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Abstract
Causal representation learning seeks to extract
high-level latent factors from low-level sensory
data. Most existing methods rely on observational
data and structural assumptions (e.g., conditional
independence) to identify the latent factors. How-
ever, interventional data is prevalent across appli-
cations. Can interventional data facilitate causal
representation learning? We explore this question
in this paper. The key observation is that inter-
ventional data often carries geometric signatures
of the latent factors’ support (i.e. what values
each latent can possibly take). For example, when
the latent factors are causally connected, interven-
tions can break the dependency between the inter-
vened latents’ support and their ancestors’. Lever-
aging this fact, we prove that the latent causal
factors can be identified up to permutation and
scaling given data from perfect do interventions.
Moreover, we can achieve block affine identifica-
tion, namely the estimated latent factors are only
entangled with a few other latents if we have ac-
cess to data from imperfect interventions. These
results highlight the unique power of interven-
tional data in causal representation learning; they
can enable provable identification of latent factors
without any assumptions about their distributions
or dependency structure.

1. Introduction
Modern deep learning models like GPT-3 (Brown et al.,
2020) and CLIP (Radford et al., 2021) are remarkable rep-
resentation learners (Bengio et al., 2013). Despite the suc-
cesses, these models continue to be far from the human abil-
ity to adapt to new situations (distribution shifts) or carry
out new tasks (Geirhos et al., 2020; Bommasani et al., 2021;
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Figure 1. Figure 1a) Observational data: the support of child (Z2)
conditional on parent (Z1) varies with the value of parent. Figure
1b), 1c): the support of child conditional on parent under do in-
tervention, perfect intervention and many imperfect interventions
is independent of the parent. Figure 1d): intervention on child
reduces the impact of the parent on it which causes the support of
the child conditional on parent to take a larger set of values.

Yamada et al., 2022). Humans encapsulate their causal
knowledge of the world in a highly reusable and recompos-
able way (Goyal & Bengio, 2020), enabling them to adapt
to new tasks in an ever-distribution-shifting world. How
can we empower modern deep learning models with this
type of causal understanding? This question is central to the
emerging field of causal representation learning (Schölkopf
et al., 2021).

A core task in causal representation learning is provable
representation identification, i.e., developing representation
learning algorithms that can provably identify natural latent
factors (e.g., location, shape and color of different objects
in a scene). While provable representation identification is
known to be impossible for arbitrary data-generating pro-
cess (DGP) (Hyvärinen & Pajunen, 1999; Locatello et al.,
2019), real data often exhibits additional structures. For
example, Hyvarinen et al. (2019); Khemakhem et al. (2022)
consider the conditional independence between the latents
given auxiliary information; Lachapelle et al. (2022) lever-
age the sparsity of the causal connections among the latents;
Locatello et al. (2020); Klindt et al. (2020); Ahuja et al.
(2022a) rely on the sparse variation in the latents over time.

Most existing works rely on observational data and make
assumptions on the dependency structure of the latents to
achieve provable representation identification. However, in
many applications, such as robotics and genomics, there
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is a wealth of interventional data available. For example,
interventional data can be obtained from experiments such
as genetic perturbations (Dixit et al., 2016) and electrical
stimulations (Nejatbakhsh et al., 2021). Can interventional
data help identify latent factors in causal representation
learning? How can it help? We explore these questions
in this work. The key observation is that interventional
data often carries geometric signatures of the latent factors’
support (i.e., what values each latent can possibly take).
Fig. 1 illustrates these geometric signatures: perfect inter-
ventions and many imperfect interventions can make the
intervened latents’ support independent of their ancestors’
support. As we will show, these geometric signatures go
a long way in facilitating provable representation iden-
tification in the absence of strong distributional assumptions.

Contributions. This work establishes representation iden-
tification guarantees without strong distributional assump-
tions on the latents in the following settings.

• do interventions. We first investigate scenarios where
the true latent factors are mapped to high-dimensional
observations through a finite-degree multivariate poly-
nomial. When some latent dimension undergoes a hard
do intervention (Pearl, 2009), we are able to identify
it up to shift and scaling. Even when the mapping
is not a polynomial, approximate identification of the
intervened latent is still achievable provided we have
data from multiple do interventional distributions on
the same latent dimension.

• Perfect & imperfect interventions. We achieve block
affine identification under imperfect interventions (Pe-
ters et al., 2017) provided the support of the intervened
latent is rendered independent of its ancestors under
the intervention as shown in Figure 1c. This result
covers all perfect interventions as a special case.

• Observational data and independent support. The
independence-of-support condition above can further
facilitate representation identification with observa-
tional data. We show that, if the support of the latents
are already independent in observational data, then
these latents can be identified up to permutation, shift,
and scaling, without the need of any interventional
data. This result extends the classical identifiability
results from linear independent component analysis
(ICA) (Comon, 1994) to allow for dependent latent
variables. They also provide theoretical justifications
for recent proposals of performing unsupervised dis-
entanglement through the independent support condi-
tion (Wang & Jordan, 2021; Roth et al., 2022).

We summarize our results in Table 1. Finally, we empirically
demonstrate the practical utility of our theory. From data

generation mechanisms ranging from polynomials to image
generation from rendering engine (Shinners et al., 2011),
we show that interventional data helps identification.

Also, the code repository can be accessed at:
github.com/facebookresearch/CausalRepID.

2. Related Work
Existing provable representation identification approaches
often utilize structure in time-series data, as seen in ini-
tial works by Hyvarinen & Morioka (2016) and Hyvarinen
& Morioka (2017). More recent studies have expanded
on this approach, such as Hälvä & Hyvarinen (2020); Yao
et al. (2021; 2022a;b); Lippe et al. (2022b;a); Lachapelle
et al. (2022). Other forms of weak supervision, such as
data augmentations, can also be used in representation iden-
tification, as seen in works by Zimmermann et al. (2021);
Von Kügelgen et al. (2021); Brehmer et al. (2022); Locatello
et al. (2020); Ahuja et al. (2022a) that assume access to
contrastive pairs of observations (x, x̃). A third approach,
used in (Khemakhem et al., 2022; 2020), involves using
high-dimensional observations (e.g., an image) and auxil-
iary information (e.g., label) to identify representations.

To understand the factual and counterfactual knowledge
used by different works in representation identification,
we can classify them according to Pearl’s ladder of cau-
sation (Bareinboim et al., 2022). In particular, our work
operates with interventional data (level-two knowledge),
while other studies leverage either observational data (level-
one knowledge) or counterfactual data (level-three knowl-
edge). Works such as Khemakhem et al. (2022; 2020);
Ahuja et al. (2022b); Hyvarinen & Morioka (2016; 2017);
Ahuja et al. (2021) use observational data and either make
assumptions on the structure of the underlying causal graph
of latents or rely on auxiliary information. In contrast,
works like Brehmer et al. (2022) use counterfactual knowl-
edge to achieve identification for general DAG structures;
Lippe et al. (2022b;a); Ahuja et al. (2022a); Lachapelle
et al. (2022) use pre- and post-intervention observations to
achieve provable representation identification. These lat-
ter studies use instance-level temporal interventions that
carry much more information than interventional distribu-
tion alone. To summarize, these works require more in-
formation than is available with level two data in Pearlian
ladder of causation.

Finally, a concurrent work from Seigal et al. (2022) also
studies identification of causal representations using inter-
ventional distributions. The authors focus on linear mixing
of the latents and consider perfect interventions. In con-
trast, our results consider nonlinear mixing function and
imperfect interventions.
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Table 1. Summary of results. Existing works such as iVAE (Khemakhem et al., 2022) use observational data and make assumptions on the
graphical model of the latents to achieve identification. In contrast, we use interventional data and make no assumptions on the graph.

Input data Assm. on Z Assm. on g Identification

Obs Zr ⊥ Zs|U , U aux info. Diffeomorphic Perm & scale (Khemakhem, 2020)
Obs Non-empty interior Injective poly Affine (Theorem 4.4)
Obs Non-empty interior ≈ Injective poly ≈ Affine (Theorem A.8)
Obs Independent support Injective poly Perm, shift, & scale (Theorem 6.3)
Obs + do intervn Non-empty interior Injective poly Perm, shift, & scale (Theorem 5.3)
Obs + do intervn Non-empty interior Diffeomorphic ≈ Perm & comp-wise (Theorem A.12)
Obs + Perfect intervn Non-empty interior Injective poly Block affine (Theorem 5.8)
Obs + Imperfect intervn Partially indep. support Injective poly Block affine (Theorem 5.8)
Counterfactual Bijection w.r.t. noise Diffeomorphic Perm & comp-wise (Brehmer, 2022)

3. Setup: Causal Representation Learning
Causal representation learning aims to identify latent vari-
ables from high-dimensional observations. Begin with a
data-generating process where some high-dimensional ob-
servations x ∈ Rn are generated from some latent variables
z ∈ Rd. We consider the task of identifying latent z assum-
ing access to both observational and interventional datasets:
the observational data is drawn from

z ∼ PZ ; x← g(z), (1)

where the latent z is sampled from the distribution PZ and
x is the observed data point rendered from the underlying
latent z via an injective decoder g : Rd → Rn. The inter-
ventional data is drawn from a similar distribution except
the latent z is drawn from P(i)

Z , namely the distribution of z
under intervention on zi:

z ∼ P(i)
Z ; x← g(z). (2)

We denote Z and Z(i) as the support of PZ and P(i)
Z respec-

tively (support is the set where the probability density is
more than zero). The support of x is thus X = g(Z) in ob-
servational data and X (i) = g

(
Z(i)

)
in interventional data.

The goal of causal representation learning is provable rep-
resentation identification, i.e. to learn an encoder function,
which takes in the observation x as input and provably out-
put its underlying true latent z. In practice, such an encoder
is often learned via solving a reconstruction identity,

h ◦ f(x) = x ∀x ∈ X ∪ X (i), (3)

where f : Rn → Rd and h : Rd → Rn are a pair of encoder
and decoder, which need to jointly satisfy Eq. 3. The pair
(f, h) together is referred to as the autoencoder. Given the
learned encoder f , the resulting representation is ẑ ≜ f(x),
which holds the encoder’s estimate of the latents.

The reconstruction identity Eq. 3 is highly underspecified
and cannot in general identify the latents. There exist many
pairs of (f, h) that jointly solve Eq. 3 but do not provide

representations ẑ ≜ f(x) that coincide with the true latents
z. For instance, applying an invertible map b to any solution
(f, h) will result in another valid solution b ◦ f , h ◦ b−1.
In practical applications, however, the exact identification
of the latents is not necessary. For example, we may not
be concerned with the recovering the latent dimensions in
the order they appear in z. Thus, in this work, we examine
conditions of under which the true latents can be identified
up to certain transformations, such as affine transformations
and coordinate permutations.

4. Stepping Stone: Affine Representation
Identification with Polynomial Decoders

We first establish an affine identification result, which serves
as a stepping stone towards stronger identification guaran-
tees in the next section. We begin with a few assumptions.

Assumption 4.1. The interior of the support of z, Z ∪Z(i),
is a non-empty subset of Rd.1

Assumption 4.2. The decoder g is a polynomial of finite
degree p whose corresponding coefficient matrix G has full
column rank. Specifically, the decoder g is determined by
the coefficient matrix G as follows,

g(z) = G[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

]⊤ ∀z ∈ Rd,

where ⊗̄ represents the Kronecker product with all dis-
tinct entries; for example, if z = [z1, z2], then z⊗̄z =
[z21 , z1z2, z

2
2 ].

The assumption that the matrix G ∈ Rn×q has a full column
rank of q guarantees that the decoder g is injective; see
Lemma A.1 in Appendix A.1 for a proof. This injectivity
condition on g is common in identifiable representation
learning. Without injectivity, the problem of identification
becomes ill-defined; multiple different latent z’s can give

1We work with (Rd, ∥∥2) as the metric space. A point is in the
interior of a set if there exists an ϵ ball for some ϵ > 0 containing
that point in the set. The set of all such points defines the interior.
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rise to the same observation x. We note that the full-column-
rank condition for G in Assumption 4.2 imposes an implicit
constraint on the dimensionality n of the data; it requires
that the dimensionality n is greater than the number of terms
in the polynomial of degree p, namely n ≥

∑p
r=0

(
r+d−1
d−1

)
.

In the Appendix (Theorem A.5), we show that if our data
is generated from sparse polynomials, i.e., G is a sparse
matrix, then n is allowed to be much smaller.

Under Assumptions 4.1 and 4.2, we perform causal repre-
sentation learning with two constraints: polynomial decoder
and non-collapsing encoder.

Constraint 4.3. The learned decoder h is a polynomial of
degree p and it is determined by its corresponding coefficient
matrix H as follows,

h(z) = H[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

]⊤ ∀z ∈ Rd,

where ⊗̄ represents the Kronecker product with all distinct
entries. The interior of the image of the encoder f(X∪X (i))
is a non-empty subset of Rd.

We now show that solving the reconstruction identity with
these constraints can provably identify the true latent z up
to affine transformations.

Theorem 4.4. Suppose the observational data and interven-
tional data are generated from Eq. 1 and Eq. 2 respectively
under Assumptions 4.1 and 4.2. The autoencoder that solves
the reconstruction identity in Eq. 3 under Constraint 4.3
achieves affine identification, i.e., ∀z ∈ Z∪Z(i), ẑ = Az+c,
where ẑ is the encoder f ’s output, z is the true latent,
A ∈ Rd×d is invertible and c ∈ Rd.

Theorem 4.4 drastically reduces the ambiguities in identify-
ing latent z from arbitrary invertible transformations to only
invertible affine transformations. Moreover, Theorem 4.4
does not require any structural assumptions about the depen-
dency between the latents. It only requires (i) a geometric
assumption that the interior of the support is non-empty and
(ii) the map g is a finite-degree polynomial.

The proof of Theorem 4.4 is in Appendix A.1. The idea is to
write the representation ẑ = f(x) as ẑ = f ◦ g(z) = a(z)
with a ≜ f ◦ g, leveraging the relationship x = g(z) in
Eq. 1. We then show the a function must be an affine map.
To give further intuition, we consider a toy example with
one-dimensional latent z, three-dimensional observation x,
and the true decoder g and the learned decoder h each being
a degree-two polynomial. We first solve the reconstruction
identity on all x, which gives h(ẑ) = g(z), and equivalently
H[1, ẑ, ẑ2]⊤ = G[1, z, z2]⊤. This equality implies that
both ẑ and ẑ2 must be at most degree-two polynomials of z.
As a consequence, ẑ must be a degree-one polynomial of z,
which we next prove by contradiction. If ẑ is a degree-two
polynomial of z, then ẑ2 is degree four; it contradicts the

fact that ẑ2 is at most degree two in z. Therefore, ẑ must be
a degree-one polynomial in z, i.e. a linear function of z.

