
Published at 1st Conference on Lifelong Learning Agents, 2022

TEST SAMPLE ACCURACY SCALES WITH
TRAINING SAMPLE DENSITY IN NEURAL NETWORKS

Xu Ji
Mila

Razvan Pascanu
DeepMind

Devon Hjelm
Mila, MSR

Balaji Lakshminarayanan
Google Brain

Andrea Vedaldi
Oxford University

ABSTRACT

Intuitively, one would expect accuracy of a trained neural network’s prediction on test samples to
correlate with how densely the samples are surrounded by seen training samples in representation
space. We find that a bound on empirical training error smoothed across linear activation regions
scales inversely with training sample density in representation space. Empirically, we verify this
bound is a strong predictor of the inaccuracy of the network’s prediction on test samples. For un-
seen test sets, including those with out-of-distribution samples, ranking test samples by their local
region’s error bound and discarding samples with the highest bounds raises prediction accuracy by
up to 20% in absolute terms for image classification datasets, on average over thresholds.

1 INTRODUCTION

When do trained models make mistakes? Intuitively, one expects higher prediction error for test samples that are more
novel, compared to seen training data. For neural network inference models, one measure of sample novelty is dis-
tance from training samples in representation space, according to some distance metric k. Integrated over all training
samples, this corresponds to the sample falling in a low density region in the metric space defined by k. A number
of existing works on detecting out-of-distribution samples relate to this idea. For instance Lee et al. (2018) and Tack
et al. (2020) use distance to estimated modes in network representation space as a measure of prediction unreliability.
In non-parametric Gaussian Process inference (Rasmussen, 2003), prediction certainty corresponds exactly to local
density of training samples. The idea of this work is to derive and empirically test a similar measure of prediction
unreliability for ReLU neural networks.

Since the input space of a ReLU network can be partitioned into linear activation regions (Montúfar et al., 2014) such
that each region is mapped to a distinct linear function that uses a different parameterization or subset of network
weights - which for convenience we call the subfunctions of the network - one could cast the novelty or unreliability of
a sample as a bound on error of the specific subfunction it induces. Unlike in error bounding for model selection, the
objective is to take a pre-trained model and rank test samples, so the model is fixed. For deep networks, test samples
typically fall in linear activation regions unpopulated by empirical training samples, so bounds that are a function of
empirical training error are undefined. We propose to smooth the empirical error by taking a weighted average of
empirical errors across activation regions where the weighting is defined by a function k of representation distance.
Constructing a bound on smooth empirical error yields a quantity that scales exactly with the inverse of density of
training samples in the representation space defined by k.

There are many possible ways to partition a neural network. An argument against making the partitioning more
coarse than linear activation regions is reduction in discriminativity; in the extreme case, casting the network as a
single subfunction results in the same error bound for all samples. An argument against making the partitioning
more finegrained is linear functions are already the least complex class of parametric functions; there is no way to
further subdivide a linear activation region such that the functions computed are different, as each input in the region
implicates exactly the same parameters. However, an interesting direction for future work is extending the idea of
density-as-reliability to density in continuous space, rather than of discrete partitions, which would require a different
bound to the one used in this work.

Figure 1 illustrates our approach for a model trained on the half moons dataset. Considering the model as a composition
of individual functions allows the discrimination of risk based on input region.

1

Published at 1st Conference on Lifelong Learning Agents, 2022

(a) (b) (c) (d)

Figure 1: Shattering a neural network trained on the halfmoons dataset into co-dependent linear subfunctions to obtain
a heatmap of unreliability across the input space. The model is a MLP with two hidden ReLU layers of 32 units each.
(a) Training data. (b) Linear activation regions. (c) Subfunction smooth error bound as unreliability. (d) Unreliability
heatmap in 2D.

2 INPUT-DEPENDENT UNRELIABILITY

2.1 NOTATION

Let f : X → Y be a piecewise linear neural network comprised of linear functions and ReLU activation functions. Let
V = (vj)1≤j≤M , ordered according to any fixed ordering, be the set of M ReLUs in f where ∀j : vj : X → {0, 1} is 1
if the ReLU is positive valued when f(x) is computed, and 0 otherwise. Let patterns set P ⊂ {0, 1}M , P = (pi)1≤i≤C

be the set of all feasible ReLU activation decisions, meaning all possible binary patterns induced by traversing the input
space X . In general this is not equal to the full bit space {0, 1}M , and tractably computing it exactly is an open problem
(Montúfar et al., 2014). There is a bijection between these patterns and the linear activation regions of the network, as
each linear activation region is uniquely determined by the set of ReLU activation decisions (Raghu et al., 2017). Let
activation region ai correspond to pattern pi:

ai ≜{x ∈ X | ∀j ∈ [1,M] : pji = vj(x)}, (1)
Each pattern pi defines a distinct linear function hi : X → Y , or subfunction, by the replacement of the ReLU
corresponding to each vj (non-linear) by the identity function if pji = 1 or the zero function otherwise (linear). Let
the set of all subfunctions be H = (hi)1≤i≤C , ordered identically to P . Since activation regions are non-overlapping
polytopes in input space, each input sample belongs to a unique activation region, so inference with model f can be
rewritten as f(x) = hi(x) where x ∈ ai. For convenience we overload the definition of H so the subfunction induced
for any input sample x is H(x)≜hi where x ∈ ai.

2.2 SMOOTH EMPIRICAL ERROR

Consider a training dataset S containing N sampled pairs, S ∈ (X × Y)N , where samples are drawn iid from
distribution D. Define the empirical error or risk of the full network on this dataset:

R̂S(f)≜
1

|S|

|S|∑
n=1

r(Sn; f), (2)

where r is a bounded error function on samples: 0 ≤ r((x, y); f) ≤ 1 for all x, y ∈ (X × Y) and Sn is the n-th
element of S. Note empirical error, e.g. proportion of incorrect classifications, is not necessarily the objective function
for training; it is fine for the latter to not have finite bounds. Quantify the empirical error for a subfunction hi using
standard empirical error (eq. (2)). The activation region dataset is Si ≜S ∩ ai with Ni ≜ |Si| samples drawn iid from
its data distribution Di, defined as PDi

(x, y) = PD(x, y|x ∈ ai). Then:

R̂Si
(hi) =

1

Ni

Ni∑
n=1

r(Sn
i ; f), (3)

and for any δ ∈ (0, 1], with probability > 1− δ: E
Si

[R̂Si(hi)] ≤ R̂Si(hi) +

√
log 2

δ

2Ni
. (4)

2

Published at 1st Conference on Lifelong Learning Agents, 2022

Figure 2: Each linear activation region in 2D
input space (plane) is mapped to a unique sub-
function, activation decision pattern, and set of
training samples (triangles). A density, smooth
in representation space, is defined given the
number of samples in each region.

