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ABSTRACT

We frame the problem of text simplification from a task and domain adaptation perspective, where
neural language models are pre-trained on large-scale corpora and then adapted to new tasks in
different domains through limited training examples. We investigate the performance of two popu-
lar vehicles of task and domain adaptation: meta-learning and transfer learning (in particular fine-
tuning), in the context of low-resource text simplification that involves a diversity of tasks and do-
mains. We find that when directly adapting a Web-scale pre-trained language model to low-resource
text simplification tasks, fine-tuning based methods present a competitive advantage over meta-
learning approaches. Surprisingly, adding an intermediate stop in the adaptation path between the
source and target, an auxiliary dataset and task that allow for the decomposition of the adaptation
process into multiple steps, significantly increases the performance of the target task. The perfor-
mance is however sensitive to the selection and ordering of the adaptation strategy (task adaptation
vs. domain adaptation) in the two steps. When such an intermediate dataset is not available, one can
build a “pseudostop” using the target domain/task itself. Our extensive analysis serves as a prelim-
inary step towards bridging these two popular paradigms of few-shot adaptive learning and towards
developing more structured solutions to task/domain adaptation in a novel setting.

1 INTRODUCTION

Large-scale language models (such as those adopting the Transformer Vaswani et al. (2017) architectures) have shown
outstanding text generation capabilities. This demonstrates that with sufficient data, model capacity, and computational
resource, generative models can learn distributions powerful enough to produce high-quality samples from complex
domains. These conditions are however unrealistic in many NLP tasks and application scenarios, where abundant
training examples either do not exist or are costly to label, and the computational resource required to train large neural
language models from the scratch is a luxury. Text simplification, which aims to transform specialized/complex content
into simpler text so that it is accessible to readers with low literacy skills, is such an scenario. Despite its difficulty,
text simplification is critical for providing fairness and equitable information services to the broad population.

The predominant approach for building NLP solutions for low-resource scenarios relies on a transfer learning
paradigm, which works by first training a language model on large general-domain datasets and then adapting or
fine-tuning the pre-trained model to the downstream task in a specific domain and/or with a specific objective func-
tions. Nevertheless, such transfer learning methods usually assume the source and target domains consist of the same
feature space, which limits their performance in many practical situations where the target domain is qualitatively dif-
ferent from the generic corpora used to train the original language models Day & Khoshgoftaar (2017). Furthermore,
the effectiveness of vanilla fine-tuning methods is still heavily dependent upon having adequate amounts of in-domain
training data for the target task Chen et al. (2019); when this pre-requisite is not met, the generalization performance
of deep models can be considerably limited, leading to model over-fitting, catastrophic forgetting of general-domain
knowledge, and negative transfer across tasks Kirkpatrick et al. (2017), Thompson et al. (2019), Xu et al. (2020).

New approaches have been proposed in the literature to address these challenging issues, claiming various degrees
of success on a diversity of benchmarks Dumoulin et al. (2021), Delange et al. (2021). Among these, meta-learning
Thrun (1998), Schmidhuber (1987), Hospedales et al. (2021) has emerged as a promising general learning strategy
suitable for few-shot learning and cross-domain generalization Li et al. (2018), Wang et al. (2020b). A typical meta-
learning approach frames the learning problem at two levels: i) base learning, where an inner/lower/base learning
algorithm is focused on the quick acquisition of knowledge within each separate task it encounters, and ii) meta-
learning, where an outer/upper/meta algorithm is focused on the slower extraction of information learned across all
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tasks and updates the inner learning algorithm such that the model it learns improves an outer learning objective. To
solve a few-shot learning problem, meta-learning leverages a good number of similar few-shot tasks to learn how to
adapt the base-learner to a new task for which also only a few labeled samples are available. Different approaches to
meta-learning include metric learning Vinyals et al. (2016), Snell et al. (2017), Sung et al. (2018), memory networks
Santoro et al. (2016), Oreshkin et al. (2018), Mishra et al. (2018), Munkhdalai et al. (2018) and gradient based learning
Finn et al. (2017), Zhang et al. (2018), Sun et al. (2019). Among them, gradient / optimization based meta-learning has
emerged as an effective approach to addressing the few-shot learning problem Rajeswaran et al. (2019). Such learning
settings lend themselves applicable to resource constrained problems where there is a distribution of tasks available.

In this work, we frame the problem of low-resource text simplification from a task and domain adaptation perspective.
We consider the everyday use of text simplification in a wide variety of domains, including news and scientific arti-
cles (which naturally contain many subject areas), and view parallel complex-simple English language examples in
different domains as samples drawn from a distribution over text generation tasks with varying constraints on the level
of text complexity and readability. Once such a distribution is learned from large-scale, general purpose corpora (i.e.,
a pre-trained language model), it is fast adapted to new tasks and domains (in our case different text simplification
scenarios) with few training examples. We consider two approaches to this problem: 1) a standard transfer learning
practice that fine-tunes the general language model to the new domains of text simplification with limited in-domain
data, and 2) simulate many domain adaptation tasks and use gradient based meta-learning to learn model parameters
that can generalize to new tasks, again with few examples. We extensively compare these two approaches in our
low-resource adaptation settings, and our experiments reveal that when directly adapting a general language model
to the target tasks/domains, fine-tuning (i.e., domain-adaptation) remain competitive compared with meta-learning
(i.e., task adaptation). Surprisingly, we find that adding an intermediate destination in between the source and target,
i.e., first adapting the pre-trained language model to an auxiliary task/domain and then adapt the model to the tar-
get tasks/domains, significantly increases the performance of the target tasks. Adding a stop in the adaptation path
allows each segment to use a different adaptation strategy (akin to a transportation method, or a “vehicle”), and the
performance on target tasks is sensitive to which vehicle is taken in each segment. In particular, it is essential to
perform domain adaptation through transfer learning (fine-tuning) in the second stage, and performing task adaptation
via meta-learning in the first stage further improves the performance. Interestingly, when such an intermediate dataset
is not available, one can build a “pseudostop” simply based on the target task/domain itself. Our findings serves as a
novel step bridging the two popular paradigms of few-shot adaptive learning and towards developing more structured
solutions to task/domain adaptation.