Beyond polynomial map g. Theorem A.8 in the Ap-
pendix extends Theorem 4.4 to a class of maps g(·) that
are ϵ-approximable by a polynomial.

5. Provable Representation Identification with
Interventional Data

In the previous section, we derived affine identification guar-
antees. Next, we strengthen these guarantees by leveraging
geometric signals specific to many interventions.

5.1. Representation identification with do interventions

We begin with a motivating example on images, where we
are given data with do interventions on the latents. Consider
the two balls shown in Fig. 2a. Ball 1’s coordinates are
(z11 , z

1
2) and Ball 2’s coordinates are (z21 , z

2
2). We write the

latent z = [(z11 , z
1
2), (z

2
1 , z

2
2)], this latent is rendered in the

form of the image x shown in the Fig. 2a. The latent z in
the observational data follows the directed acyclic graph
(DAG) in Fig. 2b, where Ball 1’s coordinate cause the Ball
2 coordinates. The latent z under a do intervention on z22 ,
then the second coordinate of Ball 2, follows the DAG in
Fig. 2c. Our goal is to learn an encoder using the images x
in observational and interventional data, which outputs the
coordinates of the balls up to permutation and scaling.

Suppose z is generated from a structural causal model with
an underlying DAG (Pearl, 2009). Formally, a do interven-
tion on one latent dimension fixes it to some constant value.
The distribution of the children of the intervened compo-
nent is affected by the intervention, while the distribution of
remaining latents remains unaltered. Based on this property
of do intervention, we characterize the distribution P(i)

Z in
Eq. 2 as

zi = z∗; z−i ∼ P(i)
Z−i

, (4)

where zi takes a fixed value z∗. The remaining variables in
z, z−i, are sampled from P(i)

Z−i
.

The distribution P(i)
Z−i

in Eq. 4 encompasses many settings
in practice, including (i) the do interventions on causal
DAGs (Pearl, 2009), i.e., P(i)

Z−i
= PZ−i|do(zi=z∗), ii) the

do interventions on cyclic graphical models (Mooij & Hes-
kes, 2013), and (iii) sampling z−i from its conditional in the
observational data P(i)

Z−i
= PZ−i|zi=z∗ (e.g., subsampling

images in observational data with a fixed background color).

Given interventional data from do interventions, we perform
causal representation learning by leveraging the geometric
signature of the do intervention in search of the autoencoder.

4



Interventional Causal Representation Learning

z11 z12

z21 z22

z11 z12

z21 z22
(z11 , z12)

(z21 , z22)

Observational Data Interventional Data

(b) (c)(a)

Figure 2. Illustrating do interventions in image-based data in (a).
The DAG of dependencies under the observational distribution (b)
and a perfect intervention on z22 in (c).

In particular, we enforce the following constraint while
solving the reconstruction identity in Eq. 3.

Constraint 5.1. The encoder’s kth component fk(x) de-
noted as ẑk is required to take some fixed value z† for all
x ∈ X (i). Formally stated fk(x) = z†,∀x ∈ X (i).

In Constraint 5.1, we do not need to know which component
is intervened and the value it takes, i.e., k ̸= i and z† ̸=
z∗. We next show how this constraint helps identify the
intervened latent zi under an additional assumption on the
support of the unintervened latents stated below.

Assumption 5.2. The interior of support of distribution of
unintervened latents P(i)

Z−i
is a non-empty subset of Rd−1.

Theorem 5.3. Suppose the observational data and interven-
tional data are generated from Eq. 1 and Eq. 2 respectively
under Assumptions 4.1 and 4.2, where P(i)

Z follows Eq. 4.
The autoencoder that solves Eq. 3 under Constraint 4.3,
Constraint 5.1 identifies the intervened latent zi up to shift
and scaling, i.e., ẑk = ezi + b, where e ∈ R, b ∈ R.

Theorem 5.3 immediately extends to settings when mul-
tiple interventional distributions are available, with each
corresponding to a hard do intervention on a distinct la-
tent variable. Under the same assumptions of Theorem 5.3,
each of the intervened latents can be identified up to per-
mutation, shift, and scaling. Notably, Theorem 5.3 does
not rely on any distributional assumptions (e.g., parametric
assumptions) on z; nor does it rely on the nature of the
graphical model for z (e.g., cyclic, acyclic). Theorem 5.3
makes these key geometric assumptions: (i) support of z in
observational data, (ii) support of unintervened latents z−i

has a non-empty interior.

Theorem 5.3 combines the affine identification guarantee
we derived in Theorem 4.4 with the geometric signature of
do interventions. For example, in Fig. 1b, the support of
the true latents is axis-aligned (parallel to x-axis). In this
case, the interventional constraint also forces the support
of ẑ to be axis-aligned (parallel to x-axis or y-axis). The
proof of Theorem 5.3 is in Appendix A.2. We provide
some intuition here. First, given Assumptions 4.1 and 4.2

and Constraint 4.3, Theorem 4.4 already guarantees affine
identification. It implies ẑk = a⊤−iz−i + ezi + b, where z−i

includes all entries of z other than zi, and a−i is a vector
of the corresponding coefficients. As a result, a⊤−iz−i must
also take a fixed value for all values of z−i in the support of
P(i)
Z−i

, since both ẑk and zi are set to a fixed value. We argue
a−i = 0 by contradiction. If a−i ̸= 0, then any changes to
z−i in the direction of a−i will also reflect as a change in ẑk;
it contradicts the fact that ẑk takes a fixed value. Therefore,
a−i = 0 and zi is identified up to shift and scaling.

Beyond polynomial map g. In Theorem 5.3, we assume
that the map g is a polynomial. In the Appendix (Theo-
rem A.12) we show that, even when g is not a polynomial
but a general diffeomorphism, the intervened latent can be
approximately identified up to an invertible transform pro-
vided sufficiently many do interventional distributions per
latent are available. That said, one interventional distribu-
tion per latent no longer suffices, unlike the polynomial g
case. Our experiments on images in § 8 further support this
argument. We state Theorem A.12 informally below.

Theorem. (Informal) Suppose the observational data is
generated from Eq. 1 and suppose we gather multiple in-
terventional datasets for latent zi, where in each interven-
tional dataset, zi is set to a distinct fixed value under do
intervention following Eq. 4. If the number of do interven-
tional datasets is sufficiently large and the support of the
latents satisfy certain regularity conditions (detailed in The-
orem A.12), then the autoencoder that solves Eq. 3 under
multiple constraints of the form Constraint 5.1 identifies zi
up to an invertible transform approximately.

5.2. General perfect and imperfect interventions

In the discussion so far, we focused on do interventions. In
this section, our goal is to build identification guarantees
under imperfect interventions. In the example that follows,
we motivate the class of imperfect interventions we consider.

Motivating example of perfect & imperfect interventions
on images. First, we revisit perfect interventions in causal
DAGs (Peters et al., 2017). Under a perfect intervention,
the intervened latent is disconnected from its parents and
do interventions are a special case of perfect interventions.
Consider the two balls shown in Fig. 2a. Suppose Ball 1 has
a strong influence on Ball 2 in the observational DAG shown
in Fig. 2b. As a result, the position of Ball 1 determines
the region where Ball 2 can be located inside the box in
Fig. 2a. Now imagine if a perfect intervention is carried
out as shown in Fig. 2c. Under this intervention the second
coordinate of Ball 2 is not restricted by Ball 1 and it takes all
possible values in the box. Do we need perfect interventions
to ensure that Ball 2 can be located anywhere in the box?
Even an imperfect intervention that reduces the strength of
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influence of Ball 1 on Ball 2 can suffice to ensure that Ball
2 takes all possible locations in the box. In this section, we
consider such imperfect interventions that guarantee that the
range of values the intervened latent takes does not depend
on its non-descendants. We formalize this below.

Definition 5.4. (Wang & Jordan, 2021) Consider a random
variable V = [V1, V2] sampled from PV . V1, V2 are said to
have independent support if V = V1 × V2 where V is the
support of PV , Vj are the supports of marginal distribution
of Vj for j ∈ {1, 2} and × is the Cartesian product.

Observe that two random variables can be dependent but
have independent support. Suppose z is generated from
a structural causal model with an underlying DAG and zi
undergoes an imperfect intervention. We consider imperfect
interventions such that each pair (zi, zj) satisfies support
independence (Definition 5.4), where zj is a non-descendant
of zi in the underlying DAG. Below we characterize imper-
fect interventions that satisfy support independence.

Characterizing imperfect interventions that lead to sup-
port independence. Suppose zi ← w(Pa(zi), u), where
Pa(zi) is the value of the set of parents of zi, u ∈ U is a
noise variable that is independent of the ancestors of zi, and
w is the map that generates zi. We carry out an imperfect
intervention on zi and change the map w to v. If the range
of values assumed by v for any two values assumed by the
parents are equal, then the support of zi is independent of
all its non-descendants. Formally stated the condition is
v(Pa(zi),U) = v(Pa

′
(zi),U), where Pa(zi) and Pa

′
(zi)

are any two sets of values assumed by the parents.

We are now ready to describe the geometric properties we
require of the interventional distribution P(i)

Z in Eq. 2. We
introduce some notation before that. Let [d] := {1, · · · , d}.
For each j ∈ [d], we define the supremum and infimum of
each component zj in the interventional distribution. Define
αj
sup (αj

inf ) to be the supremum (infimum) of the set Z(i)
j .

Assumption 5.5. Consider z sampled from the interven-
tional distribution P(i)

Z in Eq. 2. ∃S ⊆ [d] such that the
support of zi is independent of zj for all j ∈ S. For all
j ∈ S

Z(i)
i,j = Z(i)

i ×Z
(i)
j (5)

For all j ∈ [d],−∞ < αj
inf ≤ αj

sup <∞∃ ζ > 0 such that

(αj
sup − ζ, αj

sup) ∪ (αj
inf , α

j
inf + ζ) ⊆ Z(i)

j , ∀j ∈ [d].

The distribution P(i)
Z above is quite general in several ways

as it encompasses i) all perfect interventions since they ren-
der the intervened latent independent of its non-descendants
and ii) imperfect interventions that lead to independent sup-
port as characterized above. The latter part of the above
assumption is a regularity condition on the geometry of the

support. It ensures the support of z has a ζ-thick boundary
for a ζ > 0.

We now describe a constraint on the encoder that leverages
the geometric signature of imperfect interventions in As-
sumption 5.5. Recall ẑk = fk(x). Let Ẑ = f(X ) and
Ẑ(i) = f(X (i)) represent the support of encoder f ’s output
on observational data and interventional data respectively.
Ẑ(i)

k,m represents the joint support of (ẑk, ẑm) and Ẑ(i)
k is

the support of ẑk in interventional data. Similarly, we define
Ẑk,m and Ẑk for observational data.

Constraint 5.6. Given a set S ′
. For each m ∈ S ′

, (ẑk, ẑm)
satisfies support independence on interventional data, i.e.,

Ẑ(i)
k,m = Ẑ(i)

k × Ẑ
(i)
m ,∀m ∈ S

′
.

In the above Constraint 5.6, the index k and set S ′
are not

necessarily the same as i and S from Assumption 5.5. In
the theorem that follows, we require |S ′ | ≤ |S| to guarantee
that a solution to Constraint 5.6 exists. In the Appendix
A.3, we explain that this requirement can be easily relaxed.
Note that Constraint 5.6 bears similarity to Constraint 5.1
from the case of do interventions. Both constraints ensure
that the support of the kth component is independent of all
other components. In the theorem that follows, we show
that the above Constraint 5.6 helps achieve block affine
identification, which we formally define below.

Definition 5.7. If ẑ = Λ̃Πz+ c for all z ∈ Z ∪Z(i), where
Π is a permutation matrix, Λ̃ is an invertible matrix such
that there is a submatrix of Λ̃ which is zero, then ẑ is said to
block-affine identify z.

Theorem 5.8. Suppose the observational data and inter-
ventional data are generated from Eq. 1 and Eq. 2 re-
spectively under Assumptions 4.1, 4.2, 5.5. The autoen-
coder that solves Eq. 3 under Constraint 4.3, 5.6 (with
|S ′ | ≤ |S|) achieves block affine identification. More specif-
ically, ∀z ∈ Z ∪ Z(i)

ẑk = a⊤k z + ck, ẑm = a⊤mz + cm,∀m ∈ S
′
,

where ak contains at most d− |S ′ | non-zero elements and
each component of am is zero whenever the corresponding
component of ak is non-zero for all m ∈ S ′

.

Firstly, from Theorem 4.4, ẑ = Az + c. From the above
theorem, it follows that ẑk linearly depends on at most
d−|S ′ | latents and not all the latents. Each ẑm with m ∈ S ′

does not depend on any of the latents that ẑk depends on. As
a result, |S ′ |+ 1 rows of A (from Theorem 4.4) are sparse.
Observe that if |S ′ | = |S| = d − 1, then as a result of the
above theorem, ẑk identifies some zj up to scale and shift.
Further, remaining components ẑ−k linearly depend on z−j

and do not depend on zj . The proof of Theorem 5.8 is in
Appendix A.3.
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6. Extensions to Identification with
Observational Data & Independent Support

In the previous section, we showed that interventions induce
geometric structure (independence of supports) in the sup-
port of the latents that helps achieve strong identification
guarantees. In this section, we consider a special case where
such geometric structure is already present in the support
of the latents in the observational data. Since we only work
with observational data in this section, we set the interven-
tional supports Z(i) = X (i) = ∅, where ∅ is the empty set.
For each j ∈ [d], define βj

sup to be the supremum of the
support of zj , i.e., Zj . Similarly, for each j ∈ [d], define
βj
inf to be the infimum of the set Zj .

Assumption 6.1. The support of PZ in Eq. 1 satisfies pair-
wise support independence between all the pairs of latents.
Formally stated,

Zr,s = Zr ×Zs,∀r ̸= s, r, s ∈ [d] (6)

For all r ∈ [d], −∞ < βr
inf ≤ βr

sup < ∞. ∃ ζ > 0 such
that (βr

sup− ζ, βr
sup)∪ (βr

inf , β
r
inf + ζ) ⊆ Zr for all r ∈ [d].

