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ABSTRACT

Active Learning aims to solve the problem of alleviating labelling costs for large-scale datasets by
selecting a subset of data to effectively train on. Deep Active Learning (DAL) techniques typically
involve repeated training of a model for sample acquisition over the entire subset of labelled data
available in each round. This can be prohibitively expensive to run in real-world scenarios with
large and constantly growing data. Some work has been done to address this – notably, Selection-
Via-Proxy (SVP) proposed the use of a separate, smaller “proxy” model for acquisition. We explore
further optimizations to the standard DAL setup and propose CLActive: an optimization procedure
that brings significant speedups which maintains a constant training time for the selection model
across rounds and retains information from past rounds using Experience Replay. We demonstrate
large improvements in total train-time compared to the fully-trained baselines and SVP. We achieve
up to 89×, 7×, 61× speedups over the fully-trained baseline at 50% of dataset collection in CIFAR,
Imagenet and Amazon Review datasets, respectively, with little accuracy loss. We also show that
CLActive is robust against catastrophic forgetting in a challenging class-incremental active-learning
setting. Overall, we believe that CLActive can effectively enable rapid prototyping and deployment
of deep AL algorithms in real-world use cases across a variety of settings.

1 INTRODUCTION

Deep Active Learning (DAL) aims to alleviate the prohibitive cost of large-dataset annotation through the use of
selection models to acquire a labelled subset of data. A major focus of DAL literature has been to design effective
acquisition strategies i.e. protocols for selecting unlabelled samples to annotate. A standard DAL pipeline involves
repeated training of a model and an acquisition strategy applied to the model’s predictions on the unlabelled subset.
However, selection models are typically trained from scratch at each round over the entire labelled set of data collected
so far, thus leading to larger train times each round, which can be prohibitive.

There has been limited research into bringing down these exorbitant DAL selection times. Early works (Lewis &
Catlett, 1994) explored using different classifiers for selection to cut computational expense. Selection-Via-Proxy
(SVP) (Coleman et al., 2019) built on this and proposed the use of “proxy models”, which were smaller counterparts
to the larger models used for evaluation, and found that they achieved the same quality of samples in far less time. We
propose a novel optimization procedure, CLActive, to improve train times by a further order of magnitude over past
baselines to the standard DAL setup while maintaining accuracy. CLActive consists of the following improvements:

• First, incrementally update the selection model between rounds rather than train a new one every round.
• Second, use only a subset of labelled samples capped at a maximum size to train the selection model. This

effectively cuts down training costs with minimal accuracy loss.
• Third, use an LR scheduler that converges faster than traditionally used schedulers, enabling training for

fewer epochs each round before the selection model reaches convergence.

The use of an incremental model allows us to train for fewer epochs every round, which is further brought down with
the help of fast LR schedulers. However, straightforward use of an incremental model by updating it exclusively on
freshly labelled data may lead to catastrophic forgetting. This problem has been extensively studied in the field of
Continual Learning (CL), and we use a popular CL strategy, episodic memory, to avoid this. Instead of training the se-
lection model only on data acquired in the previous round, we train it on a mixture of new samples and previously seen
samples. As we cap the maximum number of samples that the proxy model trains on in any given round, training time
remains constant across rounds. We find that using our proposed CLActive optimization strategy achieves significant
speedups in data selection compared to the old trained-from-scratch active learning baselines while also maintaining
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comparable accuracies. We test extensively on the CIFAR-10, CIFAR-100, ImageNet and Amazon Review datasets
for up to 50% of the datasets collected via queries and achieve 89x, 89x, 7x and 61x speedups.

Consider the extreme case where we remove the closed-world nature of the pool set in active learning: a completely
unseen class is introduced to the dataset between rounds of selection. This is especially challenging for training an
incremental model like CLActive, as it may learn disproportionately from the new class. Hence, the representations
learnt would be poor, affecting the sample selection quality by not effectively representing the dataset, leading to lower
evaluation accuracy. However, we demonstrate that CLActive is an effective optimization strategy even when samples
from new unlabeled classes are gradually added to the dataset.

2 RELATED WORKS

2.1 ACTIVE LEARNING

Active Learning (AL) methods have been studied extensively in the past for classification and regression tasks (Settles,
2009). AL aims to solve the problem of minimizing sampling costs when dealing with large volumes of unlabelled
data. Deep Active Learning (DAL) utilizes predictions from DNNs trained on partially sampled subsets of data to
select additional samples for queries. Ren et al. (2020) offers a comprehensive survey of Deep Active Learning
methods.