2 RELATED WORK

The task of neural text simplification is similar in nature to neural machine translation, where transfer learning and
meta-learning approaches have been widely applied to low-resource settings. Knowledge extracted from multilingual
high-resource language pairs is leveraged for adapting machine translation systems to low-resource target languages,
demonstrating the benefit of meta-learning over conventional multilingual translation approaches when limited in-
domain training data is available Gu et al. (2018). Similarly, a meta-learning strategy is used to simulate many few-shot
domain adaptation tasks to learn model parameters for fast adaptation to unseen language pairs in machine translation
Sharaf et al. (2020). We consider a similar problem in a different application context.

Relevant to our work, a few-shot evaluation protocol is used to compare recent advances in transfer learning and meta-
learning on standard visual classification benchmarks for task adaptation Dumoulin et al. (2021). The authors find that
meta-learning approaches struggle to generalize to out-of-distribution test tasks, and that their overall performance is
inferior to transfer learning methods. While pre-training then fine-tuning remains a highly competitive baseline for
few-shot classification tasks, simply scaling up the size of these pre-trained models does not result in any significant
performance gain on out-of-distribution tasks. On the contrary, meta-learning methods are data efficient, but com-
putational bottlenecks and implementation difficulties prohibit their use in combination with large scale backbones.
Furthermore, having sufficient heterogeneous training tasks is a critical pre-requisite for meta-model training Kang &
Feng (2018); when source tasks present different characteristics from target tasks, the performance of meta-learning
algorithms declines and results in poor generalization on unseen tasks. On the particular task of text classification,
combining task-adaptive pre-training with domain adaptive pre-training results in performance gains Gururangan et al.
(2020). This finding is in line with our work which confirms that multiple stages of adaptation result in improved per-
formance on the end task/ domain. However, unlike our work which is focused on text simplification in a multitude
of domains (32 scientific domains and the news domain), Gururangan et al. (2020) are focusing on the different task
of text classification in four domains only and report that task-adaptive pre-training yields performance gains after
domain adaptive pre-training; instead, our empirical results show the opposite order of adaptation is more effective.
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Similarity between source and target (tasks and domains) represents an important predictive factor of successful adap-
tation Vu et al. (2020), while increasing the size of the source dataset does not necessarily result in the largest transfer
gains. When only scarce data is available for the target task, transfer learning remains beneficial.

Many recent approaches combine the strengths of meta-learning with pre-training. Meta-parameterized pre-training
Raghu et al. (2021) “meta”-learns the pre-training hyperparameters, demonstrating that optimized meta-parameters im-
prove the learnt representations and the predictive performance of the pre-trained model. Meta-finetuning Wang et al.
(2020a) improves the fine-tuning of neural language models by meta-learning class prototypes and domain-invariant
representations which are useful in solving groups of similar natural language tasks. Moreover, feature representations
meta-learnt are clustered more tightly in the feature space than representations obtained through conventional training
of neural networks / pre-train then fine-tune approaches, demonstrating that minimizing within-class feature variation
is critical for robust few-shot performance on complex tasks Goldblum et al. (2020).

3 PRELIMINARIES TO FEW-SHOT TASK/DOMAIN ADAPTATION

We aim to learn how to adapt a pre-trained neural language model to text simplification contexts that involve new
tasks and domains, with only few in-domain training examples available. For this purpose, we use widely popular
adaptation strategies, namely gradient-based meta-learning and fine-tuning-based transfer learning. In what follows
we formally introduce these two approaches for task and domain adaptation in the context of neural text simplification.

3.1 GRADIENT-BASED META-LEARNING

In the context of few-shot learning, meta-learning models are designed to find parameters that can be fine-tuned in few
optimization steps and with few labeled examples to achieve fast adaptation on a task not seen during training.

In typical machine learning settings, we are given a dataset D = {(x1, y1), . . . , (xn, yn)}, with a training split Dtrain

and a testing split Dtest. The goal is to train a model ŷ = fθ(x) parameterized by θ such that model parameters θ are
optimized on the training subset Dtrain: θ∗ = argminθ L(D; θ, ω), where L represents the loss function measuring
the error between model predictions and ground-truth labels, and ω denotes assumptions such as the choice of the
optimizer or function class for f . After training the model, we then evaluate its generalization performance on the
testing subset Dtest. The conventional assumption is that optimization is performed from scratch for every dataset D.

In meta-learning, we assume a distribution over tasks p(T ) we want our model to be able to adapt to, and that a set of
tasks can be sampled from this distribution, {Ti}ni=1 ∼ p(T ). Each task Ti = (T s

i , T
q
i ) consists of two small sets of

labeled data, the support data T s
i which is used for fine-tuning, and the query data T q

i which is used for measuring the
performance of the resulting fine-tuned model. Note that for different tasks Ti and Tj , they may share the same data
distribution (X) but just deal with different labels (Y ). When the data distribution Xi and Xj are different across tasks,
we can also describe them as sampled from different “domains”. The task Ti is described as n-way k-shot if it consists
of n classes, and there are k examples available for each class. In Algorithm 1 Goldblum et al. (2019), we present the
general gradient-based meta-learning framework, noting that variations of this approach exist in the literature.

Algorithm 1 The gradient-based meta-learning framework
Require: p(T ): distribution over tasks, Fθ: base model, A: fine-tuning algorithm, γ: learning rate
Ensure: Initialize θ, the weights of F

while not done do
Sample a batch of tasks {Ti}ni=1 ∼ p(T ), where Ti = (T s

i , T
q
i )

for i = 1, . . . n do
Fine-tune model on task Ti and obtain new network parameters θi = A(θ, T s

i ) ▷ Inner Loop
Compute gradient gi = ∇θL(Fθi , T

q
i )

end for
Update base model parameters ▷ Outer Loop
θ ← θ − γ

n

∑
i gi

end while

In general, meta-learning algorithms employ a bi-level optimization scheme consisting of an “inner” loop and an
“outer” loop, where the outer loop searches for the best global parameter initialization and the inner loop optimizes
individual models that share a common parameter initialization for a range of tasks. A meta-learning iteration starts
with the outer loop, where a batch of tasks are sampled from the distribution over tasks p(T ). Then in the inner
loop, given as input a base model Fθ parameterized by network parameters θ, Fθ is in turn fine-tuned on the support
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data T s
i of each task; the resulting fine-tuned model Fθi is used to make predictions on the query data T q

i of each
task. After the inner loop completes for all sampled tasks in the batch, the outer loop minimizes the loss on the query
data with respect to the pre-finetuned weights; this outer optimization step is achieved by differentiating through the
inner loop computation and updating the base model parameters θ such that the inner loop fine-tuning becomes as
fast and efficient as possible. Importantly, meta-learning algorithms differentiate through the entire fine-tuning loop,
unlike transfer learning approaches that only use simple first-order gradient information to update network parameters.
Nevertheless, back-propagating meta-gradients through the inner loop comes with practical constraints such as high-
order derivatives, big memory footprints, and the risk of vanishing or exploding gradients Jamal et al. (2021). To
alleviate these issues of hierarchical optimization where the outer optimization is constrained on the inner optimization,
the number of inner fine-tuning steps k is often set to small value, for eg., k = 1; alternatively, approximations for
higher order gradients are used when the outer/ meta model and the inner/ task-specific model lie in the same space.