Following previous sections, we state a constraint, where
the learner leverages the geometric structure in the support
in Assumption 6.1 to search for the autoencoder.
Constraint 6.2. Each pair (ẑk, ẑm), where k,m ∈ [d] and
k ̸= m satisfies support independence on observational
data, i.e., Ẑk,m = Ẑk×Ẑm, where Ẑk,m is the joint support
of (ẑk, ẑm) and Ẑk is support of ẑk.

Theorem 6.3. Suppose the observational data is generated
from Eq. 1 under Assumption 4.1, 4.2, and 6.1, The autoen-
coder that the solves Eq. 3 under Constraint 6.2 achieves
permutation, shift and scaling identification. Specifically,
∀z ∈ Z, ẑ = ΛΠz + c, where ẑ is the output of the encoder
f and z is the true latent and Π is a permutation matrix and
Λ is an invertible diagonal matrix.

The proof of Theorem 6.3 is in Appendix A.4. Theo-
rem 6.3 says that the independence between the latents’
support is sufficient to achieve identification up to permuta-
tion, shift, and scaling in observational data. Theorem 6.3
has important implications for the seminal works on lin-
ear ICA (Comon, 1994), considering the simple case of a
linear g. Comon (1994) shows that, if the latent variables
are independent and non-Gaussian, then the latent variables
can be identified up to permutation and scaling. However,
Theorem 6.3 states that, even if the latent variables are de-
pendent, the latent variables can be identified up to permu-
tation, shift and scaling, as long as they are bounded (hence
non-Gaussian) and satisfy pairwise support independence.

Finally, Theorem 6.3 provides a first general theoretical
justification for recent proposals of unsupervised disentan-
glement via the independent support condition (Wang &
Jordan, 2021; Roth et al., 2022).

7. Learning Representations from Geometric
Signatures: Practical Considerations

In this section, we describe practical algorithms to solve the
constrained representation learning problems in § 5 and 6.

To perform constrained representation learning with do-
intervention data, we proceed in two steps. In the first step,
we carry out minimization of the reconstruction objective
f†, h† = argminf,h E

[
∥h ◦ f(X)−X∥2

]
, where h is the

decoder, f is the encoder and expectation is taken over
observational data and interventional data. In the experi-
ments, we restrict h to be a polynomial and show that affine
identification is achieved by the learned f† as proved in
Theorem 4.4.

In the second step, we learn a linear map to transform the
learned representations and enforce Constraint 5.1. For each
interventional distribution, P(i)

X , we learn a different linear
map γi that projects the representation such that it takes an
arbitrary fixed value z†i on the support of P(i)

X . We write this
objective as

min
{γi}

∑
i

E
X∼P(i)

X

[∥∥γ⊤
i f†(X)− z†i

∥∥2]. (7)

Construct a matrix Γ with different γ⊤
i as the rows. The final

output representation is Γf†(X). In the experiments, we
show that this representation achieves permutation, shift and
scaling identification as predicted by Theorem 5.3. A few
remarks in order. i) z†i is arbitrary and learner does not know
the true do intervention value, ii) for ease of exposition, Eq. 7
assumes the knowledge of index of intervened and can be
easily relaxed by multiplying Γ with a permutation matrix.

We next describe an algorithm that learns representations to
enforce independence of support (leveraged in Theorem 5.8
and 6.3). To measure the (non)-independence of the latents’
support, we follow Wang & Jordan (2021); Roth et al. (2022)
and measure the distance between the sets in terms of Haus-
dorff distance: the Hausdorff distance HD between the sets

S1,S2 is HD(S1,S2) = supz∈S2

(
infz′∈S1

(∥z − z
′∥)

)
,

where S1 ⊆ S2.

To further enforce the independent support constraint, we
again follow a two-step algorithm. The first step remains
the same, i.e., we minimize the reconstruction objective. In
the second step, we transform the learned representations
(f†(x)) with an invertible map Γ ∈ Rd×d. The joint support
obtained post transformation is a function of the parameters
Γ and is denoted as Ẑ(Γ). Following the notation introduced
earlier, the joint support along dimensions k,m is Ẑk,m(Γ)

and the marginal support along k is Ẑk(Γ). We translate
the problem in Constraint 6.2 as follows. We find a Γ to
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minimize

min
Γ

∑
k ̸=m

HD
(
Ẑk,m(Γ), Ẑk(Γ)× Ẑm(Γ)

)
. (8)

Constraint 5.6 can be similarly translated.

8. Empirical Findings
In this section, we analyze how the practical implemen-
tation of the theory holds up in different settings rang-
ing from data generated from polynomial decoders to
images generated from PyGame rendering engine (Shin-
ners et al., 2011). The code to reproduce the ex-
periments can be found at https://github.com/
facebookresearch/CausalRepID.

Data generation process. Polynomial decoder data: The
latents for the observational data are sampled from PZ . PZ

can be i) independent uniform, ii) an SCM with sparse
connectivity (SCM-S), iii) an SCM with dense connectivity
(SCM-D) (Brouillard et al., 2020). The latent variables are
then mapped to x using a multivariate polynomial. We use
a n = 200 dimensional x. We use two possible dimensions
for the latents (d) – six and ten. We use polynomials of
degree (p) two and three. Each element in G to generate x
is sampled from a standard normal distribution.

Image data: For image-based experiments, we used the
PyGame (Shinners, 2011) rendering engine. We generate
64× 64× 3 pixel images of the form in Fig. 2 and consider
a setting with two balls. We consider three distributions for
latents: i) independent uniform, ii) a linear SCM with DAG
in Fig. 2, iii) a non-linear SCM with DAG in Fig. 2, where
the coordinates of Ball 1 are at the top layer in the DAG and
coordinates of Ball 2 are at the bottom layer in the DAG.

For both settings above, we carry out do interventions on
each latent dimension to generate interventional data.

Model parameters and evaluation metrics. We follow
the two step training procedures described in § 7. For image-
based experiments we use a ResNet-18 as the encoder (He
et al., 2016) and for all other experiments, we use an MLP
with three hidden layers and two hundred units per layer.
We learn a polynomial decoder h as the theory prescribes
to use a polynomial decoder (Constraint 4.3) when g is
a polynomial. In App. B.3, we also present results when
we use an MLP decoder. To check for affine identification
(from Theorem 4.4), we measure the R2 score for linear
regression between the output representation and the true
representation. If the score is high, then it guarantees affine
identification. To verify permutation, shift and scaling iden-
tification (from Theorem 6.3), we check the mean corre-
lation coefficient (MCC (Khemakhem et al., 2022)). For

further details on data generation, models, hyperparamters,
and supplementary experiments refer to the App. B.

PZ d p R2 MCC (IOS)

Uniform 6 2 1.00± 0.00 99.3± 0.07
Uniform 6 3 1.00± 0.00 99.4± 0.06
Uniform 10 2 1.00± 0.00 90.7± 2.92
Uniform 10 3 0.99± 0.00 94.6± 1.50

SCM-S 6 2 0.96± 0.02 72.6± 1.48
SCM-S 6 3 0.87± 0.07 70.6± 1.54
SCM-S 10 2 0.99± 0.00 65.9± 1.32
SCM-S 10 3 0.90± 0.05 58.8± 1.27

SCM-D 6 2 0.97± 0.01 61.6± 4.36
SCM-D 6 3 0.81± 0.11 65.2± 2.70
SCM-D 10 2 0.83± 0.10 69.6± 3.09
SCM-D 10 3 0.72± 0.15 60.1± 1.16

Table 2. Observational data with polynomial decoder g: Mean ±
S.E. (5 random seeds). R2 and MCC(IOS) (for uniform) have high
values as predicted in Theorem 4.4 and Theorem 6.3 respectively.

PZ d p MCC MCC (IL)

Uniform 6 2 69.1± 1.11 100.0± 0.00
Uniform 6 3 73.4± 0.49 100.0± 0.00
Uniform 10 2 59.9± 2.03 100.0± 0.00
Uniform 10 3 65.9± 0.80 99.9± 0.03

SCM-S 6 2 68.4± 0.90 99.5± 0.38
SCM-S 6 3 74.1± 2.32 99.3± 0.34
SCM-S 10 2 68.0± 2.36 99.9± 0.03
SCM-S 10 3 66.8± 1.10 98.8± 0.13

SCM-D 6 2 71.8± 3.77 99.6± 0.12
SCM-D 6 3 79.5± 3.45 98.2± 1.07
SCM-D 10 2 70.8± 1.89 95.3± 2.24
SCM-D 10 3 70.1± 2.80 97.2± 0.88

Table 3. Interventional data with polynomial decoder g: Mean ±
S.E. (5 random seeds). MCC(IL) is high as shown in Theorem 5.3.

Results for polynomial decoder. Observational data: We
consider the setting when the true decoder g is a polynomial
and the learned decoder h is also a polynomial. In Table 2,
we report the R2 between the representation learned after
the first step, where we only minimize reconstruction loss.
R2 values are high as predicted in Theorem 4.4. In the
second step, we learn a map Γ and enforce independence of
support constraint by minimizing Hausdorff distance from
Eq. 8. Among the distributions PZ only the uniform distri-
bution satisfies support independence from Assumption 6.1
and following Theorem 6.3, we expect MCC to be high in
this case only. In Table 2, we report the MCC obtained
by enforcing independence of support in MCC (IOS). In
the App. B.3, we also carry out experiments on correlated
uniform distributions and observe high MCC (IOS).

Interventional data: We now consider the case when we also
have access to do intervention data in addition to observa-
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#interv dist. Uniform SCM linear SCM non-linear

1 34.2± 0.24 12.8± 0.28 19.7± 0.31
3 73.9± 0.38 73.2± 0.33 59.7± 0.28
5 73.6± 0.21 83.4± 0.21 62.8± 0.2
7 72.5± 0.34 84.2± 0.25 69.3± 0.34
9 73.1± 0.47 86.2± 0.17 71.4± 0.26

Table 4. Interventional data in image-based experiments: Mean
± S.E (5 random seeds). MCCs increase with the number of do
interventional distributions per latent dimension (Theorem A.12).

tional data. We consider the setting with one do intervention
per latent dimension. We follow the two step procedure
described in § 7. In Table 3, we first show the MCC values
of the representation obtained after the first step in the MCC
column. In the second step, we learn Γ by minimizing the
interventional loss (IL) in Eq. 7. We report the MCC of the
representation obtained in the MCC (IL) column in Table 3;
the values are close to one as predicted by Theorem 5.3.

Results for image dataset. We follow the two step pro-
cedure described in § 7 except now in the second step, we
learn a non-linear map (using an MLP) to minimize the
interventional loss (IL) in Eq. 7. In Table 4, we show the
MCC values achieved by the learned representation as we
vary the number of do interventional distributions per latent
dimension. As shown in Theorem A.12, more interventional
distributions per latent dimension improve the MCC.

9. Conclusions
In this work, we lay down the theoretical foundations for
learning causal representations in the presence of interven-
tional data. We show that geometric signatures such as
support independence that are induced under many interven-
tions are useful for provable representation identification.
Looking forward, we believe that exploring representation
learning with real interventional data (Lopez et al., 2022;
Liu et al., 2023) is a fruitful avenue for future work.
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Appendices

Contents
We organize the Appendix as follows.

• In App. A, we present the proofs for the theorems that were presented in the main body of the paper.

– In App. A.1, we derive the affine identification guarantees and its approximations in various settings. (Theorem 4.4)
– In App. A.2, we derive the do intervention based identification guarantees and its extensions. (Theorem 5.3)
– In App. A.3, we present representation identification guarantees for imperfect interventions. (Theorem 5.8)
– In App. A.4, we present representation identification guarantees for observational data with independent support.

(Theorem 6.3)

• In App. B, we present supplementary materials for the experiments.

– In App. B.1, we present the pseudocode for the method used to learn the representations.
– In App. B.2, we present the details of the setup used in the experiments with the polynomial decoder g.
– In App. B.3, we present supplementary results for the setting with polynomial decoder g.
– In App. B.4, we present the details of the setup used in the experiments with image data.
– In App. B.5, we present supplementary results for the setting with image data.
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A. Proofs and Technical Details
In this section, we provide the proofs for the theorems. We restate the theorems for convenience.

Preliminaries and notation. We state the formal definition of support of a random variable. In most of the work, we
operate on the following measure space (Rd,B, λ), B is the Borel sigma field over Rd and λ is the Lebesgue measure over
completion of Borel sets on Rd (Ash et al., 2000). For a random variable X , the support X = {x ∈ Rd, dPX(x) > 0},
where dPX(x) is the Radon-Nikodym derivative of P w.r.t Lebesgue measure over completion of Borel sets on Rd. For
random variable Z, Z is the support of Z in the observational data. The support of the component Zj of Z is Zj . For
random variable Z, Z(i) is the support of Z when Zi is intervened. The support of the component Zj of Z in intervened
data is Z(i)

j .

A.1. Affine Identification

Lemma A.1. If the matrix G that defines the polynomial g is full rank and p > 0, then g is injective.

Proof. Suppose this is not the case and g(z1) = g(z2) for some z1 ̸= z2. Thus

G



1
z1

z1⊗̄z1
...

z1⊗̄ · · · ⊗̄ z1︸ ︷︷ ︸
p times


= G



1
z2

z2⊗̄z2
...

z2⊗̄ · · · ⊗̄ z2︸ ︷︷ ︸
p times



=⇒ G



0
(z1 − z2)

z1⊗̄z1 − z2⊗̄z2
...

z1⊗̄ · · · ⊗̄ z1︸ ︷︷ ︸
p times

− z2⊗̄ · · · ⊗̄ z2︸ ︷︷ ︸
p times


= 0

(9)

Since z1 ̸= z2 we find a non-zero vector in the null space of G which contradicts the fact that G has full column rank.
Therefore, it cannot be the case that g(z1) = g(z2) for some z1 ̸= z2. Thus g has to be injective.

Lemma A.2. If v1 is a polynomial of degree k1 and v2 is a polynomial of degree k2, then v1v2 is a polynomial of degree
k1 + k2.

