
Toward Large Kernel Models

Amirhesam Abedsoltan 1 Mikhail Belkin 2 1 Parthe Pandit 2

Abstract
Recent studies indicate that kernel machines can
often perform similarly or better than deep neural
networks (DNNs) on small datasets. The interest
in kernel machines has been additionally bolstered
by the discovery of their equivalence to wide neu-
ral networks in certain regimes. However, a key
feature of DNNs is their ability to scale the model
size and training data size independently, whereas
in traditional kernel machines model size is tied
to data size. Because of this coupling, scaling
kernel machines to large data has been computa-
tionally challenging. In this paper, we provide a
way forward for constructing large-scale general
kernel models, which are a generalization of ker-
nel machines that decouples the model and data,
allowing training on large datasets. Specifically,
we introduce EigenPro 3.0, an algorithm based
on projected dual preconditioned SGD and show
scaling to model and data sizes which have not
been possible with existing kernel methods. We
provide a PyTorch based implementation which
can take advantage of multiple GPUs.

1. Introduction
Deep neural networks (DNNs) have become the gold stan-
dard for many large-scale machine learning tasks. Two key
factors that contribute to the success of DNNs are the large
model sizes and the large number of training samples. Quot-
ing from (Kaplan et al., 2020) “performance depends most
strongly on scale, which consists of three factors: the num-
ber of model parameters N (excluding embeddings), the
size of the dataset D, and the amount of compute C used
for training. Within reasonable limits, performance depends
very weakly on other architectural hyperparameters such as
depth vs. width”. Major community effort and great amount
of resources have been invested in scaling models and data

1Department of Computer Science and Engineering, and
2Halicioglu Data Science Institute, UC San Diego, USA. Cor-
respondence to: <aabedsoltan, parthepandit@ucsd.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

size, as well as in understanding the relationship between
the number of model parameters, compute, data size, and
performance. Many current architectures have hundreds of
billions of parameters and are trained on large datasets with
nearly a trillion data points (e.g., Table 1 in (Hoffmann et al.,
2022)). Scaling both model size and the number of training
samples are seen as crucial for optimal performance.

Recently, there has been a surge in research on the equiva-
lence of special cases of DNNs and kernel machines. For
instance, the Neural Tangent Kernel (NTK) has been used
to understand the behavior of fully-connected DNNs in the
infinite width limit by using a fixed kernel (Jacot et al.,
2018). A rather general version of that phenomenon was
shown in (Zhu et al., 2022). Similarly, the Convolutional
Neural Tangent Kernel (CNTK) (Li et al., 2019) is the NTK
for convolutional neural networks, and has been shown to
achieve accuracy comparable to AlexNet (Krizhevsky et al.,
2012) on the CIFAR10 dataset.

These developments have sparked interest in the potential
of kernel machines as an alternative for DNNs. Kernel
machines are relatively well-understood theoretically, are
stable, somewhat interpretable, and have been shown to
perform similarly to DNNs on small datasets (Arora et al.,
2020; Lee et al., 2020; Radhakrishnan et al., 2022b), partic-
ularly on tabular data (Geifman et al., 2020; Radhakrishnan
et al., 2022a). However, in order for kernels to be a viable
alternative to DNNs, it is necessary to develop methods to
scale kernel machines to large datasets.

The problem of scaling. Similarly to DNN, to achieve
optimal performance of kernel models, it is not sufficient to
just increase the size of the training set for a fixed model size,
but the model size must scale as well. Fig. 1 illustrates this
property on a small-scale example (see Appendix D.2 for the
details). The figure demonstrates that the best performance
cannot be achieved solely by increasing the dataset size.
Once the model reaches its capacity, adding more data leads
to marginal, if any, performance improvements. On the
other hand, we see that the saturation point for each model
is not achieved until the number of samples significantly
exceeds the model size. This illustration highlights the need
for algorithms that can independently scale dataset size and
model size for optimal performance.

A Python package is available at github.com/EigenPro3

1

https://github.com/EigenPro/EigenPro3

Toward large kernel models

4 8 16 32 64 128 256
Number of training samples (×1000)

40

50

60

T
es
t
ac
cu
ra
cy

(%
)

ImageNet*

Model size: 8,000

Model size: 4,000

Model size: 2,000

kernel machine: 8,000 centers

Figure 1: Increasing number of training samples for a fixed
model size is helpful but insufficient for optimal perfor-
mance. The model size must scale as well. See Appendix
D.2 for details.

1.1. Main contributions

We introduce EigenPro 3.0 for learning general kernel mod-
els that can handle large model sizes. In our numerical
experiments, we train models with up to 1 million centers
on 5 million samples. To the best of our knowledge, this
was not achievable with any other existing method. Our
work provides a path forward to scaling both the model size
and size of the training dataset, independently.

1.2. Prior work

A naive approach for training kernel machines is to directly
solve the equivalent kernel matrix inversion problem. In
general, the computational complexity of solving the kernel
matrix inversion problem is O(n3), where n is the number
of training samples. Thus, computational cost grows rapidly
with the size of the dataset, making it computationally in-
tractable for datasets with more than ∼ 105 data points.

A number of methods have been proposed to tackle this issue
by utilizing various iterative algorithms and approximations.
We provide a brief overview of the key ideas below.

Gradient Descent(GD) based algorithms: Gradient de-
scent (GD) based methods, such as Pegasos (Shalev-Shwartz
et al., 2007), have a more manageable computational com-
plexity of O(n2) and can be used in a stochastic setting,
allowing for more efficient implementation. Preconditioned
stochastic gradient descent based method, EigenPro (Ma
& Belkin, 2017) was introduced to accelerate convergence
of Pegasos. EigenPro is an iterative algorithm for kernel
machines that uses a preconditioned Richardson iteration
(Richardson, 1911). Its performance was further improved
in EigenPro 2.0 (Ma & Belkin, 2019) by reducing the com-
putational and memory costs for the preconditioner through
the use of a Nyström extension (Williams & Seeger, 2000)
and introducing full hardware (GPU) utilization by adap-
tively auto-tuning the learning rate.

However, Kernel machines are limited in scalability due to

the coupling between the model and the training set. With
modern hardware, these methods can handle just above one
million training data points. A more in-depth discussion
about EigenPro can be found in Section 2.1.

Large scale Nyström-approximate models: Nyström
methods have been a popular strategy for applying ker-
nel machines at scale starting with (Williams & Seeger,
2000). We refer the reader to Section 2 for a detailed de-
scription of the Nyström approximation. Methods such as
NYTRO (Camoriano et al., 2016) and FALKON (Rudi et al.,
2017) use Nyström approximation (NA) in combination
with other techniques to improve performance. Specifically,
NYTRO combines NA with gradient descent to improve the
condition number, while FALKON uses NA in combination
with the Conjugate Gradient method. While these methods
allow for very large training sets, they are limited in terms of
the model size due to memory limitations. For example, the
largest models considered (Meanti et al., 2020) have about
100,000 centers. With 340GB RAM available to us on the
Expanse cluster (Towns et al., 2014), we were able to run
FALKON with at 256,000 model size (Figure 5). However,
scaling to 512,000 model size, already requires over 1TB
RAM which goes beyond specifications of most current
high end servers.

Sparse Gaussian Process: Methods from the literature
on Gaussian Processes, e.g. (Titsias, 2009), use so-called
inducing points to control the model complexity. While
several follow-ups such as (Wilson & Nickisch, 2015) and
GPYTORCH (Gardner et al., 2018), and GPFlow (Matthews
et al., 2017) have been applied in practice, they require
quadratic memory in terms of the number of the inducing
points, thus preventing scaling to large models. A closely
related concept is that of kernel herding (Chen et al., 2010).
The focus of these methods is largely on selecting “good”
model centers, rather than scaling-up the training procedure.
Our work is complementary to that line of research.

