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Abstract

Deep neural networks (DNNSs) have advanced our ability to take DNA primary
sequence as input and predict a myriad of molecular activities measured via high-
throughput functional genomic assays. Post hoc attribution analysis has been
employed to provide insights into the importance of features learned by DNNs, of-
ten revealing patterns such as sequence motifs. However, attribution maps typically
harbor spurious importance scores to an extent that varies from model to model,
even for DNNs whose predictions generalize well. Thus, the standard approach for
model selection, which relies on performance of a held-out validation set, does not
guarantee that a high-performing DNN will provide reliable explanations. Here
we introduce two approaches that quantify the consistency of important features
across a population of attribution maps; consistency reflects a qualitative property
of human interpretable attribution maps. We employ the consistency metrics as
part of a multivariate model selection framework to identify models that yield high
generalization performance and interpretable attribution analysis. We demonstrate
the efficacy of this approach across various DNNs quantitatively with synthetic
data and qualitatively with chromatin accessibility data.

1 Introduction

Deep neural networks (DNNs) have demonstrated a powerful ability to learn complex sequence-
function relationships from high-throughput functional genomics data, taking DNA sequences as input
and predicting functional activities, such as transcription factor binding and chromatin accessibility
[, 12013, 14L15]). The improved predictions by DNNs suggest that they are learning biological knowledge
not considered by existing, traditional models, such as position weight matrices or k-mers. Distilling
the rationale underlying their improved predictions through model interpretability is key to realizing
the transformative impact that DNNs can bring to genomics.

Many regulatory functions are controlled though protein-DNA interactions. Proteins bind to DNA
with varying degrees of affinity, depending on expression levels and sequence context [6]]. Strong
binding sites are typically summarized as sequence motifs. One major goal of model interpretability
is to reveal motifs and their dependencies that drive model predictions.

Of the many approaches to explainable Al [[7, 8], attribution methods comprise a set of techniques
that provide a base-resolution map of importance scores for each nucleotide in a given input sequence
on model predictions [9} [10, [11}, [12} |13} [14]. Attribution scores have a natural interpretation as
single-nucleotide variant effects [[15]. Attribution maps have demonstrated an ability to reveal known
motifs that are important for cell-type specific regulatory functions and annotate their positions at



base resolution [[16} (17, [18]]. Since attribution methods provide local explanations [[19], i.e. for one
datapoint, it is imperative to observe several attribution maps to deduce generalizable patterns.

The high expressivity of DNNs gives them the power to learn complex sequence-function relationships,
but it also makes it easier to achieve benign overfitting [20, 21]], which is an empirical phenomenon
where the training and test performance diverge throughout training. While this is classically
recognized in machine learning as overfitting, it turns out for highly flexible models, such as DNNs,
benign overfitting does not necessarily affect generalization performance even though a more complex
function is being learned to “overfit” the training data [22]]. Nevertheless, it can adversely affect
the quality of attribution maps which depends on the local properties of the function [23] 24,
making it difficult to disentangle functional motifs from nucleotides with spurious importance scores.
This suggests that DNNs can yield reliable or unreliable attribution maps and the generalization
performance is largely not informative to identify which DNNs are more amenable with attribution
analysis. This problem is exacerbated by the lack of ground truth with real biological data, which
makes it difficult to quantitatively assess the efficacy of attribution maps.

Here we propose two quantitative metrics that characterize the consistency of position-invariant local
patterns that are shared across a population of attribution maps. Importantly, this approach does not
require any ground truth knowledge as it aims to characterize qualitative properties of attribution
maps that are human interpretable. We present results that show our consistency metrics are highly
correlated to the quality of attribution maps both quantitatively across various models trained on
synthetic data and qualitatively on in vivo genomics data. This work provides a foundation for a
multivariate model selection framework to identify DNNs that yield high generalization and robust
interpretations in real world genomic applications.