Proof. We separate vi(z) into two parts – the terms with degree ki (ui(z)) and the terms with degree less than ki (wi(z))
for i ∈ {1, 2}. We obtain the following expression.

v1(z)v2(z) = (u1(z) + w1(z))(u2(z) + w2(z)) = u1(z)u2(z) + u1(z)w2(z) + u2(z)w1(z) + w1(z)w2(z) (10)

The maximum degree achieved by u1(z)u2(z) is k1+k2. For the other terms, the maximum is bounded above by k1+k2−1.
To prove the result, we need to show that u1(z)u2(z) has a degree k1 + k2.

We first start with a simple case. Suppose u1(z) and u2(z) do not share any component of z that they both depend on. In
such a case, if we take the leading degree term in u1 and u2 respectively and multiply them then we obtain distinct terms of
degree k1 + k2.

Suppose u1 and u2 both depend on z1. We write u1(z) as

u1(z) =
∑

∑
i dji=k1

θj

d∏
i=1

z
dji

i =
∑

∑
i dji=k1

θjcj(z)

13
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where cj(z) =
∏

i z
dji

i is a degree k1 polynomial. Note that for each j, cj is a different polynomial, i.e. for j ̸= q, cj ̸= cq .
We write u2(z) as

u2(z) =
∑

∑
i dji=k2

βj

d∏
i=1

z
dji

i =
∑

∑
i dji=k2

βjcj(z)

We collect all the terms in u1 that have the highest degree associated with z1 such that the coefficient θj is non-zero. We
denote the highest degree as r and write these terms as

∑
q

θqz
r
1

d∏
i=2

z
dqi

i =
∑
q

θqz
r
1ωq(z)

where ωq(z) =
∏d

i=2 z
dqi

i , q ̸= l =⇒ ωq ̸= ωl, and r ≥ 1

From u2(z), collect the terms with the highest degree for z1 such that the coefficient βj is non-zero to obtain. We denote the
highest degree as s and write these terms as

∑
t

βtz
s
1

d∏
i=2

zdti
i =

∑
t

βtz
s
1ηt(z)

where ηt(z) =
∏d

i=2 z
dti
i , t ̸= l =⇒ ηt ̸= ηl, and s ≥ 1.

As a result, u1(z)u2(z) will contain the term

zr+s
1

∑
q

θqωq(z)
∑
t

βtηt(z)

zr+s
1 δ1(z)δ2(z)

where δ1(z) =
∑

q θqωq(z) and δ2(z) =
∑

t βtηt(z). We will use principle of induction on the degree of polynomial to
prove the claim.

We first establish the base case for k1 = 1 and k2 = 1. Consider two polynomials ρ⊤1 z and ρ⊤2 z. We multiply the two to
obtain

∑
i,j ρ1iρ2jzizj . Consider two cases. In case 1, the two polynomials have at least one non-zero coefficient for the

same component zi. In that case, we obtain the only non-zero term with ρ21iz
2
i , which establishes the base case. In the

second case, the two polynomials have no shared non-zero coefficients. In such a case, each term with a non-zero coefficient
is of the form ρ1iρ2jzizj . This establishes the base case. The other cases with k1 = 0 and k2 = 1 or k2 = 0 and k1 = 1 or
both k1 = 0, k2 = 0 are trivially true. Thus we have established the base case for all polynomials (with arbitrary dimension
for z) of degree less than k1 = 1 and k2 = 1.

We can now assume that the claim is true for all polynomials v1 with degree less than k1 − 1 and all polynomials v2 with
degree less than k2 − 1. As a result, the degree of δ1(z)δ2(z) is k1 + k2 − r − s.

We can write δ1δ2 in terms of the terms with degree equal to k1 + k2 − r − s (δ
′
(z)) and terms that have a degree less than

k1 + k2 − r − s (δ∗(z)). As a result, we can simplify zr+s
1 δ1(z)δ2(z) to obtain

zr+s
1 (δ

′
(z) + δ∗(z)) (11)

The degree of zr+s
1 δ∗(z) is at most k1+k2−1. The degree of zr+s

1 (δ
′
(z)) has to be k1+k2 since δ

′
(z) does not depend on

z1, δ
′
(z) is of degree k1 + k2 − r − s. Note that this is the only term in the entire polynomial u1(z)u2(z) that is associated

with the highest degree for z1 (zr+s
1 ) since other terms (cj , c

′

j) have a smaller degree associated with z1 thus the coefficient
of this term cannot be cancelled to zero. Therefore, the degree of the polynomial u1u2 and hence the degree of v1v2 is
k1 + k2.

14
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Recall ẑ ≜ f(x), a ≜ f ◦ g. Since f(x) = f ◦ g(z) = a(z) =⇒ ẑ = a(z), where a : Z ∪ Z(i) → Ẑ ∪ Ẑ(i), and
Ẑ = f(X ) and Ẑ(i) = f(X (i)). We now show that a is bijective.

Lemma A.3. Suppose the observational data and interventional data are generated from Eq. 1 and Eq. 2 respectively. The
mapping a that relates the output of the encoder f written as ẑ, which solves the reconstruction identity Eq. 3, is related to
the true latent z is bijective, where ẑ = a(z).

Proof. Observe that a is surjective by construction. We now need to prove that a is injective. Suppose a is not injective.
Therefore, there exists z1 ∈ Z and z2 ∈ Z , where z1 ̸= z2 and ẑ1 = a(z1) = ẑ2 = a(z2). Note that a(z1) = f(x1), where
x1 = g(z1) and a(z2) = f(x2), where x2 = g(z2). This implies that f(x1) = f(x2). We know that the decoder encoder
pair satisfy reconstruction, which means h◦f(x1) = x1 and h◦f(x2) = x2. Since f(x1) = f(x2), we obtain that x1 = x2,
which implies that z1 = z2 since g is injective. This contradicts the fact that z1 ̸= z2. Therefore, ẑ = a(z) is bijective.

Theorem 4.4. Suppose the observational data and interventional data are generated from Eq. 1 and Eq. 2 respectively
under Assumptions 4.1 and 4.2. The autoencoder that solves the reconstruction identity in Eq. 3 under Constraint 4.3
achieves affine identification, i.e., ∀z ∈ Z ∪ Z(i), ẑ = Az + c, where ẑ is the encoder f ’s output, z is the true latent,
A ∈ Rd×d is invertible and c ∈ Rd.

Proof. We start by restating the reconstruction identity. For all x ∈ X ∪ X (i)

h ◦ f(x) = x

h(ẑ) = g(z)

H



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times


= G



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times


(12)

Following the assumptions, h is restricted to be polynomial but f bears no restriction. If H = G and f = g−1, we get the
ideal solution ẑ = z, thus a solution to the above identity exists.

Since G has full column rank, we can select q rows of G such that G̃ ∈ Rq×q and rank(G̃) = q. Denote the corresponding
matrix H that select the same rows as H̃ . We restate the identity in Eq. 12 in terms of H̃ and G̃ as follows. For all
z ∈ Z ∪ Z(i)
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H̃



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times


= G̃



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times



G̃−1H̃



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times


=



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times



z = Ã



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times


z = Ã1ẑ + Ã2 ẑ⊗̄ẑ + · · · Ãp ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

+c,

(13)

where Ã is a submatrix of G̃−1H̃ that describes the relationship between z and polynomial of ẑ, {Ãi}pi=1 correspond to
blocks of rows of Ã. Suppose at least one of Ã2, · · · , Ãp is non-zero. Among the matrices Ã2, · · · , Ãp which are non-zero,
pick the matrix Ãk with largest index k. Suppose row i of Ãk has some non-zero element. Now consider the element in
the row in the RHS of equation 13 corresponding to zpi . Observe that zpi is a polynomial of ẑ of degree kp, where k ≥ 2
(follows from Lemma A.2). In the LHS, we have a polynomial of degree at most p. In the LHS, we have a polynomial
of degree at most p. The equality between LHS and RHS is true for all ẑ ∈ f(X ∪ X (i)). The difference of LHS and
RHS is an analytic function. From Constraint 4.3 f(X ∪ X (i)) has a measure greater than zero. Therefore, we leverage
Mityagin (2015) to conclude that the LHS is equal to RHS on entire Rd. If two polynomials are equal everywhere, then their
respective coefficients have to be the same. Based on supposition, RHS has non zero coefficient for terms with degree kp
while LHS has zero coefficient for terms higher than degree p. This leads to a contradiction. As a result, none of Ã2, · · · , Ãp

can be non-zero. Thus z = Ã1ẑ + c. Next, we show that Ã1 is invertible, which immediately follows from Lemma A.3.

A.1.1. EXTENSIONS TO SPARSE POLYNOMIAL g(·)

Suppose g(·) is a degree p polynomial. Let us define the basis that generates g as

u(z) =



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times



Note that the number of terms in u(z) grows as q =
∑p

r=0

(
r+d−1
d−1

)
. In the previous proof, we worked with
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g(z) = G



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times


= Gu(z)

where G ∈ Rn×q was full rank. As a result, n has to be greater than q and also grow at least as
∑p

r=0

(
r+d−1
d−1

)
. In real data,

we can imagine that the g(·) has a high degree. However, g can exhibit some structure, for instance sparsity. We now show
that our entire analysis continues to work even for sparse polynomials thus significantly reducing the requirment on n to
grow as the number of non-zero basis terms in the sparse polynomial. We write the basis for the sparse polynomial of degree
p as u

′
(z). u

′
(z) consists of a subset of terms in u(z). We write the sparse polynomial g(·) as

g(z) = Gu
′
(z)

We formally state the assumption on the decoder in this case as follows.

Assumption A.4. The decoder g is a polynomial of degree p whose corresponding coefficient matrix G (a.k.a. the weight
matrix) has full column rank. Specifically, the decoder g is determined by the coefficient matrix G as follows,

g(z) = Gu
′
(z) (14)

where u
′
(z) consists of a subset of terms in u(z). u

′
(z) consists of the degree one term, i.e., z and at least one term of the

form zoi , where o ≥ p+1
2

Theorem A.5. Suppose the observational data and interventional data are generated from Eq. 1 and Eq. 2 respectively
under Assumptions 4.1, A.4. The autoencoder that solves reconstruction identity in Eq. 3 under Constraint 4.3 achieves
affine identification, i.e., ∀z ∈ Z ∪ Z(i), ẑ = Az + c, where ẑ is the output of the encoder f , z is the true latent, A is an
invertible d× d matrix and c ∈ Rd.

Proof. We start by restating the reconstruction identity. For all x ∈ X ∪ X (i)

h ◦ f(x) = x

h(ẑ) = g(z)

H



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times


= Gu

′
(z)

(15)

Following the assumptions, h is restricted to be polynomial but f bears no restriction. If H is equal to the matrix G for
columns i where ui = u

′

j for some j and zero in other columns and f = g−1, we get the ideal solution ẑ = z, thus a
solution to the above identity exists. Since G has full column rank, we can select q rows of G such that G̃ ∈ Rq×q and
rank(G̃) = q. Denote the corresponding matrix H that select the same rows as H̃ . We restate the identity in Eq. 15 in terms
of H̃ and G̃ as follows. For all z ∈ Z ∪ Z(i)
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H̃



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times


= G̃u

′
(z)

G̃−1H̃



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times


= u

′
(z)

z = Ã



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times


z = Ã1ẑ + Ã2 ẑ⊗̄ẑ + · · · Ãp ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

+c

(16)

In the simplification above, we rely on the fact that u′(z) consists of the first degree term. Suppose at least one of Ã2, · · · , Ãp

is non-zero. Among the matrices Ã2, · · · , Ãp which are non-zero, pick the matrix Ãk with largest index k. Suppose row i

of Ãk has some non-zero element. Now consider the element in the row in the RHS of equation 16 corresponding to zoi .
Observe that zoi is a polynomial of ẑ of degree ko, where k ≥ 2. In the LHS, we have a polynomial of degree at most p. The
equality between LHS and RHS is true for all ẑ ∈ f(X ∪ X (i)). The difference of LHS and RHS is an analytic function.
From Constraint 4.3 f(X ∪ X (i)) has a measure greater than zero. Therefore, we leverage Mityagin (2015) to conclude
that the LHS is equal to RHS on entire Rd. If two polynomials are equal everywhere, then their respective coefficients
have to be the same. Based on supposition, RHS has non zero coefficient for terms with degree p+ 1 while LHS has zero
coefficient for terms higher than degree p. This leads to a contradiction. As a result, none of Ã2, · · · , Ãp can be non-zero.
Thus z = Ã1ẑ + c. Next, we need to show that Ã1 is invertible, which follows from Lemma A.3.

A.1.2. EXTENSIONS TO POLYNOMIAL g(·) WITH UNKNOWN DEGREE

The learner starts with solving the reconstruction identity by setting the degree of h(·) to be s; here we assume H has full
rank (this implicitly requires that n is greater than the number of terms in the polynomial of degree s).

H



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
s times


= G



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times


(17)

We can restrict H to rows such that it is a square invertible matrix H̃ . Denote the corresponding restriction of G as G̃. The
equality is stated as follows.
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

1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
s times


= H̃−1G̃



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times


(18)

If s > p, then ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
s times

is a polynomial of degree at least p+ 1. Since the RHS contains a polynomial of degree at most

p the two sides cannot be equal over a set of values of z with positive Lebesgue measure in Rd. Thus the reconstruction
identity will only be satisfied when s = p. Thus we can start with the upper bound and reduce the degree of the polynomial
on LHS till the identity is satisfied.

A.1.3. EXTENSIONS FROM POLYNOMIALS TO ϵ-APPROXIMATE POLYNOMIALS

We now discuss how to extend Theorem 4.4 to settings beyond polynomial g. Suppose g is a function that can be ϵ-
approximated by a polynomial of degree p on entire Z ∪Z(i). In this section, we assume that we continue to use polynomial
decoders h of degree p (with full rank matrix H) for reconstruction. We state this as follows.

Constraint A.6. The learned decoder h is a polynomial of degree p and its corresponding coefficient matrix h is determined
by H as follows. For all z ∈ Rd

h(z) = H[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

]⊤ (19)

where ⊗̄ represents the Kronecker product with all distinct entries. H has a full column rank.