This is a Hoeffding inequality based bound (Mohri et al., 2018, eq.
2.17). As we take a pre-trained model and rank test samples, the
model is fixed. There are several drawbacks with this initial formu-
lation. First, it treats the empirical error of different subfunctions as
independent when in general, they are not. Since different activation
regions are bounded by shared hyperplanes, and hence the subfunc-
tions share parameters, there exists useful evidence for a subfunc-
tion’s performance outside its own activation region. Second, test
samples overwhelmingly induce unseen activation patterns in deep
networks, and the bound in eq. (4) is infinite if Ni = 0, making this
quantity uninformative for the purposes of comparing subfunctions.

This motivates the following empirical risk metric for subfunctions.
Fix non-negative weighting or closeness distance function between
subfunctions, k : H × H → R≥0. For any subfunction hi ∈ H ,
define its probability mass:

P(hi)≜

∑
j∈[1,C] Nj k(hi, hj)∑

l∈[1,C]

∑
j∈[1,C] Nj k(hl, hj)

, (5)

so by construction
∑

i∈[1,C]

P(hi) = 1, (6)

which quantifies how densely hi is locally populated by training samples. Rewrite the empirical error of the network
as an expectation over subfunction empirical error:

R̂S(f) =
1

N

∑
(x,y)∈S

r((x, y); f) (7)

=
1

N

∑
(x,y)∈S

1∑
j∈[1,C] P(hj) k(H(x), hj)

∑
i∈[1,C]

P(hi) k(H(x), hi) r((x, y); f) (8)

=
1

N

∑
i∈[1,C]

P(hi)
∑

(x,y)∈S

k(H(x), hi) r((x, y); f)∑
j∈[1,C] P(hj) k(H(x), hj)

(9)

= E
hi

[
1

N

∑
(x,y)∈S

k(H(x), hi) r((x, y); f)∑
j∈[1,C] P(hj) k(H(x), hj)

]
(10)

= E
hi

[
1

N

∑
l∈[1,C]

k(hl, hi) Nl R̂Sl
(hl)∑

j∈[1,C] P(hj) k(hl, hj)

]
≜ E

hi

[R̂∗
S(hi)]. (11)

Theorem 2.1 (Expected smooth error bound). Assume that D̃S is a distribution over size-N datasets that have the
same activation region data distributions and dataset sizes (Di and Ni, ∀i ∈ [1, C]) as S. Let dataset S be drawn iid
from D̃S . Then ∀i ∈ [1, C], for any given δ ∈ (0, 1], with probability > 1− δ:

R∗
D̃S

(hi)≜E
S
[R̂∗

S(hi)] ≤ R̂∗
S(hi) +

1

P(hi)

√
log 2

δ

2N
, (12)

proof in appendix A. Intuitively this implies that the more a subfunction is surrounded by samples for which the model
makes accurate predictions - both from its own region and regions of other subfunctions, weighted by the weighting
function k - the lower its empirical error and bound on generalization gap, and thus the lower its bound on true or
expected error, given any δ. The further that test samples fall from densely supported training regions or subfunctions,
the less likely the model is to be accurate. Unlike eq. (4), this bound is finite even for subfunctions without training
samples because such subfunctions are assigned non-zero density (fig. 2), given a positive-valued weighting function.

Smoothing is performed out of necessity; in order to resolve the problem of not having empirical training samples to
quantify the error of a subfunction, one must assume interdependence between subfunctions. In general, smoothing
with k introduces a bias since the bound on a subfunction’s smooth empirical error does not converge to expected
error in the limit of number of samples of its region. However, smoothing is not unreasonable as errors of different
subfunctions in neural networks are interdependent due to parameter sharing, and the bias is reducible by searching k,
which experimental results indicate is sufficient to render it inconsequential in practice.

3

Published at 1st Conference on Lifelong Learning Agents, 2022

2.3 WEIGHTING FUNCTION

The bound in theorem 2.1 holds irrespective of choice of k because the bounding procedure assumes a worst case.
This makes the bound loose, but allows for k to be searched using a validation set. In this section we discuss selecting
k. The ideal weighting function k and probability parameter δ produce a bound for each subfunction hi that reflects
the subfunction’s true error accurately, i.e. minimizes the difference with the expected true error (without weighting
function) if we had unlimited samples of its activation region ai:

min
k,δ

∥∥∥∥∥ ESi

[R̂Si
(hi)]−

(
R̂∗

S(hi) +
1

P(hi)

√
log 2

δ

2N

)∥∥∥∥∥ (13)

Being limited to dataset instance S, we do not have access to subfunction hi’s true error ESi [R̂Si(hi)]. However, we
can construct an estimate by taking the samples x, y that k includes in the subfunction’s smooth empirical error R̂∗

S(hi)
(that is, all the training samples, for positive valued k) and adjusting their error values to reflect what they would be
if the sample did belong to ai. This improves on R̂∗

S(hi), the weighted error of surrounding activation regions, by
transforming it into a weighted error of the target activation region ai itself.

Figure 3: Given a family of Gaussian
weighting functions, the best weight-
ing function according to eq. (16)
trades off precision of the smooth em-
pirical error with sample density.

