on linear problems. We then apply our
method on real-world datasets based on MNIST and CelebA, and show that it yields models that are
disentangled and robust under correlation shift, including in weakly supervised settings.

1 INTRODUCTION

Disentangled representations can be useful for improving fairness (Locatello et al., 2019a), interpretability (Adel et al.,
2018), controllable generative modeling (He et al., 2019), and transfer to downstream tasks (Van Steenkiste et al.,
2019). In addition, they can improve robustness on out-of-distribution data (Higgins et al., 2017b) (e.g., for domain
adaptation (Ilse et al., 2020) and domain generalization (Ben-Tal et al., 2009)). Most research on disentanglement
has assumed that the underlying factors of variation in the data are independent (e.g., that factors are not correlated).
However, this assumption is often violated in real-world settings: for example, in domain adaptation, the class
distribution often shifts between domains (yielding a correlation between the class and domain); in natural images,
there is often a strong correlation between the foreground and background (Beery et al., 2018), or between multiple
foreground objects that tend to co-occur (e.g., a keyboard and monitor) (Tsipras et al., 2020; Beyer et al., 2020).
Importantly, correlated data occur in areas that affect people’s lives, including in healthcare (Chartsias et al., 2018) and
fairness applications (Madras et al., 2018; Creager et al., 2019; Locatello et al., 2019a), and correlation shifts in these
applications are common (e.g., demographics are likely to differ from one hospital to another).

The goal of disentanglement is to encode data into independent subspaces that preferably match the ground truth
generative factors. A common approach to achieve this (used in ICA, PCA, and VAEs) is to ensure that the latent
subspaces share as little information as possible, by minimizing the mutual information (MI) between subspaces.
However, recently it has been shown that this fails to disentangle correlated factors (Trduble et al., 2020). Several works
have sought to address this by introducing partial supervision (Trduble et al., 2020; Shu et al., 2019; Locatello et al.,
2020b). Here, we show that even with full supervision, minimizing the MI can fail: it is impossible to encode generative
factors into independent subspaces if they are correlated in the training data. To address this, we propose minimizing
the MI between subspaces conditioned on the correlated attributes.

We compare three objective functions for learning disentangled representations: 1) standard supervised losses (such
as mean-squared error or cross-entropy) that encourage each subspace to encode a specific attribute; 2) a supervised
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loss plus unconditional MI minimization; and 3) a supervised loss plus conditional MI (CMI) minimization. We first
show that approaches (1) and (2) fail on correlated and noisy data: minimizing a supervised loss cannot enforce that
there is little information shared between subspaces; MI minimization is too strong a constraint to satisfy when the
underlying factors of variation are correlated, and thus minimizing MI leads to decreased performance. We then show
that minimizing CMI yields disentangled representations that are robust to correlation shifts.

Overall, we aim to establish conditional independence as the correct notion of independence between latent subspaces
when disentangling data with correlated factors of variation.

Contributions.

* Most disentanglement metrics used in the literature assume that the attributes are uncorrelated, and thus are
not directly applicable to correlated data. We propose to use the predictive performance under correlation
shift as a measure of disentanglement applicable to settings with correlated factors of variation.

* We analyze the behavior of each objective function on a linear regression problem where all quantities of
interest can be computed analytically (Section 3). We show that minimizing the CMI between latent subspaces
yields a solution robust to test-time correlation shifts, while minimizing the unconditional MI (or only a
supervised loss) does not.

* We describe an adversarial approach for learning conditionally disentangled representations (Section 4).

* Then, we apply our approach to CMI minimization to two tasks based on real-world datasets—a multi-digit
occluded MNIST task and correlated CelebA—and demonstrate improved performance under correlation shift
relative to baselines (Section 5).

* We investigate the interplay between correlation strength and noise level in the training data. When data are
noisy and have strong correlations, the noise forces the model to rely on correlations when making a prediction;
this leads to failures of the baseline approaches when correlations shift at test-time, and demonstrates the
benefits of CMI minimization, which performs well across correlation strengths and noise levels.

* We show that CMI minimization can be applied in the weakly supervised setting, and show significant gains
compared to baselines.

Our code is available on Github.

2 BACKGROUND & RELATED WORK

ICA/ISA. Disentanglement is related to blind source separation (BSS), as both problems revolve around the question
of identifiability. A classic approach to BSS is Independent Component Analysis (ICA) (Comon, 1994; Jutten &
Herault, 1991; Bell & Sejnowski, 1997; Olshausen & Field, 1996), which assumes statistical independence between the
source variables (Jutten & Herault, 1991; Jutten & Karhunen, 2003). Independent Subspace Analysis (ISA) (Hyvirinen
& Hoyer, 2000), or multidimensional ICA (Cardoso, 1998), is a generalization of ICA where each component is
a k-dimensional subspace; dimensions within a subspace may have dependencies, while dimensions from different
subspaces must be independent. Our work can be seen as a form of nonlinear ISA that enforces conditional independence
between subspaces.

Correlations Between Features. With roots in ICA, most research on disentanglement focuses on data that was gener-
ated by independent factors, including synthetic benchmarks such as dSprites (Matthey et al., 2017), Shapes3D (Burgess
& Kim, 2018), Cars3D (Reed et al., 2015), SmalINORB (LeCun et al., 2004), or MPI3D (Gondal et al., 2019). In
real-world datasets on the other hand, factors are often correlated (Welinder et al., 2010; Lin et al., 2014). Trauble et al.
(2020) pointed out the challenges that arise when attempting to learn disentangled representations on correlated data,
and performed a large-scale empirical evaluation of the effect of correlations on widely-used VAE-based disentangle-
ment models. They proposed two approaches to ameliorate the harmful effects of correlations: 1) introducing weak
supervision during training, and 2) labeling data post-hoc to “correct” a pre-trained encoder. We show that even with full
supervision, correlations are problematic when enforcing independence between latent subspaces. Causally-informed
modeling (Zhang et al., 2020) is another approach to learning disentangled representations and extracting invariant
features.To investigate the effect of correlations systematically, it is common to modify existing datasets to induce
correlations, for example by subsampling the data, or generating synthetic datasets with the desired properties (Dittadi
et al., 2020; Cimpoi et al., 2014; Jacobsen et al., 2018; Locatello et al., 2019b). We follow this approach in our
experiments.

Unsupervised and Weakly-Supervised Disentanglement. Disentangled representation learning is often studied
in the unsupervised setting, where the ground-truth factors of variation are unknown. Widely-used approaches for
this include variational autoencoders (VAEs) (Kingma & Welling, 2013) and their variants (beta-VAE (Higgins
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et al., 2017a), TC-beta-VAE (Chen et al., 2018), FactorVAE (Kim & Mnih, 2018), etc.). However, it was shown by
Locatello et al. (2019b) that the assumption of independent source variables (e.g., attributes) is questionable, and that
purely unsupervised disentanglement may not be possible. This spurred interest in weakly-supervised methods (Shu
et al., 2019; Locatello et al., 2020b), where weak supervision is provided in the form of partial labels or grouping
information (Bouchacourt et al., 2018; Nemeth, 2020; Klindt et al., 2020). In this paper, we focus on comparing MI and
CMI minimization in the fully-supervised setting, as this is already challenging and provides useful insights.