3.2 TRANSFER LEARNING

Transfer learning Caruana (1994), Pan & Yang (2009) focuses on knowledge transfer across domains. It aims to
improve the learning process of a target task with limited or no labeled training data by exploiting knowledge acquired
from a different and related source domain/task which has sufficient data available. By enhancing the data in target
domain with the additional data from the source domain, model performance on the target task can be considerably
improved. Compared to meta-learning which includes an outer optimization loop to evaluate the benefit of prior
knowledge when learning a new task, transfer learning extracts prior knowledge by learning on the source task directly
(i.e. without the use of a meta-objective). Furthermore, while meta-learning seeks an “algorithmic” solution to the
few-shot learning problem and does not necessarily focus on datasets and architectures, transfer learning approaches
emphasize learning robust representations from large-scale datasets and models Dumoulin et al. (2021). To this end,
one of the most commonly employed approaches to transfer learning is pretrain-then-finetune, which first trains a
model on massive datasets and then fine-tunes a pre-trained model on new tasks of interest that requires less data.

Numerous successes of large-scale pre-trained models on a wide variety of tasks and domains are reported in the
literature Vaswani et al. (2017), Brown et al. (2020), Devlin et al. (2019). Nevertheless, transferred knowledge does not
always have a positive impact on new tasks. In the extremely data-scarce regime when only few samples are available
in the target domain, transfer learning is less effective and performs subpar Goldblum et al. (2019). Furthermore,
when there is little in common between domains or when domain similarities are misleading, the target learner is
negatively impacted by the transferred knowledge and negative transfer occurs Zhuang et al. (2020). The brittleness
of the fine-tuning process in settings where there is data distribution shift and different label space than seen during
pre-training leads to poor out-of-domain generalization. Therefore, the main challenge in transfer learning becomes
how to distinguish beneficial source knowledge from inherent cross-domain noise Day & Khoshgoftaar (2017).

Relevant to our work, including a second stage of pre-training with intermediate supervised tasks is reported to improve
the robustness and effectiveness of the resulting target task model in few-shot settings Phang et al. (2018). Crucially,
a careful selection of source tasks to fine-tune on in the intermediate stage is still required, which is not always clear.

4 EXPERIMENT SETUP

In our experiments we aim to investigate the robustness and efficacy of meta-learning and transfer learning methods
when applied to the scenario of neural text simplification in a wide diversity of real-world data-constrained settings.

4.1 DATASETS

We use three datasets which cover different domains and application scenarios of text simplification. In particular,
we focus on generating simpler and more readable versions of news articles and scientific papers from a multitude of
research fields that are disseminated to the general public. We use a third dataset, Wikipedia, as an auxiliary.

News Simplification. Newsela Xu et al. (2015) is a corpus of news articles simplified by professional news editors
for children of different age and grade levels for pre-college classroom use. Each article has been rewritten four times,
resulting in a parallel sentence-aligned monolingual corpus with different reading levels. In our experiments we use
the parallel Newsela dataset made available in Zhang & Lapata (2017), which we further divide into distinct subsets
according to the ground-truth labels provided for complex-simple sentence pairs. In other words, we consider the
different degrees (or difficulty level) of simplification as different tasks of new simplification. Table 6 in Appendix A
summarizes our meta-train, meta-dev and meta-test splits according to the complexity level of sentence pairs.
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Scientific Press Release. Biendata 1 dataset consists of research papers from various scientific disciplines matched
with press releases that describe them. Notably, rewriting scientific papers into press releases has mixed objectives
that are not solely about text simplification. However, it presents a valuable use-case scenario of text simplification
employed in the real world and it also provides a nice out-of-distribution test for our adaptative learning methods.
The corpus consists of alignments at the title level, and for each scientific paper we extract domain meta-data via the
Microsoft Academic Knowledge API 2. We define subsets of the Biendata corpus according to scientific domains,
so simplifying articles in each scientific domain is also considered as a different task; in Table 8 in Appendix A we
present statistics regarding the data splits used for the meta-train, meta-dev and meta-test subsets.

Auxiliary. WikiLarge Zhang & Lapata (2017) is a Wikipedia-based corpus created by combining existing simplifi-
cation datasets. The training subset of WikiLarge is obtained by assembling datasets of parallel aligned Wikipedia -
Simple Wikipedia sentence pairs available in the literature Kauchak (2013), Woodsend & Lapata (2011), Zhu et al.
(2010), while the development and test subsets contain complex sentences with simplifications provided by Ama-
zon Mechanical Turk workers Xu et al. (2016). We split the WikiLarge dataset at random ensuring equal number of
complex-simple sentence pairs in each subset; please see Table 7 in Appendix A for details on the meta-train, meta-dev
and meta-test subsets.

WikiSmall Zhu et al. (2010) is a smaller text simplification benchmark containing 89,042 training sentence pairs, and
100 testing complex-simple sentence pairs. We only use this corpus sparingly to augment WikiLarge model training.

Each dataset contains a meta-train, meta-dev and meta-test set, and each set includes text simplification tasks that
correspond to varying complexity levels (Newsela and WikiLarge) or different scientific domains (Biendata). As these
tasks are all based on their own dataset, we can also describe them as different “domains” of text simplification.

4.2 ADAPTATION PATHS

Our main goal is to investigate whether meta-learning or transfer learning is a suitable adaptation strategy when there
is a distribution of low-resource text simplification tasks/domains available, how they compare to each other, and
whether they can work as a team. In addition, we would like to determine if doing both task adaptation and domain
adaptation can improve performance on new target tasks of interest. To answer these research questions, we design
the following experiments. In Figure 1, we see multiple possible paths of adaptation process.

Figure 1: Adapting a pre-trained language model (source) to low-resource text simplification (target).