Let Φ : X → Z be any data representation for which there exists a
function Ψ : Z → R that computes inference model f ’s per-sample er-
ror, i.e. r(x, y) = Ψ(Φ(x)) for all x, y in the support of D. This as-
sumes the data is well conditioned so target labels are predictable from
inputs. Let Ω : Z → Z be a shifting function that changes the repre-
sentation of any sample x ∈ X into the representation of a sample in ai,
Ω(Φ(x))≜ argminΦ(x′)∥Φ(x′) − Φ(x)∥ s.t. x′ ∈ ai. Using the Taylor ex-
pansion, assuming an error function Ψ with bounded first order gradients:

∀(x, y) ∈ S : Ψ(Ω(Φ(x))) = Ψ(Φ(x)) +O(∥Φ(x)− Ω(Φ(x))∥) (14)

Replacing the true error in eq. (13) with the estimate constructed using
shifted samples:∥∥∥∥∥ 1

N

∑
(x,y)∈S

1

w(x)
k(H(x), hi) Ψ(Ω(Φ(x)))−

(
R̂∗

S(hi) +
1

P(hi)

√
log 2

δ

2N

)∥∥∥∥∥
(15)

≤

∥∥∥∥∥ 1

N

∑
(x,y)∈S

1

w(x)
k(H(x), hi) O(∥Φ(x)− Ω(Φ(x))∥)

∥∥∥∥∥+ 1

P(hi)

√
log 2

δ

2N
,

(16)

where w(x)≜
∑

j∈[1,C] P(hj) k(H(x), hj) is the weight normalization term. We draw 2 conclusions from this anal-
ysis. First, weighting value k(hi, hj) for any hi, hj should decrease with the distance between the feature representa-
tions of samples in their activation regions. This is evident from eq. (16) as Φ(x) is the representation of a sample in
the activation region of H(x), and Ω(Φ(x)) is the representation of a sample in the activation region of hi, so larger
distances should be penalized by smaller weights. However, k(hi, hj) cannot be too low (for example 0 for all hj ̸= hi

given any hi) because the magnitude of 1
P(hi)

would be large. Thus the best k combines error precision (upweight
near regions and downweight far regions) with support (upweight near and far regions). The need to minimize weight
with distance justifies restricting the search for k within function classes where output decreases with representation
distance, such as Gaussian functions of activation pattern distance. An example of this trade-off is illustrated in fig. 3.

Secondly, in practice there is no need to explicitly find k that minimizes eq. (16). A simple alternative is to use a
validation set metric that correlates with how well k, δ minimize eq. (16) (i.e. approximate the true error), such as
the ability of the bound to discriminate between validation samples that are accurately or inaccurately predicted, and
select k and δ such that they minimize the validation metric. This is the approach we take in our experiments.

4

Published at 1st Conference on Lifelong Learning Agents, 2022

3 RELATED WORK

This work is primarily related to sample-level metrics intended for out-of-distribution or unreliable in-distribution
sample selection (Ovadia et al., 2019), and work on linear activation regions, which is typically motivated by charac-
terizing neural network expressivity (Montúfar et al., 2014; Raghu et al., 2017; Hanin & Rolnick, 2019).

Well known sample uncertainty or unreliability metrics include the maximum response of the final softmax predic-
tion layer (Hendrycks & Gimpel, 2017; Geifman & El-Yaniv, 2017; Cordella et al., 1995; Chow, 1957), its entropy
(Shannon, 1948), or its top-two margin (Scheffer et al., 2001), all conditioned on the input sample. Liang et al. (2017)
combines maximum response with temperature scaling and input perturbations. Jiang et al. (2018) combines the top-
two margin idea with class distance. Some ideas use distance to prototypes in representation space, which is similar
at high level to ours if one assumes prototypes are in high-density regions. Lee et al. (2018) trains a logistic regressor
on layer-wise distances of a sample’s features to its nearest class, with the idea that distance to features of the nearest
class should scale with unreliability. This was shown to outperform Liang et al. (2017). Sehwag et al. (2021) is an
unsupervised variant of Lee et al. (2018). Tack et al. (2020) clusters feature representations instead of using classes,
using distance to nearest cluster as unreliability. In Bergman & Hoshen (2020) the clusters are defined by input trans-
formations; we were unable to get this working in our setting as models appear to suffer from feature collapse across
transformations when not trained explicitly for transformation disentanglement. Non-parametric kernel based meth-
ods such as Gaussian processes provide measures of uncertainty that also scale with distance from samples and can be
appended to a neural network base (Liu et al., 2020). Zhang et al. (2020) assume density in latent space is correlated
to reliability, using residual flows (Chen et al., 2019) for the density model. If multiple models trained on the same
dataset are available (which we do not assume), one could use ensemble model metrics such as variance, max response
or entropy (Lakshminarayanan et al., 2016); an ensemble can also be simulated in a single model with Monte Carlo
dropout (Geifman & El-Yaniv, 2017; Gal & Ghahramani, 2016).

Many of these works seek to predict whether a sample is out-of-distribution (OOD) for its own sake, which is an
interesting problem, but we care about 1) epistemic uncertainty in general, including in-distribution misclassification,
not just OOD 2) in the context of the main model trained for a practical task, or in other words, exposing what the
task model does not know using the task model itself, as opposed to training separate models on the data distribution
specifically for outlier detection.

4 EXPERIMENTS

We tested the ability of the input-conditioned bound in eq. (12) to predict out-of-distribution and misclassified in-
distribution samples. Taking pre-trained VGG16 and ResNet50 models for CIFAR100 and CIFAR10, we computed
area under false positive rate vs. true positive rate (AUROC) and area under coverage vs. effective accuracy (AUCEA)
for each method. Definitions are given in appendix E. These metrics treat predicting unreliable samples as a binary
classification problem, where for out-of-distribution, ground truth is old distribution/new distribution, and for misclas-
sified in-distribution, ground truth is classified correct/incorrect. Method output is accept/reject. All methods produce
a metric per sample that is assumed to scale with unreliability, so 1K thresholds for discretizing into accept/reject
decisions were uniformly sampled across the maximum test set range, yielding the AUROC and AUCEA curves. For
our method, we used Gaussian weighting with standard deviation ρ, k(hi, hj) = e−Hamming(pi,pj)

2/(2ρ2), and took
log of the bound to suppress large magnitudes. In-distribution misclassification validation set was used to select all
hyperparameters, i.e. we use a realistic, hard setting where OOD data is truly unseen for all parameters.

Table 1: Summary of out-of-distribution and misclassified in-distribution results, by difference to the top performing
method in each architecture × dataset setting. Values are difference in AUROC and average ± standard deviation is
shown over all architecture × dataset settings. Higher is better.