Domain Adaptation/Generalization. We use predictive performance under correlation shift as a measure for the
quality of disentanglement. This is closely related to the fields of domain adaptation and generalization, with the
difference that we assume access to one source domain only. The goal of most related work in this field is to learn
representations from multiple source domains that transfer to known (e.g., adaptation) or previously unseen (e.g.,
generalization) target domains. This is done by either learning domain-invariant representations which discard domain
information (Tzeng et al., 2017) or by learning disentangled representations, with latent subspaces that correspond to
the domain and the class, respectively (Peng et al., 2019; Ilse et al., 2020; Liu et al., 2018). For the latter approach,
disentanglement is achieved by minimizing the mutual information between latent subspaces (Cheng et al., 2020;
Gholami et al., 2020; Nemeth, 2020). Zhao et al. (2019) discuss fundamental problems inherent in learning domain-
invariant representations when there are correlations between classes and domains (e.g., when the class distribution
shifts in the target domain). The goal of Invariant Risk Minimization (Arjovsky et al., 2019) is to find correlations that
are invariant over multiple training domains in order to improve generalization to out-of-distribution data.

Fairness. An important application of disentanglement is fairness. As machine learning systems are typically trained
on historical data, they often inherit past biases (e.g., from human decision-makers). This may result in unfair treatment
on the basis of sensitive properties such as ethnicity, gender, or disability. Typically, this can be addressed by modifying
the training data to be unbiased or by adding a regularizer (e.g. based on mutual information) that quantifies and
minimizes the degree of bias (Kamiran & Calders, 2009; Kamishima et al., 2011; Zemel et al., 2013; Hardt et al., 2016;
Cho et al., 2020).

Mutual Information. The mutual information (MI) between two random variables x and y, denoted I(x;y), is
the KL divergence between the joint distribution p(x,y) and the product of the marginal distributions p(x)p(y):
I(x;y) = DxL[p(x,¥)||p(x)p(y)]. Minimization of MI has been used to implement an information bottle-
neck (Alemi et al., 2016) and to factorize representations (Jacobsen et al., 2018). MI minimization is at the heart
of many approaches to disentanglement. The conditional mutual information (CMI) is defined as: I(x;y | z) =
E, [DxL[p(x,y | 2) || p(x | 2)p(y | z)]. CMI measures the dependency between two variables given that we know the
value of a third variable. For example, there is a dependency between a country’s number of Nobel laureates per capita
and chocolate consumption per capita (Prinz, 2020). However, this dependency is largely explained by the wealth of a
country, thus I (nobel; chocolate | wealth) < I(nobel; chocolate). In general, the CMI can be smaller or larger than
the unconditional MI.

Estimating & Optimizing Mutual Information. Many approaches have been proposed for MI and CMI estimation
and optimization. The Mutual Information Neural Estimator (MINE) (Belghazi et al., 2018) uses a lower-bound of the
MI based on the Donsker-Varadhan dual representation of the KL divergence (Donsker & Varadhan, 1983). Poole
et al. (2019) provide an overview of variational bounds that can be used to estimate MI; most are lower bounds, which
are useful in principle for maximizing MI, but which have also been used to minimize MI (even though minimizing a
lower bound is not guaranteed to decrease MI). CLUB (Cheng et al., 2020) introduced a variational upper bound of
ML, providing a more principled objective for minimizing MI. Several CMI estimators have been proposed, including
conditional-MINE (Molavipour et al., 2020a), C-MI-GAN (Mondal et al., 2020), CCMI (Mukherjee et al., 2020), and
an approach based on nearest neighbors (Molavipour et al., 2020b). Many approaches to MI minimization are based on
batchwise shuffling of latent subspaces, sometimes referred to as metameric sampling (Belghazi et al., 2018; Nemeth,
2020; Feng et al., 2018; Park et al., 2020; Peng et al., 2019). The approach we use in Section 4 follows this paradigm of
latent-space shuffling.

3 DISENTANGLEMENT WITH CORRELATED VARIABLES: MOTIVATING CMI
A summary of notation is provided in Appendix A.

Problem Statement. Suppose we observe noisy data x € R obtained from an (unknown) generative process
x = g(s) where s = (s1, S2, .. ., Sk ) are the underlying factors of variation, also called source variables or attributes,
which may be correlated with each other. We wish to find a mapping f : R™ — R” to a latent space f(x) = z =
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Base Base + MI Base + CMI
Variance Explained, Training (Corr = 0.8) 91.9% 69.8% 90.9%
Variance Explained, Test (Corr = 0) 87.6% 65.0% 90.9%
Regression Matrix M (where § = Mx) (8?}1 8 ;L) (—10016 _1004;6> <(1) (1))

Table 1: Robustness of linear regression under correlation shift for each of the objectives Base, Base+MI, and Base+CMI. Here, the
observations and predictions are in R?. The performance of the Base model drops under correlation shift. The optimal solution under
the constraint of minimal MI, I(z1; z2) = 0, fails to model the in-distribution correlated training data. The solution with minimal
conditional M1, 1(z1; 22 | s1) = I(z1; 22 | s2) = 0, maintains consistent performance under correlation shift. Note that because the
generative process is given by g(s) = As = Is, the inverse is A~ = I. In the last row, we see that only Base + CMI recovers this
true inverse.

(21,22, . ..,2zk) such that each attribute s;, can be recovered from the corresponding latent subspace zj, by a linear
mapping Ry, e.g., §x = Ryzy, such that §; &~ s;. We denote by z_; the set of subspaces {z1,...,Z;—1,Zi+1,...,ZK }-
We consider three different objectives for learning the latent subspaces: 1) minimizing a supervised loss L (e.g., mean
squared error or cross-entropy), Zfil L(8;,s;), denoted “Base”; 2) minimizing the unconditional mutual information
between subspaces in addition to the supervised loss, ) . L(5;,5;) + I(21,...,2K), denoted “Base+MI”; and 3)
minimizing the conditional mutual information between subspaces conditioned on observed attributes, in addition to
the supervised loss, Y. L(5;, s;) + I(2;;2—; | ;) denoted “Base+CMI”. We wish to learn a model that is robust to
correlation shifts, e.g., if we train on data where corr(s;, s;) > 0, then we desire that the resulting model will perform
similarly on uncorrelated data, corr(s;, s;) = 0, or anticorrelated data, corr(s;, s;) < 0.

In this section, we motivate the use of CMI minimization for learning robust disentangled representations. We use a
linear regression task that can be solved analytically, and for which all quantities of interest, including MI and CMI,
can be computed in closed form. This allows us to compare the solutions obtained via the vanilla mean-squared error
objective (Base) to the solutions obtained by minimizing the MSE under the constraint that the MI or CMI between
latent subspaces is minimized. This yields insight into the behavior of the objectives in the idealized case where the
constraints they prescribe (I(z1; z2) = 0 for ML or I(z1; 22 | s1) = I(21; 22 | s2) = 0 for CMI) are exactly satisfied.

First, we show that the supervised loss alone does not yield robust disentangled representations. Then, we show that
additionally minimizing the unconditional MI forces the model to learn an even worse solution. Finally, we show that
minimizing the conditional MI yields appropriately disentangled representations that are robust to correlation shift.