Query strategies can be broadly divided into uncertainty sampling and diversity sampling. Uncertainty based methods
typically query for samples which the model is least certain about, which can be done through various heuristics (Gal
et al., 2017). For example, given a probabilistic binary classifier, the sample with the posterior probability of being
positive closest to 0.5 could be queried as the least certain sample (Lewis & Gale, 1994; Lewis & Catlett, 1994).
Similarly, for a deep network with multiple categories, the samples with the lowest probability of the most likely
predicted class could be queried. Diversity sampling methods search for samples that do not look like currently
labelled samples. For example, Discriminative Active Learning (Gissin & Shalev-Shwartz, 2019) approached AL as
a binary classification task, querying for samples with the least predicted certainty of belonging to either the labelled
or unlabelled dataset. Sener & Savarese (2017) posed AL as a set-selection problem, with the aim of finding a small
subset of data representative of the larger dataset. Ducoffe & Precioso (2018) used sensitivity adversarial perturbations
as a tool to judge the distance of a sample from the decision boundary and inform sample selection.

Gissin & Shalev-Shwartz (2019) evaluated state-of-the-art AL sampling methods to find that none outperformed Un-
certainty sampling for larger batch sizes as seen in DAL setups. Traditional AL works, like the ones above, have
focused on finding better acquisition functions to achieve higher accuracies on the evaluation models. There has been
little work towards cutting down the large train times required to run AL setups. Coleman et al. (2019) was one of the
first works to explore speedups in selection time for AL algorithms, primarily proposing the use of “proxy” models
for sample selection in lieu of the larger, original models. They found that the samples collected via smaller proxy
models largely correlated with samples collected using the same model as the target in certain scenarios (e.g. using
a ResNet-20 proxy model for a ResNet-164 target), achieving significant speedups in selection time while retaining
final accuracies. Our work introduces modifications to the setup directly to bring further speedups, and we found that
proxy modelling works well in tandem with our approach.

2.2 CONTINUAL LEARNING

Catastrophic forgetting is a phenomenon that was observed across many early studies in settings where the model
would learn diverse examples in a sequential fashion. Continual Learning (CL) aims to reduce forgetting in these
incremental settings. CL approaches can be broadly categorized (Delange et al., 2021; Prabhu et al., 2020) into (i)
Replay methods, (ii) Regularization methods, (iii) Parameter isolation methods.

Experience Replay: Replay methods generally store samples in some form and “replay” them while learning new
tasks. Many methods simply joint-train new tasks with subsets of stored samples (Rebuffi et al., 2017; Isele & Cosgun,
2018; Chaudhry et al., 2019). Rolnick et al. (2018) assumed a fixed storage budget and suggested reservoir sampling
to select samples to remember. Continual Prototype Evaluation (De Lange & Tuytelaars, 2020) combined nearest-
neighbour predictions and reservoir sampling while also not needing additional task information for data streams,
unlike prior CL works. Chaudhry et al. (2019) jointly trained online samples with tiny episodic memories, finding that
it improves generalization. Recent work (Prabhu et al., 2020; Chaudhry et al., 2019) has shown that experience replay
using just memory is extremely effective in CL pipelines, outperforming other approaches. Simple sampling strategies
like random sampling performed comparably to more complex strategies for experience replay. Additionally, given
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Algorithm 1 Active Learning with Uncertainty Sampling
Input. Unlabeled Data DU , Initial labeled set DL, Number of rounds R, Number of samples queried per round q,
Epochs per round e
Output.

1: Initialize network with weights W
2: Train network over DL

3: for k in 1..R do
4: //Query for samples
5: L = {Li = maxj p(yi = j|xi,W )}
6: Acquire labels for Dquery = {d : d ∈ DU and d ∈ bottomk(L)}
7: DL = DL ∪Dquery

8:
9: //Train selection network

10: Create new model and initialize weights W k

11: Train network over DL

12: return DL

the minimal overhead to computation, we found that experience replay with reservoir sampling was highly suited to
addressing catastrophic forgetting in class-imbalanced scenarios (section 4.4) in our CLActive pipeline.