1. Direct task adaptation: we aim to determine if it is possible to adapt a pre-trained model (Source), either
trained on general-domain knowledge or specifically designed for text simplification, to text simplification
tasks (Target) via meta-learning and achieve good performance on unseen tasks (meta-test);

2. Direct domain adaptation: we would like to establish whether a pre-trained model (Source) can be adapted
to text simplification domains (Target) via fine-tuning and achieve good performance on unseen domains;

1https://www.biendata.xyz/competition/hackathon
2https://www.microsoft.com/en-us/research/project/microsoft-academic-graph
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3. Two-stage adaptation via an intermediate: our goal is to determine if there is any benefit combining task
adaptation and domain adaptation through an intermediate task/domain dataset (Intermediate). We would
like to find out in which order the two-stage adaptation should be carried out;

4. Two-stage adaptation via a pseudostop: if no intermediate dataset is available, we would like to determine if
it is possible to use the Target itself as the intermediate.

Note that in each leg of a two-stage process, we have two adaptation methods (meta-learning or transfer learning).
Next, we present the specific details of the two methods in our context.

Meta-Learning (Task adaptation) For learning model parameters that facilitate adaptation to a new text simplifica-
tion task in few steps and with minimal amount of text simplification examples, we use Model Agnostic Meta-Learning
(MAML) Finn et al. (2017). In our experiments, we use the publicly available MAML implementation proposed in
META-MT Sharaf et al. (2020) 3, originally designed for fast adaptation in the context of neural machine translation
with minimal amount of in-domain data. We adapt META-MT for the task of text simplification and use the first-order
approximation of MAML (FOMAML) due to computational challenges associated with computing higher order gra-
dients. The meta-learning loss function is optimized using Adam Kingma & Ba (2014) optimizer with a learning rate
α = 1e − 5 and a meta-batch size of 1. We initialize meta-parameters θ in two ways: i) by training a Transformer
Vaswani et al. (2017) model on the combination of WikiLarge and WikiSmall text simplification datasets, and ii) by
leveraging the external knowledge encapsulated in the pre-trained Text-to-Text Transformer (T5) Raffel et al. (2020),
a general purpose language model not particularly designed for the task of text simplification. We provide details on
the hyper-parameter settings for these inner models in the transfer learning section below.

In addition, we also use Reptile Nichol et al. (2018), a first-order meta-learning algorithm designed for fast adaptation
to new tasks. We intend to verify whether the same conclusions and insights can be drawn if different meta-learning
algorithms are used for task adaptation. Our goal is not to compare the two meta-learning algorithms.

Transfer Learning / Fine-Tuning (Domain Adaptation) For determining the benefit of transfer learning from
large-scale general-domain corpora to low-resource text simplification, we use the pre-trained Text-to-Text Trans-
former (T5) Raffel et al. (2020). T5 is a sequence-to-sequence model with 60 million parameters pre-trained on a
multi-task mixture of unsupervised and supervised tasks; each task is converted into a text-to-text format, thus allow-
ing us to use T5 for the purpose of text simplification generation. We fine-tune T5 on the meta-train and meta-valid
subsets of each text simplification dataset, then generate simplified outputs for the complex inputs from the meta-test
test subset of each dataset by prompting the fine-tuned T5 with the keyphrase ”translate English to English”; training
and validation batch size are set to 16, and the learning rate α = 1e− 4.

In addition to T5, we also train a Transformer Vaswani et al. (2017) model for text simplification on WikiLarge and
WikiSmall datasets. In our implementation of the Transformer model, we use the Fairseq Ott et al. (2019) library and
following Sharaf et al. (2020), we augment the Transformer architecture with adapter modules Houlsby et al. (2019),
Bapna & Firat (2019) after each transformer block for more efficient model fine-tuning. The model we train relies
on the transformer-base architecture with 6 encoder and 6 decoder layers and multi-head attention with 8 attention
heads, the dimensionality of word embeddings is set to 512, feed-forward layers dimension is set to 2,048, and adapter
modules have 32 hidden units; we use Adam Kingma & Ba (2014) optimizer with a learning rate α = 7e− 4.

4.3 EVALUATION METRICS

There is no consensus on what is the single best evaluation metric for text simplification. We therefore employ a
diverse portfolio of metrics to “meta”-assess the quality of the generated simplifications from different perspectives,
including informativeness, relevance, fluency, readability, and adequacy. We use SARI Xu et al. (2016) to evaluate
the quality of the simplified output by comparing it against the source and reference simplifications, which is one of
the most accepted metrics of text simplification in literature. We use BLEU Papineni et al. (2002) to measure the
similarity between the generated text and gold standard references. We also use FKGL Kincaid et al. (1975) to mea-
sure the readability of the output. In addition, we also use learnable evaluation metrics that train machine learning
models on human annotated datasets to learn a scoring function that reproduces human judgements. MoverScore Zhao
et al. (2019) measures the semantic distance between system outputs and reference texts using semantically aligned
pretrained embeddings; the distance is computed using Word Mover’s Distance Kusner et al. (2015) in the embed-
ding space, yielding the amount of flow traveling between the contextualized representations. MAUVE Pillutla et al.
(2021) rewards model-generated text which resembles human-authored text by comparing the two distributions us-
ing Kullback-Leibler information divergence frontiers in a quantized low-dimensional embedding space. BARTScore

3https://www.dropbox.com/s/jguxb75utg1dmxl/meta-mt.zip?dl=0
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Yuan et al. (2021) frames the evaluation of text generation models as a text generation problem, and uses BART Lewis
et al. (2020) pre-trained sequence-to-sequence model to assess the probability of the system output (h) being generated
from the source (s) and/ or reference text (r). We apply BARTScore in different generation directions to determine
Faithfulness (s→ h) as the likelihood the hypothesis could be generated based on the source text, Precision (r → h)
as the likelihood the hypothesis could be constructed based on the gold reference, Recall (h → r) as the likelihood a
gold reference could be generated by the hypothesis, and F1 (r ↔ h) as the harmonic mean of precision and recall.
Because the metric computes the average log-likelihood for the target tokens, the resulting BARTScore values are
negative. Each of these evaluation metrics captures different aspects of text simplification generation, therefore in our
analysis we account for their overall agreement with regards to the quality of the generated simplified output.

