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Abstract
We study the problem of Reinforcement Learning (RL) with linear function approximation, i.e.
assuming the optimal action-value function is linear in a known d-dimensional feature mapping.
Unfortunately, however, based on only this assumption, the worst case sample complexity has been
shown to be exponential, even under a generative model. Instead of making further assumptions
on the MDP or value functions, we assume that our action space is such that there always exist
playable actions to explore any direction of the feature space. We formalize this assumption as a
“ball structure” action space, and show that being able to freely explore the feature space allows
for efficient RL. In particular, we propose a sample-efficient RL algorithm (BallRL) that learns an
ϵ-optimal policy using only Õ

(
H5d3

ϵ3

)
number of trajectories.

Keywords: Markov Decision Process, Reinforcement Learning

1. Introduction

Reinforcement Learning (RL) is a well-studied framework for sequential decision making that has
been successfully applied to real-world problems in fields such as game-play (Atari, AlphaGo, Star-
craft), robotics, operations management, and more (Mnih et al., 2013; Silver et al., 2016; Vinyals
et al., 2017; Kober et al., 2013). However, many of the existing theoretical results can not be applied
to many practical applications due to intractably-large number of states and/or actions. A common
modeling assumption to address this issue is to assume the existence of a known feature mapping
that maps state and action to a d-dimensional feature vector, and that either the underlying MDP
dynamics or value functions is linear in this feature mapping. In this work, we consider the common
setting where the optimal action-value function (or Q∗-function) is linear and can be written as the
inner product of the feature mapping of state-action pairs and some unknown parameter vector. The
primary goal is to determine whether there exists algorithms that can achieve a near-optimal pol-
icy using an efficient number of samples. Here, efficient sample complexity refers to a polynomial
number of samples with respect to the feature dimension d, the horizon H , and the size of the action
set |A|.

This setting has garnered much attention recently, however, in the general case pessimistic re-
sults have been shown in Weisz et al. (2021b, 2022); Du et al. (2019); Wang et al. (2021), which
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LINEAR RL WITH BALL STRUCTURE ACTION SPACE

indicate that this problem is exponentially hard in the horizon H or the size of the action set |A|.
Furthermore, this pessimistic result is true even with access to a generative model that allows for
arbitrary state “resets.” Recently, several works have made further assumptions on the MDP that
allow for efficient learning when the Q∗ function is linear (Jin et al., 2020; Amortila et al., 2022).
These typically include additional assumptions on the transition or reward model, or access to addi-
tional side information such as expert queries. However, many of these assumptions are restrictive,
unrealistic, or unfeasible for many practical use cases, since in the real world, we typically do not
we have well-behaved transition models or access to expert oracles.

We seek a general yet practical assumption that is novel, realistic, and amenable to efficient
learning. Our work is motivated by the observation that, in some difficult real-world RL applications
such as game-play and operations management, it may be easier to think of actions (or consecutive
actions) in feature space rather than state space. For example, in a typical dungeon-survival game
with various tasks such as fighting monsters, eating food, or searching for treasure, the feature
space could include combat statistics, health, and special items. Instead of actions consisting of
low-level controls (e.g. movement, engage, run, etc.), we would consider higher-level “feature
space” actions (e.g. fight monster, eat food, dig for treasure). Now, we conjecture that if a learning
algorithm is always able to play actions to property explore the feature space, then, combined with
a d-dimensional feature mapper that exists in the case of linear RL, it should be able to learn a
near-optimal policy efficiently. In order to mathematically characterize this property, we introduce
the concept of a “ball structure” action space. This assumes that our action space always lies within
a d-dimensional ball of radius ρ, so that every direction of the feature space has a corresponding
action that can be taken, and therefore at any time step, we are able to explore in any direction
of the feature space. However, a perfect ball-shaped action space may be somewhat unrealistic,
therefore, we allow some flexibility on the degree of exploration in each direction by considering
less-restrictive settings, such as when the action is instead contained within a convex set, or when
the radius of the ball is allowed to differ from one time step to the next.

Our main result is the BallRL (pronounced baller) algorithm that leverages the exploration
capabilities of the ball structure assumption and achieves sample-efficient bounds on learning. The
results hold under very mild trajectory learning/PAC learning setting, i.e. we do not assume have
access to the action space, and each sampled trajectory gives us information only about action sets
along the trajectory, together with total rewards. The algorithm takes advantage of the ball structure
action space for exploration, which can be shown to be efficient using the closed form solution of the
optimal Bellman Equation, and enjoys a sample complexity bound of Õ(H5d3/ϵ2) for an ϵ-optimal
policy. Furthermore, a similar algorithm and complexity bound hold in the case of convex action
set instead of a ball action set, under additional mild assumptions. All together, our results show
that with a ball structure action set, we can achieve an exponential improvement in comparison to
algorithms to linear Q∗ problem without the ball structure assumption. We also demonstrate that
our algorithm is easy to implement and is computationally efficient as well.

1.1. Organization of the Paper

The rest of the paper is structured as follows: in Section 2 and 3 we will introduce the problem
setting and review prior work in the literature for the linear RL problem. In Section 4 we present
our learning algorithm where we demonstrate that efficient learning is possible assuming a ball
structure action set. In particular, we present two special generalizations of the assumption: in
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Section 4.1 consider when every state in step h shares the same convex action set, and in Section
4.2 we assume the ball structure action set is allowed to vary by state. Note that the simpler ball
structure assumption is a special case of both settings. We finally conclude in Section 5 with some
discussion.

1.2. Notations

We will use ⟨·, ·⟩ and ∥ · ∥2 to denote the inner product and the 2-norm in Rd, respectively. Let
B2(ρ) =

{
x ∈ Rd|∥x∥2 ≤ ρ

}
represent the L2-ball of radius ρ in Rd. The expectation Eπ will

denote the expectations over all trajectories obtained according to π and the underlying transition
models and reward functions. We also follow standard big-Oh notation, that is, we will write A =
O(B) if there exists some positive constant c such that A ≤ cB, and write A = Õ(B) if there
exists some c = polylog(d,H, δ, 1/ϵ) such that A ≤ cB. Here, d is the dimension of the feature
space, H the time horizon of an episode, δ the high probability parameter, and ϵ the near-optimality
parameter of the learned policy.