Since we use h as a polynomial, then satisfying the exact reconstruction is not possible. Instead, we enforce approximate
reconstruction as follows. For all x ∈ X ∪ X (i), we want

∥h ◦ f(x)− x∥ ≤ ϵ, (20)

where ϵ is the tolerance on reconstruction error. Recall ẑ = f(x). We further simplify it as ẑ = f ◦ g(z) = a(z). We also
assume that a can be η-approximated on entire Z ∪ Z(i) with a polynomial of sufficiently high degree say q. We write this
as follows. For all z ∈ Z ∪ Z(i),

∥∥∥∥∥ẑ −Θ


z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times


∥∥∥∥∥ ≤ η,

∥∥∥∥∥ẑ −Θ1z −Θ2 z⊗̄z − · · ·Θp z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

∥∥∥∥∥ ≤ η.

(21)

We want to show that the norm of Θk for all k ≥ 2 is sufficiently small. We state some assumptions needed in theorem
below.

Assumption A.7. Encoder f does not take values near zero, i.e., fi(x) ≥ γη for all x ∈ X ∪X (i) and for all i ∈ {1, · · · , d},
where γ > 2. The absolute value of each element in H̃−1G̃ is bounded by a fixed constant. Consider the absolute value of
the singular values of H̃; we assume that the smallest absolute value is strictly positive and bounded below by ζ.

Theorem A.8. Suppose the true decoder g can be approximated by a polynomial of degree p on entire Z ∪ Z(i) with
approximation error ϵ

2 . Suppose a = f ◦ g can be approximated by polynomials on entire Z ∪ Z(i) with η error. If
[−zmax, zmax]

d ⊆ Z ∪ Z(i), where zmax is sufficiently large, and Assumption 4.1, Assumption A.7 hold, then the polynomial
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approximation of a (recall ẑ = a(z)) corresponding to solutions of approximate reconstruction identity in Eq. 20 under
Constraint A.6 is approximately linear, i.e., the norms of the weights on higher order terms are sufficiently small. Specifically,
the absolute value of the weight associated with term of degree k decays as 1

zk−1
max

.

Proof. We start by restating the approximate reconstruction identity. We use the fact that g can be approximated with a
polynomial of say degree p to simplify the identity below. For all x ∈ X ∪ X (i)

∥h ◦ f(x)− x∥ ≤ ϵ

∥∥∥∥∥H


ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

−G


z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times


∥∥∥∥∥−

∥∥∥∥∥G


z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times

− g(z)

∥∥∥∥∥ ≤ ϵ
(22)

To obtain the second step from the first, add and subtract G[z, z⊗̄z, · · · , ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times

]⊤ and use reverse triangle inequality.

Since H is full rank, we select rows of H such that H̃ is square and invertible. The corresponding selection for G is denoted
as G̃. We write the identity in terms of these matrices as follows.

∥∥∥∥∥H̃


ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

− G̃


z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times


∥∥∥∥∥ ≤ 3ϵ

2

∥∥∥∥∥


ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

− H̃−1G̃


z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times


∥∥∥∥∥ ≤ 3ϵ

2|σmin(H̃)|

(23)

where |σmin(H̃)| is the singular value with smallest absolute value corresponding to the matrix H̃ . In the simplification
above, we use the assumption that g is ϵ

2 -approximated by a polynomial with matrix G and we also use the fact that
|σmin(H̃)| is positive. Now we write that the polynomial that approximates ẑi = ai(z) as follows.

|ẑi − θ⊤1 z − θ⊤2 z⊗̄z − · · · θ⊤q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

| ≤ η (24)

ẑi ≥ θ⊤1 z + θ⊤2 z⊗̄z + · · · θ⊤q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

−η

ẑi ≤ θ⊤1 z + θ⊤2 z⊗̄z + · · · θ⊤q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

+η
(25)

From Assumption A.7 we know that ẑi ≥ γη, where γ > 2. It follows from the above equation that

θ⊤1 z + θ⊤2 z⊗̄z + · · · θ⊤q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

+η ≥ γη

=⇒ θ⊤1 z + θ⊤2 z⊗̄z + · · ·+ θ⊤q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

−(γ − 1)η ≥ 0

=⇒ 1

γ − 1
≥ η

θ⊤1 z + θ⊤2 z⊗̄z + · · ·+ θ⊤q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

(26)
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For ẑi ≥ γη, we track how ẑpi grows below.

ẑi ≥ θ⊤1 z + θ⊤2 z⊗̄z + · · · θ⊤q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

−η ≥ (γ − 2)η ≥ 0

ẑpi ≥ (θ⊤1 z + θ⊤2 z⊗̄z + · · · θ⊤q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

−η)p

ẑpi ≥ (θ⊤1 z + θ⊤2 z⊗̄z + · · · θ⊤q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

)p(1− 1

γ − 1
)p

(27)

In the last step of the above simplification, we use the condition in Eq. 26. We consider z = [zmax, · · · , zmax]. Consider the
terms θijzkmax inside the polynomial in the RHS above. We assume all components of θ are positive. Suppose θij ≥ 1

zk−κ−1
max

,

where κ ∈ (0, 1), then the RHS in Eq. 27 grows at least z(1+κ)p
max

(
γ−2
γ−1

)p
. From Eq. 23, ẑpi is very close to degree p

polynomial in z. Under the assumption that the terms in H̃−1G̃ are bounded by a constant, the polynomial of degree p
grows at at most zpmax. The difference in growth rates the Eq. 23 is an increasing function of zmax for ranges where zmax

is sufficiently large. Therefore, the reconstruction identity in Eq. 23 cannot be satisfied for points in a sufficiently small
neighborhood of z = [zmax, · · · , zmax]. Therefore, θij < 1

zk−κ−1
max

. We can consider other vertices of the hypercube Z and

conclude that |θij | < 1

zk−κ−1
max

.

A.2. Representation identification under do interventions

Theorem 5.3. Suppose the observational data and interventional data are generated from Eq. 1 and Eq. 2 respectively under
Assumptions 4.1 and 4.2, where P(i)

Z follows Eq. 4. The autoencoder that solves Eq. 3 under Constraint 4.3, Constraint 5.1
identifies the intervened latent zi up to shift and scaling, i.e., ẑk = ezi + b, where e ∈ R, b ∈ R.

Proof. First note that Assumptions 4.1-4.2 hold. Since we solve Eq. 3 under Constraint 4.3, we can continue to use the
result from Theorem 4.4. From Theorem 4.4, it follows that the estimated latents ẑ are an affine function of the true z.
ẑk = a⊤z + b, ∀z ∈ Z ∪ Z(i), where a ∈ Rd, b ∈ R.

We consider a z ∈ Z(i) such that z−i is in the interior of the support of P(i)
Z−i

. We write z ∈ Z(i) as [z∗, z−i]. We can write
ẑk = aiz

∗+ a⊤−iz−i+ b, where a−i is the vector of the values of coefficients in a other than the coefficient of ith dimension,
ai is ith component of a, z−i is the vector of values in z other than zi. From the constraint in Constraint 5.1 it follows that
for all z ∈ Z(i), ẑk = z†. We use these expressions to carry out the following simplification.

a⊤−iz−i = z† − aiz
∗ − b (28)

Consider another data point z
′ ∈ Z(i) from the same interventional distribution such that z

′

−i = z−i + θej is in the interior
of the support of P(i)

Z−i
, where ej is vector with one in jth coordinate and zero everywhere else. From Assumption 5.2,

we know that there exists a small enough θ such that z
′

−i is in the interior. Since the point is from the same interventional
distribution z

′

i = z∗. For z
′

−i we have

a⊤−iz
′
−i = z† − aiz

∗ − b
(29)

We take a difference of the two equations equation 28 and equation 29 to get

a⊤−i(z−i − z
′

−i) = θa⊤−iej = 0. (30)

From the above, we get that the jth component of a−i is zero. We can repeat the above argument for all j and get that
a−i = 0. Therefore, ẑk = aizi + b for all possible values of zi in Z ∪ Z(i).
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A.2.1. EXTENSION OF do INTERVENTIONS BEYOND POLYNOMIALS

In the main body of the paper, we studied the setting where g is a polynomial. We relax the constraint on g. We consider
settings with multiple do interventional distribution on a target latent.

We write the DGP for intervention j ∈ {1, · · · , t} on latent i as

zi = z∗,j

z−i ∼ P(i,j)
Z−i

(31)

Let T = {z∗,1, · · · , z∗,t} be the set of do intervention target values. We extend the constrained representation learning
setting from the main body, where the learner leverages the geometric signature of a single do intervention per latent
dimension to multiple do interventional distributions per latent dimension.

h ◦ f(x) = x, ∀x ∈ X ∪ X (i,j)

fk(x) = z†,j , ∀x ∈ X (i,j),∀j ∈ {1, · · · , t}
(32)

Recall that the ẑ = f(x) = f ◦ g(z) = a(z). Consider the kth component ẑk = ak(z). Suppose ak(z) is invertible and
only depends on zi, we can write it as ak(zi). If ẑk only depends on zi, i.e., ẑk = ak(zi) and ak is invertible, then the zi
is identified up to an invertible transform. Another way to state the above property is∇z−iak(z) = 0 for all z−i. In what
follows, we show that it is possible to approximately achieve identification up to an invertible transform. We show that if the
number of interventions t is sufficiently large, then ∥∇z−i

ak(z)∥ ≤ ϵ for all z ∈ Z .

Assumption A.9. The interior of the support of z in the observational data, i.e., Z , is non-empty. The interior of the support
of z−i in the interventional data, i.e., Z(i,j)

−i , is equal to the support in observational data, i.e., Z−i, for all j ∈ {1, · · · , t}.
Each intervention z∗,j is sampled from a distribution Q. The support of Q is equal to the support of zi in the observational
data, i.e., Zi. The density of Q is greater than ϱ (ϱ > 0) on the entire support.

The above assumption states the restrictions on the support of the latents underlying the observational data and the latents
underlying the interventional data.

Assumption A.10. ∥ ∂
2a(z)

∂zi∂zj
∥ is bounded by L <∞ for all z ∈ Z and for all i, j ∈ {1, · · · , d}.

Lemma A.11. If the number of interventions t ≥ log( δϵ
2(βi

sup+βi
inf )

)/ log(1−ϱ ϵ
2 ), then maxzi∈Zi minz∗,j∈T ∥zi−z∗,j∥ ≤ ϵ

with probability 1− δ.

Proof. Consider the interval [−βi
inf , β

i
sup], where βi

inf and βi
sup are the infimum and supremum of Zi. Consider an ϵ

2

covering of [−βi
inf , β

i
sup]. This covering consists of

2(βi
sup+βi

inf )

ϵ equally spaced points at a separation of ϵ/2. Consider a
point zi, its nearest neighbor in the cover is denoted as z

′

l , and the nearest neighbor of zi in the set of interventions T is z∗,j .
The nearest neighbor of z

′

l in the set of interventions is z∗,r. Since ∥zi − z∗,j∥ ≤ ∥zi − z∗,q∥ for all q ∈ {1, · · · , t} we can
write

∥zi − z∗,j∥ ≤ ∥zi − z∗,r∥ ≤ ∥zi − z
′

l∥+ ∥z
′

l − z∗,r∥ ≤ ϵ

2
+ ∥z

′

l − z∗,r∥ (33)

Observe that if ∥z′

l − z∗,r∥ is less than ϵ
2 for all z

′

l in the cover, then for all zi in Zi, ∥zi − z∗,j∥ is less than ϵ. We now show
that ∥z′

l − z∗,r∥ is sufficiently small provided t is sufficiently large. Observe that

P(∥z
′

l − z∗,r∥ > ϵ

2
) ≤ (1− ϱ

ϵ

2
)t

We would like that (1 − ϱ ϵ
2 )

t ≤ δ, which implies t ≥ log(δ)/ log(1 − ϱ ϵ
2 ). Therefore, if t ≥ log(δ)/ log(1 − ϱ ϵ

2 ),
then P(∥z′

l − z∗,r∥ ≤ ϵ
2 ) with a probability at least 1 − δ. If we set δ = δϵ

2(βi
sup+βi

inf )
, then we obtain that for all j,

P(∥z′

l − z∗,r∥ ≤ ϵ
2 ) with probability at least 1− δ. The final expression for t ≥ log( δϵ

2(βi
sup+βi

inf )
)/ log(1− ϱ ϵ

2 )
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Theorem A.12. Suppose the observational data and interventional data are generated from Eq. 1 and Eq. 31 respectively.
If the number of interventions t is sufficiently large, i.e., t ≥ log( δϵ

2L(βi
sup+βi

inf )
)/ log(1 − ϱ ϵ

2L ), Assumption A.9 and
Assumption A.10 are satified, then the solution to Eq. 32 identifies the intervened latent zi approximately up to an invertible
tranform, i.e., ∥∇z−i

ak(z)∥∞ ≤ ϵ for all z ∈ Z .

Proof. Recall ẑ = f(x) = f ◦ g(z) = a(z), where a : ∪jZ(i,j) ∪ Z → ∪jẐ(i,j) ∪ Ẑ . Consistent with the notation used
earlier in the proof of Theorem 4.4, Ẑ(i,j) = f(X (i,j)). In Lemma A.3, we had shown that a is bijective, we can use the
same recipe here and show that a is bijective.

Owing to the constraint in Eq. 32, we claim that∇z−i
ak(z) = 0 for all z−i in the interior of Z−i with zi = z∗,j . Consider a

ball around z−i that is entirely contained in Z−i, denote it as Bz . From Eq. 32, it follows that fk(x) takes the same value on
this neighborhood. As a result, ak(z) is equal to a constant on the ball Bz . Therefore, it follows that ∇z−iak(z) = 0 on the
ball Bz . We can extend this argument to all the points in the interior of the support of z−i. As a result, ∇z−iak(z) = 0 on
the interior of the support of z−i. Further, ∇z−iak(z) = 0 for all z = [z∗,j , z−i] in ∪jZ(i,j). Define ℵ(z) = ∇z−iak(z).
Consider the jth component of ℵ(z) denoted as ℵj(z). Consider a point z ∈ Z and find its nearest neighbor in ∪jZ(i,j) and
denote it as z

′
. Following the assumptions, z

′

−i = z−i. We expand ℵj(z) around z
′

as follows

ℵj(z) = ℵj(z
′
) +∇zℵj(z

′′
)⊤(z − z

′
)

ℵj(z) =
∂ℵj(z

′′
)

∂zi
(zi − z

′

i)

In the above, we use the fact that ℵj(z
′
) = 0.

|ℵj(z)| =
∣∣∣∣∂ℵj(z′′

)

∂zi
(zi − z

′

i)

∣∣∣∣ ≤ ∣∣∣∣∂ℵj(z′′
)

∂zi

∣∣∣∣ ϵL ≤ ϵ

To see the last inequality in the above, use Lemma A.11 with ϵ as ϵ/L and Assumption A.10.