3.1 FULL SUPERVISION DOES NOT YIELD DISENTANGLEMENT

Here, we introduce a linear regression problem with correlated attributes. First, we analyze the solution obtained by
optimizing only the Base objective, which in this case is the mean squared error. Consider a linear generative model
with correlated Gaussian source variables s, given by:

x=As+n , s~N(0,Cs) , n~N(0,C,)

where A is the ground-truth mixing matrix and Cg and C,, are the covariance matrices for the source and noise
variables, respectively. We assume that x is observed and wish to disentangle the underlying source variables s; this
corresponds to finding the mapping A ~! that inverts the data generating process. When we have access to the source
variables, a natural approach is to minimize a supervised loss to ensure that each subspace contains information about its
attribute. The optimal linear regression solution, both in the least squares sense and with respect to maximum likelihood,
is given by the posterior mean:

8(x) =E[s | x] = CoxCx'x (1)

where Cgx and Cy are the following covariance matrices:
Cox =E[s(As+n)"] =C,AT )
Cx=AC,AT +C, 3)

The least-squares optimal mapping Cs,C ! in Eq. 1 is not equal to the inverse A~! of the generative model, as it is
biased by the correlation structure C4 and C,, towards directions of maximal signal-to-noise ratio. Thus, regression is
sensitive to noise, and this can lead to failures when evaluating the model on correlation-shifted data. For this Gaussian
problem, we can compute the expected mean squared error (and therefore the expected variance explained) analytically:

E [(s — 8(x))*] = Var (s) = Tr(Cs) “4)
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Figure 1: Minimizing unconditional MI for the Gaussian linear regression task. To enforce unconditional independence, we

choose W such that Cov(z) is diagonal. In our case this is easy: the principal components of x are 21 + z2 and 1 — z2. The

optimal regression loss with minimal MI is then given by whitening and rotating the result by angle ¢op which leads to maximal

variance explained (¢ope = —™/4 for positive correlations and A = TI).
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Figure 2: Visualisation of targets s, input data x and the predictions § made by models using each of the different objectives
{Base, Base+MI, Base+CMI }. For Base, the predictions are more correlated than the data, revealing that the correlation in the
training data is used to compensate for the noise. Base+MI leads to uncorrelated predictions. This cannot be the correct solution, as
the targets are correlated. Only for Base+CMI does the correlation between the predictions and data match for both training and test
data.

In Table 1, we see that in the two-dimensional case where s = (s1, s2) for A = I, C, = 0.01 - I and the train-time
correlation is corr(s1, s2) = 0.8, § explains 91.9% of the variance in s (column “Base”). However, when the correlation
between s, and s, shifts at test time, such that corr(sy, s2) = 0, then performance drops to 87.6%. This drop occurs
because the estimator § tries to make use of the assumed correlation between s; and ss to counteract the information
lost due to noise, but this correlation is no longer present in the test data (see also Figure 2). The gap in performance
between correlated and uncorrelated data indicates that s; and se have not been correctly disentangled.

3.2 UNCONDITIONAL DISENTANGLEMENT FAILS UNDER CORRELATION SHIFT

In the 2D linear case, we have:
z = (21, 22) = Wx, 51 =Rz, 52 = Rozo )

where the matrix W encodes the observation into the latent space. The linear regression example in Sec. 3.1 corresponds
to W = CgC; ! and R;, = 1. In standard supervised objectives, there is no constraint preventing a subspace 2y,
from containing information about other source variables than s;. A common approach to enforce independence is to
minimize the MI between the latent subspaces z; and z5 (Chen et al., 2018; Peng et al., 2019). In the Gaussian case,
random variables are independent if and only if they are uncorrelated. The optimal linear regression weights W that
yield I(z1; 22) = 0 (e.g., such that Cov(z) is diagonal) can be computed by whitening x and rotating the result by an
angle ¢y Which leads to maximal variance explained. For our example in Table 1, where we have positive correlation
and A = I, the optimal rotation is ¢o, = —7/4 (see Figure 1). However, the resulting model no longer performs
well on in-distribution data (Table 1, column “Base+MI”). There is correlation between the source variables s; and
s9 and therefore I(s1; s2) > 0. By enforcing independence, at least one of the subspaces cannot contain all relevant
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information about its attribute and thus will have poor predictive performance. We make this precise in the following
proposition.
Proposition 3.1. IfI(s1; s2) > 0, then enforcing I(z1; z2) = 0 leads to I(zy; si.) < H(sy) for at least one k.

Proof. The proof is provided in Appendix D. O

3.3 CONDITIONAL DISENTANGLEMENT IS ROBUST TO CORRELATION SHIFT

We have seen that enforcing unconditional independence between the
latent spaces does not solve the disentanglement problem. However, 0 e
considering the graphical model in Figure 3, z; and z; are indepen-

dent conditioned on either of s1 or s5: assuming a common cause for @ @ @ @
the correlation between s and ss, there is a connection in the graph-

ical model between z; and z, introducing a statistical dependence.

Observing either s; or so disconnects z; and zs. Here, we show that @ @ @ @

enforcing independence conditioned on each of the source variables

is also sufficient to yield a robust disentangled representation. For @ @
our 2D example, enforcing conditional independence corresponds to:
I(z1;22 | 51) =0  and  I(z1;22 | 52) =0 (6) I(z1522) > 0 I(z1522]52) = 0

Intuitively, if s and so are correlated, then I(sq; s2) > 0 and know- Figure 3: The graphical model for two sources s1, 52

ing s gives us information about s,. If we can predict s; from z;, and corresponding latent subspaces z1, z2. We as-

and s; tells us about so, then it must be the case that z; contains sume the source variables have a common cause c. In

information about ss. (a), when none of the sources are observed, there is
a path from z; to z2, so we have I(z1;22) > 0; in

We wish to ensure that z; and zy share as little information as possible ~ (b) we observe s2, which breaks the path, and thus

(given the ground-truth correlation), to improve robustness to shifts. I(z1;22 | s2) = 0.

Since z; necessarily contains some information about so, we enforce

that it does not contain any more information about zy than necessary via I(z1; z2|s2), which states that if we know ss,

then knowing z; does not give us more information about zs.

This does not penalize z; for containing information about s, due to correctly predicting the correlated variable sy
(and vice versa). In contrast to MI, this removes only the shared information which is not robust under correlation
shift, but keeps the shared information which is necessary to account for the correlation between the source variables.
The optimal solution under the conditional independence constraint (Eq. 6) is achieved by the mapping W = A1,
successfully recovering the underlying generative model. This demonstrates the usefulness of minimizing CMI for
generalization under correlation shifts in the case of linear regression with Gaussian variables and motivates us to
investigate CMI minimization for larger-scale tasks.

4 METHOD: MINIMIZING CMI

For simple cases such as linear regression, we can compute and minimize the MI and CMI analytically; however, for
most tasks, there is no closed form for the mutual information. In this section, we describe an approach to minimize

the CMI for general classification tasks. Suppose we have a dataset D = {(x(*),s())}¥ | where x(*) is an example

)

and s(*) is a vector of attribute labels — sg is the label for the k™ attribute of the i™ example. We consider discrete

attributes, s,(f) € N. Let fg : x — z denote an encoder parameterized by 6 that maps examples x € R™ to latent
representations z € R™. We aim to learn one latent subspace per attribute, such that each subspace is independent from

all other subspaces conditioned on the attribute it encodes.