Out-of-distr. Misc. in-distr. Average

Residual flows density (Chen et al., 2019) -0.538 ± 2E-01 -0.356 ± 4E-02 -0.447 ± 1E-01
GP (Liu et al. (2020) w/ fixed features) -0.204 ± 2E-01 -0.159 ± 1E-01 -0.181 ± 1E-01
Class distance (Lee et al., 2018) -0.214 ± 1E-01 -0.334 ± 9E-02 -0.274 ± 1E-01
Margin (Scheffer et al., 2001) -0.037 ± 2E-02 -0.007 ± 7E-03 -0.022 ± 1E-02
Entropy (Shannon, 1948) -0.025 ± 2E-02 -0.002 ± 2E-03 -0.014 ± 1E-02
Max response (Cordella et al., 1995) -0.034 ± 2E-02 -0.008 ± 8E-03 -0.021 ± 1E-02
MC dropout (Geifman & El-Yaniv, 2017) -0.061 ± 3E-02 -0.048 ± 2E-02 -0.054 ± 2E-02
Cluster distance (Tack et al., 2020) -0.052 ± 9E-02 -0.021 ± 7E-03 -0.036 ± 5E-02
Subfunctions (ours) -0.007 ± 1E-02 -0.006 ± 4E-04 -0.007 ± 6E-03

5

Published at 1st Conference on Lifelong Learning Agents, 2022

Table 2: Results for models trained on CIFAR10 on out-of-distribution detection vs CIFAR100/SVHN. AUROC
shown, higher is better. For equivalent table on CIFAR100, see table 5.

→ CIFAR100 → SVHN

VGG16 ResNet50 VGG16 ResNet50

Residual flows density 0.513 ± 2E-04 0.513 ± 1E-04 0.084 ± 1E-04 0.084 ± 1E-04
GP 0.810 ± 1E-02 0.575 ± 2E-02 0.844 ± 2E-02 0.473 ± 9E-02
Class distance 0.673 ± 7E-02 0.468 ± 3E-02 0.806 ± 6E-02 0.462 ± 1E-01
Margin 0.829 ± 2E-03 0.825 ± 5E-03 0.854 ± 4E-02 0.856 ± 2E-02
Entropy 0.853 ± 2E-03 0.822 ± 6E-03 0.869 ± 3E-02 0.858 ± 3E-02
Max response 0.829 ± 3E-03 0.827 ± 5E-03 0.850 ± 4E-02 0.858 ± 2E-02
MC dropout 0.776 ± 6E-03 0.807 ± 3E-03 0.778 ± 6E-02 0.838 ± 3E-02
Cluster distance 0.862 ± 4E-03 0.867 ± 3E-03 0.870 ± 5E-02 0.892 ± 1E-02
Subfunctions (ours) 0.858 ± 4E-03 0.862 ± 2E-03 0.886 ± 2E-02 0.915 ± 2E-02

We note 2 adjustments to the theory made in the practical experiments. First, for tractability on deep networks, we
use a coarse partitioning of the network by taking activations from the last ReLU layer only, so the subfunctions are
piecewise linear instead of purely linear. In this case activation regions are still disjoint, eq. (12) becomes a bound
on piecewise linear subfunction error and still holds. Second, computing the set of feasible activation regions is
intractable, so we use the full bit space, P = {0, 1}M . This means the bound is computed in an altered subfunction
space where some infeasible subfunctions are assigned a non-zero density, affecting the weight normalization. A
benefit of using the full bit space is it allows computational savings when computing the bound, detailed in appendix B.
These 2 limitations mean that the performance attained by the method in the experiments is a lower bound that is likely
improvable if more tractable implementations are found.

Figure 4: Sample confusion matrix, OOD for CIFAR10
→ CIFAR100 on ResNet50. Random samples from top
20% in each quadrant shown.

Subfunctions and entropy were found to be the top 2 meth-
ods overall in each category (table 1), with subfunctions
better on average. Cluster distance also performed well on
CIFAR10, but was penalized by poor performance on CI-
FAR100 and particularly VGG16 (tables 5 and 6), which is
a more difficult dataset for determining outlier status as the
in-distribution classes are more finegrained. We conclude
that subfunctions and entropy were good predictors of un-
reliability for both in-distribution and out-of-distribution
scenarios. The AUCEA results for the in-distribution set-
ting (tables 3 and 6) mean that using either to filter pre-
dictions would have raised effective model accuracy (accu-
racy of accepted samples) to 90 ∼ 92% from 70 ∼ 73%
for the original CIFAR100 models, and to 98 ∼ 99% from
91 ∼ 92% for the original CIFAR10 models (table 4), on
average over thresholds. Entropy is simpler and computa-
tionally cheaper than subfunction error bound, but suffers
from the drawback that it can only be computed exactly if
model inference includes a discrete probabilistic variable.
This is the case for these experiments but not in general
(e.g. consider MSE objectives), whereas our method does
not have this restriction.

Empirically, we observed for subfunctions that reliable in-
distribution images tended to be prototypical images for
their class, whilst OOD images erroneously characterized
as reliable tended to resemble the in-distribution classes, as
one would expect (fig. 4). To test this hypothesis further,

we took a CIFAR10 model and plotted the rankings of samples from each CIFAR100 class in fig. 5, where each box
denotes the median and first and third quartiles. The classes are ordered by median. We identified the superclasses
in CIFAR100 with the highest semantic overlap with CIFAR10 classes (made up of mostly vehicles and mammals),
whose classes are coloured green. It is clear from the correlation between green and lower unreliability ranking that
subfunction error bounds rate OOD classes semantically closer to the training classes as more reliable. Note that

6

Published at 1st Conference on Lifelong Learning Agents, 2022

Table 3: Results for models trained on CIFAR10. Predicting misclassification on in-distribution test. Higher is better.
For equivalent table on CIFAR100, see table 6.

VGG16 ResNet50

AUCEA AUROC AUCEA AUROC

Residual flows density 0.442 ± 5E-02 0.520 ± 1E-02 0.492 ± 3E-02 0.577 ± 1E-02
GP 0.983 ± 1E-03 0.865 ± 8E-03 0.943 ± 5E-03 0.625 ± 2E-02
Class distance 0.948 ± 2E-02 0.669 ± 8E-02 0.900 ± 3E-02 0.471 ± 6E-02
Margin 0.982 ± 2E-03 0.900 ± 4E-03 0.848 ± 1E-02 0.894 ± 4E-03
Entropy 0.989 ± 1E-04 0.914 ± 3E-03 0.984 ± 1E-03 0.890 ± 5E-03
Max response 0.980 ± 3E-03 0.898 ± 4E-03 0.832 ± 1E-02 0.895 ± 5E-03
MC dropout 0.982 ± 6E-04 0.845 ± 6E-03 0.976 ± 2E-03 0.868 ± 1E-02
Cluster distance 0.988 ± 4E-04 0.901 ± 2E-03 0.981 ± 2E-03 0.867 ± 2E-03
Subfunctions (ours) 0.988 ± 3E-04 0.907 ± 3E-03 0.983 ± 2E-03 0.889 ± 6E-03

even the exceptions towards the right are justified, because the inclusion of e.g. bicycles, lawn mowers and rockets in
“vehicles” is questionable; certainly these objects do not correspond visually to the vehicle classes in CIFAR10. In
addition, we ran the same plot for the other methods and found that in every case the correlation between reliability
and semantic familiarity was less strong (appendix G).