Constraining using Experience Replay: Constrained optimization approaches constrain model training on new
tasks such that previous tasks are not forgotten. Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017) did
this by minimizing the loss for the current task by finding the closest gradient (L2 norm-wise) such that the loss at
previous tasks does not increase at each parameter update. Average GEM (A-GEM) (Chaudhry et al., 2018) improved
this by ensuring that the average loss over previous tasks does not increase instead of the individual loss, showing that
this was much faster than GEM.

Regularization: Regularization-based approaches do not impose memory requirements and instead introduce extra
regularization losses attempting to encapsulate prior knowledge on new tasks. Learning Without Forgetting (LWF) (Li
& Hoiem, 2017) re-used model outputs as soft labels. Rannen et al. (2017) learned under-complete auto-encoders for
each task to capture and then constrain significant features when new tasks were learned. Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017) overcame catastrophic forgetting by “slowing down” updates on parameters which
were important to older tasks. Parameter isolation methods attempt to separate and dedicate different parameters to
different tasks to get around interference between tasks. Rusu et al. (2016); Xu & Zhu (2018), for example, had models
with incrementally growing architectures, where a new branch would be adopted after freezing parameters after a task.

Active Continual Learning: Some recent works (Belouadah et al., 2020) have explored the use of AL sample acqui-
sition to address class imbalances in CL settings. Ayub & Wagner (2021) explored AL in the context of robots, which
learn from real-world inputs and thus may face catastrophic forgetting and proposed the use of using the cluster repre-
sentation of known classes during acquisition. In our work, we explore whether the entire labelled subset is important
for AL pipelines or whether it is possible to achieve the same quality of samples while training the intermediate mod-
els on smaller subsets of the labelled pool. We observe that in real-life cases where new classes of data may appear
and the AL model queries them, catastrophic forgetting may occur if the model only learns from new data and thus
introduce solutions inspired by CL approaches to mitigate this.

3 APPROACH

Let DU = {xi} denote a dataset containing |DU | = N unlabelled i.i.d samples. An initial subset S0 of samples is
randomly chosen from DU and is sent to an oracle for annotation. In standard DAL pipelines, a model is trained from
scratch on the labelled set DL = {S0, S1...Si} at the ith round, and predicts labels for the rest of the unlabelled set.
Using an acquisition strategy on these predictions, a new subset Dquery = {Si+1} is queried for annotation. This
process is repeated until a budget b of samples are annotated, and the evaluation model is trained on the final labelled
subset DL = {S0 ∪S1 ∪S2...}. This is represented in algorithm 1. Selection-via-Proxy (SVP) (Coleman et al., 2019)
improves the efficiency of this process by training a smaller proxy model from scratch.
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Algorithm 2 CLActive
Input. Unlabeled Data DU , Initial labeled set DL, Number of rounds R, Number of samples queried per round q,
Memory M , Memory Ratio R Epochs per round e
Output.

1: //Initialize Memory with DL

2: M = DL

3:
4: Initialize network with weights W
5: Train network over DL

6: for k in 1..R do
7: //Query for samples
8: L = {Li = maxj p(yi = j|xi,W )}
9: Acquire q labels for Dquery = {d : d ∈ DU and d ∈ bottomk(L)}

10: DL = DL ∪Dquery

11:
12: //Add new samples to Memory
13: M = M ∪Dquery

14:
15: //Incrementally train network
16: Mk = Random SubsetRM
17: Dtrain = Mk ∪Dquery

18: Update network over Dtrain for e epochs
19: return DL

In the CLActive pipeline (Algorithm 2), we introduce a few improvements to the above procedure for improving
efficiency. Firstly, instead of training the SVP proxy model from scratch, we incrementally train the model over
training data. However, the train set {S0∪S1∪S2...Si} grows every round. We maintain a memory M = {S0∪S1...Si}
which stores all sampled data at any given round i. At each round, we fetch a random subset Mi ⊂ M consisting of
R × q samples from memory, where R is the memory ratio, and q is the query batch size. We form a train set Dtrain

as a mixture of samples acquired the previous round Dquery = Si, and the set Mi, i.e.:

Dtrain,i = Si ∪Mi

And we incrementally update the model over Dtrain,i. Note that the size of Dtrain,i remains constant compared to
the standard pipeline.

