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Abstract
The Arcade Learning Environment (ALE) has be-
come an essential benchmark for assessing the per-
formance of reinforcement learning algorithms.
However, the computational cost of generating
results on the entire 57-game dataset limits ALE’s
use and makes the reproducibility of many results
infeasible. We propose a novel solution to this
problem in the form of a principled methodology
for selecting small but representative subsets of
environments within a benchmark suite. We ap-
plied our method to identify a subset of five ALE
games, we call Atari-5, which generally produces
57-game median score estimates to within 10%
of their true values. Extending the subset to 10-
games recovers 80% of the variance for log-scores
for all games within the 57-game set. We show
this level of compression is possible due to a high
degree of correlation between many of the games
in ALE.

1. Introduction
The Arcade Learning Environment (ALE) (Bellemare et al.,
2013) has become the gold standard for evaluating the per-
formance of reinforcement learning (RL) algorithms on
complex discrete control tasks. Since its release in 2013,
the benchmark has gained thousands of citations and almost
all state-of-the-art RL algorithms have featured it in their
work (Schrittwieser et al., 2020; Kapturowski et al., 2018;
Horgan et al., 2018; Hessel et al., 2018; Gruslys et al., 2018;
Mnih et al., 2015). However, results generated from the
full benchmark have typically been limited to a few large
research groups.1 We posit that the cost of evaluation on
the full dataset is, for many, not feasible. Additionally, the
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1Of the 17 algorithms listed on paperswithcode.com
with full Atari-57 results, only one was from a research group
outside Google or DeepMind.

verification of superiority claims through statistical tests on
multiple seeds remains rare, likely, due to the high cost.

While technological improvements have reduced computa-
tion costs, this decrease has been greatly outpaced by an
increase in the scale at which RL algorithms are run. For
example, the number of frames used for training to produce
state-of-the-art results on ALE increased by more than one-
thousand times in the seven years between 2015’s Deep
Q-learning model (Mnih et al., 2015) and the more recent
Agent57 (Badia et al., 2020). Training modern machine
learning models can also produce non-trivial amounts of
carbon emissions (Strubell et al., 2019), for which we pro-
vide some analysis in Appendix A. Previous works have
dealt with this challenge by self-selecting ad hoc subsets
of games. However, this approach adds bias and makes
comparison between works more challenging.

In this paper, we outline a principled approach to selecting
subsets of environments from an RL benchmark suite. We
show that, when carefully chosen, a surprisingly small sub-
set of ALE can capture most of the useful information of
a full run. We present a new benchmark, Atari-5, which
produces scores that correlate very closely to median score
estimates on the full dataset, but at less than one-tenth the
cost. We hope that this new benchmark will allow more
researchers to participate in this important field of research,
speed up the development of novel algorithms through faster
iteration, and make the replication of results in RL more
feasible. Our primary contributions are as follows. First, a
methodology for selecting representative subsets of multi-
environment RL benchmarks according to a target summary
score. Second, the introduction of the Atari-5 benchmark.
Finally, evidence demonstrating the high degree of correla-
tion between scores for many games within ALE.

2. Background and Related Work
The Arcade Learning Environment (ALE). Despite de-
ceptively simple graphics, ALE (Bellemare et al., 2013)
provides a challenging set of environments for RL algo-
rithms. Much of this challenge stems from the fact that,
unlike most other RL benchmarks, ALE contains games
spanning multiple genres, including sport, shooter, maze
and action games. This is important because being able to
achieve goals in a wide range of environments has often
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Figure 1. The five games found to be optimal in the Atari-5 Subset. From left to right, Battle Zone, Double Dunk, Name this Game,
Phoenix, and Q*bert.

been suggested as a useful definition of machine intelli-
gence (Legg & Hutter, 2007). In addition, unlike many
other RL benchmarks, the environments within ALE were
designed explicitly for human play, rather than machine
play. As such, ALE includes games that are challenging
for machines but for which a (human) learnable solution
exists. Human reference scores also provide a means by
which ‘good’ scores can be quantified.