5 EXPERIMENT RESULTS

We first intend to find out how well pre-trained language models can be directly adapted to the task of low-resource
text simplification, if it is necessary at all (than training a model directly in the low-resource setting). If yes, we would
like to understand whether the pre-trained model has to be purposed for text simplification or it can be trained on
large-scale general purpose text corpora. If the latter, we would like to establish whether meta-learning or transfer
learning works better ( via one-stage adaptation) to transfer the general knowledge to text simplification, especially to
new simplification domains with scarce data. Furthermore, we would like to determine if task and domain adaptation
can complement each other as part of a two-stage adaptation approach; if yes, we would like to determine in which
order the two-stage adaptation process should be carried out to optimize performance on out-of-distribution text sim-
plification tasks and domains. Finally, when a natural intermediate dataset is not possible, we would like to determine
whether using the target dataset itself for intermediate adaptation is a sensible alternative.

Baseline (No Adaptation). As a baseline, we do not adapt any pre-trained language models but train a Transformer
model directly on Newsela or Biendata (based on meta-train and meta-dev) and evaluate its performance on the cor-
responding meta-test. Because the training data is limited, we anticipate that the performance would be suboptimal.
Results are presented in Table 1. While the Transformer model generally scores high in BLEU (indicating similarity
to reference) and low in FKGL (indicating high readability), the rest of evaluation metrics all indicate a sub-par per-
formance to adaptation-based methods (see below), including SARI. Note that the FKGL score on Biendata is much
lower than that of the ground-truth simplifications, indicating that the model has been oversimplifying the scientific
content. For reference, we also include the results on WikiLarge dataset, which are much better than the other two
datasets. As WikiLarge is the largest dataset of the three, this suggests that when training data is abundant, neural text
simplification could yield good performance without adaptation from a pre-trained language model.

Table 1: Baseline meta-test test set results for the Transformer model trained on each text simplification dataset.
Baseline FKGL reference scores - Newsela: 3.733, Biendata: 9.692, WikiLarge: 5.973; ⋆ denotes over-simplification.

Dataset Method SARI (↑) BLEU (↑) FKGL (↓) MOVER (↑) MAUVE (↑) BARTScore (↑)
Faithfulness P R F1

Newsela
Transformer 38.888 10.294 4.371 0.193 0.471 -3.806 -4.770 -4.686 -4.677

ACCESS 27.062 13.501 8.097 0.250 0.326 -1.827 -4.276 -3.511 -3.793

DMLMTL 38.601 8.181 ⋆1.476 0.164 0.229 -4.004 -5.070 -4.767 -4.850

Biendata
Transformer 35.950 0.455 ⋆6.715 0.143 0.019 -6.164 -5.924 -6.517 -6.153

ACCESS 17.847 2.582 12.552 0.294 0.446 -1.747 -5.821 -5.654 -5.678

DMLMTL 32.960 0.893 ⋆9.180 0.154 0.053 -4.429 -6.655 -6.280 -6.393

WikiLarge
Transformer 47.361 41.557 ⋆5.520 0.375 0.818 -2.380 -3.408 -3.687 -3.469

ACCESS 36.075 32.577 8.536 0.356 0.325 -2.016 -3.864 -3.749 -3.734

DMLMTL 31.233 3.425 ⋆1.650 0.113 0.034 -3.731 -4.871 -5.487 -5.072

Additional Baselines (Pre-trained Text Simplification Models) In addition, we also select the current best text
simplification models from the literature which have released pre-trained models. ACCESS Martin et al. (2020) is a
controllable sequence-to-sequence simplification model reported highest performance on WikiLarge, while Dynamic
Multi-Level Multi-Task Learning for Sentence Simplification (DMLMTL) Guo et al. (2018) reported the highest
performance on Newsela. We evaluate these pre-trained text simplification models on our own data splits. The results
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on Newsela and WikiLarge are mostly consistent with literature. However, the performance of both pretrained models
degrades significantly on Biendata, which demonstrates the critical need for task/domain adaptation. In fact, the
Transformer model directly trained on each dataset outperforms both pretrained models on most metrics.

Direct task adaptation. In Table 2 we present results for adapting a pre-trained language model to the target task
(Newsela or Biendata) through MAML. We test two source language models: one is the general-purpose T5 model
released by Google and the other is the Transformer model we trained on WikiLarge (Wiki), which is purposed for text
simplification. We observe that using T5 for MAML meta-parameter initialization yields better performance on new
text simplification tasks according to the majority of evaluation metrics. The Transformer model trained on WikiLarge,
although already purposed for text simplification, only achieves a higher BLEU and a better FKGL. Overall, adapting
from a powerful pre-trained language model outperforms training a model directly from the limited resource (Table 1).
To test the robustness of the results, we replace MAML with Reptile and the same pattern is observed (Table 2). These
is not a consensus among the metrics whether MAML or Reptile is better in this task - note that our goal is not to
compare the two meta learning models but rather the paths of task/domain adaptation.

Table 2: Direct task adaptation results on Newsela and Biendata meta-test test set; we use meta-learning (MAML,
Reptile) for adapting an existing language model to new tasks. ⋆ denotes over-simplification according to FKGL.

Dataset Method SARI (↑) BLEU (↑) FKGL (↓) MOVER (↑) MAUVE (↑) BARTScore (↑)
Faithfulness P R F1

Newsela MAML T5 25.343 16.038 8.096 0.276 0.785 -1.195 -3.820 -3.208 -3.419
MAML Wiki 36.025 12.310 5.184 0.204 0.172 -3.257 -4.731 -5.014 -4.784

Reptile T5 22.758 16.264 9.133 0.277 0.773 -1.068 -3.800 -3.121 -3.359
Reptile Wiki 20.391 14.892 9.171 0.267 0.624 -1.114 -3.808 -3.081 -3.339

Biendata MAML T5 25.804 1.563 16.348 0.178 0.149 -2.558 -5.702 -5.755 -5.632
MAML Wiki 35.548 0.240 ⋆7.243 0.122 0.004 -6.527 -6.584 -6.708 -6.586

Reptile T5 18.867 1.587 16.916 0.166 0.081 -1.872 -5.429 -5.712 -5.434
Reptile Wiki 10.004 1.384 18.876 0.137 0.027 -1.524 -4.980 -5.818 -5.262

Direct domain adaptation. In Table 3 we present results for adapting the pre-trained language models (T5 and
Wiki) through fine-tuning to new text simplification domains in Newsela and Biendata meta-test test set. In line
with our previous findings, using T5 as source yields superior performance to the Transformer trained on WikiLarge,
according to most metrics. Comparing one-stage domain adaptation (Table 3) with one-stage task adaptation (Table 2),
we observe that by and large domain adaptation (fine-tuning) outperforms task adaptation (either MAML or Reptile);
the benefit is more apparent on the out-of distribution scientific press release tasks and domains on Biendata. As using
T5 as the source dominates the pre-trained Transformer on WikiLarge, we use T5 as the Source in there after.