In the discussion above, we showed that multiple do interventional distribution on target latent dimension help achieve
approximate identification of a latent up to an invertible transform. The above argument extends to all latents provided we
have data with multiple do interventional distributions per latent. We end this section by giving some intuition as to why
multiple interventions are necessary in the absence of much structure on g.

Necessitating multiple interventions We consider the case with one do intervention. Consider the set of values achieved
under intervention, where z−i is from the interior of Z̃(i)

−i . We call this set Z̃(i) Suppose a is a bijection of the following
form.

a =

{
I, if z is in Z̃(i)

ã otherwise
(34)

where I is identity function and ã is an arbitrary bijection with bounded second order derivative (satisfying Assumption A.10).
Define f = a ◦ g−1 and h = g ◦ a−1. Observe that these f and h satisfy both the constraints in the representation learning
problem in Constraint 5.1. In the absence of any further assumptions on g or structure of support of Z , each intervention
enforces local constraints on a.

A.3. Representation identification under general perfect and imperfect interventions

Before proving Theorem 5.8, we prove a simpler version of the theorem, which we leverage to prove Theorem 5.8. We start
with the case when the set S has one element say S = {j}.

Assumption A.13. Consider the Z that follow the interventional distribution P(i)
Z . The joint support of zi, zj satisfies

factorization of support, i.e.,
Z(i)

i,j = Z(i)
i ×Z

(i)
j (35)

For all j ∈ {1, · · · , d}, −∞ < αj
inf ≤ αj

sup <∞. There exists a ζ > 0 such that the all the points in (αj
sup − ζ, αj

sup) ∪
(αj

inf , α
j
inf + ζ) are in Z(i)

j , ∀j ∈ {1, · · · , d}
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The above assumption only requires support independence for two random variables Zi and Zj .

We now describe a constraint, where the learner enforces support independence between ẑi and ẑj .

Constraint A.14. The pair (ẑi, ẑj) satisfies support independence on interventional data, i.e.,

Ẑ(i)
i,j = Ẑ(i)

i × Ẑ
(i)
j

In the above Constraint A.14, we use same indices i and j as in Assumption A.13 for convenience, the arguments extend to
the case where we use a different pair.

Theorem A.15. Suppose the observational data and interventional data are generated from Eq. 1 and Eq. 2 respectively
under Assumptions 4.1, 4.2, A.13. The autoencoder that solves Eq. 3 under Constraint 4.3, A.14 achieves block affine
identification, i.e., ∀z ∈ Z, ẑ = Az + c, where ẑ is the output of the encoder f and z is the true latent and A is an invertible
d× d matrix and c ∈ Rd. Further, the matrix A has a special structure, i.e., the row ai and aj do not have a non-zero entry
in the same column. Also, each row ai and aj has at least one non-zero entry.

Proof. Let us first verify that there exists a solution to Eq. 3 under Constraint 4.3, A.14. If Ẑ = Z and h = g, then that
suffices to guarantee that a solution exists.

First note that since Assumptions 4.1, 4.2 holds and we are solving Eq. 3 under Constraint 4.3, we can continue to use the
result from Theorem 4.4. From Theorem 4.4, ∀z ∈ Z ∪ Z(i), ẑ = Az + c, where ẑ is the output of the encoder f and z is
the true latent and A is an invertible d× d matrix and c ∈ Rd.

From Assumption A.13 we know each component k ∈ {1, · · · , d} of z, zk is bounded above and below. Suppose the
minimum and maximum value achieved by zk ∈ Z(i)

k is αk
inf and the maximum value achieved by zk ∈ Z(i)

k is αk
sup .

Define a new latent

z
′

k = 2

(
zk −

αk
sup+αk

inf

2

αk
sup − αk

inf

)
,∀k ∈ {1, · · · , d}

Notice post this linear operation, the new latent takes a maximum value of 1 and a minimum value of −1.

We start with ẑ = Az
′
+ c, where z

′
is element-wise transformation of z that brings its maximum and minimum value of

each component to 1 and −1. Following the above transformation, we define the left most interval for z
′

i as [−1,−1 + ηi]
and the rightmost interval is [1− ζi, 1], where ηi > 0 and ζi > 0. Such an interval exists owing to the Assumption A.13.

Few remarks are in order. i) Here we define intervals to be closed from both ends. Our arguments also extend to the case
if these intervals are open from both ends or one end, ii) We assume all the values in the interval [−1,−1 + ηi] are in the
support. The argument presented below extends to the case when all the values in [−1,−1 + ηi] are assumed by z

′

i except
for a set of measure zero, iii) The assumption A.13 can be relaxed by replacing supremum and infimum with essential
supremum and infimum.

For a sufficiently small κ, we claim that the marginal distribution of ẑi and ẑj contain the sets defined below. Formally
stated

(−∥ai∥1 + ci,−∥ai∥1 + ci + κ) ∪ (∥ai∥1 + ci − κ, ∥ai∥1 + ci) ⊆ Ẑ(i)
i (36)

(−∥aj∥1 + cj ,−∥aj∥1 + cj + κ) ∪ (∥aj∥1 + cj − κ, ∥aj∥1 + cj) ⊆ Ẑ(i)
j (37)

where ai and aj are ith and jth row in matrix A. We justify the above claim next. Suppose all elements of ai are positive.
We set κ sufficiently small such that κ

|aik|d ≤ ηk for all k ∈ {1, · · · , d}. Since κ is sufficiently small, [−1,−1 + κ
|aik|d ] in

the support z
′

k, this holds for all k ∈ {1, · · · , d}. As a result, (−∥ai∥1+ ci,−∥ai∥1+ ci+κ) is in the support of ẑk. We can
repeat the same argument when the signs of ai are not all positive by adjusting the signs of the elements z

′
. This establishes

(−∥ai∥1 + ci,−∥ai∥1 + ci + κ) ⊆ Ẑ(i)
i . Similarly, we can also establish that (∥ai∥1 + ci − κ, ∥ai∥1 + ci) ⊆ Ẑ(i)

i .

Suppose the two rows ai and aj share at least q ≥ 1 non-zero entries. Without loss of generality assume that ai1 is non-zero
and aj1 is non-zero. Pick an 0 < ϵ < κ
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• Suppose ai1 and aj1 are both positive. In this case, if ẑi < −∥ai∥1 + ci + ϵ, then

z
′

1 < −1 + 2ϵ

|ai1|

To see why is the case, substitute z
′

1 = −1 + 2ϵ
|ai1| and observe that ẑi > −∥ai∥1 + ci + ϵ.

• Suppose ai1 and aj1 are both positive. In this case, if ẑj > ∥aj∥1 + cj − ϵ, then

z
′

1 > 1− 2ϵ

|aj1|

For sufficiently small ϵ (ϵ < 1
1/|ai1|+|aj1| ) both z

′

1 < −1 + 2ϵ
ai1

and z
′

1 > 1− 2ϵ
aj1

cannot be true simultaneously.

Therefore, ẑi < −∥ai∥1+ ci+ ϵ and ẑj > ∥aj∥1+ cj− ϵ cannot be true simultaneously. Individually, ẑi < −∥ai∥1+ ci+ ϵ
occurs with a probability greater than zero; see Eq. 36. Similarly, ẑj > ∥aj∥1 + cj − ϵ occurs with a probability greater
than zero; see Eq. 37. This contradicts the support independence constraint. For completeness, we present the argument for
other possible signs of a.

• Suppose ai1 is positive and aj1 is negative. In this case, if ẑi < −∥ai∥1 + ci + ϵ, then

z
′

1 < −1 + 2ϵ

|ai1|

• Suppose ai1 is positive and aj1 is negative. In this case, if ẑj < −∥aj∥1 + cj + ϵ, then

z
′

1 > 1− 2ϵ

|aj1|

Rest of the above case is same as the previous case. We can apply the same argument to any shared non-zero component.
Note that a row ai cannot have all zeros or all non-zeros (then aj has all zeros). If that is the case, then matrix A is not
invertible. This completes the proof.

We now use the result from Theorem A.15 to prove the Theorem 5.8.
Theorem 5.8. Suppose the observational data and interventional data are generated from Eq. 1 and Eq. 2 respectively
under Assumptions 4.1, 4.2, 5.5. The autoencoder that solves Eq. 3 under Constraint 4.3, 5.6 (with |S ′ | ≤ |S|) achieves
block affine identification. More specifically, ∀z ∈ Z ∪ Z(i)

ẑk = a⊤k z + ck, ẑm = a⊤mz + cm,∀m ∈ S
′
,

where ak contains at most d − |S ′ | non-zero elements and each component of am is zero whenever the corresponding
component of ak is non-zero for all m ∈ S ′

.

Proof. Let us first verify that there exists a solution to Eq. 3 under Constraint 4.3, 5.6 (with |S ′ | ≤ |S|).

We write Ẑ = ΠZ, where Π is a permutation matrix such that Ẑk = Zi. For each m ∈ S ′
there exists a unique j ∈ S ′

such
that Ẑm = Zj . Suppose h = g ◦Π−1. Observe that this construction satisfies the constraints in Constraint 5.6.

To show the above claim, we leverage Theorem A.15. We apply Theorem A.15 to all the pairs in {(k,m),∀m ∈ S ′},
we obtain the following. We write ẑk = a⊤k z + ck. Without loss of generality, assume ak is non-zero in first s elements.
Now consider any ẑm = a⊤mz + cm, where m ∈ S ′

. From Theorem A.15 it follows that am[1 : s] = 0. This holds true
for all m ∈ S ′

. Suppose s ≥ d − |S ′ | + 1. In this case, the first s columns cannot be full rank. Consider the submatrix
formed by the first s columns. In this submatrix |S ′ | rows are zero. The maximum rank of this matrix is d − |S ′ |. If
s ≥ d − |S ′ | + 1, then this submatrix would not have a full column rank, which contradicts the fact that A is invertible.
Therefore, 1 ≤ s ≤ d− |S ′ |.

We can relax the assumption that |S ′ | ≤ |S| in the above theorem. We follow an iterative procedure. We start by solving
Constraint 5.6 with |S ′ | = d− 1. If a solution exists, then we stop. If a solution does not exist, then we reduce the size of
|S ′ | by one and repeat the procedure till we find a solution. As we reach |S ′ | = |S| a solution has to exist.
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A.4. Representation identification with observational data under independent support

Theorem 6.3. Suppose the observational data is generated from Eq. 1 under Assumption 4.1, 4.2, and 6.1, The autoencoder
that the solves Eq. 3 under Constraint 6.2 achieves permutation, shift and scaling identification. Specifically, ∀z ∈ Z, ẑ =
ΛΠz+ c, where ẑ is the output of the encoder f and z is the true latent and Π is a permutation matrix and Λ is an invertible
diagonal matrix.

Proof. We will leverage Theorem A.15 to show this claim. Consider ẑi = aTi z + ci. We know that the ai has at least one
non-zero element. Suppose it has at least q ≥ 2 non-zero elements. Without loss of generality assume that these correspond
to the first q components. We apply Theorem A.15 to each pair ẑi, ẑj for all j ̸= i. Note here i is kept fixed and then
Theorem A.15 is applied to every possible pair. From the theorem we get that aj [1 : q] is zero for all j ̸= i. If q ≥ 2, then the
span of first q columns will be one dimensional and as a result A cannot be invertible. Therefore, only one element of row i
is non-zero. We apply the above argument to all i ∈ {1, · · · , d}. We write a function π : {1, · · · , d} → {1, · · · , d}, where
π(i) is the index of the element that is non-zero in row i, i.e., ẑi = aiπ(i)zπ(i) + ci. Note that π is injective, if two indices
map to the same element, then that creates shared non-zero coefficients, which violates Theorem A.15. This completes the
proof.
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B. Supplementary Materials for Empirical Findings
B.1. Method details

Algorithm 1 Summarizing our two step approach for both the independence of support (IOS) and interventional data case.
1: {Step 1: Training autoencoder (f, h)}
2: Sample data: X ∼ X ∪ X I where X I = ∪di=1X (i)

3: Minimize reconstruction loss: f†, h† = argminf,h E
[
∥h ◦ f(X)−X∥2

]
4:
5: {Step 2: Learning transformation Γ with Independence of Support (IOS) objective}
6: Sample data: Ẑ ∼ f†(X ) where f† is the encoder learnt in Step 1
7: Minimize reconstruction + Hausdorff loss: minΓ E

[
∥Γ′ ◦Γ(Ẑ)− Ẑ∥2

]
+ λ×

∑
k ̸=m HD

(
Ẑk,m(Γ), Ẑk(Γ)× Ẑm(Γ)

)
8: Return transformed latents: Γ(Ẑ)
9:

10: {Step 2: Learning transformation Γ = [γi]i=1:d using do-interventions}
11: for i in {1, · · · , d} do
12: Sample data: Ẑ ∼ f†(X (i)) where f† is the encoder learnt in Step 1s
13: Fix intervention targets at random Ŷ (i) ∼ Uniform(0, 1)

14: Minimize MSE loss: minγi
EẐ

[∥∥γi(Ẑ)− Ŷ (i)
∥∥2]

15: end for
16: Return transformed latents: Γ(Ẑ)

We provide details about our training procedure in Algorithm 1. For learning with the independence of support (IOS)
objective in Step 2, we need to ensure that the map Γ is invertible, hence we minimize a combination of reconstruction loss
with Hausdorff distance, i.e.,

min
Γ

E
[
∥Γ

′
◦ Γ(Ẑ)− Ẑ∥2

]
+ λ×

∑
k ̸=m

HD
(
Ẑk,m(Γ), Ẑk(Γ)× Ẑm(Γ)

)
(38)

where Ẑ denotes the output from the encoder learnt in Step 1, i.e., Ẑ = f†(X).

If we have data with multiple interventional distributions per latent dimension, then we sample a new target for each
interventional distribution. In our polynomial decoder experiments, we use a linear γi. In our image based experiments, in
Step 2, we use a non-linear map γi.

B.2. Experiment setup details: Polynomial decoder (g)

Basic setup. We sample data following the DGP described in Assumption 4.2 with the following details:

• Latent dimension: d ∈ {6, 10}

• Degree of decoder polynomial (g): p ∈ {2, 3}

• Data dimension: n = 200

• Decoder polynomial coefficient matrix G: sample each element of the matrix iid from a standard normal distribution.