2 Characterizing consistency of attribution maps

In many regulatory genomic prediction tasks, we expect that important patterns such as motifs are
stationary features and thus should appear more consistently while spurious noise should not be
shared across genomic loci. Thus a measure of the consistency of motif patterns (and the level
of spurious importance scores) across attribution maps captures a qualitative property that should
provide insights into the reliability of attribution maps. Below, we introduce two information-based
summary statistics that aim to quantify the level of consistency in local patterns shared across a
population of attribution maps. These methods are based on: 1) the distribution of k-mers within
attributed positions and 2) the distribution of attribution scores in a low-dimensional contextual
embedding space.

2.1 k-mer Method: KL-divergence of attributed k-mers versus an uninformative prior

The motivation for this method is based on the observation that patterns in reliable attribution maps
should enrich for motifs, which can be represented with a specific distribution of k-mers. This
distribution should be more sparse compared to a baseline k-mer distribution across all positions in
the sequences. On the other hand, we expect poor quality attribution maps to have a more diffuse
distribution that closely resembles the baseline k-mer distribution. Thus, the distance between the
k-mer distributions within attributed positions or across all positions may provide a sensitive metric
to compare attribution map consistency (Fig. [I).

To measure the distance between the k-mer distributions, we utilize the Kullback-Leibler divergence
(KLD) (Fig. ). To calculate the KLD, we need to: 1) choose a k-mer size; 2) define which positions
are within significant attribution scores; and 3) calculate global k-mer frequencies across all positions.
To identify attributed positions, we applied a sequence-specific threshold to each attribution map in
the test set, above which are considered attributed positions. This type of threshold aims to address
the variable magnitudes in the attribution maps from sequence to sequence. The threshold was set
automatically for each sequence according to the 90th percentile in the attribution scores. For each
set of contiguous positions, we added a buffer size of 2 nucleotides on the 3’ end to extend the
positions considered. While this step introduces some noise, it also helps to address motif positions
that have variable attribution scores (some below and some above the threshold), which is a prevalent
feature of noisy attribution maps. Global k-mer frequencies were then calculated by aggregating
the k-mer frequencies within each of the subsequences which had a minimum length of k. In this
study, £ = 6. For comparison, a non-informative empirical prior was calculated by aggregating the



k-mer frequencies across all test sequences. We then calculated the KLD betweenkhmédwo
frequencies in an element-wise fashion and summed them to get a single summary statistic.

2.2 k-attr-mean Method: KL-divergence of the distribution of locally embedded attribution
scores versus an uninformative prior

To encode information about the local structure of motifs, we construct a new metric that considers
a lower-dimensional embedding based on locally averaged attribution maps. Speci cally, we rst
apply a gradient correction which effectively xes the gauge freedom in attribution maps which
arises due to the nature of one-hot encoded DRB). [Given a corrected attribution map, 2 R-A |

we calculate the mean attribution scores (across each nucleotide channel) with a window size of
k centered on each position. This provides local context of nearby attribution scores similar to a
uniform convolutional kernel. In this papéer,= 3. Each 4-dimensional (4D) mean attribution vector

is reduced to 3D with a Gram-Schmidt orthogonalization procedure to remove the linear dependence
(see Appendix A), which arises from gauge xing with the gradient correction. This enables a direct
visualization of (averaged) attribution vectors in 3D space. Strikingly, the mean attribution vectors
exhibit a high degree of structure with radial symmetry (Fig. 1b). Since the natural coordinates are
spherical, we further reduce the dimensions into 2D space by considering the 2 angular components
(i.e. polar and azimuthal), while using the inverse squared radius as a weight for this 2D distribution.
As in Method 1, we apply a lter based on a threshold set by the 90th percentile of the attribution

Figure 1: Schematic of consistency metrics.Kaper Method: KLD of attributed-mer frequencies
versus an uninformative prior. (k}attr-mean Method: KLD of the distribution of locally averaged
attribution vectors versus an uninformative prior.
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