We have I(x;y | z) = 0if p(x,y | 2) = p(x | 2)p(y | z). Our method enforces the latter condition using an
adversarial discriminator. To obtain samples from p(z1, ..., Zx | si) and p(zx | sk)p(z—k | sk), we loop over values
of si, and for each condition {s; = 0,s; = 1, ...}, we select examples from the minibatch that satisfy the condition,
giving us samples from p(z1, ...,z | si); then we shuffle the latent subspaces z;,Vj # k jointly batchwise (e.g.,
combining z; from one example with z_j, from another) to obtain samples from p(zy | sx)p(z—_k | sx). To enforce
p(2z1,...,2K | sk) = p(2r | sk)p(z—k | k), we train the encoder f adversarially against a discriminator trained to
distinguish between these two distributions. The discriminator takes as input a representation and predicts whether it is
“real” (e.g., drawn from the joint distribution) or “fake” (e.g., drawn from the product of marginals). One discriminator is
trained for each attribute s;, which receives samples from the two distributions and the attribute value it is conditioned
on. In practice, we use a conditional discriminator, effectively sharing parameters between the discriminators for each
of the attributes. This process is illustrated in Figure 4. Algorithm 1 describes the encoder training loop; Algorithm 5
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Figure 4: Adversarial minimization of conditional mutual information via latent-space shuffling. We minimize the CMI
between latent subspaces, (z1;- - - ;Zxk | sx). Here, we illustrate the algorithm for four attributes with corresponding latent spaces
{21, 22, 23,24}, where we condition on attribute s,. See Sec. 4 for a description of the method.

Algorithm 1 Adversarial Learning of Conditionally Disentangled Subspaces — Training the Encoder

1: Input: {¢1, ..., Pk}, initial parameters for K linear classifiers Ry, ..., Rx
2: Input: 6, initial parameters for the encoder f

3: Input: «, 3 learning rates for training the encoder and linear classifiers

4: while true do

5: (x, {sk},ﬁ(zl) ~ D1rain > Sample a minibatch of data with attribute labels
6: z < fo(x) > Forward pass through the encoder
7: {z, }_, < SplitSubspaces(z, K) > Partition the latent space into K subspaces
8: L« Zle Las(Ri(zk; 1), sk) > Cross-entropy for each attribute
9: fork e {1,...,K} do > For each attribute/subspace
10 z' ~p(z1,...25 | k) > Samples from the joint distribution
11: z"" ~ p(zy | sk)p(z—i | sk) > Samples w/ batchwise-shuffled subspaces
12: L <+ L+log(1— Dy(z"))+log(Dy(2")) > Add adversarial loss
13: end for
14: 0 0—aVglL > Update encoder parameters
15: ¢ < ¢ —BVe L , VEe{l,... K} > Update classifier parameters

16: end while

in Appendix C describes the corresponding discriminator training loop. We formally describe the algorithms for the
baselines (Base and Base + MI) in Appendix C.

This approach is architecture-agnostic, and can be used to factorize the latent space of any classifier or generative model
(e.g., VAEs (Joy et al., 2020) or flow-based models (Kingma & Dhariwal, 2018)). However, some models (such as
VAESs) may have objectives that interfere with the goal of obtaining conditionally independent subspaces; for example,
the ELBO encourages independence between all latent dimensions. In our experiments, we used linear and MLP
encoders rather than VAEs to avoid this conflicting objective.

Because the latent space is typically low-dimensional, we have a choice of different distribution alignment techniques, in-
cluding maximum mean discrepancy (MMD) (Gretton et al., 2006) and adversarial approaches (Goodfellow et al., 2014).
Different GAN formulations can be interpreted as minimizing different divergences: the vanilla GAN (Goodfellow et al.,
2014) minimizes the Jensen-Shannon divergence; WGAN (Arjovsky et al., 2017) minimizes the Wasserstein distance,
which has been used to define an analogue of mutual information called the Wasserstein dependency measure (Ozair
et al., 2019); f-GAN (Nowozin et al., 2016) minimizes an arbitrary f-divergence, etc. Each of these divergence
measures will be 0 if and only if the subspaces are independent, however their training dynamics may differ. In practice,
we found the vanilla GAN formulation to work well across our experiments.

5 EXPERIMENTS

Our experiments aim to answer the following questions: 1) What is the effect of the train-time correlation strength
and noise level on the solutions found by training with each objective, Base, Base+MI, and Base+CMI? 2) Can we
successfully learn conditionally disentangled representations for classification tasks using Algorithm 1? and 3) Does
CMI minimization lead to improved correlation-shift robustness on natural image datasets including MNIST and
CelebA?
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(a) Toy linear regression. (b) Toy classification with ten attributes.

Figure 5: Synthetic linear regression (left) and linear classification (right) tasks. We measure the performance (variance
explained for regression and accuracy for classification) on the correlated training data (magenta) and on test data with a range of
correlation shifts (green, solid line is the uncorrelated test data). The performance of the Base model in the uncorrelated setting
serves as a reference in each plot (dashed black line) and facilitates the comparison of the performance of the different objectives
(columns). In both tasks, we find that, Base+CMI leads to robustness to correlation shift independent of the noise level (x-axis) and
the strength of the correlation in the training data (rows), while the other approaches do not.

First, we present results on the analytically-solvable linear regression example, illustrating the effect of the correlation
strength and noise level on the solution obtained by each objective. Then, we demonstrate that our findings also
hold for a synthetic classification task with multiple attributes. Next, we employ the method described in Section 4
and investigate two realistic tasks, a multi-digit MNIST task with occlusions and correlated CelebA, and show that
minimizing CMI can largely eliminate the gap in performance caused by test-time correlation shifts. Finally, we
evaluate common disentanglement metrics and apply Algorithm 1 in weakly supervised settings. Experimental details
and extended results are provided in Appendix B.

Linear Regression. Here, we revisit the linear regression problem from Section 3, to investigate the impact of the
train-time correlation strength and noise level on the models learned with each of the objectives Base, Base+MI, and
Base+CMI. The results are shown in Figure 5a. We found that Base+CMI yields robustness to correlation shift across
all correlation strengths and noise levels, while the baselines do not. The performance of Base drops most severely under
correlation shift for strong train-time correlations and intermediate noise levels; in this regime, Base+CMI improves
performance substantially.

Toy Multi-Attribute Classification. Next, we investigated whether these findings hold for classification tasks
with multiple attributes. Here, binary source attributes s, = +1, Vk € {1,..., K} generate the observed data via
x = As + n (we set A = I for simplicity) with normally distributed noise n ~ N (0, C,,). We induced correlations
between the attributes ay, such that the number of datapoints differs for the different combinations of attribute values. In
the multi-attribute setting, the correlation strength refers to the pairwise correlation between all attributes. Similarly to
the regression task, we find that Base+CMI leads to robustness under correlation shift (see Figure 5b and Appendix B.1).