Summarizing, the main differences between standard AL training procedures and CLActive are outlined in algorithms
1 and 2. The most notable differences are (i) The use of an incrementally updating model in CLActive rather than
training the selection model from scratch, (ii) The Use of memory M and retrieval to form a small training set Dtrain

each round as opposed to training on the entire labelled pool DL.

3.1 DESIGN

CL Approach: Chaudhry et al. (2019) has shown that Experience Replay (ER) using a memory containing past sam-
ples outperforms other CL approaches. Using ER is straightforward with the help of a stored memory M which, in
our method, contains the set of all labelled samples at any given round, and does not have any significant overhead on
train times.
Memory Sampling: We chose reservoir sampling (random selection) for retrieving samples from memory for
replay, based on prior works that have shown that reservoir sampling outperformed other memory retrieval ap-
proaches (Chaudhry et al., 2019), and given the minimal computational overhead required in random subset selection.
Acquisition Strategy: Gissin & Shalev-Shwartz (2019) showed that uncertainty based selection outperformed other
approaches when the query batch size was small, and all approaches performed roughly the same at larger batch sizes.
We chose the straightforward Least Confidence strategy for querying.
Learning Rate: We reduce the number of epochs for which the model incrementally trains per round to achieve
selection-time speedups. However, keeping the same schedule as for a fully-trained model would mean the model
does not converge in a few epochs, leading to worse queries and thus lower accuracy overall. We hence adopt the
OneCycle learning rate schedule as described in Smith & Topin (2018), which enables rapid model convergence. The
model begins training every round with an initial LR, anneals gradually to a maximum LR, and then to a minimum
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Table 1: A comparison between random selection, SVP and CLActive (our method) on the CIFAR-10 and CIFAR-100
datasets.

D% Method Epochs CIFAR10 CIFAR100
Error (↓) Speedup (↑) Error (↓) Speedup (↑)

10

Random - 20.2 ± 0.49 - 61 ± 0.31 -

SVP-ResNet164 181 18.7 ± 0.31 1× 61.2 ± 1.09 1×
50 19.2 ± 0.35 3.4× 62.5 ± 2.49 3.3×

SVP-ResNet20 181 18.1 ± 0.28 3.8× 62.4 ± 1.07 4.0×
50 21.6 ± 0.55 7.7× 62.7 ± 1.40 11.5×

CLActive-ResNet20
50 16.7 ± 0.06 9.4× 59.4 ± 0.15 7.9×
30 17.1 ± 0.55 15.1× 60.5 ± 0.84 12.7×
20 17.6 ± 0.19 21.6× 60.1 ± 0.47 18.4×

20

Random - 12.9 ± 0.50 - 42.3 ± 0.61 -

SVP-ResNet164 181 10.4 ± 0.38 1× 42.2 ± 0.67 1×
50 11.7 ± 0.55 3.6× 44.1 ± 0.24 3.6×

SVP-ResNet20 181 10.5 ± 0.42 5.8× 41.4 ± 0.25 5.8×
50 13.7 ± 0.22 11.1× 43.5 ± 0.58 18.9×

CLActive-ResNet20
50 9.9 ± 0.07 14.6× 42.9 ± 0.4 13×
30 9.7 ± 0.03 23.8× 42.7 ± 0.48 21.1×
20 10.2 ± 0.07 34.6× 44.2 ± 0.35 30.4×

30

Random - 10.1 ± 0.18 - 36.2 ± 0.36 -

SVP-ResNet164 181 7.4 ± 0.16 1× 33.9 ± 0.33 1×
50 8.4 ± 0.15 3.6× 35.2 ± 0.23 3.6×

SVP-ResNet20 181 7.4 ± 0.23 6.7× 33.8 ± 0.37 6.6×
50 10.4 ± 0.04 13.7× 35.4 ± 0.23 22.4×

CLActive-ResNet20
50 7.2 ± 0.09 19.4× 34.2 ± 0.2 19.3×
30 7.2 ± 0.07 31.8× 34.7 ± 0.1 31.5×
20 7.1 ± 0.12 46.7× 34.8 ± 0.15 46.1×

40

Random - 8.6 ± 0.12 - 32.0 ± 0.61 -

SVP-ResNet164 181 6.1 ± 0.32 1× 29.9 ± 0.18 1×
50 7.2 ± 0.15 3.6× 30.8 ± 0.47 3.6×