Random Fourier Features (RFFs): RFF is a popular
method first introduced in (Rahimi & Recht, 2007) to
approximate kernel machines using so-called “Random
Fourier Features”. However, it is generally believed that
Nyström methods outperform RFF (Yang et al., 2012).

2. Preliminaries and Background
Kernel Machines: Kernel machines, (Schölkopf et al.,
2002) are non-parametric predictive models. Given training
data (X,y) =

{
xi ∈ Rd, yi ∈ R

}n
i=1

a kernel machine is a
model of the form

f(x) =

n∑
i=1

αiK(x,xi). (1)

2

Toward large kernel models

Here, K : Rd × Rd → R is a positive semi-definite sym-
metric kernel function (Aronszajn, 1950). According to the
representer theorem (Kimeldorf & Wahba, 1970), the unique
solution to the infinite-dimensional optimization problem

arg min
f∈H

n∑
i=1

(f(xi)− yi)2 + λ ∥f∥2H (2)

has the form given in Eq. 1.

Here H is the (unique) reproducing kernel Hilbert space
(RKHS) corresponding to K.

It can be seen that α = (α1, . . . , αn) in equation (1) is the
unique solution to the linear system,

(K(X,X) + λIn)α = y. (3)

General kernel models are models of the form,

f(x) =

p∑
i=1

αiK(x, zi),

where Z = {zi ∈ Rd}pi=1 is the set of centers, which is not
necessary the same as the training set. We will refer to p as
the model size. Note that kernel machines are a special type
of general kernel models with Z = X . Our goal will be to
solve equation (2) with this new constraint on f .

Note that when Z ⊂ X , is a random subset of the training
data, the resulting model is called a Nyström approximate
(NA) model (Williams & Seeger, 2000).

In contrast to kernel machines, general kernel models, such
as classical RBF networks (Poggio & Girosi, 1990), allow
for the separation of the model and training set. General
kernel models also provide explicit control over model ca-
pacity by allowing the user to choose p separately from the
training data size. This makes them a valuable tool for many
applications, particularly when dealing with large datasets.

Notation: In what follows, functions are lowercase letters a,
sets are uppercase letters A, vectors are lowercase bold let-
ters a, matrices are uppercase bold letters A, operators are
calligraphic letters A, spaces and sub-spaces are boldface
calligraphic letters A.

Evaluations and kernel matrices: The vector of eval-
uations of a function f over a set X = {xi}ni=1 is de-
noted f(X) := (f(xi)) ∈ Rn. For sets X and Z, with
|X| = n and |Z| = p, we denote the kernel matrix
K(X,Z) ∈ Rn×p, while K(Z,X) = K(X,Z)⊤. Simi-
larly, K(·, X) ∈ Hn is a vector of functions, and we use
K(·, X)α :=

∑n
i=1K(·,xi)αi ∈H, to denote their linear

combination. Finally, for an operator A, a function a, and
a set A = {ai}ki=1, we denote the vector of evaluations of
the output,

A{a} (A) := (b(ai)) ∈ Rk where b = A (a) . (4)

Definition 1 (Top-q eigensystem). Let λ1 > λ2 > . . . >
λn, be the eigenvalues of a hermitian matrix A ∈ Rn×n,
i.e., for unit-norm ei, we have Aei = λiei. Then we call
the tuple (Λq,Eq, λq+1) the top-q eigensystem, where

Λq := diag(λ1, λ2, . . . , λq) ∈ Rq×q, and (5)

Eq := [e1, e2, . . . , eq] ∈ Rn×q. (6)

Definition 2 (Fréchet derivative). Given a function J :
H → R, the Fréchet derivative of J with respect to f
is a linear functional, denoted ∇fJ , such that for h ∈H

lim
∥h∥H→0

|J(f + h)− J(f)−∇fJ(h)|
∥h∥H

= 0. (7)

Since∇fJ is a linear functional, it lies in the dual space H∗.
Since H is a Hilbert space, it is self-dual, whereby H∗ =
H. If f is a general kernel model, andL is the square loss for
a given dataset (X,y), i.e., L(f) := 1

2

∑n
i=1(f(xi)− yi)2

we can apply the chain rule, and using reproducing property
of H, and the fact that ∇f ⟨f, g⟩H = g, we get, that the
Fréchet derivative of L, at f = f0 is,

∇fL(f0) =
n∑
i=1

(f0(xi)− yi)∇ff(xi) (8)

= K(·, X)(f0(X)− y). (9)

Hessian operator: The Hessian operator∇2
fL : H→H

for the square loss is given by,

K :=

n∑
i=1

K(·,xi)⊗K(·,xi), (10a)

K{f} (z)=
n∑
i=1

K(z,xi)f(xi) = K(z, X)f(X). (10b)

Note that K is surjective on X , and hence invertible when
restricted to X . Note that when xi

i.i.d.∼ P, for some measure
P, the above summation, on rescaling by 1

n , converges due
to the strong law of large numbers as,

lim
n→∞

K{f}
n

= TK {f} :=
∫
K(·,x)f(x) dP(x), (11)

which is the integral operator associated with a kernel K.
The following lemma relates the spectra ofK and K(X,X).
Proposition 1 (Nyström extension). For 1 ≤ i ≤ n, let λi
be an eigenvalue ofK, andψi its unit H-norm eigenfunction,
K{ψi} = λiψi. Then λi is also an eigenvalue of K(X,X).
Moreover if ei, is a unit-norm eigenvector, K(X,X)ei =
λiei, we have,

ψi = K(·, X)
ei√
λi

=

n∑
j=1

K(·,xj)
eij√
λi
. (12)

We review EigenPro 2.0 which is a closely related algorithm
for kernel regression, i.e., when Z = X .

3

Toward large kernel models

2.1. Background on EigenPro

EigenPro 1.0, proposed in (Ma & Belkin, 2017), is an it-
erative solver for solving the linear system in equation (3)
based on a preconditioned stochastic gradient descent in a
Hilbert space,

f t+1 = f t − η · P
{
∇fL(f t)

}
. (13)

HereP is a preconditioner. Due to its iterative nature, Eigen-
Pro can handle λ = 0 in equation equation (3), correspond-
ing to the problem of kernel interpolation, since in that case,
the learned model satisfies f(xi) = yi for all samples in the
training-set.

It can be shown that the following iteration in Rn

αt+1 = αt − η(In −Q)(K(X,X)αt − y), (14)

emulates equation (13) in H, see Lemma 7 in the Appendix.
The above iteration is a preconditioned version of the
Richardson iteration, (Richardson, 1911), with well-known
convergence properties. Here, Q as a rank-q symmetric
matrix obtained from the top-q eigensystem of K(X,X),
with q ≪ n. Importantly Q commutes with K(X,X).

The preconditioner, P acts to flatten the spectrum of the
Hessian K. In Rn, the matrix In −Q has the same effect
on K(X,X). The largest stable learning rate is then 2

λq+1

instead of 2
λ1

. Hence a larger q, allows faster training when
P is chosen appropriately.

EigenPro 2.0 proposed in (Ma & Belkin, 2019), applies
a stochastic approximation for P based on the Nyström
extension. We apply EigenPro 2.0 to perform an inexact
projection step in our algorithm.

3. Problem Formulation
In this work we aim to learn a general kernel model to mini-
mize the square loss over a training set. We will solve the
following infinite dimensional convex constrained optimiza-
tion problem in a scalable manner.

minimize
f

L(f) =

n∑
i=1

(f(xi)− yi)2, (15a)

subject to f ∈ Z := span
(
{K(·, zj)}pj=1

)
. (15b)

The term "scalable" refers to both large sample size (n)
and large model size (p). For instance Figure 3 shows an
experiment with 5 million samples and the model size of 1
million. Our algorithm to solve this problem, EigenPro 3.0,
is derived using a projected preconditioned gradient descent
iteration.