Multi-Digit Occluded MNIST. Next, we designed a larger-scale task to investigate whether these properties hold
in a more complex setting. We created a dataset by concatenating two MNIST digits side-by-side, where the aim is
to predict both the left- and right-hand labels. We generated occlusion masks using the procedure used by Chai et al.
(2021); examples from our synthetic dataset under a range of noise settings are shown in Figure 6a. We used a subset
of MNIST consisting of classes 3 and 8 (which are visually similar and can become ambiguous under occlusions).
This mimics multiple-object classification in a way that allows us to control the correlation strength and noise level
(via the amount of occlusion), allowing for systematic analysis. This task is a more complex analogue of the synthetic
classification task from Figure 5b. We added explicit occlusion noise because the MNIST data itself is simple, and has
too little “natural” noise to clearly observe the predicted effects (e.g., for low noise levels, the supervised loss already
does well). While this task would also be possible for colored MNIST and dSprites, one advantage of our task is its
symmetry, which allows us to exclude potential side-effects: here, the attributes have the same type (the digit identity),
whereas the attributes in colored MNIST (digit identity and color) and dSprites (shape, size, position, etc.) are more
diverse.

Similarly to the toy tasks, we train an encoder to map images onto a D-dimensional latent space, which is partitioned in
two equal-sized subspaces corresponding to the two digits; we train a linear classifier on each subspace to predict the
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Figure 6: Multi-digit occluded MNIST. (a) Examples of the correlated training data (where 3—3 and 8-8 pairs are frequent)
and anticorrelated test data (where 3-8 and 8-3 pairs are frequent), under a range of occlusion strengths. (b) Accuracies under
correlation shifts for different noise levels, achieved by training with each of the objective functions Base, Base+MI, and Base+CMI.
Base+CMI achieves consistent performance across correlation shifts. Similarly to Figure 5, here we show the reference performance
of the model trained on uncorrelated data (solid black line), the performance on correlated training data (magenta) and on a range of
test-time correlations in [0, 1] (shaded green region, where solid green denotes the uncorrelated test performance).
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(a) Correlated train data. (b) Anti-correlated test data.

(c) Performance comparison.
Figure 7: Correlated CelebA. (a) Training examples with correlation 0.8 between attributes Male and Smiling, such that the
majority of men are smiling while the majority of women are not. (b) Anti-correlated test examples, where the majority of women
are smiling. (c) Accuracies of each method under a range of correlation strengths, for validation data with the same correlation as the
training data, uncorrelated test data, and anticorrelated test data.

respective class labels. We consider different correlation strengths between the left and right digits in the training set
(where strong correlation means that the digits often match, e.g., 3—3 or 8—8 are more common than 3-8 or 8-3). We
evaluate each model on test data with correlation strengths ranging from [—1, 1]. The results are shown in Figure 6b. We
found that the conclusions from the toy experiments hold in this setting: supervised learning with only the cross-entropy
loss, as well as with unconditional MI minimization, fail under test-time correlation shift, while minimizing CMI is
more robust. Experimental details and extended results are provided in Appendix B.2.

Correlated CelebA. Finally, we consider a realistic setting using the CelebA faces dataset (Liu et al., 2015). In
contrast to the multi-digit MNIST task, here we do not add any artificial observation noise (as CelebA is a more complex
dataset that naturally has noise in observations and/or labels). We selected two attributes that we know a priori are
not causally related, Male and Smiling, and we created subsampled datasets with a range of training correlations
{0,0.2,0.4,0.6,0.8}. We evaluated our models on both anti-correlated and uncorrelated test sets (Figures 7a and 7b).
Figure 7c compares the performance of the baseline classifier, unconditional MI model, and conditionally disentangled
model under a range of correlation strengths. We found that minimizing CMI has a larger effect for medium-to-high
correlation; however, CMI minimization does not hurt performance at low correlation strengths. Note that while the
unconditional model appears to have good performance on the anti-correlated test set, its performance is poor on
the validation set (that has the same correlation structure as the training set), so this model does not perform well
on in-distribution-data. In contrast, the Base+CMI model performs well on both in-distribution data and shifted test
distributions. Also note that the problem of disentangling correlated attributes does not occur only under correlation
shift, but is already present in the source domain where certain attribute combinations will reliably be treated incorrectly.
For example, Base fails to recognize the rare non-smiling male faces in 49% of the cases, while Base+CMI fails only in
25% of the cases. Additional details are in Appendix B.3.

Disentanglement Metrics. Locatello et al. (2020a) showed that common disentanglement metrics are not
suitable for the correlated setting. For this reason, we focused on comparing performance under correla-
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tion shift, which we consider more suitable for correlated data: if a model cannot predict a factor of vari-
ation well for certain values of another factor, then the model did not successfully disentangle those factors.
However, one can still make use of the disentanglement

metrics by evaluating them on uncorrelated data, using

models trained on correlated data. We performed this 100
analysis for the toy classification and CelebA tasks, and ~ oosy_——— —=—21
found that Base+CMI leads to improved disentanglement o<

scores across a wide range of metrics, compared to Base 3 °¢ / //H/Y
and Base+MI (Appendix B.4). < 00 /___._H /——‘
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for all attributes. We find that when reducing the number number of labels per attribute used during training; the rightmost
of labels, Base+CMI outperforms the other objectives datapoint co.rres.ponds to full superyision: Base+CMI outperforms
under correlation shift (see Figure 8 and Appendix B.5). the other objectives under correlation shift.
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6 LIMITATIONS & FUTURE WORK

Our study mainly concerns the setting where the underlying factors of variation are known. Practical applications of
this setting can occur with respect to fairness, where one may wish to train a model such that correlations that exist in
the training data are not relied upon for prediction. Nonetheless, full supervision is a strong assumption and an exciting
goal for future work would be to look into relaxing this assumption. Our experiment with the weakly supervised version
of the CelebA experiment is a first step in this direction.

We have shown that minimizing CMI yields predictions that disregard correlations between attributes in the training
data, which is helpful when correlations shift between the training and test data. This approach relies on knowing a
priori which correlations should not be used. This is the case, for example, for fairness applications where a person’s
race or gender should not affect the results. A direction for future work would be to automatically determine which
correlations are more or less likely to shift in held-out data and to add this step before applying our approach of avoiding
the unwanted correlations. One may incorporate ideas from IRM (Arjovsky et al., 2019), which leverages multiple
environments at training time to discover which correlations tend to shift and which are stable—e.g., to distinguish
between causal and spurious correlations, the latter of which we wish to avoid relying on. A fruitful direction for future
work would be to combine IRM-style discovery of spurious correlations with our approach, which can be used to
control for these correlations when learning disentangled representations. In a related vein, there has been recent work
which aims to discover environments when none are given explicitly (Creager et al., 2021), which may be useful in
combination with our work.

While CMI is defined for both continuous and discrete attributes, our method of shuffling the latent subspaces is only
applicable to discrete attributes. Discrete attributes are prevalent in many settings: in domain adaptation, the class
and domain are discrete; in multi-object classification, the class of each object is a discrete attribute; the foreground
and background of natural images are discrete, etc. Nevertheless, finding methods to minimize CMI for continuous
attributes is an interesting direction for future work. Another caveat of our method for minimizing the CMI via latent
subspace shuffling is the increased computational cost relative to minimizing the unconditional MI: the cost for CMI
scales linearly with the number of attributes and attribute values, while the cost for MI is constant.