2. Background

2.1. Preliminaries

A Markov Decision Process (Sutton and Barto, 2018; Puterman, 2014) is a well-known model of the
typical reinforcement learning environment. We consider finite-horizon MDPs which are defined by
the tupleM = (S,A, P,H, r, µ), where the horizon H ∈ N and the state space S = S1 ∪ · · · ∪ SH
is known to the learner, but the action space A(s) of each state s ∈ S, the transition model P :
S ×A → S, the reward function r : S → R, and initial state distribution µ are not known. To avoid
confusion, without loss of generality we assume that S1, · · · ,SH have no intersection between each
other.

For a given MDP, a policy π : S → A is a mapping from state space to the action space, where
π(s) ∈ A(s) for all s ∈ S . For a given policy π, we define its value functions (V ) and Q functions
according to the following iterative equations:

V π
H+1(sh+1) = 0, QH+1(sH+1, aH+1) = 0, ∀sH+1, aH+1,

Qπ
h(sh, ah) = r(sh, ah) +

∑
sh+1

P (sh+1|sh, ah)V π
h+1(sh+1),

V π
h (sh) = Qπ

h(sh, π(sh)).

We further define the optimal Q and V function as:

Q∗
h(sh, ah) = max

π
Qπ

h(sh, ah), V ∗
h (sh) = max

π
V π
h (sh).

For the optimal Q∗ function we have the optimal Bellman Equations, so that for all 1 ≤ h ≤
H, sh ∈ Sh, ah ∈ A(sh),

Q∗
h(sh, ah) = r(sh, ah) +

∑
sh+1

P (sh+1|sh, ah)max
ah+1

Q∗
h+1(sh+1, ah+1). (1)

A typical reinforcement learning problem objective is to determine an algorithm that recovers a
policy π that performs well relative to the unknown optimal policy π∗; performance is generally
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defined by comparing the learned policy’s and optimal policy’s value functions. In the following
section we detail our specific problem setting and objective.

2.2. Our problem setting

Due to the intractability of dealing with extremely high-dimensional state spaces, we make the
standard assumption of a linear Q∗ function for our problem; that is, the optimal Q∗ function is
linear in a d-dimensional feature mapping of the state and action:

Assumption 1 (Non-Stationary Linear Q∗ Assumption) For each state-action pair (s, a), there
exists a feature vector φ(s, a) ∈ Rd. There are also H unknown parameters θ∗1, · · · , θ∗H , such that
the Q∗-function of state-action pairs has the following parametrization

Q∗
h(sh, ah) = ⟨φ(sh, ah), θ∗h⟩, ∀1 ≤ h ≤ H, sh ∈ Sh, ah ∈ A(sh).

While Assumption 1 appears to be a very strong statement on the optimal Q function, it is known
that by itself, the assumption is not enough to guarantee efficient learning. Therefore, we present
our ball structure assumption that we will show will allow for sample-efficient RL under the linear
Q∗ assumption.

Assumption 2 (Ball Structure Action Set) Define the L2 ball with radius ρ > 0 as

B2(ρ) ≜
{
x ∈ Rd

∣∣∥x∥2 ≤ ρ
}
.

For each state s, there a feature vector φ(s) ∈ Rd and a positive number ρ(s) such that

{φ(s, a)|a ∈ As} = φ(s) +B2(ρ(s)).

Remark 1 Without loss of generality, we can assume that

A(s) = B2(ρh(s)) ≜
{
a ∈ Rd

∣∣∥a∥2 ≤ ρh(s)
}
,

and also
φ(s, a) = φ(s) + a.

This is because if there exists two actions a1, a2 such that φ(s, a1) = φ(s, a2), then Assumption 1
implies that Q∗(s, a1) = Q∗(s, a2). Hence if we remove a2 from the action set, the value of V ∗(s1)
will remain the same. Therefore, if we remove these redundant actions and find a near-optimal
policy of the MDP, this policy must also be a near-optimal policy of the original MDP.

By above, after removing redundant actions, we can assume that a → φ(s, a) is an injection,
meaning a → φ(s, a) is a one-to-one mapping from A(s) to B2(ρ(s)) + φ(s). Hence we can
replace every action a with φ(s, a) − φ(s), and then we will have property φ(s, a) = φ(s) + a.
Thus, without loss of generality, in the rest of the paper, we will assume φ(s, a) = φ(s) + a always
holds.

Because the transition model and reward function are unknown at the beginning, the learner will
only be able to access samples, or realizations, of them by directly interacting with the environment.
That is, the learner must execute a policy to actually observe the outcome of those actions. We will
consider the following trajectory learning setting:

4



LINEAR RL WITH BALL STRUCTURE ACTION SPACE

Definition 2 (Trajectory Learning) At every iteration, the learner first picks a policy (a function
mapping every state s ∈ S to some action in A(s)), and then a trajectory (s1, s2, · · · , sH) is
sampled according to the true underlying MDP. Only the following two pieces of information are
revealed to the learner:

1. A(sh): The action sets of each state in the trajectory;

2.
∑H

h=1R(sh, ah): The sum of total reward of the trajectory, where R(sh, ah) denotes the
instant reward obtained by taking action ah at state sh, which satisfies E[R(sh, ah)] =
r(sh, ah).

Remark 3 Note that our trajectory learning setting is weaker than the standard PAC learning set-
ting in the literature, where it is assumed that all the information of the trajectories is revealed,
including the states s1, · · · , sH and the instantaneous rewards R(sh, ah). Our algorithm also does
not require the use of a generative model that is standard in some linear Q∗ works. Therefore, our
algorithm applies to both the common PAC learning setting and generative model setting. For more
information about this, please refer to Section 3.

Finally, in order to measure the performance of our learner’s policy, we define the closeness to
optimality of a policy via the standard notion of an ϵ-optimal policy:

Definition 4 (ϵ-optimal policy) If a policy π satisfies

|V π(s0)− V ∗(s0)| ≤ ϵ,

then we call the policy π an ϵ-optimal policy. Here, V π is the value function with respect to following
the policy π, and V ∗ is the value function of the true optimal policy.

Our objective in this work is to develop an algorithm which can find an ϵ-optimal policy with
high probability, by using a polynomial number (in d,H and 1/ϵ) of trajectory learning iterations.