SVP-ResNet20 181 5.9 ± 0.19 7.0× 29.8 ± 0.10 7.0×
50 8.3 ± 0.23 15.6× 30.9 ± 0.23 24.3×

CLActive-ResNet20
50 6.0 ± 0.18 31.7× 29.9 ± 0.07 24.7×
30 5.9 ± 0.15 52× 29.9 ± 0.12 40.5×
20 6.0 ± 0.03 76.4× 30.0 ± 0.17 59.5×

50

Random - 7.5 ± 0.15 - 29.4 ± 0.20 -

SVP-ResNet164 181 5.3 ± 0.06 1× 26.9 ± 0.21 1×
50 5.9 ± 0.14 3.6× 27.5 ± 0.43 3.6×

SVP-ResNet20 181 5.4 ± 0.41 7.2× 26.6 ± 0.14 7.2×
50 7.1 ± 0.15 17.2× 27.9 ± 0.64 25.1×

CLActive-ResNet20
50 5.4 ± 0.06 36.7× 26.4 ± 0.13 37.1×
30 5.4 ± 0.09 50× 27.0 ± 0.09 60.7×
20 5.4 ± 0.15 89.1× 27.0 ± 0.24 89.2×

LR much lower than the initial LR by the end of the round. This scheduling allows us to reach a peak accuracy point
in fewer epochs for our selection models.

4 EXPERIMENTS

We demonstrate the accuracy and speedups achieved through our approach on image and textual datasets. We report the
accuracies obtained by our models at 10, 20, 30, 40, and 50% of dataset collection and corresponding speedups relative
to a fully-trained AL baseline. Our initial labelled subsets are chosen at random, and we use the Least Confidence query
strategy for further data selection. Our code can be found at https://github.com/AuroMun/CLActive.

4.1 DATASETS

CIFAR-10/100: The CIFAR-10 and CIFAR-100 datasets consist of 60,000 32x32 images in total, with a split of
50,000 and 10,000 for train and test. We start with a randomly chosen subset of 1,000 labelled samples and train our
selection model on this subset to query for 4,000 new labels, and thereafter query in rounds of 5,000 samples till we
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Table 2: A comparison between random selection, SVP and CLActive using a fastText selection model on the Amazon
Review Polarity and Amazon Review Full datasets.

D% Method Review Polarity Review Full
Error (↓) Speedup (↑) Error (↓) Speedup (↑)

10 Random 6.5 ± 0.03 - 41.7 ± 0.19 -
SVP-VDCNN 5.8 ± 0.08 1× 41.9 ± 0.54 1×
SVP-fastText 6.9 ± 0.81 10.6× 42.7 ± 0.77 8.7×
CLActive-fastText 6.8 ± 0.32 10.7× 42.0 ± 0.34 9×

20 Random 5.6 ± 0.07 - 39.9 ± 0.05 -
SVP-VDCNN 4.8 ± 0.04 1× 39.7 ± 0.22 1×
SVP-fastText 5.2 ± 0.17 20.6× 39.8 ± 0.02 17.7×
CLActive-fastText 5.0 ± 0.04 20.8× 39.1 ± 0.06 17.9×

30 Random 5.2 ± 0.07 - 39.0 ± 0.09 -
SVP-VDCNN 4.5 ± 0.01 1× 38.6 ± 0.01 1×
SVP-fastText 4.6 ± 0.01 32.2× 38.7 ± 0.05 26.7×
CLActive-fastText 4.6 ± 0.04 34.5× 38.0 ± 0.07 29.4×

40 Random 4.9 ± 0.01 - 38.4 ± 0.14 -
SVP-VDCNN 4.3 ± 0.02 1× 38.2 ± 0.03 1×
SVP-fastText 4.3 ± 0.01 41.9× 38.1 ± 0.06 35.1×
CLActive-fastText 4.2 ± 0.04 47.3× 37.3 ± 0.17 41.1×

50 Random 4.7 ± 0.03 - 37.9 ± 0.01 -
SVP-VDCNN 4.2 ± 0.02 1× 37.6 ± 0.01 1×
SVP-fastText 4.3 ± 0.02 51.3× 37.7 ± 0.05 43.1×
CLActive-fastText 4.1 ± 0.03 61.6× 36.9 ± 0.06 54.7×

reach 50% of the data collected. We use a pre-activation ResNet164 as the evaluation model in all our experiments for
fair comparison, which is trained for 181 epochs following the fixed LR schedule given by Coleman et al. (2019). We
use a ResNet-20 model for selection. We repeat our experiments varying the number of epochs the selection model is
trained for each round, between 20, 30 and 50 epochs.