7 CONCLUSION

Correlations are prevalent in real-world data, yet pose a substantial challenge for disentangled representation learning.
Standard approaches learn to rely on these correlations, especially when data are noisy, as the correlations provide an
easy-to-learn signal with predictive power. When the attributes are not causally related, this leads to poor performance
under test-time correlation shift. Although for small correlations the effects may not be large, relying on these
correlations and thereby systematically treating a subset of the data incorrectly, can be catastrophic for fairness. We first
showed that supervised learning and unconditional mutual information minimization fail to learn representations robust
to such shifts. We then argued that the correct notion of disentanglement in such cases is conditional disentanglement,
and we proposed a simple approach to minimize the conditional mutual information between latent subspaces. We
showed that conditionally disentangled representations improve robustness to correlation shift in analytically solvable
linear tasks, as well as on natural images. Overall, we established CMI minimization as a more appropriate alternative
to MI minimization, which sets the stage for the development of more powerful objective functions for disentanglement.
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APPENDIX

This appendix is structured as follows:

* In Section A we provide an overview of the notation we use throughout the paper.
* In Section B we provide experimental details, as well as extended results.

¢ In Section C we provide the algorithms for the baseline methods, namely for classification-only training and
unconditional mutual information minimization.

¢ In Section D we provide a proof of Proposition 3.1.

A NOTATION

Symbol Meaning
X Observations
s Ground-truth latent factors
S Predictions of factors
Z Latent representation
W Linear regression weights
Ri, Ry Linear readout from the latent space z to predictions §
n Isotropic Gaussian noise, n ~ A(0, Cy,) with Cy, = 021
A Square matrix used to generate observations for the linear task as x = As + n
f Encoder function
fo Encoder function with parameters 0

Table 2: Summary of the notation used in this paper.

B EXPERIMENTAL DETAILS AND EXTENDED RESULTS

Method Details. Note that the dimensions m and n are arbitrary—in particular, n does not need to be smaller than
m. In principle, each subspace can have different dimension (e.g., the linear readout layer for each attribute can have
arbitrary dimensions A x S where A is the attribute dimensionality and S is the dimensionality of a particular subspace).

Compute Environment. Our experiments were implemented using PyTorch (Paszke et al., 2019), and were run on
our internal clusters. The toy 2D experiments were run on a single NVIDIA RTX 2080 TI GPU, and took approximately
48 hours for all the results presented. The MNIST and CelebA experiments were run on NVIDIA Titan Xp GPUs. Each
run of the multi-digit MNIST and CelebA tasks for a given method and correlation strength (and noise level in the
MNIST case) took approximately 12 hours, and these were run in parallel.

B.1 ToYy MULTI-ATTRIBUTE CLASSIFICATION

We performed this experiment with two, four and ten
binary attributes. The results for varying numbers of at-
tributes are shown in Figure 10. For two attributes we
illustrated the data x for different correlation strength
and noise levels (Figure 9). Here, increasing the corre-
lation strength means that data points with a; = a9 are
increasingly more common relative to a; # as. The
noise level on the other hand determines the overlap of
the distributions and therefore the difficulty of the task.

*¥
w8

a; = -1, as

a; = -1, as
a; =1, ay=-1
a;=1 ay=1

Correlation

0.6
¥

0.95

0.1 0.5 1.0

Noise

Experimental Details. We used a PacGAN-style

setup (Lin et al., 2018) for our toy experiments, where
the discriminator takes as input a concatenation of 50
samples.

Figure 9: Data used for linear classification with two at-
tributes (a1 and as), visualized for a range of correlation
strengths and noise levels.
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(a) Two attributes. (b) Four attributes. (c) Ten attributes.

Figure 10: Toy classification with different numbers of attributes. Strong negative correlations could not be generated
for multiple attributes; thus only positive test correlations were evaluated for (b) and (c).

* Base: We used Adam (Kingma & Ba, 2014) with a learning rate of 0.01.

* Base + MI: We used Adam to optimize the encoder, linear classifiers, and discriminators. After each step
of optimizing the discriminator and encoder, we optimized the linear classifiers (R) for 10 steps. The
disentanglement loss term was weighted by a factor of 100 relative to the classification loss. In preliminary
tests, we found that the optimal learning rate depended on noise level, correlation strength, and number of
attributes. The results in Figure 5b were obtained using one of the following learning rates for the discriminator
{le — 4,2¢ — 4,5¢ — 4,1e — 3,5¢ — 3}. The learning rate of the generator and linear classifiers was chosen
to be 10 times smaller than the discriminator learning rate.

* Base + CMI: For A = I, no optimization was necessary, as we already know the optimal solution to be
W = A~! = 1. We confirmed experimentally that the discriminator could not get above chance performance
for this solution.

B.2 MULTI-OBJECT OCCLUDED MNIST

We used minibatch size 100, and latent dimension D = 10, yielding two subspaces each of dimension 5. As the encoder
model, we used a three-layer MLP with 50 hidden units per layer and ReL U activations. We trained for 400 epochs,
using Adam (Kingma & Ba, 2014) to optimize the encoder, linear classifiers, and discriminators, with separate learning
rates for each component chosen via a grid search over {le — 5, le — 4, le — 3}.

Correlated Data Generation. We used the default MNIST training and test splits, and held out 10k of the original
training examples to form a validation set, yielding 50k, 10k, and 10k examples in the training, validation, and test
sets, respectively. Each digit is first rescaled to be 32 x 32 pixels. The correlated data was generated on-the-fly during
training. Each example in a minibatch was created by: 1) sampling the left-right digit combination (e.g., { 3-3, 3-8,
8-3, 8-8 }) from a joint distribution encoding the desired correlation; 2) choosing random instances of each of the
selected classes (e.g., a random image of a 3 and a random image of an 8); 3) applying occlusions separately to each
image; and 4) concatenating the images, yielding a 32 x 64 example. This procedure was performed for each training
and test minibatch, yielding a larger amount of data than would be possible with a fixed dataset generated a priori. To
generate occlusions, we use the approach from (Chai et al., 2021), which produces contiguous masks similar to Perlin
noise (Perlin, 2002). We used gray occlusions to remove a potential ambiguity that exists with black masks (which
blend into the MNIST background): a masked 8 can become identical to a 3, so one could not tell whether the image is
anoisy 8 or a clean 3.

B.3 CELEBA

For all experiments, we used minibatch size 100, and latent dimension D = 10. As the encoder model, we used a
three-layer MLP with 50 hidden units per layer and ReLU activations. Similarly to the MNIST setup, we trained for
200 epochs, using Adam to optimize the encoder, linear classifiers, and discriminators. For each method, we performed
a grid search over learning rates {1e — 5, le — 4, 1e — 3} separately for each of the encoder, discriminator(s), and linear
classification heads; we selected the best learning rates based on validation accuracy.