3. Related Literature

The linear Q∗ problem is one of the simplest and most intuitive ways to describe reinforcement
learning with parametrization. Many works have studied this setting of RL with the goal to develop
a sample-efficient algorithm to learn a near-optimal policy. However, in the most general case,
recent work has yielded only pessimistic results related to this problem. In Weisz et al. (2021b,
2022); Du et al. (2019); Wang et al. (2021); Foster et al. (2021), the linear Q∗ problem has been
shown to be exponentially hard in d or H or |A|, even when the number of actions are small. Their
main idea revolves around showing a lower exponential bound by constructing a needle in haystack-
type MDP, i.e., among exponentially many actions there is only one action that induces rewards,
hence in order to find the optimal action the learner must run policies an exponential number of
times. Additionally, they also adopt the Johnson-Lindenstrauss lemma to show that they can choose
these actions such that every two actions are sufficiently far away from each other, so that querying
non-optimal actions gives limited information of the optimal action.

Apart from pessimistic results, there are many works which demonstrate that the linear Q∗

problem is polynomially solvable with added additional assumptions. Assumptions are quite varied
and numerous, and we attempt to give an overview of the different types that have allowed for
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efficient learning. If for all policies π, the Q-function Qπ can be linearly parameterized, then the
problem is polynomially solvable by using approximate policy iteration (Lattimore et al., 2020). If
both the transition model and reward function are deterministic, then the problem is polynomially
solvable by eliminating functions that does not satisfy the linear Q∗ function assumptions (Wen
and Van Roy, 2013). If a ‘core set’ (that is, features of every state action pairs can be written
as the convex combinations of features in the core set) exists for the MDP, then the problem is
polynomially solvable (Zanette et al., 2019; Shariff and Szepesvári, 2020). In comparison to our
assumption, our algorithm has access to an orthogonal basis at first, which is similar to the idea
of core set. However, the core set cannot capture our setting, since the ball cannot be written as
convex combination of basis vectors - simply adopting their algorithm would induce exponential
sample complexity. Under the assumption that the action set is finite, the TensorPlan Algorithm
in Weisz et al. (2021a) can obtain an ϵ-optimal policy using poly

((
dH
ϵ

)|A|)
number of samples.

Alternatively, if we assume access to an expert oracle which gives the value of Q∗(s, a) when
queried at state (s, a), the DELPHI algorithm can solve these linear Q∗ problem in polynomial time
using no more than O(d) calls of expert queries (Amortila et al., 2022).

Beyond the linear Q∗ problem, there are also several works which achieve polynomial sample
complexity under general assumptions of the MDP’s underlying properties. If the transition model
can be linearly parametrized, then the MDP problem becomes polynomially solvable as shown in Jin
et al. (2020); Yang and Wang (2019, 2020); Jia et al. (2020). However, a linear transition model is
a fairly strong assumption and generally not a very practical assumption, as most systems do not
behave as such. There are also works focused on generalized function approximations, e.g. Eluder
Dimensions (Ayoub et al., 2020; Wang et al., 2020), Bellman Rank (Jiang et al., 2017), Bellman
Eluder Dimension (Jin et al., 2021), Bilinear Class (Du et al., 2021), Bellman Closeness (Jin et al.,
2021; Zanette et al., 2020). However, again these assumptions on the models are either hard to
verify in practice or generally do not occur in real world systems, which makes the use of these
algorithms difficult to justify in practice.

4. The BallRL Algorithm

We now present the main result of our paper, that is, an algorithm that achieves polynomial sample
complexity in the linear Q∗ setting under the assumption of a ball structure action space. Before
proceeding with the details, we highlight two versions of our algorithm, Convex-BallRL and DiffR-
BallRL, both of which are essentially extensions of the standard ball structure assumption (Assump-
tion 2). In the first case, we consider convex action sets where the action sets are identical across
state. While every state necessarily has the same set of actions to take, the magnitude to which one
can explore different directions is permitted to vary, so long the overall action set is convex. This
can be seen as a slightly more realistic version of the standard ball assumption, as in practice it
may be difficult to guarantee the magnitude of every feature direction to be the same. In the second
case, we consider the standard ball structure action set but allow the action set to vary depending on
the current state. The motivation behind these two slightly different settings is to represent a more
realistic generalization of the original ball structure presented earlier, as in practical settings action
spaces may not always be uniformly a perfect ball.
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4.1. Identical Convex Action Sets within One Step

In this section, we make the assumption that the action set A(sh) is identical for every sh ∈ Sh,
and moreover, we assume the action sets are regular convex sets, which is a generalization of the
ball structure presented in Assumption 2. Intuitively, the action set is contained between a smaller
radius and a larger radius ball.

Definition 5 (Regular Convex Set) We call a set M ⊂ Rd a regular convex set with parameter
B ≥ 1 if there exists η ≥ ρ > 0 such that η

ρ = B and

B2(ρ) ⊂M ⊂ B2(η).

Remark 6 Regular convex sets include many different types of structures such as balls, cubes,
ellipsoids, etc. Some specific examples include:

1. All balls are regular convex sets with parameter 1;

2. Cubes in d dimension are regular convex sets with parameter
√
d;

3. Ellipsoids are regular convex sets with parameter amax
amin

, where amax, amin are the longest and
shortest axes.

Let us formally characterize our assumption for the setting with convex action sets.

Assumption 3 (Identical Convex Action Sets within One Step) For every 1 ≤ h ≤ H , there ex-
ists a regular convex setAh with parameter B, such that for all sh ∈ Sh,A(sh) = Ah. Specifically,
there exists ρ1, · · · , ρH , η1, · · · , ηH , such that for every 1 ≤ h ≤ H we have

ηh
ρh

= B, B2(ρh) ⊂ Ah ⊂ B2(ηh).

Without loss of generality, we also assume that the features still satisfy φ(s, a) = φ(s) + a.

We develop an algorithm, Convex-BallRL, that works in the trajectory learning setting (Defini-
tion 2) under Assumption 1 and 3, and is guaranteed to find an ϵ-optimal policy using a polynomial
number of trajectories.