Figure 5: OOD for CIFAR10 → CIFAR100 on ResNet50. 10k CIFAR100 test samples were ranked by unreliability
(log STEB). Boxplots summarize rankings per class (lower = less unreliable). Green denotes superclasses similar to
CIFAR10: carnivores, omnivores, herbivores, mammals, vehicles.

5 CONCLUSION

Density of training samples in representation space appears to be a feasible indicator of reliability of predictions for
trained piecewise linear neural networks. This raises several interesting questions for future work:

• Measures of unreliability that scale with density of continuous input samples in representation space, rather
than density of discrete partitions, which is specialized to piecewise linear neural networks.

• Deriving tighter bounds, for example by making stronger assumptions about the weighting function k used.
• Implications for model selection; how to train networks such that samples fall in high-density regions in

representation space.

With regards to model selection, a reasonable hypothesis based on our results is that generalization ability of neural
networks scales with the proportion of test inputs mapped to high-density regions in its representation space. Low-
density activation regions are less likely in compact representation spaces, all else equal, since the same number of
training samples is distributed over fewer representations. This is an intuition rather than a formal result of this work,
but it links to a body of work on the relation between compact representation spaces and generalization. Compactness
is optimized for in information bottlenecks (Tishby et al., 2000; Ahuja et al., 2021), which minimize the entropy of
network representations, and implicitly by sparse factor graphs (Goyal & Bengio, 2020) and feature discretization
methods (Liu et al., 2021; Van Den Oord et al., 2017) including discrete output unsupervised learning (Ji et al., 2019),
which are methods that build low expressivity into the model as a prior for improved generalization. We conclude that
learning compact representation spaces with few, densely supported modes is an interesting direction for future work
on neural network generalization.

7

Published at 1st Conference on Lifelong Learning Agents, 2022

REFERENCES

Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Yoshua Bengio, Ioannis Mitliagkas, and Irina Rish. Invariance
principle meets information bottleneck for out-of-distribution generalization. arXiv preprint arXiv:2106.06607,
2021.

Liron Bergman and Yedid Hoshen. Classification-based anomaly detection for general data. arXiv preprint
arXiv:2005.02359, 2020.

Ricky TQ Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for invertible generative
modeling. arXiv preprint arXiv:1906.02735, 2019.

Chi-Keung Chow. An optimum character recognition system using decision functions. IRE Transactions on Electronic
Computers, pp. 247–254, 1957.

Luigi Pietro Cordella, Claudio De Stefano, Francesco Tortorella, and Mario Vento. A method for improving classifi-
cation reliability of multilayer perceptrons. IEEE Transactions on Neural Networks, 6(5):1140–1147, 1995.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep
learning. In international conference on machine learning, pp. 1050–1059. PMLR, 2016.

Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. arXiv preprint
arXiv:1705.08500, 2017.

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cognition. arXiv preprint
arXiv:2011.15091, 2020.

Boris Hanin and David Rolnick. Deep ReLU networks have surprisingly few activation patterns. Advances in Neural
Information Processing Systems, 32:361–370, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples in neural
networks. In ICLR, 2017.

Xu Ji, Joao F Henriques, and Andrea Vedaldi. Invariant information clustering for unsupervised image classification
and segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9865–9874,
2019.

Heinrich Jiang, Been Kim, Melody Y Guan, and Maya R Gupta. To trust or not to trust a classifier. In NeurIPS, pp.
5546–5557, 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. arXiv preprint arXiv:1612.01474, 2016.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting out-of-distribution
samples and adversarial attacks. arXiv preprint arXiv:1807.03888, 2018.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution image detection in
neural networks. arXiv preprint arXiv:1706.02690, 2017.

Dianbo Liu, Alex Lamb, Kenji Kawaguchi, Anirudh Goyal, Chen Sun, Michael Curtis Mozer, and Yoshua Bengio.
Discrete-valued neural communication. arXiv preprint arXiv:2107.02367, 2021.

Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, and Balaji Lakshminarayanan. Sim-
ple and principled uncertainty estimation with deterministic deep learning via distance awareness. arXiv preprint
arXiv:2006.10108, 2020.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear regions of deep
neural networks. arXiv preprint arXiv:1402.1869, 2014.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011.

8

Published at 1st Conference on Lifelong Learning Agents, 2022

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua V Dillon, Balaji
Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift. arXiv preprint arXiv:1906.02530, 2019.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the expressive power of
deep neural networks. In international conference on machine learning, pp. 2847–2854. PMLR, 2017.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on machine learning, pp. 63–71.
Springer, 2003.

Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden markov models for information extraction.
In International Symposium on Intelligent Data Analysis, pp. 309–318. Springer, 2001.

Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd: A unified framework for self-supervised outlier detection.
arXiv preprint arXiv:2103.12051, 2021.

Claude E Shannon. A mathematical theory of communication. The Bell system technical journal, 27(3):379–423,
1948.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive learning on
distributionally shifted instances. arXiv preprint arXiv:2007.08176, 2020.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv preprint
physics/0004057, 2000.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural information
processing systems, 30, 2017.

Hongjie Zhang, Ang Li, Jie Guo, and Yanwen Guo. Hybrid models for open set recognition. In European Conference
on Computer Vision, pp. 102–117. Springer, 2020.

9

Published at 1st Conference on Lifelong Learning Agents, 2022

A PROOF FOR THEOREM 2.1

This follows the Chernoff/Hoeffding bounding technique. Fix model f , patterns P and thus subfunctions set H . Let
the true data distribution for each activation region ai be Di. Assume that D̃S is a distribution over size-N datasets
that have the same activation region data distributions and dataset sizes (Di and Ni, ∀i ∈ [1, C]) as S. Consider S as a
dataset drawn iid from D̃S . Without loss of generality, since dataset order is immaterial for the error metrics, assume
the index n of sample Sn determines its activation region and distribution from which it is drawn independently of
other samples. That is, ∀n ∈ [1, N] : Sn ∼ DJn iid for some fixed J ∈ [1, C]N . Recall that Di is constructed as
PDi

(x, y) = PD(x, y|x ∈ ai). Call the inputs and targets XS and YS , ∀n ∈ [1, N] : (Xn
S , Y

n
S)≜Sn. Recall that

empirical error function for samples is bounded: ∀x, y ∈ (X × Y) : 0 ≤ r((x, y); f) ≤ 1 and weighting function k is
non-negative valued.