4. EigenPro 3.0 derivation: Projected
preconditioned gradient descent

In this section we derive EigenPro 3.0-Exact-Projection (Al-
gorithm 1), a precursor to EigenPro 3.0, to learn general
kernel models. This algorithm is based on a function space
projected gradient method. However it does not scale well.
In Section 5 we make it scalable by applying stochastic
approximations, which finally yields EigenPro 3.0 (Algo-
rithm 2).

We will apply a function-space projected gradient method
to solve this problem,

f t+1 = projZ
(
f t − ηP

{
∇fL(f t)

})
, (16)

where projZ (u) := argmin
f∈Z

∥u− f∥2H, and ∇fL(f t) is

the Fréchet derivative at f t as given in equation (8), P is
a preconditioning operator given in equation (23), η is a
learning rate. Note that the operator projZ : H → Z
projects functions from H onto the subspace Z , ensuring
feasibility of the optimization problem.
Remark 1. Note that even though equation (16) is an itera-
tion over functions which are infinite dimensional objects
{f t}t≥0, we can represent this iteration in finite dimensions
as {αt}t≥0 , where αt ∈ Rp. To see this, observe that
f t ∈ Z , whereby we express it as,

f t = K(·, Z)αt ∈H, for an αt ∈ Rp. (17)

Furthermore, the evaluation of f t above at X , is

f t(X) = K(X,Z)αt ∈ Rn. (18)

4.1. Gradient

Due to equations (8) and (18) together, the gradient is given
by the function,

∇fL(f t) = K(·, X)(f t(X)− y) (19a)

= K(·, X)(K(X,Z)αt − y) ∈ X (19b)
X := span({K(·,xi)}ni=1) . (19c)

Observe that the gradient does not lie in Z and hence a step
of gradient descent would leave Z, and the constraint is
violated. This necessitates a projection onto Z . For finitely
generated sub-spaces such as Z , the projection operation
involves solving a finite dimensional linear system.

4.2. H-norm projection

Functions in Z can be expressed as K(·, Z)θ. Hence we
can rewrite the projection problem in equation (16) as a
minimization in Rp, with θ as the unknowns. Observe that,

argmin
f

∥f − u∥2H = argmin
f

⟨f, f⟩H − 2 ⟨f, u⟩H

4

Toward large kernel models

Algorithm 1 EigenPro 3.0 Exact-Projection

Require: Data (X, y), centers Z, initialization α0, precon-
ditioning level q.

1: (Λ,E, λq+1)← top-q eigensystem of K(X,X)
2: Q← E(Iq − λq+1Λ

−1)E⊤ ∈ Rn×n
3: while Stopping criterion not reached do
4: g ← K(X,Z)α− y
5: h← K(Z,X)(In −Q)g
6: θ ← K(Z,Z)−1h
7: α← α− η θ

since ∥u∥2H does not affect the solution. Further, using
f = K(·, Z)θ, we can show that

⟨f, f⟩H − 2 ⟨f, u⟩H = θ⊤K(Z,Z)θ − 2θ⊤u(Z). (20)

This yields a simple method to calculate the projection onto
Z.

projZ{u} = argmin
f∈Z

∥f − u∥2H = K(·, Z)θ̂ (21a)

= K(·, Z)K(Z,Z)−1u(Z) ∈ Z, (21b)

where

θ̂ = argmin
θ∈Rp

θ⊤K(Z,Z)θ − 2θ⊤u(Z) = K(Z,Z)−1u(Z).

Notice that θ̂ above is linear in u, and f t(Z) = K(Z,Z)αt.
Hence we have the following lemma.

Proposition 2 (Projection). The projection step in equa-
tion (16) can be simplified as,

f t+1 = f t − η K(·, Z)K(Z,Z)−1×(
P
{
∇fL(f t)

}
(Z)

)
∈ Z. (22)

Hence, in order to perform the update, we only need to
know P {∇fL(f t)} (Z), i.e., the evaluation of the precon-
ditioned Fréchet derivative at the model centers. This can
be evaluated efficiently as described below.

4.3. Preconditioner agnostic to the model

Just like with usual gradient descent, the largest stable learn-
ing rate is governed by the largest eigenvalue of the Hessian
of the objective in equation (15), which is given by equa-
tion (10). The preconditioner P in equation (16) acts to
reduce the effect of a few large eigenvalues. We choose P
given in equation (23), just like (Ma & Belkin, 2017).

P := I −
q∑
i=1

(
1− λq+1

λq

)
ψi ⊗ ψi : H→H. (23)

Recall from Section 2 that ψi are eigenfunctions of the
Hessian K, characterized in Proposition 1. Note that this

Algorithm 2 EigenPro 3.0

Require: Data (X,y), centers Z, batch size m, Nyström
size s,, preconditioner level q.

1: Fetch subsample Xs ⊆ X of size s
2: (Λ,E, λq+1)← top-q eigensystem of K(Xs, Xs)
3: C=K(Z,Xs)E(Λ−1−λq+1Λ−2)E⊤ ∈ Rp×s
4: while Stopping criterion is not reached do
5: Fetch minibatch (Xm,ym)
6: gm ← K(Xm, Z)α− ym
7: h← K(Z,Xm)gm −CK(Xs, Xm)gm
8: θ ← EigenPro 2.0(Z,h)
9: α← α− n

mη θ

Note: EigenPro 2.0(Z,h) solves K(Z,Z)θ = h approximately
See Table 1 for a comparison of costs.

preconditioner is independent of Z. Since ∇fL(f t) ∈ X ,
we only need to understand P on X . Let (Λq,Eq, λq+1) be
the top-q eigensystem ofK(X,X), see Definition 1. Define
the rank-q matrix,

Q := Eq(Iq − λq+1Λ
−1
q)E⊤

q ∈ Rn×n. (24)

The following lemma outlines the computation involved in
preconditioning.

Proposition 3 (Preconditioner). The action of P from equa-
tion (23) on functions in X is given by,

P {K(·, X)a} = K(·, X)(In −Q)a, (25)

for all a ∈ Rm.

Since we know from equation (19) that ∇fL(f t) =
K(·, X)(K(X,Z)αt − y), we have,

P
{
∇fL(f t)

}
(Z)=K(Z,X)(In−Q)(K(X,Z)αt−y).

The following lemma combines this with Proposition 2 to
get the update equation for Algorithm 1.

Lemma 4 (Algorithm 1 iteration). The following iteration
in Rp emulates equation (16) in H,

αt+1 = αt − η K(Z,Z)−1K(Z,X)(In −Q)×
(K(X,Z)αt − y). (26)

Algorithm 1 does not scale well to large models and large
datasets, since it requires O(np ∨ p2) memory and O(np ∨
p3) FLOPS. We now propose stochastic approximations that
drastically make it scalable to both large models as well as
large datasets.

5. Upscaling via stochastic approximations
Algorithm 1 suffers from 3 main issues. It requires — (i)
access to entire dataset of size O(n) at each iteration, (ii)

5

Toward large kernel models

Algorithm Compution MemorySetup per iteration
EigenPro 3.0 s2q p(m+ s) + s(m+ q) + Tep2 s2 + sm+Mep2

EigenPro 3.0 ExactProjection nq2 + p3 np+ nq pn+ n2

FALKON p3 np p2

Table 1: Algorithm complexity. Number of training samples n, number of model centers p, batch size m, Nyström
sub-sample size s, preconditioner level q. Here Tep2 is the time it takes to run EigenPro 2.0 for the approximate projection. In
practice we only run 1 epoch of EigenPro 2.0 for large scale experiments for which Tep2 = O(p2). Similarly, Mep2 = O(p)
is the memory rquired for running EigenPro 2.0. Cost of kernel evaluations and number of classes are assumed to be O(1).