4.1.1. INTUITION AND KEY IDEAS

Before presenting the algorithm itself, we provide some intuition on the key ideas behind our algo-
rithm. With loss of generality, we assume that we know the value of ρ1, · · · , ρH at the beginning.
Otherwise, we can run one trajectory according to any policy, then all the action sets A1, · · · ,AH

will be revealed to us, from which we can determine the values of ρ1, · · · , ρH .
We start by observing the following equation due to telescoping of Bellman Equation (1):

E [⟨φ(s1), θ∗1⟩] + E

[
H∑

h=1

⟨ah, θ∗h⟩

]
=

H∑
h=1

E[R(sh, ah)] +

H∑
h=1

ρh+1 max
ah+1∈Ah+1

⟨ah+1, θ
∗
h+1⟩. (2)

Our next observation is that the first term of LHS and the second term of RHS in (2) are identical
for every policy. Hence, if we compare (2) between two different policies, we can obtain information
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of θ∗h (according to ⟨ah, θ∗h⟩) based on the first term in RHS, which can be estimated through sampled
trajectories. Formally, we choose π0 to be the all-zero policy:

π0(sh) = 0 ∈ Rd, ∀1 ≤ h ≤ H, (3)

and πh,i (1 ≤ h ≤ H, 1 ≤ i ≤ d) to be the following policy: for 1 ≤ h′ ≤ H and sh′ ∈ Sh′ ,

πh,i(sh′) =

{
0 if h′ ̸= h,

ρhei if h′ = h
, (4)

where ei is the i-th basis vector in Rd. Comparing (2) according to policy π0 and also policy πh,i,
we obtain that

ρh⟨ei, θ∗h⟩ = Eπh,i

[
H∑

h=1

R(sh, ah)

]
−Eπ0

[
H∑

h=1

R(sh, ah)

]
.

The right hand side can be estimated according to trajectories from policy π0 and πh,i, which leads
to the estimate of i-th component of θ∗h.

Finally after getting accurate enough estimations θ̂h ∈ Rd on θ∗h, we adopt the greedy policy,
i.e.

π(sh) = argmax
ah∈Ah

⟨ah, θ̂h⟩, (5)

and then show that this policy is a nearly optimal policy.

4.1.2. ALGORITHM AND SAMPLE COMPLEXITY

The pseudocode for BallRL with convex action sets is given in Algorithm 1. The main result of this
section is the following theorem about its sample complexity, in particular, that it has polynomial
sample complexity. The complete proof details are provided in Appendix A.

Theorem 7 For any δ > 0, if we choose

M =
8H2B2d log(2dH/δ)

ϵ2
,

then with probability at least 1 − δ, the output policy from the above algorithm is an ϵ-optimal
policy. The total number of trajectories used in this algorithm is

16H3B2d2 log(2dH/δ)

ϵ2
.

Remark 8 If we assume all action sets have ball structure, then all action sets are regular convex
sets with parameter 1. Hence the above algorithm is guaranteed to find an ϵ-optimal policy using
Õ
(
H3d2

ϵ2

)
number of trajectories.
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Algorithm 1 Convex-BallRL
Input: d,H,M, ρh;

for h = 1 : H do
for i = 1 : d do

Choose policy π0 such that π0(sh′) = 0 for any sh′ , h′ ∈ [H].
Choose policy πh,i such that πh,i(sh′) = 0 if h′ ̸= h and πh,i(sh) = ρhei for all sh.
Get M trajectories from policy π0 and πh,i respectively, and calculate the average of total
rewards: R0 and Rh,i.
end

Let θ̂h to be the vector whose i-th component to be Rh,i−R0

ρh
.

Let ah = argmaxa∈Ah
⟨ah, θ̂h⟩.

end
Output: Policy π: π(sh) = ah for any sh, h ∈ [H].

4.2. Different Radius

In this section, we abandon the assumption that all states sh in step h share identical action sets, and
allow for the action set to vary depending on the state. However, we again assume that the action
set corresponding to each state is a ball as in Assumption 2. We further assume that the norm of θh
are all the same for 1 ≤ h ≤ H , and also that the norm of features, rewards and radius are bounded:

Assumption 4 (Boundedness) For each state s ∈ S, action a ∈ A(s), we have

∥φ(s, a)∥2 ≤ 1;

For some Θ ∈ [0, 1], we have
∥θ1∥2 = · · · = ∥θH∥2 = Θ;

For every trajectories (s1, a1, · · · , sH , aH), we have

0 ≤
H∑

h=1

R(sh, ah) ≤ 1, 0 ≤
H∑

h=1

ρ(sh) ≤ 1.

We again aim to develop an algorithm that works under Definition 2 (trajectory learning), but
under Assumption 1 (Linear Q∗ assumption), 2 (Ball Structure Assumption) and 4 (Boundedness
Assumption).

4.2.1. INTUITION AND KEY IDEAS

We begin by presenting the following key ideas of our algorithm:

To Exploit the Ball Structure Action space Similar to (2) in Convex-BallRL, our algorithm is
again based on the telescoping of Bellman Equation (1), which exploits the ball structure of the
action space:

⟨φ(s1), θ∗1⟩+ Eπ

[
H∑

h=1

⟨ah, θ∗h⟩

]
= Eπ

[
H∑

h=1

R(sh, ah)

]
+Θ · Eπ

[
H∑

h=1

ρ(sh+1)

]
. (6)
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Estimation of Norm by Grid Search According to (6), we can estimate θ∗1, · · · , θ∗H in the LHS
based on the RHS. However, Θ, which is the norm of the unknown parameters θ∗1, · · · , θ∗H , is
difficult to estimate. Hence in our algorithm, we adopt a grid search method for the value of Θ:
choosing ξ = lε for 1 ≤ l ≤ 1

ε , so that at least one such ξ is ε-close to the true Θ. Therefore, if we
develop our policy based on these ξ, then at least one policy will necessarily be an ϵ-optimal policy.

Hierarchical Exploration For the exploration in our algorithm, we will choose actions to be
ρ(sh)ei for 1 ≤ i ≤ d in order to give information about the i-th component of θ∗h. However, one
problem is that this estimation has accuracy at most 1/ρ(sh), which will explode as ρ(sh) goes to
zero. To deal with this problem, we consider a hierarchical exploration method:

Suppose the policy we currently use for exploration is πe, and the greedy policy we calculated
is π. We can show that the exploration will guarantee 1/(Eπe [ρ(sh)]

√
M) accuracy on θ∗h (up to

logarithmic factors), and hence the error of π is Eπ[ρ(sh)]/(Eπe [ρ(sh)]
√
M). Therefore, if for every

1 ≤ h ≤ H we all have Eπ[ρ(sh)] ≤ 2Eπe [ρ(sh)], then the error of the greedy policy is of order
2/
√
M , which can be bounded by choosing some proper M . Otherwise, we use the greedy policy

π to construct another exploration policy as follows:

πh,0(sh′) =

{
π(sh′) if 1 ≤ h′ < h;

0 if h′ ≥ h;

πh,i(sh′) =


π(sh′) if 1 ≤ h′ < h;

ρ(sh)ei if h′ = h;

0 if h′ ≥ h.