ImageNet: The ImageNet dataset consists of a much larger 1.28 million training images spread over 1,000 classes
and 50,000 validation images. We start with a randomly chosen subset of 25,263 labelled samples and query for
102,493 new samples to reach 10% of the dataset labelled and then continue for five rounds of 128,117 (which is 10%
of the dataset) samples till 50% of the dataset is labelled. We use a ResNet-50 model for evaluation throughout for
fair comparison to baselines, training it for 100 epochs with the LR schedule from Coleman et al. (2019). We use a
ResNet-18 model trained for 50 epochs in our experiments for selection.

Amazon Reviews: For testing CLActive on the text classification domain, We use the Amazon Review Polarity and
Amazon Review Full (Zhang et al., 2015; Zhang & LeCun, 2015) datasets. The Amazon Review Polarity dataset
consists of 3.6 million text reviews which are either positive or negative, and 0.4 million validation reviews; and the
Amazon Review Full dataset consists of 3 million text reviews across scores of 1 to 5, with 0.65 million validation
reviews. The size of these datasets allows us to test our method in a high scale setting for the textual domain.

4.2 EXPERIMENTAL DETAILS

We use a Random baseline for accuracy comparison, where a random subset of data at the total budget is queried and
used for evaluation directly. Results from multiple SVP (Coleman et al., 2019) models are also shown - for CIFAR-10
and CIFAR-100, SVP-ResNet164 models are used for benchmarking. In SVP-ResNet164, ResNet-164 is used as the
selection model and is initialized and trained from scratch every round on the entire collected dataset up to that point
using a fixed LR schedule. SVP-ResNet20 uses a ResNet20 model for selection instead. In all SVP runs, models
are re-initialized between rounds. We utilize the OneCycleLR scheduler which has an implementation provided in
PyTorch, with an initial LR of 0.01, annealing to a maximum of 0.2 and then to a minimum of 0.001 within a single
round. We vary the number of epochs per round for the selection model between 20, 30, and 50 for our CIFAR
experiments, and 50 epochs for our ImageNet experiments. In all of our experiments, we only train on a subset of
labelled data at each round. We form this by taking a small random subset from previously labelled samples and
combining them with the newly queried samples, as described in section 3. We set the memory ratio R to 1 for all
our experiments, training our selection model on an equal number of old and new samples every round. We run all
experiments thrice and report the mean and standard deviation of the resulting error. We choose the Least Confidence
acquisition strategy for querying in every rounds unless explicitly specified otherwise (e.g. Random baselining).
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Table 3: A comparison between random selection, SVP and CLActive on the ImageNet dataset.

D % Method Epochs Error (↓) Speedup (↑)