O(n2) memory to calculate the preconditioner Q, and (iii)
O(p3) for the matrix inversion corresponding to an exact
projection. This prevents scalability to large n and p.

In this section we present 3 stochastic approximation
schemes — stochastic gradients, Nyström approximated
preconditioning, and inexact projection — that drastically
reduce the computational cost and memory requirements.
These approximations together give us Algorithm 2.

Algorithm 1 emulates equation (16), whereas Algorithm 2
is designed to emulate its approximation,

f t+1 = f t − n
mη · p̃rojZ

(
Ps

{
∇̃fL(f t)

})
, (27)

where ∇̃fL(f t) is a stochastic gradient obtained from a
sub-sample of size m, Ps is a preconditioner obtained via a
Nyström extension based preconditioner from a subset of
the data of size s, and p̃rojZ is an inexact projection per-
formed using EigenPro 2.0 to solve the projection equation
K(Z,Z)θ = h.

Stochastic gradients: We can replace the gradient with
stochastic gradients, whereby ∇̃fL(f t) only depends on a
batch (Xm,ym) of size m, denoted Xm = {xij}mj=1 and
ym = (yij) ∈ Rm,

∇̃fL(f t) = K(·, Xm)(K(Xm, Z)α− ym) ∈ X . (28)

Remark 2. Here we need to scale the learning rate by n
m , to

get unbiased estimates of∇fL(f t).

Nyström preconditioning: Previously, we obtained the
preconditioner P from equation (23), which requires ac-
cess to all samples. We now use the Nyström extension to
approximate this preconditioner, see (Williams & Seeger,
2000). Consider a subset of size s, Xs = {xik}sk=1 ⊂ X .
We introduce the Nyström preconditioner,

Ps := I −
s∑
i=1

(
1− λsq+1

λsi

)
ψsi ⊗ ψsi . (29)

where ψsi are eigenfunctions of Ks := ∑s
k=1K(·,xik) ⊗

K(·,xik). Note that Ks ≈ s
nK since both approximate TK

as shown in equation (11). This preconditioner was first
proposed in (Ma & Belkin, 2019).

Next, we must understand the action ofPs on elements of X .
Let (Λq,Eq, λq+1) be the top-q eigensystem ofK(Xs, Xs).
Define the rank-q matrix,

Qs := Eq(Is − λq+1Λ
−1
q)Λ−1

q E⊤
q ∈ Rs×s. (30)

Lemma 5 (Nyström preconditioning). Let a ∈ Rm, and
Xm chosen like in equation (28), then,

Ps{K(·, Xm)a}=K(·, Xm)a−K(·, Xs)QsK(Xs,Xm)a.

Consequently, using equation (28), we get,

Ps
{
∇̃fL(f t)

}
(Z) =(

K(Z,Xm)−K(Z,Xs)QsK(Xs, Xm)
)
×(

K(Xm, Z)α
t − ym

)
∈ Rp. (31)

Inexact projection: The projection step in Algorithm 1
requires the inverse of K(Z,Z) which is computationally
expensive. However this step is solving the p × p linear
system

K(Z,Z)θ = h (32)

h :=
(
K(Z,Xm)−K(Z,Xs)QsK(Xs, Xm)

)
g

g :=
(
K(Xm, Z)α

t − ym
)
.

Notice that this is the kernel interpolation problem Eigen-
Pro 2.0 can solve. This leads to the update,

αt+1 = αt − n

m
η θ̂T (EigenPro 3.0 update)

where θ̂T is the solution to equation (32) after T steps of
EigenPro 2.0 given in Algorithm 3 in the Appendix. Algo-
rithm 2, EigenPro 3.0, implements the update above.
Remark 3 (Details on inexact-projection using EigenPro 2.0).
We apply T steps of EigenPro 2.0 for the approximate pro-
jection. This algorithm itself applies a fast preconditioned
SGD to solve the problem. The algorithm needs no hyper-
parameters adjustment. However, you need to choose s and
q. More details on this in the Appendix D.4.

6

Toward large kernel models

16 64 256 512 2000

86

87

88

89
CIFAR5M*

16 64 256 512 2000

60

65

70

75
CIFAR5M

16 64 256 512 2000
50

56

62

68

74

80

MNIST8M

16 64 256 500 1200

55

60

65

ImageNet*

Number of training samples (×1000)

T
es
t
ac
cu
ra
cy

(%
)

(Method:Model size) EP3 : 256,000 EP2 : 256,000 EP3 : 64,000 EP2 : 64,000 EP3 : 16,000 EP2 : 16,000

Figure 2: (Scaling number of training samples) Model centers are selected by random sub-sampling from the training
data set. The baselines (lines without markers) are obtained from a standard kernel machine solved by EigenPro 2.0 over
the centers and their corresponding labels. Lines with markers indicate the performance of kernel models trained with our
algorithm (EigenPro 3.0) after 50 epochs.

0 20 40 60 80

87

88

89

90

T
es
t
A
cc
ur
ac
y
(%

)

Librispeech(n=5M)

0 10 20 30 40 50

68

70

72

74

76

CIFAR5M(n=4M)

0 20 40 60 80 100
30

35

40

45

50
Webvision†(n=2.5M)

0 20 40 60 80 100

62

64

66

ImageNet*(n=1.2M)

Number of epochs

Eigenpro3.0 Model size: 1,000,000 512,000 256,000 128,000 64,000

Figure 3: (Scaling model size) Performance of EigenPro 3.0 for different number of model centers, fixed number of data n.

Remark 4 (Decoupling). There are two preconditioners
involved in EigenPro 3.0, a data preconditioner (for the
stochastic gradient) which depends only on X , and a model
preconditioner (for the inexact projection) which depends
only on Z. This maintains the models decoupling from the
training data.

Complexity analysis: We compare the complexity of the
run-time and memory requirement of Algorithm 2 and Al-
gorithm 1 with FALKON solver in Table 1.

6. Real data experiments
In this section, we demonstrate that our method can effec-
tively scale both the size of the model and the number of
training samples. We show that both of these factors are cru-
cial for a better performance. We perform experiments on
these datasets: (1) CIFAR10, CIFAR10* (Krizhevsky et al.,
2009), (2) CIFAR5M, CIFAR5M∗ (Nakkiran et al., 2021),
(3) ImageNet∗, (Deng et al., 2009), (4) MNIST, (LeCun,

*feature extraction using MobileNetV2

1998), (5) MNIST8M, (Loosli et al., 2007), (6) Fashion-
MNIST, (Xiao et al., 2017), (7) Webvision†, (Li et al., 2017),
and (8) Librispeech, (Panayotov et al., 2015). Details about
datasets can be found in Appendix D. Our method can be
implemented with any kernel function, but for the purpose
of this demonstration, we chose to use the Laplace kernel
due to its simplicity and empirical effectiveness. We treat
multi-class classification problems as multiple independent
binary regression problems, with targets from {0, 1}. The
final prediction is determined by selecting the class with the
highest predicted value among the K classes.

Scaling the number of training samples: Figure 2 il-
lustrates that for a fixed model size, increasing the number
of training samples leads to a significant improvement in
performance, as indicated by the the lines with marker. As a
point of comparison, we also include results from a standard
kernel machine using the same centers, represented by the
horizontal lines without markers. In this experiment, the
centers were randomly selected from the data and they are a

†feature extraction using ResNet-18

7

Toward large kernel models

0 25 50 75 100
85

86

87

88

89

90

T
es
t
ac
cu
ra
cy

(%
)

CIFAR10* (p = 50000)

MixUp

random cropping+fliping

w/o augmentation

0 25 50 75 100
85

86

87

88

89

FashionMNIST (p = 60000)

AWGN σ2 = 0.1

AWGN σ2 = 0.3

AWGN σ2 = 0.5

w/o augmentation

0 25 50 75 100
94

95

96

97

98

MNIST (p = 60000)

AWGN σ2 = 0.1

AWGN σ2 = 0.3

AWGN σ2 = 0.5

w/o augmentation

Number of epochs

Figure 4: (Data augmentation for kernel models) Entire original dataset was used as as the model centers Z. The model
was trained using the augmented set X (without the original data). MixUp and Crop+Flip augmentation was used for
CIFAR10. Additive White Gaussian Noise (AWGN) augmentation was used for MNIST and FashionMNIST.