(7)

Then these new policies πh,i will guarantee that Eπh,i [ρ(sh)] ≥ 2Eπe [ρ(sh)], i.e. the value of
Eπe [ρ(sh)] becomes at least twice of its previous value. Therefore, we can show that this process
will end in at most H log(1/ε) number of times, provided that the initial value of Eπe [ρ(sh)] is at
least ε.

Ignore Small Radius We will show that if within a policy π, the expected radius Eπ[ρ(sh)] at
step h is smaller than ε, then the effect of different actions within this step can be ignored, and we
do not need to carry out the above exploration in this step.

4.2.2. ALGORITHM AND SAMPLE COMPLEXITY

Combine these ideas together, we construct the following Algorithm 2.
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Algorithm 2 DiffR-BallRL
Input: d,H,M1,M2, ε, η, L = 1/η;
Let ρh = 0, ρlh = 1 for all 1 ≤ h ≤ H, 1 ≤ l ≤ L.
Let policy π′

l to be the policy such that π(sh) = 0 for all sh ∈ Sh and 1 ≤ h ≤ H and 1 ≤ l ≤ L.
while ∃1 ≤ h ≤ H and 1 ≤ l ≤ L such that ρlh ≥ 2ρh and ρlh ≥ ε do

Fix h, l to be the one that ρlh ≥ ρh, and construct Policy πh,0 and πh,i (1 ≤ i ≤ d) based on
policy π′

l according to (7) (use π = π′
l in (7)).

Collect M1 trajectories according to policy πh,i for 0 ≤ i ≤ d each, and calculate the average
of total reward

∑H
h′=1R(sh, ah), and average of

∑H
h=2 ρ(sh) as Rh,i and sh,i, respectively.

ρh ← ρlh.
for l = 1 : L do

Let ξ = lη.
Calculate θ̂lh,i =

(sh,i−sh,0)ξ+Rh,i−Rh,0

ρh
for 1 ≤ i ≤ d.

end
Let θ̂lh =

∑d
i=1 θ̂

l
h,iei.

Construct policy π′
l:

π′
l(sh′) = argmax

ah′∈B2(ρ(sh′ ))

〈
ah′ , θ̂lh′

〉
, ∀sh′ ∈ Sh′ , 1 ≤ h′ ≤ H.

For 1 ≤ l ≤ L, run policy π′
l each for M2 times, and calculate the average total reward

R1, · · · , RL, and also calculate the average of ρ(sh′) as ρ1h′ , · · · , ρLh′ for 1 ≤ h′ ≤ H .
Let l = argmaxRl and π = π′

l.
end

Output: Policy π.

Finally, we arrive at our main result - that DiffR-BallRL is sample efficient. The proof details
are provided in Appendix B.

Theorem 9 For any 0 < δ < 1, with the choice

ε =
ϵ

8H
, δ′ =

δ

(d+ 3HL)(1 +H log2(1/ε))
, η =

ϵ

8Hd
,

M2 = 2 log(1/δ′) · 16(2 + 4H + 2Hd)2

ϵ2
, M1 = 2 log(1/δ′) · 256H

2d2

ϵ2
, L =

1

η

Algorithm 2 will output an ϵ-optimal policy with probability at least 1− δ. This algorithm will use
at most

Õ
(
H5d3

ϵ3

)
number of trajectories.

Proof Sketch of Theorem 9. Our first step of the proof is to use Bellman Equation to prove (6):

⟨φ(s1), θ∗1⟩+ Eπ

[
H∑

h=1

⟨ah, θ∗h⟩

]
= Eπ

[
H∑

h=1

R(sh, ah)

]
+Θ · Eπ

[
H∑

h=1

ρ(sh+1)

]
,

11
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which can be obtained through telescoping the following closed form of Bellman Equation at step
h:

Eπ [⟨φ(sh), θ∗h⟩+ ⟨ah, θ∗h⟩] = Eπ
[
R(sh, ah) + ρ(sh+1) · ∥θh+1∥2 + ⟨φ(sh+1), θ

∗
h+1⟩

]
.

Our second step is a result bounding the value function error of the greedy policies:

E[V ∗
1 (s1)]− E[V π

1 (s1)] ≤ 2
H∑

h=1

Eπ[ρ(sh)] ·
∥∥∥θ̂h − θ∗h

∥∥∥
2
.

Therefore, if Eπ[ρ(sh)] is small for some h (say less than ϵ), then we can ignore this term, since it
will never make big difference on the error. In the following, we assume that Eπ[ρ(sh)] ≥ ϵ.

Next, we observe that there exists some Θ′ = l0η such that |Θ′ −Θ| ≤ η. And for the iteration
l0, according to Hoeffding inequality we can get

ρh

∥∥∥θh − θ̂l0h

∥∥∥
2
≤ ηd+ 2d

√
2 log(1/δ′)

M1
+ d

√
2 log(1/δ′)

M2

with high probability, where ρh is the expectation of ρ(sh) according to the exploration policy.
Finally, if ρl0h of the greedy policy satisfies that ρl0h ≤ ρh, then the above inequality can guarantee

that this greedy policy is near optimal. Otherwise, the value of ρh will become twice as before
according to our algorithm, and this process will terminate in log(1/ϵ) number of iterations, since
according to our assumption the initial value of ρh is at least ϵ, and ρh cannot be large than 1.

Combining these steps together, we can show that the algorithm will end in certain number of
iterations, and when the algorithm ends, it will output a near optimal policy with high probability.

5. Conclusion

We presented the BallRL reinforcement learning algorithm that provides sample-efficient learning
guarantees when the optimal action-value function is linear and actions exhibit a ball structure. We
further generalized the ball structure to both convex actions sets and changing ball radius between
states. Our techniques demonstrate that there is hope for efficient learning in linear RL when actions
can sufficiently explore the feature space. The ball structure assumption itself is a sufficient, but not
fully necessary condition to ensure full exploration of the feature space. We believe that the idea of
the action set allowing for sufficient exploration can be achieved (perhaps approximately) in many
practical settings.