Choose any subfunction hi ∈ H , i ∈ [1, C]. Then ∀ϵ > 0, t > 0, S̃ ∼ D̃S iid:

P
S
(R̂∗

S(hi)−R∗
D̃S

(hi) ≥ ϵ) = P
S
(R̂∗

S(hi)− Ẽ
S
[R̂∗

S̃
(hi)] ≥ ϵ) (17)

= P
S
(et(R̂

∗
S(hi)−ES̃ [R̂∗

S̃
(hi)]) ≥ etϵ) (18)

≤ e−tϵ E
S
[et(R̂

∗
S(hi)−ES̃ [R̂∗

S̃
(hi)])] (19)

= e−tϵ E
S
[e

t
∑N

n=1

(
k(H(Xn

S),hi) r(Sn;f)

N
∑

j∈[1,C] P(hj) k(H(Xn
S

),hj)
−ES̃n

[k(H(Xn
S̃

),hi) r(S̃n;f)

N
∑

j∈[1,C] P(hj) k(H(Xn
S̃

),hj)

])
] (20)

= e−tϵ
N∏

n=1

E
Sn

[e
t
(

k(H(Xn
S),hi) r(Sn;f)

N
∑

j∈[1,C] P(hj) k(H(Xn
S

),hj)
−ES̃n

[k(H(Xn
S̃

),hi) r(S̃n;f)

N
∑

j∈[1,C] P(hj) k(H(Xn
S̃

),hj)

])
] (21)

≤ e−tϵ
N∏

n=1

e
t2
(

1
N P(hi)

−0

)2
8 (22)

= e
t2

8N P(hi)
2 −tϵ

, (23)

by making use of the following:

1. eq. (18) → eq. (19) : Markov’s inequality. For random variable Z ≥ 0 and constant a > 0, P(Z ≥ a) ≤ E[Z]
a .

2. eq. (19) → eq. (20) : definition of R̂∗
S(hi) and linearity of expectation.

3. eq. (20) → eq. (21) : R̂∗
S(hi) is a sum over independently drawn samples. ∀hj ∈ H : P(hj) is constant

because activation region dataset sizes are constant.
4. eq. (21) → eq. (22) : first bound the length of the range of the exponent. ∀i ∈ [1, C], n ∈ [1, N] : 0 ≤

k(H(Xn
S),hi) r(Sn;f)

N
∑

j∈[1,C] P(hj) k(H(Xn
S),hj)

≤ k(H(Xn
S),hi)

N P(hi) k(H(Xn
S),hi)

= 1
N P(hi)

. Subtracting a constant does not change the
length of the range of a random variable. Then apply Hoeffding’s lemma: for random variable Z where

a ≤ Z ≤ b and E[Z] = 0, then ∀t > 0 : E[etZ] ≤ e
t2(b−a)2

8 holds.

Find the optimal t as the one that yields the tightest bound:

∇te
t2

8N P(hi)
2 −tϵ

= 0, t = 4NϵP(hi)
2, (24)

which is a minimum because the second derivative is positive. Substitute into eq. (23) :

P
S
(R̂∗

S(hi)−R∗
D̃S

(hi) ≥ ϵ) ≤ e−2Nϵ2 P(hi)
2

. (25)

The symmetric case can be proved in the same way:

P
S
(R̂∗

S(hi)−R∗
D̃S

(hi) ≤ −ϵ) = P
S
(R∗

D̃S
(hi)− R̂∗

S(hi) ≥ ϵ) ≤ e−2Nϵ2 P(hi)
2

, (26)

specifically because swapping the order of the subtraction in eq. (21) does not change the value of the squared range
used in eq. (22). Combining eq. (25) and eq. (26):

P
S
(|R̂∗

S(hi)−R∗
D̃S

(hi)| ≥ ϵ) ≤ 2e−2Nϵ2 P(hi)
2

. (27)

10

Published at 1st Conference on Lifelong Learning Agents, 2022

Setting the right hand side to δ and solving for ϵ completes the derivation. Namely for any δ > 0, the following hold
with probability ≤ δ:

|R̂∗
S(hi)−R∗

D̃S
(hi)| ≥

1

P(hi)

√
log 2

δ

2N
(28)

R∗
D̃S

(hi)− R̂∗
S(hi) ≥

1

P(hi)

√
log 2

δ

2N
. (29)

Hence the following hold with probability > 1− δ:

R∗
D̃S

(hi) < R̂∗
S(hi) +

1

P(hi)

√
log 2

δ

2N
(30)

R∗
D̃S

(hi) ≤ R̂∗
S(hi) +

1

P(hi)

√
log 2

δ

2N
. (31)

□.

B EFFICIENT COMPUTATION OF BOUND

For normalization in eq. (5), we reduce computational complexity from exponential O(N2M) to linear O(M) (deriva-
tions below):

∑
l∈[1,C]

∑
j∈[1,C]

s.t. Nj>0

Nj k(hl, hj) = N

M∑
b=0

d(b)

(
M

b

)
≜u, (32)

and for normalization in eq. (11), from exponential O(N22M) to polynomial O(N2 +M3):

∀ l∈[1,C]
s.t. Nl>0

:
∑

j∈[1,C]

P(hj) k(hl, hj) =
1

u

∑
i∈[1,C]

s.t. Ni>0

Ni z(Hamming(pl, pi)), (33)

where ∀a ∈ [0,M] : z(a)≜
M∑
b=0

d(b)

b∑
c=0

(
a

c

)(
M − a

b− c

)
d(a+ (b− c)− c). (34)

Normalization term in eq. (5). Computed once for the network.