Table 3: Direct domain adaptation results on Newsela and Biendata meta-test test set; we use fine-tuning for adapting
an existing language model to new domains. ⋆ denotes over-simplification according to FKGL.

Dataset Method SARI (↑) BLEU (↑) FKGL (↓) MOVER (↑) MAUVE (↑) BARTScore (↑)
Faithfulness P R F1

Newsela Fine-tune T5 32.310 19.547 7.638 0.298 0.453 -1.624 -3.874 -3.162 -3.415
Fine-tune Wiki 35.360 18.009 4.397 0.272 0.158 -2.603 -4.847 -4.677 -4.676

Biendata Fine-tune T5 35.989 3.314 11.279 0.240 0.659 -3.324 -5.319 -5.519 -5.352
Fine-tune Wiki 37.314 1.066 ⋆6.827 0.177 0.004 -5.652 -6.094 -6.193 -6.068

Two-stage adaptation. Next, we would like to investigate whether it is possible to combine the advantage of adapt-
ing to new domains with adapting to new tasks for more robust performance and better generalization on new text
simplification tasks and domains. As part of a two-stage adaptation process, we aim to determine the ideal order in
which to perform the adaptation, i.e. whether task adaptation should be performed ahead of domain adaptation, or vice
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versa. In addition, we explore if consecutive stages of task adaptation and domain adaptation could further improve
upon one-stage adaptation results; nevertheless, our expectation is that combining task with domain adaptation adds
complementary benefits and can outperform multiple stages of the same type of adaptation. In our analysis, we differ-
entiate two cases: i) when there is an intermediate text simplification dataset available, and ii) when no other dataset
is available, except for the source and target datasets.

Intermediate dataset available. We use WikiLarge as an intermediate dataset for task and domain adaptation. As part
of the two-stage adaptation process, we first adapt pre-trained T5 to WikiLarge, then continue to adapt the resulting
model to Newsela or Biendata; we explore possible combinations of task and domain adaptation at each stage of the
pipeline, and present results for various combinations of the two-stage adaptation process on the Newsela and Biendata
target tasks and domains in Table 4. Additionally, in Table 9 we include intermediate adaptation results on WikiLarge.

Table 4: Two-stage adaptation results on Newsela and Biendata meta-test test set when an intermediate dataset (Wiki-
Large) is used. BOLD and Underlined: best and second best within the block of either MAML or Reptile). ⋆ denotes
over-simplification according to FKGL. Best single stage adaptation results under each metric included for reference
but not highlighted in comparison. (∗: results duplicated for comparison purposes.)

Dataset Method SARI (↑) BLEU (↑) FKGL (↓) MOVER (↑) MAUVE (↑) BARTScore (↑)
Faithfulness P R F1

Newsela T5 domain + domain 34.722 19.376 8.319 0.284 0.079 -2.081 -4.182 -3.244 -3.596
T5 domain + task (MAML) 24.681 16.971 8.415 0.283 0.834 -1.102 -3.771 -3.133 -3.354
T5 task (MAML) + task (MAML) 28.711 15.378 7.462 0.267 0.619 -1.405 -3.821 -3.277 -3.457
T5 task (MAML) + domain 33.978 20.876 7.398 0.312 0.858 -1.226 -3.592 -3.096 -3.259

T5 domain + domain∗ 34.722 19.376 8.319 0.284 0.079 -2.081 -4.182 -3.244 -3.596
T5 domain + task (Reptile) 23.467 17.042 9.442 0.285 0.787 -1.037 -3.772 -3.095 -3.332
T5 task (Reptile) + task (Reptile) 26.337 17.098 8.727 0.278 0.818 -1.186 -3.829 -3.207 -3.432
T5 task (Reptile) + domain 34.092 20.861 8.054 0.311 0.876 -1.237 -3.613 -3.098 -3.270

best single stage 36.025 19.547 4.397 0.298 0.785 -1.195 -3.820 -3.162 -3.415

Biendata T5 domain + domain 37.850 3.342 10.932 0.230 0.580 -3.700 -5.244 -5.529 -5.315
T5 domain + task (MAML) 23.059 2.479 14.939 0.200 0.170 -2.161 -5.811 -5.671 -5.671
T5 task (MAML) + task (MAML) 27.300 1.056 16.545 0.142 0.076 -3.252 -5.658 -5.907 -5.683
T5 task (MAML) + domain 36.129 3.419 11.386 0.236 0.596 -3.270 -5.307 -5.530 -5.348

T5 domain + domain∗ 37.850 3.342 10.932 0.230 0.580 -3.700 -5.244 -5.529 -5.315
T5 domain + task (Reptile) 18.407 3.366 14.959 0.225 0.181 -1.348 -5.718 -5.532 -5.563
T5 task (Reptile) + task (Reptile) 22.274 1.982 15.043 0.182 0.118 -2.168 -5.684 -5.771 -5.651
T5 task (Reptile) + domain 37.175 3.598 11.063 0.238 0.626 -3.418 -5.263 -5.561 -5.341

best single stage 37.314 3.314 ⋆ 6.827 0.240 0.659 -2.558 -5.319 -5.519 -5.352

When an intermediate text simplification dataset is available as part of the two-stage adaptation process, our results
indicate that the most promising strategy is to adapt to new tasks (through MAML or Reptile) in the first stage, and
continue adapting to new domains (through fine-tuning) in the second stage. The benefit of doing task adaptation first
is also supported by the intermediate results on WikiLarge, where adapting the pre-trained T5 model to the new task
of text simplification yields better results than adapting to new domains. It is critical to do domain adaptation in the
final stage (domain + domain is only second to task + domain), suggesting that the difference over data distributions is
more critical than the difference over tasks in our scenario. This is particularly true on Biendata, where the content in
different scientific domains may be very different. Repeating the same type of (task/domain) adaptation in both stages
is less effective than task + domain, demonstrating the complementary benefit of learning to adapt to both tasks and
domains for more robust generalization. Compared to one-stage task and one-stage domain adaptation, a two-stage
task and domain adaptation consistently improves the quality of the generated simplifications according to the great
majority of evaluation metrics. The findings are consistent when either MAML or Reptile is used for task adaptation.