An interesting research direction is to dive deeper into assuming the actions lie in convex sets
instead of a pure ball structure. While the problem can be solved when the action set is consistent
between all actions, it remains to be shown if convex sets can vary between states. Additionally,
with different radii, our algorithm is polynomially efficient when unknown parameters across the
horizon share the same norm. It would be valuable to see whether this assumption can be removed
and parameters allowed to have different norms.
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Appendix A. Proof of Theorem 7

Proof [Proof of Theorem 7]
First of all, according to Bellman Equation (1), we have

⟨φ(sh), θ∗h⟩+ ⟨ah, θ∗h⟩ = Q∗
h(sh, ah)

= r(sh, ah) +
∑
sh+1

P (sh+1|sh, ah)V ∗
h+1(sh+1)

= r(sh, ah) +
∑
sh+1

P (sh+1|sh, ah) max
ah+1∈Ah+1

⟨φ(sh+1) + ah+1, θ
∗
h+1⟩

= r(sh, ah) +
∑
sh+1

P (sh+1|sh, ah)⟨φ(sh+1), θ
∗
h+1⟩+

∑
sh+1

P (sh+1|sh, ah)ρh+1 max
ah+1∈Ah+1

⟨ah+1, θ
∗
h+1⟩

= E
[
R(sh, ah) + ⟨φ(sh+1), θ

∗
h+1⟩+ ρh+1 max

ah+1∈Ah+1

⟨ah+1, θ
∗
h+1⟩

∣∣∣sh, ah] ,
where R(sh, ah) is the instant reward we obtain after choosing action ah from state sh (R(sh, ah)
has mean r(sh, ah)). Hence for a given fixed policy π, suppose a trajectory following this policy is
(s1, a1, · · · , sH , aH), then we have

Eπ [⟨φ(sh), θ∗h⟩]+Eπ[⟨ah, θ∗h⟩] = Eπ[⟨φ(sh+1), θ
∗
h+1⟩]+Eπ [R(sh, ah)]+ρh+1 max

ah+1∈Ah+1

⟨ah+1, θ
∗
h+1⟩.

Summing this up from h = 1 to h = H and noticing that θ∗h+1 = 0, we obtain that

Eπ [⟨φ(s1), θ∗1⟩] + Eπ

[
H∑

h=1

⟨ah, θ∗h⟩

]
=

H∑
h=1

Eπ[R(sh, ah)] +

H∑
h=1

ρh+1 max
ah+1∈Ah+1

⟨ah+1, θ
∗
h+1⟩.

With our choice of π0 (the policy which choose action 0 at any state and step), we obtain

Eπ0 [⟨φ(s1), θ∗1⟩] =
H∑

h=1

Eπ0 [R(sh, ah)] +

H∑
h=1

ρh+1 max
ah+1∈Ah+1

⟨ah+1, θ
∗
h+1⟩.

We notice that for every policy π, Eπ [⟨φ(s1), θ∗1⟩] are identical. Hence after subtracting the above
two equations, we get

Eπ

[
H∑

h=1

⟨ah, θ∗h⟩

]
= Eπ

[
H∑

h=1

R(sh, ah)

]
− Eπ0

[
H∑

h=1

R(sh, ah)

]
. (8)

With our choice of policy πh,i, the above equation indicates that

ρhθ
∗
h,i = ρh⟨ei, θ∗h⟩ = Eπh,i

[
H∑

h=1

R(sh, ah)

]
− Eπ0

[
H∑

h=1

R(sh, ah)

]
,

where θ∗h,i is the i-th component of θ∗h. According to our algorithm, we have ρhθ̂h,i = Rh,i −Rh,0,
and we also have

E [Rh,i −Rh,i] = Eπh,i

[
H∑

h=1

R(sh, ah)

]
− Eπ0

[
H∑

h=1

R(sh, ah)

]
= ρhθ

∗
h,i.
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Therefore, according to Hoeffding inequality, with probability at least 1− 2δ′ we have,

ρh

∣∣∣θ̂h,i − θ∗h,i

∣∣∣ ≤ 2

√
log(1/δ′)

2M
=

√
2 log(1/δ′)

M
,

if we assume that
∑H

h=1R(sh, ah) ∈ [0, 1] always holds. This indicates that with probability at
least 1− 2dHδ′, for every 1 ≤ h ≤ H ,

ρh

∥∥∥θ̂h − θ∗h

∥∥∥
2
≤

√
2d log(1/δ′)

M
.

Moreover, since ah = argmaxa∈Ah
⟨ah, θ̂h⟩, we have

⟨ah, θ∗h⟩ − ⟨a∗h, θ∗h⟩ = ⟨ah, θ∗h − θ̂h⟩+ ⟨ah, θ̂h⟩ − ⟨a∗h, θ̂h⟩+ ⟨a∗h, θ̂h − θ∗h⟩
≤ ⟨ah, θ∗h − θ̂h⟩+ ⟨a∗h, θ̂h − θ∗h⟩
≤ 2ηh · ∥θh − θ̂h∥2

≤ 2B ·
√

2d log(1/δ′)

M
,

where the first inequality is due to ah = argmaxa∈Ah
⟨ah, θ̂h⟩, and the second inequality is due to

ah, a
∗
h ∈ Ah ⊂ B2(ηh). Therefore, according to (8) we have

V ∗(s1)− V π(s1) ≤ 2BH

√
2d log(1/δ′)

M
.

With our choice of δ′ = δ
2dH and M = 8H2B2d log(2dH/δ)

ϵ2
, we have with probability at least 1 − δ,

the output policy π satisfies that
V ∗(s1)− V π(s1) ≤ ϵ.

Appendix B. Proof of Theorem 9

To prove the complexity of our algorithm, we first show the following several lemmas:

Lemma 10 For each policy π, we have the following equation

⟨φ(s1), θ∗1⟩+ Eπ

[
H∑

h=1

⟨ah, θ∗h⟩

]
= Eπ

[
H∑

h=1

R(sh, ah)

]
+Θ · Eπ

[
H∑

h=1

ρ(sh+1)

]
, (9)

where we use the notation that ρ(sH+1) = 0.
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Proof According to the Bellman Equation (1) at step h, we have

Q∗
h(sh, ah) = r(sh, ah) +

∑
sh+1

P (sh+1|sh, ah)V ∗
h+1(sh+1)

= r(sh, ah) +
∑
sh+1

P (sh+1|sh, ah) max
ah+1∈A(sh+1)

⟨φ(sh+1) + ah+1, θ
∗
h+1⟩

= r(sh, ah) +
∑
sh+1

P (sh+1|sh, ah) max
ah+1∈B2(ρ(sh+1))