Latent distributions. Recall zi is the ith component of the latent vector z ∈ Rd. The various latent distributions (PZ ) we
use in our experiments are as follows:

• Uniform: Each latent component zi is sampled from Uniform(-5, 5). All the latents (zi) are independent and identically
distributed.
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• Uniform-Correlated: Consider a pair of latent variables zi, zi+1 and sample two confounder variables c1, c2 s.t.
c1 ∼ Bernoulli(p = 0.5), and c2 ∼ Bernoulli(p = 0.9). Now we sample zi, zi+1 using c1, c2 as follows:

zi ∼

{
Uniform(0.0, 0.5) if c1 = 1

Uniform(−0.5, 0.0) if c1 = 0
,

zi+1 ∼

{
Uniform(0.0, 0.3) if c1 ⊕ c2 = 1

Uniform(−0.3, 0.0) if c1 ⊕ c2 = 0
,

where ⊕ is the xor operation. Hence, c1 acts as a confounder as it is involved in the generation process for both zi, zi+1,
which leads to correlation between them. Due to the xor operation, the two random variables satisfy independence of
support condition. Finally, we follow this generation process to generate the latent vector z by iterating over different
pairs (i ∈ { 1, · · · , d} with step size 2 ).

• Gaussian-Mixture: Each zi is sampled from a Gaussian mixture model with two components and equal probability of
sampling from the components, as described below:

zi ∼

{
N (0, 1) with prob. 0.5
N (1, 2) with prob. 0.5

All latents in this case are independent and identically distributed like the Uniform case; though we have mixture
distribution instead of single mode distribution.

• SCM-S: The latent variable z is sampled as a DAG with d nodes using the Erdős–Rényi scheme with linear causal
mechanism and Gaussian noise (Brouillard et al., 2020) 2 and set the expected density (expected number of edges per
node) to be 0.5.

• SCM-D: The latent variable z is sampled as a DAG with d nodes using the Erdős–Rényi scheme with linear causal
mechanism and Gaussian noise (Brouillard et al., 2020) and set the expected density (expected number of edges per
node) to be 1.0.

Case Train Validation Test

Observational (D) 10000 2500 20000
Interventional (D(I)) 10000 2500 20000

Table 5. Statistics for the synthetic poly-DGP experiments

Further details on dataset and evaluation. For experiments in Table 2, we only use observational data (D); while for
experiments in Table 3, we use both observational and interventional data (D∪D(i)), with details regarding the train/val/test
split described in Table 5.

We carry out do interventions on each latent with D(i) corresponding to data from interventions on zi. The union of data
from interventions across all latent dimensions is denoted as D(I) = ∪i=1:dD(i). The index of the variable to be intervened
is sampled from Uniform({1, . . . , d}). The selected latent variable to be intervened is set to value 2.0.

Further, note that for learning the linear transformation (γi) in Step 2 (Eq. 7), we only use the corresponding interventional
data (D(i)) from do-intervention on the latent variable i. Also, all the metrics (R2, MCC (IOS), MCC, MCC (IL)) are
computed only on the test split of observational data (D) (no interventional data used).

2https://github.com/slachapelle/dcdi
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Model architecture. We use the following architecture for the encoder f across all the experiments with polynomial
decoder g (Table 2, Table 3) to minimize the reconstruction loss;

• Linear Layer (n, h); LeakyReLU(0.5),

• Linear Layer (h, h); LeakyReLU(0.5),

• Linear Layer (h, d),

where n is the input data dimension and h is hidden units and h = 200 in all the experiments. For the architecture for the
decoder (h) in Table 2, Table 3, we use the polynomial decoder (h(z) = H[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times

]⊤); where p is set to

be same as that of the degree of true decoder polynomial (g(z)) and the coefficient matrix H is modeled using a single fully
connected layer.

For the independence of support (IOS) experiments in Table 2, we model both Γ,Γ
′

using a single fully connected layer.

For the interventional data results (Table 3), we learn the mappings γi from the corresponding interventional data (P(i)
X )

using the default linear regression class from scikit-learn (Pedregosa et al., 2011) with the intercept term turned off.

Finally, for the results with NN Decoder h (Table 8, Table 9), we use the following architecture for the decoder with number
of hidden nodes h = 200.

• Linear layer (d, h); LeakyReLU(0.5)

• Linear layer (h, h); LeakyReLU(0.5)

• Linear layer (h, n)

Hyperparameters. We use the Adam optimizer with hyperparameters defined below. We also use early stopping strategy,
where we halt the training process if the validation loss does not improve over 10 epochs consecutively.

• Batch size: 16

• Weight decay: 5× 10−4

• Total epochs: 200

• Learning rate: optimal value chosen from grid: {10−3, 5× 10−4, 10−4}

For experiments with independence of support (IOS) objective in Step 2 (Table 2), we train with λ = 10 as the relative
weight of Hausdorff distance in the reconstruction loss (Equation 38).

B.3. Additional results: Polynomial decoder (g)

Table 6 presents additional details about Table 2 in main paper. We present additional metrics like mean squared loss for
autoencoder reconstruction task (Recon-MSE) and MCC computed using representations from Step 1. Note that training
with independence of support objective in Step 2 leads to better MCC scores than using the representations from Step 1 on
distributions that satisfy independence of support. Also, the Uniform Correlated (Uniform-C) latent case can be interpreted
as another sparse SCM with confounders between latent variables. For this case, the latent variables are not independent but
their support is still independent, therefore we see improvement in MCC with IOS training in Step 2. Similarly, Table 7
presents the extended results for the interventional case using polynomial decoder (Table 3 in main paper); with additional
metrics like mean squared loss for autoencoder reconstruction task (Recon-MSE) and R2 to test for affine identification
using representations from Step 1. We notice the same pattern for all latent distributions, that training on interventional data
on Step 2 improves the MCC metric.

Further, we also experiment with using a neural network based decoder to have a more standard autoencoder architecture
where we do not assume access to specific polynomial structure or the degree of the polynomial. Table 8 presents the results
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with NN decoder for the observational case, where we see a similar trend to that of polynomial decoder case (Table 6) that
the MCC increase with IOS training in Step 2 for Uniform and Uniform-C latent distributions. Similarly, Table 9 presents the
results with NN decoder for the interventional case, where the trend is similar to that of polynomial decoder case (Table 7);
though the MCC (IL) for the SCM sparse and SCM dense case are lower compared to that with polynomial decoder case.

PZ d p Recon-MSE R2 MCC MCC (IOS)

Uniform 6 2 1.59± 0.40 1.00± 0.00 66.91± 2.45 99.31± 0.07
Uniform 6 3 1.81± 0.40 1.00± 0.00 75.14± 3.93 99.39± 0.06
Uniform 10 2 2.04± 0.76 1.00± 0.00 58.49± 2.26 90.73± 2.92
Uniform 10 3 8.59± 2.15 0.99± 0.00 56.77± 0.60 94.62± 1.50

Uniform-C 6 2 0.36± 0.07 1.00± 0.00 71.19± 2.29 96.81± 0.11
Uniform-C 6 3 1.72± 0.67 1.00± 0.00 70.53± 1.1 96.29± 0.05
Uniform-C 10 2 0.86± 0.27 1.00± 0.00 64.58± 1.81 85.31± 2.35
Uniform-C 10 3 2.42± 0.47 1.00± 0.00 62.69± 0.92 87.20± 1.77

Gaussian-Mixture 6 2 0.86± 0.27 1.0± 0.0 70.53± 1.25 67.43± 2.01
Gaussian-Mixture 6 3 0.86± 0.32 0.99± 0.0 66.19± 1.38 67.94± 1.42
Gaussian-Mixture 10 2 1.38± 0.51 1.0± 0.0 59.5± 2.22 58.3± 0.67
Gaussian-Mixture 10 3 4.12± 1.70 0.99± 0.0 57.15± 0.43 59.08± 1.11

SCM-S 6 2 1.52± 0.70 0.96± 0.02 71.77± 1.43 72.61± 1.48
SCM-S 6 3 2.25± 0.51 0.87± 0.07 73.14± 3.44 70.56± 1.54
SCM-S 10 2 4.23± 1.13 0.99± 0.0 64.35± 2.0 65.86± 1.32
SCM-S 10 3 2.83± 0.85 0.90± 0.05 61.95± 0.98 58.77± 1.27

SCM-D 6 2 1.34± 0.26 0.97± 0.01 75.25± 2.85 61.61± 4.36
SCM-D 6 3 1.20± 0.55 0.81± 0.11 82.9± 3.11 65.19± 2.70
SCM-D 10 2 2.89± 0.79 0.83± 0.10 67.49± 2.32 69.64± 3.09
SCM-D 10 3 1.55± 0.39 0.72± 0.15 66.4± 1.86 60.1± 1.16

Table 6. Observational data with Polynomial Decoder: Mean ± S.E. (5 random seeds). R2 and MCC (IOS) achieve high values (for
Uniform & Uniform-C) as predicted Theorem 4.4 and Theorem 6.3 respectively.

PZ d p Recon-MSE R2 MCC MCC (IL)

Uniform 6 2 0.29± 0.08 1.0± 0.0 69.11± 1.11 100.0± 0.0
Uniform 6 3 0.97± 0.36 1.0± 0.0 73.42± 0.49 100.0± 0.0
Uniform 10 2 2.29± 0.85 1.0± 0.0 59.96± 2.03 100.0± 0.0
Uniform 10 3 2.74± 0.36 1.0± 0.0 65.94± 0.80 99.85± 0.03

Uniform-C 6 2 0.29± 0.11 1.0± 0.0 71.2± 2.46 100.0± 0.0
Uniform-C 6 3 1.50± 0.62 1.0± 0.0 70.21± 1.90 99.97± 0.01
Uniform-C 10 2 0.79± 0.24 1.0± 0.0 61.02± 1.03 100.0± 0.0
Uniform-C 10 3 1.72± 0.45 1.0± 0.0 61.16± 1.59 99.91± 0.01

Gaussian-Mixture 6 2 0.75± 0.27 1.0± 0.0 67.72± 2.20 99.99± 0.01
Gaussian-Mixture 6 3 0.57± 0.20 0.99± 0.0 70.21± 2.74 99.39± 0.05
Gaussian-Mixture 10 2 0.61± 0.16 1.0± 0.0 60.77± 1.60 99.98± 0.01
Gaussian-Mixture 10 3 2.29± 0.72 0.99± 0.0 57.81± 1.16 99.46± 0.05

SCM-S 6 2 0.21± 0.04 0.99± 0.0 68.41± 0.90 99.53± 0.38
SCM-S 6 3 0.93± 0.18 0.99± 0.0 74.12± 2.32 99.25± 0.34
SCM-S 10 2 0.63± 0.17 1.0± 0.0 68.01± 2.36 99.92± 0.03
SCM-S 10 3 1.29± 0.31 0.97± 0.01 66.81± 1.10 98.8± 0.13

SCM-D 6 2 0.81± 0.05 0.99± 0.01 71.8± 3.77 99.64± 0.12
SCM-D 6 3 0.75± 0.26 0.98± 0.01 79.48± 3.45 98.22± 1.07
SCM-D 10 2 0.76± 0.15 0.98± 0.01 70.78± 1.89 95.3± 2.24
SCM-D 10 3 0.96± 0.22 0.97± 0.0 70.08± 2.80 97.24± 0.88

Table 7. Interventional data with Polynomial Decoder: Mean ± S.E. (5 random seeds). MCC(IL) is high as predicted by Theorem 5.3.
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PZ d p Recon-MSE R2 MCC MCC (IOS)

Uniform 6 2 1.22± 0.19 0.98± 0.0 73.75± 2.85 99.05± 0.02
Uniform 6 3 2.79± 0.20 0.92± 0.0 63.29± 1.06 95.74± 0.12
Uniform 10 2 3.66± 0.39 0.99± 0.0 61.71± 1.16 94.25± 2.13
Uniform 10 3 33.16± 3.34 0.94± 0.0 59.27± 1.06 91.24± 4.99

Uniform-C 6 2 0.65± 0.10 0.96± 0.02 68.46± 1.94 94.95± 1.83
Uniform-C 6 3 1.39± 0.30 0.91± 0.0 68.09± 1.56 89.14± 2.38
Uniform-C 10 2 1.78± 0.09 0.99± 0.0 62.63± 2.05 88.88± 3.28
Uniform-C 10 3 12.0± 1.59 0.91± 0.01 59.91± 1.75 81.76± 3.67

Gaussian-Mixture 6 2 0.49± 0.12 0.95± 0.0 72.59± 2.03 65.33± 1.11
Gaussian-Mixture 6 3 0.79± 0.16 0.84± 0.01 66.25± 2.86 63.43± 1.27
Gaussian-Mixture 10 2 1.38± 0.18 0.95± 0.0 57.12± 1.52 54.76± 1.26
Gaussian-Mixture 10 3 7.22± 1.23 0.83± 0.01 55.41± 1.40 52.87± 0.86

SCM-S 6 2 2.24± 1.11 0.59± 0.18 69.77± 3.87 66.04± 1.34
SCM-S 6 3 2.45± 0.18 0.74± 0.05 73.72± 1.63 67.66± 2.18
SCM-S 10 2 6.41± 1.71 0.78± 0.08 65.99± 1.14 63.52± 1.11
SCM-S 10 3 4.32± 1.37 0.11± 0.43 66.96± 2.60 62.11± 1.36

SCM-D 6 2 2.7± 0.39 0.63± 0.22 75.19± 2.62 61.89± 4.0
SCM-D 6 3 1.89± 0.73 0.47± 0.25 77.83± 3.49 65.85± 1.58
SCM-D 10 2 4.46± 0.76 0.46± 0.11 69.81± 1.43 65.35± 2.72
SCM-D 10 3 3.53± 0.69 0.10± 0.29 65.89± 2.56 61.92± 1.95

Table 8. Observational data with Neural Network Decoder: Mean ± S.E. (5 random seeds). R2 achieves high values in many cases but
MCC (IOS) achieve high values (for Uniform & Uniform-C).