64K 128K 256K 512K 1M

Model size

85

86

87

88

89

90

91

B
es
t
te
st

ac
cu
ra
cy

(%
)

Librispeech(n = 5M)

Eigenpro3.0

FALKON

Eigenpro2.0‡
...

Figure 5: Comparison of EigenPro 3.0 (EP3) performance
with FALKON and EigenPro 2.0 (EP2).
‡ For EigenPro 2.0 models size and number of training sam-
ples are the same. n = 5M was used for all other methods.
FALKON could not be run for model size larger than 256K
centers due to memory limitations. For each model size,
EigenPro 2.0 and EigenPro 3.0 use the same centers.

subset of training data.

Scaling the model size: Figure 3 shows that, when the
number of training samples is fixed, larger models perform
significantly better.

To the best of our knowledge, FALKON is the only method
capable of training general kernel models with model size
larger than 100,000 centers. Our memory resources of
340GB RAM allowed us to handle up to 256,000 centers
using FALKON. Figure 5 illustrates that our method out-
performs FALKON by utilizing larger models. Moreover,
for a fixed set of centers, training on greater number of
data will boost the performance. Therefore, EigenPro 3.0
outperforms EigenPro 2.0 by training on more data.

Data augmentation for kernel models: Data augmenta-
tion is a crucial technique for improving the performance
of deep networks. We demonstrate its benefits for general
kernel models by selecting the model centers Z to be the
original training data and the train set X to be the virtual

examples generated through augmentation. To the best of
our knowledge, this is the first implementation of data aug-
mentation for kernel models at this scale. Figure 4 shows
we have significant improvements in accuracy.

Data processing details: We performed our experiment
on CIFAR10 with feature extraction, raw images of MNIST
and FashionMNIST. For CIFAR10 augmentation, we apply
random cropping and flipping before feature extraction. We
also apply mix-up augmentation method from (Zhang et al.,
2018) after feature extraction. For MNIST and FashionM-
NIST augmentation we added Gaussian noise with different
variances. To the best of our knowledge, this is the first
implementation of data augmentation for kernel models at
this scale. Figure 4 shows we have significant improvements
in accuracy.

7. Conclusions and Outlook
The remarkable success of Deep Learning has been in large
part due to very large models trained on massive datasets.
Any credible alternative requires a path to scaling model
sizes as well as the size of the training set. Traditional
kernel methods suffer from a severe scaling limitation as
their model sizes are coupled to size of the training set. Yet,
as we have seen in numerous experiments, performance
improves with the amount of data far beyond the point
where the amount of data exceeds the number of model
centers. Other solvers, such as FALKON (Rudi et al., 2017),
GPYTORCH (Gardner et al., 2018) GPFlow Matthews et al.
(2017), allow for unlimited data but limit the model size.

In this work we provide a proof of concept showing that
for kernel methods the barrier of limited model size can
be overcome. Indeed, with a fixed model size our pro-
posed algorithm, EigenPro 3.0 has no specific limitations
on the number of samples it can use in training. As a sim-
ple illustration Fig. 6 demonstrates the results of a kernel
machine trained on an augmented FashionMNIST dataset
with 1.2×108 data samples. While increasing the model

8

Toward large kernel models

Dataset Model p = 100 p = 1000 p = 10000

CIFAR10 k−means 36.24 45.12 52.72
(n = 50000) random 33.37± 0.50 44.19± 0.09 49.92± 0.08

CIFAR10* k−means 82.69 86.58 89.11
(n = 50000) random 74.29± 0.44 84.38± 0.15 86.58± 0.06

MNIST k−means 91.89 95.96 97.69

(n = 60000) random 87.24± 0.015 94.96± 0.102 97.31± 0.004

FashionMNIST k−means 78.66 85.55 88.13

(n = 60000) random 76.24± 0.003 84.59± 0.069 87.84± 0.036

Table 2: (Benefits of model flexibility) Comparison between random centers selection and k-means clustering using
EigenPro 3.0. Here p denotes the number of centers.
(∗ indicates a preprocessing step.)

size is more challenging, we have achieved 1 million centers
and see no fundamental mathematical barrier to increasing
the number of centers to 10 million and beyond. Further-
more, as EigenPro 3.0 is highly parallelizable, we anticipate
future scaling to tens of millions of centers trained on bil-
lions of data points, approaching the scale of modern neural
networks.

600k 6M 21M 120M

Number of samples

86

88

90

T
es
t
a
cc
u
ra
cy

(%
)

FashionMNIST

w/ augmentation

w/o augmentation

Figure 6: (Training on 120 million samples) The plot
shows the results of training on 120 million data samples
generated by adding Gaussian noise to the original 60,000
images. The model centers are the images.

This line of research opens a pathway for a principled alter-
native to deep neural networks. While in our experiments
we focused primarily on Laplace kernels for their simplicity
and effectiveness, recently developed kernels such as NTK,
CNTK, and other neural kernels from (Shankar et al., 2020),
can be used to achieve state-of-the-art performance on vari-
ous datasets. Our approach is compatible with any choice
of kernel, and furthermore, can be adapted to kernels that
learn features, such as Recursive Feature Machines (Rad-
hakrishnan et al., 2022a).
Finally, we note that while the set of centers Z can be arbi-
trary, the choice of centers can affect model performance.
Table 2 (see also (Que & Belkin, 2016)) demonstrates that
using centers selected via the k-means algorithm often re-

sults in notable performance improvements when the num-
ber of centers is smaller than the number of samples. Further
research should explore criteria for optimal center selection,
incorporating recent advances, such as Rocket-propelled
Cholesky (Chen et al., 2022), into EigenPro 3.0 to improve
both model selection and construction of preconditioners.

ACKNOWLEDGMENTS

We thank Giacomo Meanti for help with using FALKON, and
Like Hui for providing us with the extracted features of the
Librispeech dataset.
We are grateful for the support from the National Science
Foundation (NSF) and the Simons Foundation for the Col-
laboration on the Theoretical Foundations of Deep Learning
(https://deepfoundations.ai/) through awards
DMS-2031883 and #814639 and the TILOS institute (NSF
CCF-2112665). This work was done in part while the
authors were visiting the Simons Institute for the The-
ory of Computing. This work used NVIDIA V100 GPUs
NVLINK and HDR IB (Expanse GPU) at SDSC Dell Clus-
ter through allocation TG-CIS220009 and also, Delta sys-
tem at the National Center for Supercomputing Applications
through allocation bbjr-delta-gpu from the Advanced Cyber-
infrastructure Coordination Ecosystem: Services & Support
(ACCESS) program, which is supported by National Sci-
ence Foundation grants #2138259, #2138286, #2138307,
#2137603, and #2138296. Prior to 09/01/2022, we used the
Extreme Science and Engineering Discovery Environment
(XSEDE) (Towns et al., 2014), which is supported by NSF
grant number ACI-1548562, Expanse CPU/GPU compute
nodes, and allocations TG-CIS210104 and TG-CIS220009.

References
Aronszajn, N. Theory of reproducing kernels. Transactions

of the American mathematical society, 68(3):337–404,
1950.

9

https://deepfoundations.ai/

Toward large kernel models

Arora, S., Du, S. S., Li, Z., Salakhutdinov, R., Wang, R.,
and Yu, D. Harnessing the power of infinitely wide deep
nets on small-data tasks. In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=rkl8sJBYvH.