⟨φ(sh+1) + ah+1, θ
∗
h+1⟩

= r(sh, ah) +
∑
sh+1

P (sh+1|sh, ah)ρ(sh+1)∥θ∗h+1∥2 +
∑
sh+1

P (sh+1|sh, ah)⟨φ(sh+1), θ
∗
h+1⟩

= Eπ
[
R(sh, ah) + ρh+1∥θ∗h+1∥2 + ⟨φ(sh+1), θ

∗
h+1⟩

∣∣sh, ah]
= Eπ

[
R(sh, ah) + ρh+1 ·Θ+ ⟨φ(sh+1), θ

∗
h+1⟩

∣∣sh, ah] .
Since

Q∗
h(sh, ah) = ⟨φ(sh, ah), θ∗h⟩ = ⟨φ(sh), θ∗h⟩+ ⟨ah, θ∗h⟩,

if we take the expectation over sh and ah, we will have

Eπ [⟨φ(sh), θ∗h⟩+ ⟨ah, θ∗h⟩] = Eπ
[
R(sh, ah) + ρ(sh+1) ·Θ+ ⟨φ(sh+1), θ

∗
h+1⟩

]
.

Telescoping this equation from h = 1 to h = H , we will get (9).

The following lemma indicates that if we have accurate enough estimation on the θ1, · · · , θH ,
then the greedy policy is a nearly optimal policy.

Lemma 11 Suppose we have estimation θ̂1, · · · , θ̂H , which satisfy∥∥∥θ̂h − θ∗h

∥∥∥
2
≤ εh, ∀1 ≤ h ≤ H.

If consider policy π to be the greedy policy with respect to θ̂1, · · · , θ̂H , then we have, e.g.

π(sh) = argmax
ah∈A(sh)

〈
φ(sh, ah), θ̂h

〉
,

then we have

V ∗
1 (s1)− V π

1 (s1) ≤ 2
H∑

h=1

E[ρ(sh)]εh.

Proof We use π∗(s) to denote the action of s in the best policy (which is deterministic). Then we
have

V ∗
1 (s1) = Q∗

1(s1, π
∗(s1)) = ⟨φ(s1), θ∗1⟩+ ⟨π∗(s1), θ

∗
1⟩.

We further have

⟨π∗(s1), θ
∗
1⟩ =

〈
π∗(s1), θ

∗
1 − θ̂1

〉
+
〈
π∗(s1), θ̂1

〉
≤ ρ(s1) ·

∥∥∥θ∗1 − θ̂1

∥∥∥
2
+
〈
π∗(s1), θ̂1

〉
≤ ρ(s1) ·

∥∥∥θ∗1 − θ̂1

∥∥∥
2
+
〈
π(s1), θ̂1

〉
= ρ(s1) ·

∥∥∥θ∗1 − θ̂1

∥∥∥
2
+ ⟨π(s1), θ∗1⟩+

〈
π(s1), θ̂1 − θ∗1

〉
≤ 2ρ(s1) ·

∥∥∥θ∗1 − θ̂1

∥∥∥
2
+ ⟨π(s1), θ∗1⟩ ,
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where the first and last inequality are due to π(s1), π
∗(s1) ∈ A(s1), and the second inequality is

due to the definition of π(s1) (greedy policy w.r.t θ̂1). Therefore, we obtain that

V ∗
1 (s1)− V π(s1) ≤ 2ρ(s1) ·

∥∥∥θ∗1 − θ̂1

∥∥∥
2
+ ⟨π(s1), θ∗1⟩+ ⟨φ(s1), θ∗1⟩ − V π(s1)

= 2ρ(s1) ·
∥∥∥θ∗1 − θ̂1

∥∥∥
2
+Q∗

1(s1, π(s1))− V π(s1)

= 2ρ(s1) ·
∥∥∥θ∗1 − θ̂1

∥∥∥
2
+ r(s1, π(s1)) + Eπ[V ∗

2 (s2)]− (r(s1, π(s1)) + Eπ[V π
2 (s2)])

= 2ρ(s1) ·
∥∥∥θ∗1 − θ̂1

∥∥∥
2
+ Eπ [V ∗

2 (s2)− V π
2 (s2)] .

We can continue the same process for V2, and obtain that

Eπ [V ∗
2 (s2)− V π

2 (s2)] ≤ 2Eπ[ρ(s2)] ·
∥∥∥θ∗2 − θ̂2

∥∥∥
2
+ Eπ [V ∗

3 (s3)− V π
3 (s3)] .

Keeping doing this until we get V ∗
H+1(sH+1)− V π

H+1(sH+1), which is zero, we obtain that

V ∗
1 (s1)− V π

1 (s1) ≤ 2
H∑

h=1

E[ρ(sh)] ·
∥∥∥θ∗h − θ̂h

∥∥∥
2
.

Therefore, when
∥∥∥θ∗h − θ̂h

∥∥∥
2
≤ εh, we will have

V ∗
1 (s1)− V π

1 (s1) ≤ 2

H∑
h=1

E[ρ(sh)]εh

Proof [Proof of Theorem 9] We will divide our proof in the following parts:

Concentration Inequalities In the following, we fix all parameters within one ‘while’ loop in the
algorithm.

According to the Boundedness Assumption (Assumption 4), and Hoeffding inequality, we have
that each of the following inequalities holds with probability at least 1−δ′ separately for 0 ≤ i ≤ d,∣∣∣∣∣Rh,i − Eπh,i

[
H∑

h′=1

R(sh′ , ah′)

]∣∣∣∣∣ ≤
√

2 log(1/δ′)

M1∣∣∣∣∣sh,i − Eπh,i

[
H∑

h′=1

ρ(sh′+1)

]∣∣∣∣∣ ≤
√

2 log(1/δ′)

M1
.

(10)

We further notice that the before step h, policy πh,i and policy πh,0 are both same as policy π, and
for every h′ > h and sh′ ∈ Sh′ , we both have πh,i(sh′) = πh,0(sh′) = 0. Therefore, according to
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(9), we have

Eπ[ρ(sh)] · ⟨ei, θ∗h⟩ = Eπh,i

[
H∑

h′=1

⟨ah′ , θ∗h′⟩

]
− Eπh,0

[
H∑

h′=1

⟨ah′ , θ∗h′⟩

]

= Eπh,i

[
H∑

h′=1

R(sh′ , ah′)

]
+Θ · Eπh,i

[
H∑

h′=1

ρ(sh′+1)

]

− Eπh,0

[
H∑

h′=1

R(sh′ , ah′)

]
−Θ · Eπh,0

[
H∑

h′=1

ρ(sh′+1)

]
.