No intermediate dataset available. While we have established the advantage of a two-stage adaptation procedure to
address new text simplification tasks and domains, a potential limitation of this approach is the reliance on a third
text simplification dataset as the intermediate. Given the scarcity of labels, we cannot assume the existence of such a
related intermediate dataset for adaptation is always guaranteed. In such cases, we investigate whether it is possible
to circumvent this additional requirement by using the source or target dataset itself for intermediate adaptation in the
two-stage pipeline. In our experiments, we pick the Target dataset for intermediate adaptation, since the simplification
model we aim to learn needs to be tailored specifically to target tasks and domains, and also we do not have access
to the original dataset that T5 is trained upon. In Table 5 we present results when we adapt from (Source→ Target)
→ Target, i.e. from (pre-trained T5 → Newsela/ Biendata) → Newsela/ Biendata tasks and domains via a two-
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stage adaptation process. In general, task adaptation followed by domain adaptation remains the best performing
adaptation strategy, and the benefit is considerably more pronounced on the out-of-distribution tasks and domains from
Biendata. We compare these results with Table 4 where an intermediate dataset is used, and observe that using the
target dataset directly for intermediate adaptation yields slightly lower but comparable results to relying on Wikipedia
for intermediate adaptation, and therefore successfully overcomes the need for extra data. The findings are mostly
consistent when either MAML or Reptile is used for task adaptation. For interesting readers, we have included sample
outputs of both one-stage and two-stage adaptation paths in Table 10 in Appendix.

Table 5: Two-stage adaptation results on Newsela and Biendata when no intermediate dataset is available and the
target dataset is used as a pseudo-intermediate. BOLD: best result within block of either MAML and Reptile
.

Dataset Method SARI (↑) BLEU (↑) FKGL (↓) MOVER (↑) MAUVE (↑) BARTScore (↑)
Faithfulness P R F1

Newsela T5 task (MAML) + domain 34.690 19.799 7.601 0.294 0.251 -1.844 -4.012 -3.183 -3.487
T5 domain + task (MAML) 30.878 19.141 7.732 0.299 0.882 -1.323 -3.685 -3.136 -3.324

T5 task (Reptile) + domain 35.865 21.788 7.768 0.317 0.794 -1.286 -3.589 -3.112 -3.268
T5 domain + task (Reptile) 30.501 19.478 8.362 0.301 0.883 -1.172 -3.689 -3.120 -3.316

Biendata T5 task (MAML) + domain 37.945 3.354 10.681 0.238 0.634 -3.735 -5.312 -5.511 -5.343
T5 domain + task (MAML) 32.821 2.973 13.582 0.233 0.467 -3.149 -5.763 -5.508 -5.564

T5 task (Reptile) + domain 37.175 3.599 11.063 0.238 0.626 -3.417 -5.263 -5.561 -5.341
T5 domain + task (Reptile) 31.885 3.441 13.853 0.243 0.464 -2.646 -5.703 -5.431 -5.502

6 CONCLUSION AND FUTURE WORK

In this work, we frame the problem of low-resource text simplification from a task and domain adaptation perspective
and learn how to quickly adapt pre-trained language models to new tasks and domains with few training examples.
We examine the performance of state-of-the-art gradient-based meta-learning for task adaptation, and transfer learning
from large-scale pre-trained language models for domain adaptation in a variety of tasks and domains. Our analysis
reveals that when a direct adaptation approach is used, fine-tuning pre-trained language models outperforms meta-
learning models for the task of low-resource text simplification; this trend is in line with previous findings in the
literature Dumoulin et al. (2021), Brown et al. (2020). Nevertheless, decomposing the adaptation process into multiple
steps can significantly increase target performance, provided that an auxiliary dataset is available for intermediate
adaptation and careful attention is paid to performing adaptation in the correct order, i.e. task adaptation ahead of
domain adaptation. When such an intermediate auxiliary dataset is not readily available, a “pseudostop” based on the
target task/domain itself can be build between the source and the target.

Our findings represent preliminary foundations for proposing adaptation models that simultaneously perform task and
domain adaptation in one goal. As we observe, the coupling of task adaptation (difference in Y ) and domain adaptation
(difference in X) is clearly beneficial comparing to either meta-learning or transfer-learning alone. Therefore creating
a model that explicitly and jointly handles these two situations is a promising direction to explore. The utilization
of stops (and even pseudostops) between the source and target tasks/domains also suggests that it may be valuable
to further investigate a more structured solution of task/domain adaptation. We hope our insights will help inform
future directions towards robust adaptation of neural language models to new tasks and domains for few-shot text
simplification and other low-resource NLP tasks.
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Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and Noah A Smith.
Don’t stop pretraining: Adapt language models to domains and tasks. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 8342–8360, 2020.

Timothy M Hospedales, Antreas Antoniou, Paul Micaelli, and Amos J Storkey. Meta-learning in neural networks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo,
Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In International Conference on
Machine Learning, pp. 2790–2799. PMLR, 2019.

Muhammad Abdullah Jamal, Liqiang Wang, and Boqing Gong. A lazy approach to long-horizon gradient-based
meta-learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6577–6586,
2021.

Bingyi Kang and Jiashi Feng. Transferable meta learning across domains. In UAI, pp. 177–187, 2018.

David Kauchak. Improving text simplification language modeling using unsimplified text data. In Proceedings of
the 51st annual meeting of the association for computational linguistics (volume 1: Long papers), pp. 1537–1546,
2013.

11



Published at 1st Conference on Lifelong Learning Agents, 2022

J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers, and Brad S Chissom. Derivation of new readability formulas
(automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel. Technical
report, Naval Technical Training Command Millington TN Research Branch, 1975.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document distances. In
International conference on machine learning, pp. 957–966. PMLR, 2015.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoy-
anov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 7871–7880, 2020.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Learning to generalize: Meta-learning for domain
generalization. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
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A APPENDIX

Table 6: Newsela splits according to complexity level. 0 denotes the most complex level, and 4 represents the simplest.