Baldi, P., Sadowski, P., and Whiteson, D. Searching for
exotic particles in high-energy physics with deep learning.
Nature communications, 5(1):1–9, 2014.

Camoriano, R., Angles, T., Rudi, A., and Rosasco, L. Nytro:
When subsampling meets early stopping. In Artificial
Intelligence and Statistics, pp. 1403–1411. PMLR, 2016.

Chen, Y., Welling, M., and Smola, A. Super-samples from
kernel herding. UAI’10: Proceedings of the Twenty-
Sixth Conference on Uncertainty in Artificial Intelligence,
Pages 109–116, 2010.

Chen, Y., Epperly, E. N., Tropp, J. A., and Webber, R. J.
Randomly pivoted cholesky: Practical approximation of
a kernel matrix with few entry evaluations. arXiv preprint
arXiv:2207.06503, 2022.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Gardner, J., Pleiss, G., Wu, R., Weinberger, K., and Wil-
son, A. Product kernel interpolation for scalable gaussian
processes. In International Conference on Artificial Intel-
ligence and Statistics, pp. 1407–1416. PMLR, 2018.

Geifman, A., Yadav, A., Kasten, Y., Galun, M., Jacobs, D.,
and Ronen, B. On the similarity between the laplace and
neural tangent kernels. In Advances in Neural Informa-
tion Processing Systems, 2020.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de las Casas, D., Hendricks, L. A.,
Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican,
K., van den Driessche, G., Damoc, B., Guy, A., Osindero,
S., Simonyan, K., Elsen, E., Vinyals, O., Rae, J. W., and
Sifre, L. An empirical analysis of compute-optimal large
language model training. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=iBBcRUlOAPR.

Hui, L. and Belkin, M. Evaluation of neural architectures
trained with square loss vs cross-entropy in classification
tasks. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/
forum?id=hsFN92eQEla.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
Advances in neural information processing systems, 31,
2018.

Jurafsky, D. Speech & language processing. Pearson Edu-
cation India, 2000.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kimeldorf, G. S. and Wahba, G. A correspondence between
bayesian estimation on stochastic processes and smooth-
ing by splines. The Annals of Mathematical Statistics, 41
(2):495–502, 1970.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Citeseer, 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Ima-
genet classification with deep convolutional neural
networks. In Pereira, F., Burges, C., Bottou, L.,
and Weinberger, K. (eds.), Advances in Neural
Information Processing Systems, volume 25. Curran As-
sociates, Inc., 2012. URL https://proceedings.
neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.
pdf.

LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Lee, J., Schoenholz, S., Pennington, J., Adlam, B., Xiao, L.,
Novak, R., and Sohl-Dickstein, J. Finite versus infinite
neural networks: an empirical study. Advances in Neural
Information Processing Systems, 33:15156–15172, 2020.

Li, W., Wang, L., Li, W., Agustsson, E., and Van Gool, L.
Webvision database: Visual learning and understanding
from web data. arXiv preprint arXiv:1708.02862, 2017.

Li, Z., Wang, R., Yu, D., Du, S. S., Hu, W., Salakhutdinov,
R., and Arora, S. Enhanced convolutional neural tangent
kernels. arXiv preprint arXiv:1911.00809, 2019.

Loosli, G., Canu, S., and Bottou, L. Training invariant
support vector machines using selective sampling. Large
scale kernel machines, 2, 2007.

Ma, S. and Belkin, M. Diving into the shallows: a com-
putational perspective on large-scale shallow learning.
Advances in neural information processing systems, 30,
2017.

Ma, S. and Belkin, M. Kernel machines that adapt to gpus
for effective large batch training. Proceedings of Machine
Learning and Systems, 1:360–373, 2019.

10

https://openreview.net/forum?id=rkl8sJBYvH
https://openreview.net/forum?id=rkl8sJBYvH
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=hsFN92eQEla
https://openreview.net/forum?id=hsFN92eQEla
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Toward large kernel models

Ma, S., Bassily, R., and Belkin, M. The power of interpola-
tion: Understanding the effectiveness of sgd in modern
over-parametrized learning. International Conference on
Machine Learning, pp. 3325–3334, 2018.

Matthews, A. G. d. G., van der Wilk, M., Nickson, T.,
Fujii, K., Boukouvalas, A., León-Villagrá, P., Ghahra-
mani, Z., and Hensman, J. GPflow: A Gaussian pro-
cess library using TensorFlow. Journal of Machine
Learning Research, 18(40):1–6, apr 2017. URL http:
//jmlr.org/papers/v18/16-537.html.

Meanti, G., Carratino, L., Rosasco, L., and Rudi, A. Kernel
methods through the roof: handling billions of points
efficiently. Advances in Neural Information Processing
Systems, 33:14410–14422, 2020.

Nakkiran, P., Neyshabur, B., and Sedghi, H. The deep
bootstrap framework: Good online learners are good of-
fline generalizers. International Conference on Learning
Representations, 2021.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S.
Librispeech: an asr corpus based on public domain au-
dio books. In 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pp.
5206–5210. IEEE, 2015.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Poggio, T. and Girosi, F. Networks for approximation and
learning. Proceedings of the IEEE, 78(9):1481–1497,
1990.

Que, Q. and Belkin, M. Back to the future: Radial basis
function networks revisited. In Artificial intelligence and
statistics, pp. 1375–1383. PMLR, 2016.

Radhakrishnan, A., Beaglehole, D., Pandit, P., and Belkin,
M. Feature learning in neural networks and kernel ma-
chines that recursively learn features. arXiv preprint
arXiv:2212.13881, 2022a.

Radhakrishnan, A., Stefanakis, G., Belkin, M., and Uhler, C.
Simple, fast, and flexible framework for matrix comple-
tion with infinite width neural networks. Proceedings of
the National Academy of Sciences, 119(16):e2115064119,
2022b.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. Advances in neural information pro-
cessing systems, 20, 2007.

Richardson, L. F. Ix. the approximate arithmetical solu-
tion by finite differences of physical problems involving
differential equations, with an application to the stresses
in a masonry dam. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, 210(459-470):
307–357, 1911.

Rudi, A., Carratino, L., and Rosasco, L. Falkon: An optimal
large scale kernel method. Advances in neural informa-
tion processing systems, 30, 2017.

Schölkopf, B., Smola, A. J., Bach, F., et al. Learning with
kernels: support vector machines, regularization, opti-
mization, and beyond. MIT press, 2002.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. Pegasos:
Primal estimated sub-gradient solver for svm. In Pro-
ceedings of the 24th international conference on Machine
learning, pp. 807–814, 2007.

Shankar, V., Fang, A., Guo, W., Fridovich-Keil, S., Ragan-
Kelley, J., Schmidt, L., and Recht, B. Neural kernels
without tangents. In International Conference on Ma-
chine Learning, pp. 8614–8623. PMLR, 2020.

Titsias, M. Variational learning of inducing variables in
sparse gaussian processes. In Artificial intelligence and
statistics, pp. 567–574. PMLR, 2009.

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K.,
Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D.,
Peterson, G. D., Roskies, R., Scott, J., and Wilkins-Diehr,
N. Xsede: Accelerating scientific discovery. Computing
in Science & Engineering, 16(05):62–74, sep 2014. ISSN
1558-366X. doi: 10.1109/MCSE.2014.80.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J.,
Unno, Y., Enrique Yalta Soplin, N., Heymann, J., Wiesner,
M., Chen, N., Renduchintala, A., and Ochiai, T. ESPnet:
End-to-end speech processing toolkit. In Proceedings
of Interspeech, pp. 2207–2211, 2018. doi: 10.21437/
Interspeech.2018-1456. URL http://dx.doi.org/
10.21437/Interspeech.2018-1456.