PZ d p Recon-MSE R2 MCC MCC (IL)

Uniform 6 2 0.35± 0.08 0.98± 0.0 68.39± 1.21 99.09± 0.02
Uniform 6 3 2.02± 0.28 0.91± 0.0 63.2± 1.33 91.67± 2.50
Uniform 10 2 3.89± 0.50 0.99± 0.0 60.54± 1.81 99.59± 0.04
Uniform 10 3 29.21± 2.33 0.95± 0.0 61.0± 1.48 93.73± 0.45

Uniform-C 6 2 0.42± 0.15 0.94± 0.02 65.91± 0.53 96.43± 1.47
Uniform-C 6 3 1.05± 0.19 0.91± 0.0 67.92± 3.48 94.8± 0.28
Uniform-C 10 2 1.32± 0.09 0.99± 0.0 60.02± 1.83 99.42± 0.01
Uniform-C 10 3 10.46± 1.27 0.92± 0.0 61.68± 1.20 93.83± 0.78

Gaussian-Mixture 6 2 0.45± 0.13 0.94± 0.0 70.64± 3.83 96.87± 0.14
Gaussian-Mixture 6 3 0.62± 0.12 0.83± 0.01 64.43± 2.36 84.53± 2.60
Gaussian-Mixture 10 2 0.87± 0.15 0.94± 0.0 57.35± 1.62 97.06± 0.16
Gaussian-Mixture 10 3 5.98± 0.93 0.83± 0.0 57.89± 2.06 80.14± 1.77

SCM-S 6 2 0.27± 0.07 0.94± 0.02 74.68± 2.28 93.07± 2.16
SCM-S 6 3 0.9± 0.18 0.89± 0.02 71.56± 3.18 88.66± 2.71
SCM-S 10 2 0.93± 0.23 0.98± 0.0 66.08± 1.04 94.14± 0.39
SCM-S 10 3 1.99± 0.36 0.88± 0.01 63.35± 1.44 76.62± 6.15

SCM-D 6 2 0.69± 0.07 0.95± 0.02 76.99± 2.53 91.63± 1.90
SCM-D 6 3 0.87± 0.25 0.88± 0.01 75.72± 1.69 88.19± 3.63
SCM-D 10 2 1.05± 0.29 0.95± 0.01 68.71± 2.16 90.14± 4.35
SCM-D 10 3 1.68± 0.34 0.86± 0.01 68.52± 2.11 81.82± 3.0

Table 9. Interventional data with Neural Network Decoder: Mean ± S.E. (5 random seeds). MCC(IL) is high.
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B.4. Experiment setup details: Synthetic image experiments

The latent variable comprises of two balls and their (x, y) coordinates; hence we have d = 4 dimensional latent variable. We
use PyGame (Shinners, 2011) rendering engine final images of dimension 64× 64× 3.

Latent Distributions. We denote the (x, y) coordinates of the Ball 1 as (x1, y1), and for Ball 2 as (x2, y2). We have the
following three cases for the latent distributions in case of synthetic image experiments:

• Uniform: Each coordinate of Ball 1 (x1, y1) and Ball 2 (x2, y2) are sampled from Uniform(0.1, 0.9).

• SCM (linear): The coordinates of Ball 1 (x1, y1) are sampled from Uniform(0.1, 0.9), which are used to sample the
coordinates of Ball 2 as follows:

x2 ∼

{
Uniform(0.1, 0.5) if x1 + y1 ≥ 1.0

Uniform(0.5, 0.9) if x1 + y1 < 1.0

y2 ∼

{
Uniform(0.5, 0.9) if x1 + y1 ≥ 1.0

Uniform(0.1, 0.5) if x1 + y1 < 1.0

• SCM (non-linear): The coordinates of Ball 1 (x1, y1) are sampled from Uniform(0.1, 0.9), which are used to sample
the coordinates of Ball 2 as follows:

x2 ∼

{
Uniform(0.1, 0.5) if 1.25× (x2

1 + y21) ≥ 1.0

Uniform(0.5, 0.9) if 1.25× (x2
1 + y21) < 1.0

y2 ∼

{
Uniform(0.5, 0.9) if 1.25× (x2

1 + y21) ≥ 1.0

Uniform(0.1, 0.5) if 1.25× (x2
1 + y21) < 1.0

Case Train Validation Test

Observational (D) 20000 5000 20000
Interventional (D(I)) 20000 5000 20000

Table 10. Statistics for the synthetic image experiments

Further details on dataset and evaluation. For experiments in Table 4, the details regarding the train/val/test split are
described in Table 10.

Note that the interventional data (D(I)) is composed of do interventions on each latent variable (D(I) = ∪i=1:dDi), where
latent variable to be intervened is sampled from Uniform({1, · · · , d}). Hence, each latent variable has equal probability to
be intervened.

While performing do-interventions on any latent variable (D(i)), we control for the total number of distinct values the latent
takes under the intervention (#interv, each distinct value correpsonds to sampling data from one interventional distribution).
When #interv = 1, then we set the latent variable i to value 0.5. For the case when #interv > 1, we sample the values
corresponding to different do-interventions on latent variable i as total of #interv equally distant points from S = [0.25, 0.75].
Eg, when #interv = 3, then the possible values after do-intervention on latent variable i are {0.25, 0.50, 0.75}. Note that we
uniformly at random sample the value of intervention from the set of intervention values.

Note that we only use the observational data (D) for training the autoencoder in Step 1. while the non-linear transformations
γi in Step 2 (Eq. 7) are learnt using the corresponding interventional data (D(i)). Further, the metrics (MCC, MCC (IL)) are
computed only on the test split of observational data (D) (no interventional data used).
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Model architecture. We use the following architecture for encoder f across all experiments (Table 4) in Step 1 of
minimizing the reconstruction loss.

• ResNet-18 Architecture (No Pre Training): Image (64× 64× 3)→ Penultimate Layer Output (512 dimensional)

• Linear Layer (512, 128); BatchNorm(); LeakyReLU()

• Linear Layer (128, 25); BatchNorm()

We use the following architecture for decoder h across all experiments (Table 4) in Step 1 of minimizing the reconstruction
loss. Our architecture for decoder is inspired from the implementation in widely used works (Locatello et al., 2019).

• Linear Layer (25, 128); LeakyReLU()

• Linear Layer (128, 1024); LeakyReLU()

• DeConvolution Layer (cin: 64, cout: 64, kernel: 4; stride: 2; padding: 1); LeakyReLU()

• DeConvolution Layer (cin: 64, cout: 32, kernel: 4; stride: 2; padding: 1); LeakyReLU()

• DeConvolution Layer (cin: 32, cout: 32, kernel: 4; stride: 2; padding: 1); LeakyReLU()

• DeConvolution Layer (cin: 32, cout: 3, kernel: 4; stride: 2; padding: 1); LeakyReLU()

Note: Here the latent dimension of the encoder (25) is not equal to the true latent dimension (d = 4) as that would lead
issues with training the autoencoder itself. Also, this choice is more suited towards practical scenarios where we do not
know the dimension of latent beforehand.

For learning the mappings γi from the corresponding interventional data (P(i)
X ), we use the default MLP Regressor class

from scikit-learn (Pedregosa et al., 2011) with 1000 max iterations for convergence.

Hyperparameters. We use Adam optimizer with hyperparameters defined below. We also use early stopping strategy,
where we halt the training process if the validation loss does not improve over 100 epochs consecutively.

• Batch size: 64

• Weight decay: 5× 10−4

• Total epochs: 1000

• Learning rate: 5× 10−4

B.5. Additional Results: Synthetic Image Experiments

Table 11 presents more details about Table 4 in the main paper, with additional metrics like mean squared loss for autoencoder
reconstruction task (Recon-MSE) and and R2 to test for affine identification using representations from Step 1. Note that
Recon-RMSE and R2 are computed using the autoencoder trained from Step 1, hence the results are not affected by training
on varying #interv per latent in Step 2. We get high R2 values across different latent distributions indicating the higher
dimensional latents (d̂ = 25) learned by the encoder are related to the small dimensional true latents (d = 4) by a linear
function.

We also report a batch of reconstructed images from the trained autoencoder for the different latent distributions; Uniform
(Figure 3), SCM Linear (Figure 4), and SCM Non-Linear (Figure 5). In all the cases the position and color of both the balls
is accurately reconstructed.
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PZ #interv Recon-RMSE R2 MCC (IL)

Uniform 1 0.04± 0.0 0.51± 0.0 34.18± 0.24
Uniform 3 0.04± 0.0 0.51± 0.0 73.94± 0.38
Uniform 5 0.04± 0.0 0.51± 0.0 73.62± 0.21
Uniform 7 0.04± 0.0 0.51± 0.0 72.54± 0.34
Uniform 9 0.04± 0.0 0.51± 0.0 73.14± 0.47

SCM (linear) 1 0.03± 0.0 0.8± 0.0 12.81± 0.28
SCM (linear) 3 0.03± 0.0 0.8± 0.0 73.21± 0.33
SCM (linear) 5 0.03± 0.0 0.8± 0.0 83.38± 0.21
SCM (linear) 7 0.03± 0.0 0.8± 0.0 84.22± 0.25
SCM (linear) 9 0.03± 0.0 0.8± 0.0 86.16± 0.17

SCM (non-linear) 1 0.04± 0.0 0.69± 0.0 19.70± 0.31
SCM (non-linear) 3 0.04± 0.0 0.69± 0.0 59.68± 0.28
SCM (non-linear) 5 0.04± 0.0 0.69± 0.0 62.79± 0.20
SCM (non-linear) 7 0.04± 0.0 0.69± 0.0 69.31± 0.34
SCM (non-linear) 9 0.04± 0.0 0.69± 0.0 71.37± 0.26

Table 11. Interventional data in image-based experiments: Mean ± S.E. (5 random seeds). MCCs increase with the number of interventions
per latent dimension as predicted by Theorem A.12.

Figure 3. Reconstructed images (top row) for the corresponding real images (bottom row) for the uniform latent case.

Figure 4. Reconstructed images (top row) for the corresponding real images (bottom row) for the SCM (linear) latent case.

Figure 5. Reconstructed images (top row) for the corresponding real images (bottom row) for the SCM (non-linear) latent case.
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B.6. Experiments with independence penalty from β-VAE

In this section, we provide some additional comparisons with models trained with independence prior on the latents used in
β-VAEs (Burgess et al., 2018). We take a standard autoencoder that uses a reconstruction penalty and add to it the β-VAE
penalty. We carry out the comparisons for both polynomial data generation experiments and also for the image-based
experiments. For the polynomial data generation experiments, we use the same MLP based encoder-decoder architecture
that we used earlier for Table 8 and Table 9. In Table 12 and Table 13, we show the results for autoencoder trained with
β-VAE penalty for the same setting as was used in Table 8 and Table 9 respectively. For the image-based experiments, we
use the same ResNet-based encoder-decoder architecture that we used earlier for Table 4. In Table 14, we show results for
the image-based experiments using the same setting as Table 4 focusing on the case with nine interventions.

PZ d p MCC (β = 0.1) MCC (β = 1.0) MCC (β = 10.0) MCC (IOS)

Uniform 6 2 67.35± 2.7 68.73± 2.88 72.38± 3.4 99.05± 0.02
Uniform 6 3 70.98± 2.57 69.43± 1.82 71.46± 3.13 95.74± 0.12
Uniform 10 2 58.94± 2.04 57.8± 1.35 60.14± 1.33 94.25± 2.13
Uniform 10 3 59.29± 2.45 60.94± 2.17 59.22± 1.24 91.24± 4.99

SCM-S 6 2 65.37± 2.28 61.98± 4.52 65.63± 4.15 66.04± 1.34
SCM-S 6 3 64.53± 2.38 65.23± 0.99 68.61± 2.74 67.66± 2.18
SCM-S 10 2 62.54± 1.33 62.23± 1.65 63.43± 0.87 63.52± 1.11
SCM-S 10 3 62.44± 0.56 58.04± 1.64 59.5± 0.89 62.11± 1.36

SCM-D 6 2 60.86± 2.63 59.36± 2.71 62.26± 1.66 61.89± 4.0
SCM-D 6 3 66.32± 1.36 65.49± 1.97 66.43± 1.4 65.85± 1.58
SCM-D 10 2 61.13± 1.42 62.23± 1.32 61.38± 2.25 65.35± 2.72
SCM-D 10 3 60.39± 1.83 58.64± 2.01 58.43± 1.08 61.92± 1.95

Table 12. Observational data with Neural Network Decoder: Mean ± S.E. (5 random seeds).

PZ d p MCC (β = 0.1) MCC (β = 1.0) MCC (β = 10.0) MCC (IL)

Uniform 6 2 69.79± 1.83 68.62± 2.99 69.59± 1.76 99.09± 0.02
Uniform 6 3 68.44± 1.88 71.86± 0.42 68.76± 2.13 91.67± 2.50
Uniform 10 2 60.46± 1.46 58.93± 0.91 58.95± 0.89 99.59± 0.04
Uniform 10 3 59.85± 1.46 62.92± 2.98 61.34± 1.66 93.73± 0.45

SCM-S 6 2 71.18± 2.11 71.01± 1.32 67.6± 2.07 93.07± 2.16
SCM-S 6 3 72.67± 1.29 70.9± 3.63 75.6± 3.04 88.66± 2.71
SCM-S 10 2 65.04± 1.46 64.47± 1.49 65.84± 2.1 94.14± 0.39
SCM-S 10 3 63.2± 1.83 62.31± 1.1 62.16± 1.68 76.62± 6.15

SCM-D 6 2 72.6± 2.01 76.58± 2.95 71.92± 2.85 91.63± 1.90
SCM-D 6 3 67.79± 0.97 72.93± 1.81 72.98± 1.27 88.19± 3.63
SCM-D 10 2 69.78± 3.85 69.19± 2.78 66.53± 1.28 90.14± 4.35
SCM-D 10 3 64.9± 1.68 66.86± 2.61 64.25± 1.61 81.82± 3.0

Table 13. Interventional data with Neural Network Decoder: Mean ± S.E. (5 random seeds).
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PZ MCC (β = 0.1) MCC (β = 1.0) MCC (β = 10.0) MCC (IL)

Uniform 42.6± 4.23 36.5± 2.45 38.3± 2.22 73.1± 0.47

SCM (linear) 60.8± 2.52 59.5± 2.47 61.6± 1.06 86.2± 0.17

SCM (non-linear) 62.5± 1.88 60.7± 2.41 59.7± 1.29 71.4± 0.26

Table 14. Interventional data in image-based experiments: Mean ± S.E. (5 random seeds).
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