∑
l∈[1,C]

∑
j∈[1,C]

s.t. Nj>0

Nj k(hl, hj) =
∑

j∈[1,C]
s.t. Nj>0

Nj

∑
l∈[1,C]

k(hl, hj) = N

M∑
b=0

d(b)

(
M

b

)
≜u, (35)

where the trick is that
∑

l∈[1,C] k(hl, hj) =
∑

l∈[1,C] d(Hamming(pl, pj)) is the same for all hj due to completeness
of the bit space P , and the specific value can be found by looping through all possible Hamming distances b. This
reduces the computational complexity from O(N2M) to O(M), because the number of populated activation regions,
i.e. length of loop over j, is upper bounded by the number of samples N , and

(
M
b

)
can be iteratively updated in O(1)

in the loop over b: (
M

b

)
=

(
M

b− 1

)
M − (b− 1)

b
. (36)

Normalization term in eq. (11). Computed ∀l ∈ [1, C] s.t. Nl > 0:

11

Published at 1st Conference on Lifelong Learning Agents, 2022

∑
j∈[1,C]

P(hj) k(hl, hj) (37)

=
1

u

∑
j∈[1,C]

∑
i∈[1,C]

s.t. Ni>0

k(hl, hj) k(hj , hi) Ni (38)

=
1

u

∑
i∈[1,C]

s.t. Ni>0

Ni

∑
j∈[1,C]

k(hl, hj) k(hj , hi) (39)

=
1

u

∑
i∈[1,C]

s.t. Ni>0

Ni

=z(Hamming(pl,pi)) (eq. (34))︷ ︸︸ ︷
M∑
b=0

from k(hl,hj)︷︸︸︷
d(b)

b∑
c=0

(
Hamming(pl, pi)

c

)(
M −Hamming(pl, pi)

b− c

)
·

from k(hj ,hi)︷ ︸︸ ︷
d(Hamming(pl, pi) + (b− c)− c) . (40)

Note the loops over i and l only need to range over populated activation regions due to the inclusion of their sample
counts (Ni and Nl) as multiplicative factors in their loop contents, which means the iterations are bounded by O(N).
The problematic loop is over j, i.e. all subfunctions/activation regions whether populated by samples or not, which is
O(2M) when P is the full bit space {0, 1}M . However, similar to eq. (35) above, it is also this fullness that we exploit.

Figure 6: Sphere of pj that are b bits away from
pl. For illustration only.

Now we explain eq. (40) in detail. The value z(Hamming(pl, pi))
corresponds to the sum over j in eq. (39): loop over every bit pattern
pj in P , multiply its closeness to pl with its closeness to pi (both
fixed outside this loop), and sum. Now group pj by bit distance to
pl, b. Consider one instance of b (fig. 6). Within this group for b,
the closeness of every pj to pl is constant, namely equal to d(b). But
they have different distances to pi. However we know the number
of bits that are different between pl and pi: this is Hamming(pl, pi).
Consider a specific instance of pj . Visualize pl turning into pj by
flipping bit one at a time; each will either bring the pattern closer
to or further away from pi. There is a budget of b different bits to
flip to reach pj . Say c of those flips brought it closer (i.e. turned
the bit value at that position into the same as pi’s). Then we know
b − c brought it further. So the number of different bits between pj
and pi is exactly Hamming(pl, pi) + (b − c) − c. And the number
of pj that fit this description is the number of ways of choosing c
from the different bits between pl and pi multiplied by the number
of ways of choosing b − c from the shared bits between pl and pi:(
Hamming(pl,pi)

c

)(
M−Hamming(pl,pi)

b−c

)
.

Conveniently,
(
q
g

)
= 0 for g > q, so there is no need to add special cases to exclude the cases where the number we

seek to choose is greater than the number available.

Equation (40) enables computational complexity reduction of eq. (38), including the outer loop over l, from exponen-
tial to polynomial time: O(N22M) to O(N2 +M3) (excluding computation of u). The M3 comes from constructing
lookup table z, with the cubed power coming from looping over all possible values for Hamming(pl, pi), b and c.
This subsumes M2 to compute ∀q ∈ [0,M],∀g ∈ [0,M] :

(
q
g

)
in the same iterative manner as eq. (36).

12

Published at 1st Conference on Lifelong Learning Agents, 2022

C PSEUDO-CODE

Algorithm 1: Subfunction error bounds for predicting sample prediction unreliability
1 Require: pre-trained model fθ and training/validation/test datasets.

2 Compute activation patterns for training and validation data from last ReLU layer;
3 for hyperparameter values δ, ρ do
4 Compute global normalization constant (eq. (32));
5 For training data activation patterns, compute normalization constants (eq. (33));
6 For validation data activation patterns, compute log bound using δ, ρ and normalization constants (eq. (12));
7 Compute validation metric (AUCEA) with log bound of sample’s activation pattern as unreliability;
8 if highest validation metric then
9 Store δ, ρ as best with normalization constants;

10 end
11 end
12 Compute activation patterns for test data from last ReLU layer;
13 For test data activation patterns, compute log bound using chosen δ, ρ and normalization constants (eq. (12));
14 Compute test metrics with log bound of sample’s activation pattern as unreliability.

D ADDITIONAL RESULTS TABLES

Table 4: Test accuracy of original models.

Dataset Model Accuracy

CIFAR100 VGG16 0.704 ± 1E-03
CIFAR100 ResNet50 0.729 ± 8E-03
CIFAR10 VGG16 0.920 ± 2E-03
CIFAR10 ResNet50 0.908 ± 5E-03

Table 5: Model trained on CIFAR100. Out-of-distribution detection (AUROC) vs CIFAR10/SVHN.

→ CIFAR10 → SVHN

VGG16 ResNet50 VGG16 ResNet50

Residual flows density 0.495 ± 2E-04 0.495 ± 2E-04 0.090 ± 2E-04 0.090 ± 2E-04
GP 0.708 ± 6E-03 0.404 ± 3E-02 0.830 ± 3E-02 0.396 ± 8E-02
Class distance 0.627 ± 4E-02 0.513 ± 4E-02 0.833 ± 3E-02 0.579 ± 1E-01
Margin 0.716 ± 2E-03 0.736 ± 3E-03 0.771 ± 5E-03 0.790 ± 3E-02
Entropy 0.725 ± 3E-03 0.745 ± 3E-03 0.786 ± 6E-03 0.814 ± 4E-02
Max response 0.719 ± 3E-03 0.740 ± 3E-03 0.776 ± 6E-03 0.799 ± 3E-02
MC dropout 0.693 ± 3E-03 0.725 ± 4E-03 0.771 ± 1E-02 0.795 ± 3E-02
Cluster distance 0.639 ± 1E-02 0.754 ± 4E-03 0.561 ± 2E-02 0.810 ± 5E-02
Subfunctions (ours) 0.738 ± 2E-03 0.750 ± 7E-03 0.797 ± 8E-03 0.807 ± 3E-02

13

Published at 1st Conference on Lifelong Learning Agents, 2022

Table 6: Model trained on CIFAR100. Predicting misclassification on in-distribution test (AUCEA and AUROC).