11

http://jmlr.org/papers/v18/16-537.html
http://jmlr.org/papers/v18/16-537.html
http://dx.doi.org/10.21437/Interspeech.2018-1456
http://dx.doi.org/10.21437/Interspeech.2018-1456

Toward large kernel models

Wightman, R. Pytorch image models. https://github.
com/rwightman/pytorch-image-models,
2019.

Williams, C. and Seeger, M. Using the nyström method to
speed up kernel machines. Advances in neural informa-
tion processing systems, 13, 2000.

Wilson, A. and Nickisch, H. Kernel interpolation for scal-
able structured gaussian processes (kiss-gp). In Interna-
tional conference on machine learning, pp. 1775–1784.
PMLR, 2015.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yang, T., Li, Y.-F., Mahdavi, M., Jin, R., and Zhou, Z.-H.
Nyström method vs random fourier features: A theo-
retical and empirical comparison. Advances in neural
information processing systems, 25, 2012.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. Interna-
tional Conference on Learning Representations, 2018.

Zhu, L., Liu, C., and Belkin, M. Transition to linearity
of general neural networks with directed acyclic graph
architecture. Advances in neural information processing
systems, 2022.

12

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Toward large kernel models

APPENDICES
Table 3: Symbolic notation for EigenPro 3.0 in Algorithm 2. They satisfy m < n, and q < s < n.

Symbol Purpose
n Number of samples
m Batch-size
p Model size
s Nyström approximation subsample size
q Preconditioner level

A. Fixed point analysis
Here we provide a characterization of the fixed point of Algorithm 1.

Lemma 6. For any dataset X,y and any choice of model centers Z, if the learning rate satisfies

η <
2

λmax (K(Z,X)(In −Q)K(X,Z))

we have that

lim
t→∞

αt = (K(Z,X)(In −Q)K(X,Z))
−1
K(Z,X)(In −Q)y.

Furthermore, if y = K(X,Z)α∗ + ξ, where ξi are independent centered with E |ξi|2 = σ2, then

lim
t→∞

Eαt = α∗

lim
t→∞

E ∥αt −α∗∥2
σ2

= tr
(
(K(Z,X)(In −Q)K(X,Z))

−2
K(Z,X)(In −Q)2K(X,Z)

)
= n− trace

(
(K(Z,X)(In −Q)K(X,Z))

−2
K(Z,X)Q(In −Q)K(X,Z)

)
B. Proofs of intermediate results
B.1. Proof of proposition 1

Proposition (Nyström extension). For 1 ≤ i ≤ n, let λi be an eigenvalue of K, and ψi its unit H-norm eigenfunction,
i.e., K{ψi} = λiψi. Then λi is also an eigenvalue of K(X,X). Moreover if ei, is its unit-norm eigenvector, i.e.,
K(X,X)ei = λiei, we have,

ψi = K(·, X)
ei√
λi
. (33)

Proof. Let ψ ∈ H be an eigenfunction of K. Then by definition of K we have,

λψ = K{ψ} =
n∑
i=1

K(·,xi)ψ(xi). (34)

As the result we can write ψ as below,

ψ =

n∑
i=1

ψ(xi)

λ
K(·,xi). (35)

If we apply covariance operator to the both side of 35 we have,

K{ψ} = K
{

n∑
i=1

ψ(xi)

λ
K(·,xi)

}
=

n∑
i,j=1

ψ(xi)

λ
K(xi,xj)K(·,xj) =

n∑
j=1

ψ(xj)K(·,xj). (36)

13

Toward large kernel models

The last equation hold because of equation (34). If we define vector β such that βi =
ψ(xi)
λ , then 36 can be rewritten as,

n∑
i=1

n∑
j=1

βiK(xi,xj)K(·,xi) = λ

n∑
i=1

βiK(·,xi). (37)

Compactly we can write 37 as below,

K(X,X)2β = λK(X,X)β =⇒ K(X,X)β = λβ.

The last implication holds because K(X,X) is invertable. Thus β is an eigenvector of K(X,X). It remains to determine
the scale of β.

Now, norm of ψ can be simplified as

∥ψ∥2H =

〈
n∑
i=1

βiK(·,xi),
n∑
j=1

βjK(·,xj)
〉

H

(38)

=

n∑
i,j=1

βiβj ⟨K(·,xi),K(·,xj)⟩H = β⊤K(X,X)β = λ ∥β∥2 . (39)

Since ψ is unit norm, we have ∥β∥ = 1√
λ

. This concludes the proof. □

B.2. Proof of lemma 5

Lemma (Nyström preconditioning). Let a ∈ Rm, then we have that,

Ps {K(·, Xm)a} = K(·, Xm)a−K(·, Xs)QsK(Xs, Xm)a. (40)

Where Qs = Es,q(In − λs,q+1Λ
−1
s,q)Λ

−1
s,qE

⊤
s,q .

Proof. Recall that Ps := I −
∑q
i=1

(
1− λq+1

λq

)
ψi ⊗ ψi. By this definition we can write,

Ps (K(·, XM)α) = K(·, XM)α−
s∑
i=1

(1− λsq+1

λsi
) ⟨ψsi ,K(·, XM)α⟩H ψsi

= K(·, XM)α−
q∑
i=1

1

λsi
(1− λsq+1

λsi
) ⟨K(·, Xs)ei,K(·, XM)α⟩HK(·, Xs)ei

= K(·, XM)α−
q∑
i=1

1

λsi
(1− λsq+1

λi
) ⟨K(·, Xs)ei,K(·, XM)α⟩HK(·, Xs)ei

= K(·, XM)α−
q∑
i=1

(1− λsq+1

λsi
)K(·, Xs)eie

⊤
i K(Xs, XM)α.

Note that we used proposition 1 for ψ. Now we can compactly write the last expression as below,

Ps (K(·, XM)α) = K(·, XM)α−K(·, Xs)Es,q(In − λs,q+1Λ
−1
s,q)Λ

−1
s,qE

⊤
s,qK(Xs, XM)α

= K(·, XM)α−K(·, Xs)QsK(Xs, XM)α.

This concludes the proof.

□

14

Toward large kernel models

Algorithm 3 EigenPro 2.0(X,y). Solves the linear system K(X,X)θ = y

Require: Data (X,y), Nyström size s, preconditioner level q
α← 0 ∈ Rn ▷ initialization
Xs, (E,D), η,m← EigenPro 2.0_setup(X, s, q)
while Stopping criterion not reached do

α← EigenPro 2.0_iteration(X,y, Xs,E,D,α,m, η)

return α

EigenPro2_setup(X, s, q)
Require: Data X , Nyström size s, preconditioner size q

Fetch a subsample Xs ⊆ X of size s
(E,Λq, λq+1)← top-q eigensystem of K(Xs, Xs) ▷ E ∈ Rq×s,Λ = diag(λi) ∈ Rq×q

Dii =
1
sλi

(
1− λq+1

λi

)
β ← max

i
K(xi,xi) ∈ S

m← min
(

β
λq+1

, bsgpu
)

▷ batch size*

η ←
{

β
2m m < β

λq+1

0.99m
β+(m−1)λq+1

otherwise
▷ learning rate

return Xs, (E,D), η,m

EigenPro2_iteration(X,y, Xs,E,D,α,m, η)

Require: Data (X,y), Nyström subset Xs, preconditioner (E,D), current estimate α, batchsize m
Fetch minibatch (Xm,ym) of size m
gm ← K(Xm, X)α− ym ▷ stochastic gradient
αm ← αm − η

mgm ▷ gradient step
αs ← αs +EDE⊤K(Xs, Xm)gm ▷ gradient correction
return Updated estimte α

C. Details on EigenPro 2.0

Lemma 7. The iteration in Rn

αt+1 = αt+1 − η(In −Q)(K(X,X)αt − y), (41)

where Q = E(In − λq+1Λ
−1
q)E⊤, emulates the following iteration in H.

f t+1 = f t − ηP
{
∇fL(f t)

}
. (42)

Proof. Recall that ∇fL(f t) = K(·, X)(f t(X) − y) from equation (8), and f t(X) = K(X,X)αt. from equation (18).
We define gt := f t(X)− y = K(X,X)αt − y. Following steps of the proof in Appendix B.2 we have

P{∇fL(f t)} = K(·, X)gt −
q∑
i=1

(1− λq+1

λi
)K(·, X)e⊤i eiK(X,X)gt

= K(·, X)gt −K(·, X)E(In − λq+1Λ
−1
q)Λ−1E⊤K(X,X)gt

(a)
= K(·, X)gt −K(·, X)E(In − λq+1Λ

−1
q)Λ−1E⊤EΛE⊤gt

= K(·, X)gt −K(·, X)E(In − λq+1Λ
−1
q)E⊤gt

= K(·, X)gt −K(·, X)Qgt

= K(·, X)(In −Q)gt.