10

Random - 48.5 ± 0.04 -

SVP-ResNet50 90 48.2 ± 0.37 1×

SVP-ResNet18 90 48.3 ± 0.31 1.2×
45 48.3 ± 0.31 2.1×

CLActive-ResNet18 50 47.5 ± 0.10 2.4×

20

Random - 37.5 ± 0.34 -

SVP-ResNet50 90 35.9 ± 0.22 1×
45 36.3 ± 0.03 1.8×

SVP-ResNet18 90 36.1 ± 0.19 1.3×
45 36.3 ± 0.07 2.5×

CLActive-ResNet18 50 35.5 ± 0.20 3.4×

30

Random - 32.5 ± 0.12 -

SVP-ResNet50 90 31.0 ± 0.10 1×
45 31.3 ± 0.02 1.8×

SVP-ResNet18 90 31.1 ± 0.12 1.4×
45 31.3 ± 0.02 2.7×

CLActive-ResNet18 50 30.8 ± 0.10 3.8×

40

Random - 29.9 ± 0.42 -

SVP-ResNet50 90 28.3 ± 0.32 1×
45 28.3 ± 0.19 1.8×

SVP-ResNet18 90 28.2 ± 0.13 1.5×
45 28.4 ± 0.17 2.9×

CLActive-ResNet18 50 28.1 ± 0.20 5.5×

50

Random - 27.8 ± 0.13 -

SVP-ResNet50 90 26.3 ± 0.16 1×
45 26.5 ± 0.17 1.7×

SVP-ResNet18 90 26.4 ± 0.02 1.6×
45 26.6 ± 0.08 3.1×

CLActive-ResNet18 50 26.2 ± 0.06 7.2×

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet

Figure 1: Comparison of accuracies for CLActive, SVP as well as random sampling

For text classification, We use the fastText (Joulin et al., 2016) selection model in our experiments and do not use an
incrementally updated model - we simply train a new fastText model every round, but only on the latest queried batch
of samples. We do not make any LR modifications to the fastText models either. The results are noted in table 2.

4.3 RESULTS

CIFAR-10/100: We compare accuracies achieved after every 10% interval in the dataset from 10% to 50% and
present the information in table 1. SVP-ResNet164 denotes that the model used for training was a ResNet164 model.
At each point of the dataset collected, from 10% to 50%, we show the error obtained by a ResNet-164 evaluation
model trained on 181 epochs given the samples chosen by various methods. The baseline model is denoted by SVP-
ResNet164 trained with 181 epochs per round. We include results with the SVP-ResNet164 selection model trained
on 50 epochs and the SVP-ResNet-20 selection model trained on 181 and 50 epochs. We cite these results directly
from Coleman et al. (2019). SVP models trained with fewer epochs (SVP-ResNet164 at 50 epochs, SVP-ResNet20
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(a) Without Memory
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(b) With Memory

Figure 2: Results for training with and without memory on CIFAR-10 on our special setup. Memory ensures that the
classes are sampled more uniformly leading to better accuracies on the test set.

at 50 epochs) appear to suffer from significant accuracy degradation. At 50%, SVP-ResNet164-50epochs and SVP-
ResNet20-50 epochs have increased average error of 0.6% and 1.8% respectively on CIFAR-10. This is unsurprising,
as the selection models in the SVP pipeline are trained from scratch every round - and training a new model for a
few epochs would not allow it to converge, affecting the quality of samples. In contrast, samples collected using
CLActive seem to evaluate with little or no loss from the baseline models at each point of dataset collection on both
CIFAR-10 and CIFAR-100 datasets. We achieve far higher overall speedups even in comparison to SVP-ResNet20-
50epoch models. At 50%, we gain an 89.2× speedup training a ResNet-20 selection model for 20 epochs per round,
compared to SVP-ResNet20-50epoch’s speedup 25.1× (which also came at an accuracy cost). We also find that our
models trained on 20 epochs and 30 epochs do not perform significantly worse than using 50 epochs every round in
the CIFAR-10 experiments; our 20-epochs models show 0.3 increased average error at 20% of dataset collection for
CIFAR-10 and no increased error at later rounds. However, our 30-epoch and 20-epoch models show a slightly higher
error increase compared to our 50-epoch models on CIFAR-100 - around 0.6 higher at both the 30% and 50% points.

ImageNet: Our ImageNet results are shown in table 3. Here, SVP-ResNet50 on 90 epochs denote the baseline, and
we also include SVP-ResNet50 at 45 epochs and SVP-ResNet18 on 90 and 45 epochs for comparison. As above, we
take these results from Coleman et al. (2019). As seen with the CIFAR experiments, we observe that SVP-ResNet50
and SVP-ResNet18 at 45 epochs both perform slightly worse than the baseline at various points, e.g. with 0.4 higher
average error at 20% and 0.3 higher average error at 30%. In contrast, our models perform consistently without any
degradation at all throughout. At 50% of the dataset collected, our setup trains over 7× faster than the baseline and
more than twice as fast as SVP-ResNet18-45 epochs.

Amazon Reviews: On the Amazon Reviews dataset, we find that simply training fastText models on new batches of
queried samples performs equivalently to the full baselines on both the Review Polarity and Full datasets at a large
scale. Since fastText models are extremely fast themselves, our modification brings around a 1.3× speedup over
simply using a fastText proxy. As noted in table 2, this brings our method to a significant 61.6× and 54.7× speedup
over the baseline VDCNN model. This demonstrates that our method extends well across domains.