VGG16 ResNet50

AUCEA AUROC AUCEA AUROC

Residual flows density 0.293 ± 1E-02 0.622 ± 1E-02 0.293 ± 2E-02 0.630 ± 1E-02
GP 0.882 ± 1E-03 0.803 ± 2E-03 0.670 ± 2E-02 0.384 ± 2E-02
Class distance 0.838 ± 3E-02 0.739 ± 6E-02 0.627 ± 7E-02 0.476 ± 3E-02
Margin 0.899 ± 2E-03 0.852 ± 4E-03 0.870 ± 6E-03 0.855 ± 4E-03
Entropy 0.895 ± 2E-03 0.856 ± 5E-03 0.916 ± 4E-03 0.859 ± 4E-03
Max response 0.899 ± 2E-03 0.853 ± 4E-03 0.864 ± 7E-03 0.857 ± 4E-03
MC dropout 0.894 ± 1E-03 0.828 ± 8E-03 0.898 ± 5E-03 0.841 ± 2E-03
Cluster distance 0.833 ± 9E-03 0.722 ± 2E-02 0.900 ± 5E-03 0.824 ± 7E-03
Subfunctions (ours) 0.904 ± 1E-03 0.864 ± 3E-03 0.902 ± 4E-03 0.827 ± 4E-03

E METRICS

Evaluation metrics were area under the graphs of coverage vs. effective accuracy (AUCEA) and false positive rate vs.
true positive rate (AUROC), with the latter as standard for OOD experiments.

coverage =
TP + FP

TP + FP + TN + FN
effective accuracy = precision =

TP

TP + FP
(41)

false positive rate =
FP

FP + TN
true positive rate =

TP

TP + FN
. (42)

F ADDITIONAL EXPERIMENTAL DETAILS

Experiments were averaged over 5 random seeds. The classification models were trained with SGD optimization
with learning rate 0.1, momentum 0.9, weight decay 5e-4 and standard schedules: 100 epochs with learning rate
∗0.1 every 30 epochs (CIFAR10) and 200 epochs with learning rate ∗0.2 every 60 epochs (CIFAR100). For each
unreliability metric, each threshold yielded one set of accept/reject decisions for the test set which yielded one point in
each evaluation graph, and area under graph was computed using the trapezoidal rule. For the in-distribution setting,
AUCEA corresponds to effective model accuracy (i.e. of accepted samples) averaged over different thresholds, and
thus can be compared against original model accuracy.

F.1 SUBFUNCTION ERROR BOUND HYPERPARAMETERS

The searched values for likelihood parameter δ were [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] and for
weighting function standard deviation parameter ρ were [32, 48, 64, 98, 128, 192, 256, 384, 512] (VGG16) and [4, 6,
8, 12, 16, 24, 32, 48, 64] (ResNet50). Validation set AUCEA was used for selection. The selected values are in table 7.

Table 7: Hyperparameters used for subfunction error. Brackets denote number of seeds.

Dataset Model ρ δ

CIFAR100 VGG16 128.0 (#: 5) 0.001 (#: 5)
CIFAR100 ResNet50 16.0 (#: 5) 0.001 (#: 4), 0.1 (#: 1)
CIFAR10 VGG16 48.0 (#: 3), 98.0 (#: 1), 64.0 (#: 1) 0.001 (#: 4), 0.9 (#: 1)
CIFAR10 ResNet50 16.0 (#: 3), 24.0 (#: 2) 0.001 (#: 4), 0.3 (#: 1)

F.2 DATASET STATISTICS

All results infer unreliability of the test sets. The datasets are publicly available.

14

Published at 1st Conference on Lifelong Learning Agents, 2022

Dataset Train Validation Test

CIFAR10 (Krizhevsky, 2009) 42500 7500 10000
CIFAR100 (Krizhevsky, 2009) 42500 7500 10000

SVHN (Netzer et al., 2011) 62269 10988 26032

F.3 COMPUTATIONAL RESOURCES

Experiments were run given a shared cluster of machines with approximately 140 GPUs. Jobs required less than 24GB
GPU memory. For subfunction error, normalization constants were computed first in a pre-computation phase. This
took up most of the runtime and was parallelized by splitting jobs by architecture, dataset, seed and ρ; each job took
approximately 20 minutes. Subsequent inference on the test sets (i.e. computing unreliability of unseen samples) took
approximately 2 - 10 minutes per combination of architecture, dataset and seed.

15

Published at 1st Conference on Lifelong Learning Agents, 2022

G ADDITIONAL BOXPLOTS FOR OTHER METHODS

Table 8: Pearson correlation coefficients
between unreliability rank and semantic
novelty w.r.t. CIFAR10, on CIFAR100 data
and CIFAR10 model. Higher is better.

Method Correlation

Residual flows density -0.259
GP 0.390
Class distance 0.171
Margin 0.231
Entropy 0.252
Max response 0.242
MC dropout 0.433
Cluster distance 0.347
Subfunctions (ours) 0.511

Settings apart from the method are the same as fig. 5. We measured the
Spearman correlation coefficient between semantic novelty (green=0,
purple=1) and unreliability (median unreliability rank for each class)
and found the correlation was lower for all baselines compared to sub-
functions, which had a correlation coefficient of 0.511. The closest base-
line method was MC dropout (table 8).

Figure 7: Entropy.

Figure 8: Max response.

Figure 9: Margin.

16

Published at 1st Conference on Lifelong Learning Agents, 2022

Figure 10: Class distance.

Figure 11: GP.

Figure 12: MC dropout.

Figure 13: Cluster distance.

17

Published at 1st Conference on Lifelong Learning Agents, 2022

Figure 14: Residual flows density.

18

	Introduction
	Input-dependent unreliability
	Notation
	Smooth empirical error
	Weighting function

	Related work
	Experiments
	Conclusion
	Proof for thm:trueerror
	Efficient computation of bound
	Pseudo-code
	Additional results tables
	Metrics
	Additional experimental details
	Subfunction error bound hyperparameters
	Dataset statistics
	Computational resources

	Additional Boxplots for other methods