15

Toward large kernel models

Where (a) follows from K(X,X) = EΛE⊤. Now since f t = K(·, X)αt, equation (42) can be rewritten,

f t+1 = K(·, X)αt+1 − ηK(·, X)(In −Q)gt

= K(·, X)(αt+1 − η(In −Q)gt).

Replacing gt = K(X,X)αt − y leads to final update rule below,

f t+1 = K(·, X)(αt+1 − η(In −Q)(K(X,X)αt − y)).

This concludes the proof. □

Thus each update constitutes a stochastic gradient step which consists updating m weights corresponding to a minibatch
size m, followed by a gradient correction which consists of updating all n weights.

A higher preconditioner level q also allows for a higher optimal batch size m and hence better GPU utilization, see Ma et al.
(2018) for details.

With this approximation, the gradient correction simplifies drastically, and only s weights need to be updated.

D. Details on experiments and implementation of Algorithm 2
D.1. Computational resources used

This work used the Extreme Science and Engineering Discovery Environment (XSEDE) (Towns et al., 2014). We used
machines with 2x NVIDIA-V100 and 8x NVIDIA-A100 GPUs, with a V-RAM of 32GB and 40GB respectively, and 8x
cores of Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz with a RAM of 100 GB.

D.2. Figure 1 experiment

We used Laplacian Kernel and (sklearn.linear_model.Ridge) solver from the Scikit-learn library Pedregosa
et al. (2011) to solve the optimization problem ∥K(X,Z)α− y∥2 + λ · ∥α∥2 for extracted features of ImageNet, using a
pre-trained MobileNetv2 model obtained from the timm library Wightman (2019).

D.3. Datasets

We perform experiments on these datasets: (1) CIFAR10, Krizhevsky et al. (2009), (2) CIFAR5M, Nakkiran et al. (2021),
(3) ImageNet, Deng et al. (2009), (4) MNIST, LeCun (1998), (5) MNIST8M, Loosli et al. (2007), (6) Fashion-MNIST, Baldi
et al. (2014), (7) Webvision.Li et al. (2017), and (8) librispeech.

CIFAR5M. In our experiments, we utilized both raw and embedded features from the CIFAR5M data-set. The embedded
features were extracted using a MobileNetv2 model pre-trained on the ImageNet data-set, obtained from timm library
Wightman (2019). We indicate in our results when pre-trained features were used by adding an asterisk (*) to the
corresponding entries.

ImageNet. In our experiments, we utilized embedded features from the ImageNet data-set. The embedded features were
extracted using a MobileNetv2 model pre-trained on the ImageNet dataset, obtained from timm library Wightman (2019).
We indicate in our results when pre-trained features were used by adding an asterisk (*) to the corresponding entries.

Webvision. In our experiments, we utilized embedded features from the Webvision data-set. The embedded features were
extracted using a ResNet-18 model pre-trained on the ImageNet dataset, obtained from timm library Wightman (2019).
Webvision data set contains 16M images in 5k classes. However, we only considered the first 2k classes.

Librispeech. Librispeech Panayotov et al. (2015) is a large-scale (1000 hours in total) corpus of 16 kHz English speech
derived from audio books. We choose the subset train-clean-100 and train-clean-300 (5M samples) as our training data,

*bsgpu is the maximum batch-size that the GPU allows.

16

Toward large kernel models

0 4 8 12 16 20 24
20

40

60

80

Te
st

ac
cu

ra
cy

(%
)

MNIST

0 4 8 12 16 20 24
40

60

80

FashionMnist

0 20 40 60 80 100
20

30

40

50
CIFAR10

0 10 20 30 40 50

40

60

80

CIFAR10*

Number of epochs

GD w/ random centers GD w/ k-means centers EP3 w/ random centers EP3 w/ k-means centers FALKON

Figure 7: (Large scale training.) This figure shows the slow convergence of gradient descent given in (46) compared to our
algorithm and FALKON from Rudi et al. (2017). Note that FALKON involves a matrix inverse for a projection operation and
hence converges faster with respect to the number of epochs.

test-clean as our test set. The features are got by passing through a well-trained acoustic model (a VGG+BLSTM architecture
in Hui & Belkin (2021)) to align the length of audio and text. It is doing a 301-wise classification task where different class
represents different uni-gram Jurafsky (2000). The implementation of extracting features is based on the ESPnet toolkit
Watanabe et al. (2018).

D.4. Choice of hyperparameters

We choose hyperparameters to minimize computation and maximize GPU utilization. The only hyperparameters that we
need to set are s, q for outer gradient step, and σ, ξ for projection sub-problem. For σ, ξ, we used the same criteria as Ma &
Belkin (2019) to optimally use GPU utilization. For s, q, we prefer larger q because as it is explained in Ma et al. (2018),
larger q allows for larger learning rate and better condition number. However, in our algorithm we need to approximate
the top q eigensystem of Nyström sub-samples matrix. We used Scipy Virtanen et al. (2020) library to approximate these
eigensystem. The stability and precision of these approximations depends on how large is the ratio of sq . Empirically we
need this ratio to be larger than 10. On the other hand increasing s will increase setup cost, computation cost and memory
cost. We take steps below to choose q and s,

1. We first choose s as big as our GPU memory allow

2. We choose q ≈ s
10

3. We set batch size and learning rate automatically using the new top eigenvalue as it is explained in Ma & Belkin (2019)
and Ma et al. (2018).

E. Classical approach to learning kernel models with GD
If you plug in the form of general kernel models into (2), we get

minimize
α

L(α) =

n∑
i=1

L(

p∑
j=1

K(xi, zj)αj , yi) + λ

〈
p∑
j=1

K(·, zj),
p∑
j=1

K(·, zj)
〉

H

(43)

=

n∑
i=1

L(K(Xi, Z)α, yi) + λα⊤K(Z,Z)α. (44)

For the square loss this is equivalent to

minimize
α

∥K(X,Z)α− y∥2 + λα⊤K(Z,Z)α. (45)

17

Toward large kernel models

Gradient descent on this problem for the square loss yields the update equation,

αt+1 = αt − ηK(Z,X)((K(X,Z)αt − y)− ηλK(Z,Z)α. (46)

18

	Introduction
	Main contributions
	Prior work

	Preliminaries and Background
	Background on EigenPro

	Problem Formulation
	 derivation: Projected preconditioned gradient descent
	Gradient
	H-norm projection
	Preconditioner agnostic to the model

	Upscaling via stochastic approximations
	Real data experiments
	Conclusions and Outlook
	Fixed point analysis
	Proofs of intermediate results
	Proof of proposition 1
	Proof of lemma 5

	Details on EigenPro2.0
	Details on experiments and implementation of
	Computational resources used
	Figure 1 experiment
	Datasets
	Choice of hyperparameters

	Classical approach to learning kernel models with GD