4.3.1 SPEEDUPS

There are three improvements to classical AL techniques that provide speedups:

• Usage of proxy models as in Coleman et al. (2019)

• Large reduction in the number of epochs trained per iteration

• Reducing the number of samples used for training in each iteration

The speedup gained due to each of these improvements can be observed from tables 1 and 3. For CIFAR, the SVP-
ResNet20-181epochs run shows the speedup on using a proxy model alone; SVP-ResNet164-50epochs shows the
speedup on training for fewer epochs alone, and CLActive-ResNet20 models show the combined speedups from using
a proxy model, training for fewer epochs and also using a reduced number of samples for selection model training.
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Table 4: Comparison of error rates at 50% of CIFAR-10 labelled in a class-constrained scenario between a model
using memory versus without.

Method Error at 50%
Random 7.5 ± 0.15
Memory-OFF 7.0 ± 0.21
Memory-ON 6.2 ± 0.17

4.4 ACTIVE LEARNING WITH ADDING NEW CLASSES

Motivation: Real-life scenarios where AL is beneficial typically involve large amounts of unlabelled data. Past DAL
approaches assume that all unlabeled data is available from the start; however, these approaches do not scale well with
dataset size. A model in the classical AL setup trains on the entire set of labelled samples at each round, and as the
labelled dataset grows in size, the time taken to train the model on the updated pool increases. However, incrementally
updating a continuous model can make it prone to catastrophic forgetting when the data stream is non-i.i.d - in the
presence of new class data, the model may “forget” how to classify earlier classes, affecting the quality of queried
samples.

Setup: We modify our AL setup to demonstrate this: after the initial subset is chosen, half the classes are locked till
30% of the dataset is collected. The training model can query the entire dataset at that point and runs another round
of training and querying 10% of the dataset to gain 50% dataset labelling overall. In this modified setup, we run two
variations of the algorithm: one where the model updates only on the freshly labelled samples each round (denoted as
Memory-OFF), and one where the model trains on a mixture of half the samples from memory and half the samples
from the freshly labelled set (denoted as Memory-ON).

Results: We note our results in Table 4. We find that Memory-OFF suffers an accuracy hit and barely performs
better than random sampling, whereas the Memory-ON model performs well above random. This is unsurprising,
as the Memory-OFF model was prone to suffer from forgetting in later rounds where all classes were unlocked, as
opposed to the Memory-ON model, which trained on a subset of memory at every point. Additionally, we also plot
the distributions of queried samples in figure 2: here, we can see that the Memory-OFF model (a) has a very uneven
distribution of samples in the first half of classes [1-5] compared to classes [6-10], and the Memory-ON model (b) has
a lesser class imbalance in comparison. This can be explained by the fact that the selection model at 40% of dataset
collection in the Memory-OFF scenario has only trained on classes belonging to [6-10] and thus queried for samples
exclusively from the [1-5] classes, increasing overall imbalance. The Memory-ON model at 40% dataset collection
does not face this to the same extent, as it trains on a mixture of all classes.

5 CONCLUSION

We demonstrated a set of improvements to the standard DAL pipeline that work in conjunction with proxy modelling
and enabled us to achieve another nearly two orders of magnitude of speedup overall. While the computation costs
and selection time of training a selection model repeatedly in the classical setup grow linearly as rounds progress and
more of the dataset is labelled, our setup maintains a constant train time and computation cost. On CIFAR-10 and
CIFAR-100, CLActive achieved up to 89× overall speedup while still performing significantly above random and
showing little degradation in accuracy from baseline. We achieved over 7× speedups on the much larger ImageNet
dataset, again with no degradation in accuracy. We showed that this extends beyond image classification by testing
models on the Amazon Review datasets, where we learn only from new samples, achieving 61× and 54.7× speedups
on the Review Polarity and Review Full datasets, respectively. We found that while simply updating the model with
new samples was prone to catastrophic forgetting and thus suffered degradation in accuracy, CLActive alleviates this
by the addition of replaying episodic memories. Additionally, we also explored the removal of the “closed-world”
assumption that DAL setups typically carried and explored the effects of seeing unseen classes of a dataset in later
rounds. In summary, our proposed setup, CLActive, (i) maintains constant training costs despite growing dataset sizes;
(ii) is much faster than models trained in the classical setup; and (iii) is robust towards the presence of unseen classes,
making DAL feasible and cheaper to run in real-world scenarios.
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