Correlated Data Generation. We first pre-processed all images by taking a 128 x 128 center crop, and then resizing
to 64 x 64. Pixel values were normalized to the range [0, 1]. We used the original training, validation, and test splits
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Figure 11: Average cross-entropy loss for the left and right digit predictions, under the strongest correlation we consider,
¢ = 0.9, at noise level 0.6 (where the noise is parameterized by a factor that has range [0, 1]).
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Figure 12: Accuracies for the left digit, under the strongest correlation we consider, ¢ = 0.9, at noise level 0.6 (where
the noise is parameterized by a factor that has range [0, 1]).
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Figure 13: Accuracies for the right digit, under the strongest correlation we consider, ¢ = 0.9, at noise level 0.6 (where
the noise is parameterized by a factor that has range [0, 1]).

provided with the CelebA dataset. In order to enforce arbitrary correlations between specific attributes, we subsampled
the data such that we retained the maximum possible number of examples in each of the Train/Validation/Anticorrelated
Test/Uncorrelated Test splits, while satisfying precisely the desired correlation. The validation set has the same
correlation as the training set, and Figure 14 shows the number of examples in each of these sets for the strongest
correlation we consider, ¢ = 0.8. Figures 15, 16, and 17 show the cross-entropy loss and accuracies on each of the
factors Male and Smiling (with training correlation 0.8) over the course of optimization, for each of the methods
we compare (classification-only, unconditional disentanglement, and conditional disentanglement). We see that the
conditional model substantially outperforms the baselines, with a much smaller gap between validation accuracy and
both anti-correlated (AC) and uncorrelated (UC) test accuracies. Figures 18, 19 and 20 show confusion matrices for
each method on the correlated validation set, anticorrelated test set, and uncorrelated test set, respectively. Finally,
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Tables 3 and 4 show the prediction error of the models trained with the different objectives for both the combinations
that were common and rare during training. These results shows that some attribute combinations (such as the rare

non-smiling male faces) are reliably treated incorrectly.

Train ¢=0.8 Val ¢=0.8 Test Uncorrelated Test Anticorrelated c=-0.8
Male=0 | 27259 Male=0 3445 Male=0 Male=0 4617
Male=1 27259 Male=1 3445 Male=1 Male=1 4617
P Pas P Pas P e Q >
=~ & < & < & < <
N N N N N & & &
2 &* 2 &* 2 &* 2 2

Figure 14: Numbers of examples in the subsampled CelebA datasets for the strongest correlation we consider, ¢ = 0.8.
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Figure 15: Loss curves for each approach on the Male—Smiling CelebA task, under the strongest correlation we
consider, ¢ = 0.8.
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Figure 16: Accuracies on the attribute Male for each approach on the Male—Smiling CelebA task, under the
strongest correlation we consider, ¢ = 0.8.
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Figure 17: Accuracies on the attribute Smi1ing for each approach on the Male-Smiling CelebA task, under the
strongest correlation we consider, ¢ = 0.8.
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Figure 18: Confusion matrices for each approach on the correlated validation set of the Male-Smiling CelebA task,
under the strongest correlation we consider, ¢ = 0.8.
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Figure 19: Confusion matrices for each approach on the anti-correlated test set of the Male—Smiling CelebA task,
under the strongest correlation we consider, ¢ = 0.8.
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Figure 20: Confusion matrices for each approach on the uncorrelated test set of the Male—Smiling CelebA task,
under the strongest correlation we consider, ¢ = 0.8.
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Common Combinations Rare Combinations

Female Male Female Male
+ + + +
Non-Smiling  Smiling  Smiling Non-Smiling
Base 4% 4% 29% 51%
Base + MI 23% 28% 12% 31%
Base + CMI 10% 9% 20% 29%

Table 3: Percentage of incorrect predictions per subgroup for CelebA, evaluated on natural data (e.g., data with
naturally-occurring correlations, that has not been subsampled to induce a specific correlation strength), using models
trained on correlated data with ¢ = 0.8.

Common Combinations Rare Combinations

Female Male Female Male
+ + + +
Non-Smiling  Smiling  Smiling Non-Smiling
Base 4% 5% 33% 49%
Base + MI 24% 28% 11% 26%
Base + CMI 9% 9% 19% 25%

Table 4: Percentage of incorrect predictions per subgroup for CelebA, evaluated on validation data (¢ = 0.8), using
models trained on correlated data with ¢ = 0.8.
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B.4 DISENTANGLEMENT METRICS

We evaluated common disentanglement metrics (Locatello et al., 2019b) on uncorrelated test data using models trained
on correlated data. We performed this analysis for two of our datasets and found in both cases that Base+CMI reached
better scores compared to the other objectives for almost all metrics.

Toy Classification: Disentanglement results for the toy classification task with ten attributes are shown in Table 5. We
obtained similar results for two and four attributes, which are not reported for brevity.

CelebA: Since the disentanglement metrics require that the factors of variation are each encoded in one-dimensional
subspaces, we set latent dimension D = 2 for this experiment. In Table 6, we report the average and 68% confidence
intervals for five models trained on data with correlation level 0.8.

Metric Base Base+MI Base+CMI
IRS (Suter et al., 2019) 0.377 0.573 0.605
SAP (Kumar et al., 2017) 1 0.118 0.470 0.477
MIG (Chen et al., 2018) 1 0.179 0.939 0.975
DCI Disentanglement (Eastwood & Williams, 2018) 1 0.413 0.980 0.998
Beta-VAE (Higgins et al., 2017a) 1 0.996 1 1
Factor-VAE (Kim & Mnih, 2018) 1 1 1 1
Gaussian Total Correlation | 10.073 0.485 0.025
Gaussian Wasserstein Corr | 12.905 0.373 0.027
Gaussian Wasserstein Corr Norm | 0.866 0.037 0.002
Mutual Info Score | 0.975 0.197 0.149

Table 5: Disentanglement metrics for toy classification with ten attributes. Metrics are evaluated on the uncorrelated
test set. Bold font indicates model with best disentanglement score.

Metric Base Base+MI Base+CMI
IRS 1 0.524 +£0.043 0.548 + 0.038 0.531 4+ 0.041
SAP 1 0.306 £ 0.003 0.296 + 0.046  0.389 + 0.005
MIG 1 0.506 +0.01 0.455+0.074  0.674 £ 0.007
DCI Disentanglement 1 0.46 £0.009  0.596 + 0.038  0.807 £ 0.023
Beta-VAE 1 1.0 £ 0.0 1.0 £ 0.0 1.0 £ 0.0
Factor-VAE 1 1.0+ 0.0 0.999 + 0.003 1.0 + 0.0
Gaussian Total Correlation | 0.222 £0.012 0.056 +0.061  0.011 £+ 0.003
Gaussian Wasserstein Corr | 0.351 £ 0.039  0.01 &+ 0.009 0.002 £+ 0.001

Gaussian Wasserstein Corr Norm | 0.098 4 0.005 0.006 £ 0.004  0.005 + 0.001
Mutual Info Score | 0.302 +£0.022 0.111 £0.052  0.042 + 0.006

Table 6: Disentanglement metrics for CelebA. Metrics are evaluated on the uncorrelated test set. Bold font indicates
model with best disentanglement score.