Complexity level Sentence pairs TRAIN (70%) DEV (15%) TEST (15%)

0 - 1 16,611 11,627 2,492 2,492


META-TRAIN

0 - 2 20,122 14,086 3,018 3,018
0 - 3 19,891 13,923 2,984 2,984
1 - 2 12,888 9,022 1,933 1,933
1 - 3 13,296 9,308 1,994 1,994
2 - 3 12,146 8,502 1,822 1,822

2 - 4 9,780 6,846 1,467 1,467
}

META-DEV3 - 4 10,185 7,129 1,528 1,528

0 - 4 16,086 11,260 2,413 2,413
}

META-TEST1 - 4 10,577 7,403 1,587 1,587

Table 7: WikiLarge random splits.

Subset Sentence pairs TRAIN (50%) DEV (25%) TEST (25%)

Wikipedia 0 20,000 10,000 5,000 5,000


META-TRAIN

Wikipedia 1 20,000 10,000 5,000 5,000
Wikipedia 2 20,000 10,000 5,000 5,000
Wikipedia 3 20,000 10,000 5,000 5,000
Wikipedia 4 20,000 10,000 5,000 5,000
Wikipedia 5 20,000 10,000 5,000 5,000
Wikipedia 6 20,000 10,000 5,000 5,000
Wikipedia 7 20,000 10,000 5,000 5,000
Wikipedia 8 20,000 10,000 5,000 5,000
Wikipedia 9 20,000 10,000 5,000 5,000

Wikipedia 10 20,000 10,000 5,000 5,000
 META-DEV

Wikipedia 11 20,000 10,000 5,000 5,000
Wikipedia 12 20,000 10,000 5,000 5,000
Wikipedia 13 20,000 10,000 5,000 5,000
Wikipedia 14 20,000 10,000 5,000 5,000

Wikipedia 15 20,000 10,000 5,000 5,000
 META-TESTWikipedia 16 20,000 10,000 5,000 5,000

Wikipedia 17 20,000 10,000 5,000 5,000
Wikipedia 18 20,000 10,000 5,000 5,000
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Table 8: Biendata splits according to scientific domain.

Scientific Domain Sentence pairs TRAIN (50%) DEV (25%) TEST (25%)

Medicine 7,993 3,997 1,998 1,998


META-TRAIN

Biology 10,040 5,020 2,510 2,510
Internal Medicine 1,095 547 274 274
Psychology 3,367 1,683 842 842
Chemistry 1,516 758 379 379
Cancer Research 1,044 522 261 261
Neuroscience 1,411 705 353 353
Virology 1,106 554 276 276
Pediatrics 812 406 203 203
Disease 582 292 145 145

Immunology 2,281 1,141 570 570


META-DEV

Genetics 2,151 1,075 538 538
Social Psychology 1,090 546 272 272
Surgery 1,261 631 315 315
Psychiatry 1,045 523 261 261
Cognition 662 330 166 166
Demography 992 496 248 248
Climate Change 847 423 212 212
Zoology 645 323 161 161

Endocrinology 1,582 790 396 396 

META-TEST

Cell Biology 2,154 1,076 539 539
Molecular Biology 904 452 226 226
Biochemistry 640 320 160 160
Physical Therapy 1,189 595 297 297
Nanotechnology 378 188 95 95
Gerontology 649 325 162 162
Computer Science 739 369 185 185
Physics 1,108 554 277 277
Materials Science 967 483 242 242
Ecology 2,869 1,435 717 717
Geography 658 330 164 164
Economics 384 192 96 96

Table 9: Intermediate results on WikiLarge meta-test test set as part of the two-stage adaptation process. Baseline
FKGL score for WikiLarge reference sentences: 5.973, ⋆ denotes over-simplification.

Dataset Method SARI (↑) BLEU (↑) FKGL (↓) MOVER (↑) MAUVE (↑) BARTScore (↑)
Faithfulness P R F1

WikiLarge T5 Task Adaptation 32.954 34.722 6.584 0.344 0.324 -1.286 -3.357 -3.411 -3.281
T5 Domain Adaptation 29.276 42.608 ⋆5.175 0.319 0.161 -1.816 -3.589 -3.932 -3.638
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Table 10: Sample text simplification outputs through different adaptation paths.
Dataset Model Output

Newsela

Complex sentence The exploration doubled the estimated gold reserves at El Dorado, within the headwaters of the Lempa River, the nation’s most important waterway.
Transformer It found that the gold of the nation ’s most important event , the nation ’s most important event .
Direct Task Adaptation El Dorado is within the headwaters of the Lempa River, the nation’s most important waterway.
Direct Domain Adaptation El Dorado, the nation’s most important waterway, is within the headwaters of the Lempa River.
Two-stage Task + Domain Adaptation El Dorado is within the headwaters of the Lempa River, the nation’s most important waterway.
Simple sentence The dig for gold would take place at a mine known as El Dorado.

Complex sentence Here , the story of Ebola is one of worldwide public health infrastructure deficiency , delicate trust in post-conflict nations ,
an exhausted health care workforce and widespread ambivalence to our duty as a global community .

Transformer Here , the story of Ebola is one of the public worldwide worldwide worldwide worldwide .
Direct Task Adaptation Here, the story of Ebola is one of worldwide public health infrastructure deficiency, delicate trust in post-conflict nations,

an exhausted health care workforce and widespread ambivalence to our duty as a global community .
Direct Domain Adaptation The story of Ebola is one of the biggest problems in public health.
Two-stage Task + Domain Adaptation There is a lack of trust in post-conflict nations.
Simple sentence Ebola ’s spread is about a worldwide lack of systems that support public health such as health care workers , hospitals and equipment .

Biendata

Complex sentence The One-Two Punch of Alcoholism: Role of Central Amygdala Dynorphins/Kappa-Opioid Receptors
Transformer Researchers identify new way to reduce risk of childhood cancer
Direct Task Adaptation Alcoholism One-Two Punch of Alcoholism: Role of central Amygdala Dynorphins/Kappa-Opioid Receptors
Direct Domain Adaptation Alcoholism: How do we react to alcohol?
Two-stage Task + Domain Adaptation Alcoholism: How do we manage alcohol?
Simple sentence Alcoholism treatment: Kappa opioid receptors a new target

Complex sentence Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays
Transformer Scientists discover new insights into how to fight against cancer
One-stage Task Adaptation Development of human gastrointestinal epithelial culture system to facilitate patient-based assayss
Direct Domain Adaptation Human gastrointestinal epithelial culture system could help treat patients
Two-stage Task + Domain Adaptation New way to test for gastrointestinal disorders
Simple sentence Growing human GI cells may lead to personalized treatments
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