(11)

According to (10), if we further assume |Θ− ξ| ≤ η, then with probability at least 1− 2(d+ 1)δ′,
we have for every 1 ≤ i ≤ d,

|RHS of (11)−((sh,i−sh,0)ξ+Rh,i−Rh,0)| ≤ η+

√
2 log(1/δ′)

M1
+

√
2 log(1/δ′)

M1
= η+2

√
2 log(1/δ′)

M1
,

where we have used the fact that |sh,i − sh,0| ≤ 1 and also |Θ| ≤ 1. Moreover, in the last ‘while’
loop, with probability at least 1− LHδ, according to Hoeffding inequality we have

∣∣∣ρlh − Eπ′
l [ρ(sh)]

∣∣∣ ≤
√

2 log(1/δ′)

M2
, ∀1 ≤ l ≤ L, 1 ≤ h ≤ H.

Hence we have with probability at least 1− (2d+ 3)δ′,

|ρh⟨ei, θ∗h⟩ − ((sh,i − sh,0)ξ +Rh,i −Rh,0)| ≤ η + 2

√
2 log(1/δ′)

M1
+

√
2 log(1/δ′)

M2
.

According to our algorithm, there exists one l such that |lη − Θ| ≤ η, we write this l as l0. Then
with ξ = l0η, we have

θ̂l0h,i =
(sh,i − sh,0)ξ +Rh,i −Rh,0

ρh
.

Therefore, we obtain that

∣∣∣ρh (⟨ei, θ∗h⟩ − θ̂l0h,i

)∣∣∣ ≤ η + 2

√
2 log(1/δ′)

M1
+

√
2 log(1/δ′)

M2
.

According to our construction of θ̂l0h , we have

ρh

∥∥∥θh − θ̂l0h

∥∥∥
2
≤ ηd+ 2d

√
2 log(1/δ′)

M1
+ d

√
2 log(1/δ′)

M2
.

If in the next ‘while’ loop, the condition does not satisfy, then before the next loop, for every
1 ≤ h ≤ H and 1 ≤ l ≤ L, we will have ρlh ≤ ε or ρlh ≤ ρh. Hence for l0, we also have

either ρl0h ≤ ε or ρl0h ≤ ρh for 1 ≤ h ≤ H . With loss of generality, we can assume
∥∥∥θ̂l0h ∥∥∥

2
≤ 1,
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otherwise we can consider θ̂l0h ← θ̂l0h /∥θ̂
l0
h ∥2, which will induce the same policy, and

∥∥∥θh − θ̂l0h

∥∥∥
2

will decrease under this operation. According to Hoeffding inequality and union bound, we have
with probability at least 1−HLδ′, for every 1 ≤ l ≤ L and 1 ≤ h ≤ H ,

∣∣∣ρlh − Eπ′
l(ρ(sh))

∣∣∣ ≤
√

2 log(1/δ′)

M2
.

Hence according to Lemma 11, we have

V ∗
1 (s1)− V

π′
l0

1 (s1) ≤ 2

H∑
h=1

Eπ′
l0 [ρ(sh)]

∥∥∥θh − θ̂l0h

∥∥∥
2
.

If we assume the above high-probability event all hold, then we have

RHS ≤ 4H

√
2 log(1/δ′)

M2
+ 2

H∑
h=1

ρl0h

∥∥∥θh − θ̂l0h

∥∥∥
2
,

where we use the fact that
∥∥∥θh − θ̂l0h

∥∥∥
2
≤ 2 since ∥θh∥2 ≤ 1 and ∥θ̂l0h ∥2 ≤ 1 both hold. According

to the condition that we do not enter the next ‘while’ loop, the last term above can be upper bounded
by

2H ·

ε+ ηd+ 2d

√
2 log(1/δ′)

M1
+ d

√
2 log(1/δ′)

M2

 .

Therefore, we obtain that with probability at least 1− dδ′ − 2HLδ′

V ∗
1 (s1)−V

π′
l0

1 (s1) ≤ 2Hε+2Hηd+4H

√
2 log(1/δ′)

M2
+4Hd

√
2 log(1/δ′)

M1
+2Hd

√
2 log(1/δ′)

M2
.

Further again according to Hoeffding inequality, we know that with probability at least 1−HLδ,
we have ∣∣∣∣Rl − V

π′
l0

1 (s0)

∣∣∣∣ ≤
√

2 log(1/δ′)

M2
.

If we assume
l1 = argmax

l
Rl,

then we have

V
π′
l0

1 (s0)− V π
1 (s0) = V

π′
l0

1 (s0)− V
π′
l1

1 (s0) ≤ 2

√
2 log(1/δ′)

M2
+Rl0 −Rl1 ≤ 2

√
2 log(1/δ′)

M2
.

Therefore, we have proved that if the ‘while’ loop ends, then with probability at least 1− dδ′ −
3HLδ′, the output policy π satisfies that

V ∗
1 (s1)− V π

1 (s1) ≤ 2Hε+ 2Hηd+ (2 + 4H + 2Hd)

√
2 log(1/δ′)

M2
+ 4Hd

√
2 log(1/δ′)

M1
.
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Bound on Iterations in ‘While’ Loop What left in this proof is to show that the ‘while’ loop will
terminate within some certain number of iterations.

We notice that starting from the third iterations of the ‘while’ loop, if we choose some h which
satisfies the loop condition, then the value of ρh will at least be twice of the previous loop. And the
value of ρh will be at least ε in order to enter the loop. Moreover, the value of ρh will never exceed
1 due to the boundedness assumption. Therefore, the loop will at most run

1 +H log2

(
1

ε

)
times.

Therefore, choosing ε = ϵ
8H , δ′ = δ

(d+3HL)(1+H log2(1/ε))
, η = ϵ

8Hd , M2 = 2 log(1/δ′) ·
16(2+4H+2Hd)2

ϵ2
and M1 = 2 log(1/δ′) · 256H2d2

ϵ2
and L = 1

η , then our algorithm will output an
ϵ-optimal policy using at most

(M1Hd+M2HL) ·
(
1 +H log2

(
1

ε

))
= Õ

(
H5d3

ϵ3

)
number of samples.
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