B.5 WEAKLY SUPERVISED SETTING

For the fully supervised CelebA experiment, labels for both attributes were available for all 10260 images. For the
weakly supervised setting, we reduced the number of labels to 5130 (50% of the labels of the fully supervised dataset),
2565 (25%), 1026 (10%), or 513 (5%) for each attribute. This implies that some images had both labels, some had only
one label and some images had no labels (for example when using 50% of the labels the distinction is as follows: 25%
of the images had both labels; 25% had only labels for attribute 1; 25% had only labels for attribute 2; and 25% had no
labels). The three objectives can be applied to these weakly supervised settings. For Base, the cross-entropy loss for
each attribute was computed only for the images that had labels for the corresponding attribute. For Base+MI no labels
are required for the unconditional shuffling; thus this objective can be applied even for the images without labels. For
Base+CMI, our method shuffles only images that have the same value for a given attribute. This also works if the labels
of the other attribute are missing. We used the same training parameters as for the supervised experiment, except for
increasing the number of training epochs (up to 1200 epochs) and adapting the minibatch size to the number of labels.
In Figure 8 we report the average and 68% confidence intervals over three runs with different seeds.
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C ALGORITHMS

In this section, we provide formal descriptions of the baseline approaches we use. Algorithm 2 describes the
classification-only baseline, that trains separate linear classifiers to predict attributes s; from the corresponding
latent subspaces z;. Algorithm 3 and Algorithm 4 describe the unconditional disentanglement baseline, that ad-
versarially minimizes the discrepancy between samples from the joint distribution p(z1, . .., Zx) and the product of
marginals p(z1) - - - p(zx ). Algorithm 5 describes the discriminator training loop for the CMI minimization approach
from Section 4.

Algorithm 2 Supervised Learning on Subspaces

1: Input: {¢1,..., @K}, initial parameters for K linear classifiers Ry, ..., Rx

2: Input: 6, initial parameters for the encoder f

3: Input: o, 3 learning rates for training the encoder and linear classifiers

4: while true do

5: (%, {8t} ) ~ Drvain > Sample a minibatch of data with attribute labels
6: z + fo(x) > Forward pass through the encoder
7: {z }}_, + SplitSubspaces(z, k) > Partition the latent space into k subspaces
8: L+ Ele Los(Ri(zk; k), sk) > Cross-entropy for each attribute
9: 0<—0—aVglL > Update encoder parameters
10: Gr — ¢ —PBVe, L , Vke{l,...,K} > Update classifier parameters
11: end while

Algorithm 3 Learning Unconditionally Disentangled Subspaces — Training the Encoder

1: Input: {¢1,..., @K}, initial parameters for K linear classifiers Ry, ..., Rx

2: Input: 0, initial parameters for the encoder f

3: Input: o, 3 learning rates for training the encoder and linear classifiers

4: while true do

5: (%, {8t} ) ~ Drvain > Sample a minibatch of data with attribute labels
6: z < fo(x) > Forward pass through the encoder
7: {z }}_, + SplitSubspaces(z, k) > Partition the latent space into k subspaces
8: L+ Ele Las(Ri(zk; k), sk) > Cross-entropy for each attribute
9: z' ~ p(z1)p(z2) - - - p(21) > Samples w/ batchwise-shuffled subspaces
10: L« L+1log(l— Dy(z")) +log(D.(z)) > Add adversarial loss
11: 0<—0—aVglL > Update encoder parameters
12: ¢ — ¢ — Ve L , Vee{l,... K} > Update classifier parameters
13: end while

Algorithm 4 Learning Unconditionally Disentangled Subspaces — Training the Discriminator

1: Input: w, initial parameters for the discriminator D

2: Input: -y, learning rate for training the discriminator

3: while true do

4: (%, {8t} ) ~ Drvain > Sample a minibatch of data with attribute labels
5: z + fo(x) > Forward pass through the encoder
6: {z, }_, + SplitSubspaces(z, k) > Partition the latent space into k subspaces
7: z' ~ p(z1)p(z2) - - - p(21) > Samples w/ batchwise-shuffled subspaces
8: L+ L+log(Dy(z')) + log (1 — Dy (2)) > Add adversarial loss
9: w—w—7V,L > Update discriminator parameters
10: end while
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Algorithm 5 Learning Conditionally Disentangled Subspaces Adversarially — Training the Discriminator

1: Input: w, initial parameters for the discriminator D
2: Input: ~, learning rate for training the discriminator
3: while true do

AN AN

9:
10:
11:
12:
13:

(X7 {Sk}i(:l) ~ Drrain
z < fo(x)
{z}5_, + SplitSubspaces(z, k)
L+0
fork e {1,...,K}do
z' ~p(z1,...25 | Sk)
2"~ p(zi | sk)p(z—k | sk)
L L+1log (Du(z")) + log (1 — D, (2))
end for
w4+ w—7V,L

14: end while

> Sample a minibatch of data with attribute labels
> Forward pass through the encoder

> Partition the latent space into K subspaces

> L will accumulate the losses over all subspaces

> Samples from the joint distribution
> Samples w/ batchwise-shuffled subspaces
> Add adversarial loss

> Update discriminator parameters
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D PROOF OF PROPOSITION 3.1
Proposition 3.1 If I(s1; s2) > 0, then enforcing 1(z1; z2) = 0 means that I(zy; si,) < H(sy) for at least one k.

Proof. Assume that I(s1;s2) > 0 and at the same time I (zy;s;) = H(sg) (i.e., we are proving by contradiction).
Since I(z1;s1) = H(s1), we have H(s1 | 21) = 0 and with H(sy | 2z1) = H(s1 | 21,82) + I(s1;82 | 21) (both
non-negative), it follows that H (s | 21, s2) = I(s1; 82 | 21) = 0. Since for the interaction information, by definition
I(s1;892;521) = I(s1;82) — I(s1;82 | 21), and I(s1;82 | z1) = 0, we have I(s1;82;21) = I(s1;82) > 0. Since we
also assume H (sg | 22) = 0, we also have I(s1; s2; 22) = I(s1;82) > 0.

We can use this to compute the fourth order interaction information I(s1;$2;21;22). By definition, we have
I(s1;892;21522) = I(s1;82;21) — I(s1;82;21 | 22). We just showed that I(s1;s2;21) = I(s1;2), and therefore
we have I(s1;82; 21 | 22) = I(s1; $2 | 22). Together it follows that:

I(s1;89;21;20) = I(s1;82;21) — I(s1; 82521 | 22) @)
= I(s1;52) — I(s1552 | 22) 3
= I(s1;52; 22) 9
=1(s1;82) >0 (10)

On the other hand, we know that 0 = H(sy | z1) = H(s1 | 21;22) + I(s1, 22 | 21) and therefore I(s1, 22 | 21) = 0.
Therefore, the interaction information I(s1; z2;21) = I(s1;22) — I(s1522 | 21) = I(s1;22) > 0. At the same time, we
assumed that I(z1; z2) = 0 and hence I(21; 225 81) + I(21; 22 | s1) = 0, which shows that I(z1; 225 s1) < 0. Together,
we see that I(z1; 29;81) = I(s1;22) = 0.

Now we can decompose I (s1; so; 21; 22) in a different way: I(s1; so; 21; 22) = 1(s1;21; 22) — I(s1; 21522 | s2). We
know that I(s1; 21;22) = I(81;22) and therefore I(sy;21;22 | s2) = I(s1;22 | s2) > 0 and that I(s1; 21;22) = 0.
Therefore, it follows that:

1(81;82;21;22) = 1(81;21;2’2) — I(Sl;Zl;ZQ | 82) (11)
<0 (13)

which is a contradiction with I(s1; so; 215 22) = I(s1;s2) > 0. Therefore, if I(s1;s2) > 0 and I(21;22) = 0, it must
hold that I(zy; sx) < H(sy) for at least one &, which we wanted to show. O
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