ALE Subsets. Many researchers make use of ALE subsets
when presenting results. However, decisions about which
games to include have varied from paper to paper. The
Deep Q-learning Network (DQN) paper (Mnih et al., 2015)
used a seven-game subset, while the Asynchronous Advan-
tage Actor-Critic (A3C) paper (Mnih et al., 2016) used only
five of these games. A useful taxonomy was introduced by
Bellemare et al. (Bellemare et al., 2016), which includes the
often-cited hard exploration subset. A more comprehensive
list of papers and the subsets they used is given in Appendix
B, highlighting that there is currently no standard ALE sub-
set. The key difference in our work is that our selection of
games has been chosen by a principled approach to be rep-
resentative of the dataset as a whole. To our knowledge, this
is the first work that investigates the selection and weighting
of environments within an RL benchmark suite.

Computationally Feasible Research. As has been pointed
out, the computational requirements for generating results
on ALE can be excessive (Ceron & Castro, 2021). There
have been several attempts to reduce this cost, including
optimizations to the simulator codebase,2 and a GPU imple-
mentation of the environments (Dalton et al., 2020). How-
ever, as these changes reduce the cost of simulating the
environment and not the much higher cost of training a pol-
icy, they result in only minor improvements. Asynchronous
parallel training (Horgan et al., 2018) partially addresses this
by making better use of parallel hardware but still requires
access to large computer clusters to be effective. While
these improvements have been helpful, they do not go far
enough to make ALE tractable for many researchers.

2https://github.com/mgbellemare/Arcade-Learning-
Environment/pull/265

Alternatives to ALE. Since ALE’s introduction, many other
RL benchmarks have been put forward (Cobbe et al., 2020;
Kempka et al., 2016; Beattie et al., 2016; Nichol et al., 2018).
However, ALE still dominates research, and at the time of
publishing, ALE has more than double the citations of these
other benchmarks combined (see Table 1). Minatar (Young
& Tian, 2019) addresses some of ALE’s issues by creating a
new benchmark inspired by Atari that presents agents with
objects rather than pixels. This simplification speeds up
training but requires previous algorithms to be trained on
the new environments and lacks the vision aspect of the task,
an important part of ALE’s challenge.

Table 1. Popular discrete-action vision-based benchmarks in RL
by citation. Citations are as of March 2022.

Benchmark Citations

ALE (Bellemare et al., 2013) 2,295
Vizdoom (Kempka et al., 2016) 610
DeepMind Lab (Beattie et al., 2016) 380
Procgen (Cobbe et al., 2020) 166
Gym Retro (Nichol et al., 2018) 119

3. Summary Scores on Subsets of Benchmark
Suites

When working with a benchmark made up of multiple en-
vironments it is often useful to distil the performance of an
algorithm, over all environments, down to a single ‘sum-
mary score’ (Bellemare et al., 2013). If this summary score
uses scores from only a subset of the environments then
the time taken to generate a summary score can be reduced.
Ideally this subset summary score would:

1. Preserve order.

2. Provide useful information about the performance of
the algorithm.

3. Minimize the number of environments needed to be
evaluated.
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We formalize these desiderata as follows. Let M = {µi|i ∈
[1..n]} be an ordered set of n unique environments that
make up the benchmark. For some algorithm a we write the
empirical score on the i-th environment as ai. Then, for this
set of environments, we say that for a pair of algorithms a, b,
we have that a ≥ b if and only if ai ≥ bi ∀ i ∈ [1..n] and
that a > b if there also exists some i, such that ai > bi. We
also define a summary score ΦM on scores from benchmark
M as a function ΦM : Rn → R reducing a score vector
⟨a1, a2, ..., an⟩ taken from benchmark M , to a scalar indi-
cating performance. For convenience, we write the summary
of individual scores for an algorithm, ΦM (⟨a1, a2, ..., an⟩)
as ΦM (a). Finally we define a subset score as a summary
score which uses a strict subset of M .

3.1. Order Preservation

Ideally a subset summary score would be strictly order pre-
serving, in that if a > b then Φ(a) > Φ(b). Unfortunately
this is not possible.

Proposition 1: No subset score can be strictly increasing.

Proof. Let M ′ be the strict subset of environments used
by ΦM , then select z ∈ [1..n] where µz ∈ M \M ′. Now
consider two algorithms a, b, where ai = bi ∀ i ̸= z, and
az > bz . Hence we have that a > b, but not Φ(a) > Φ(b).
Therefore, the next best thing we can do is to require that
our subset score be at least weakly order preserving, that is,
if a > b we can not have ΦM (a) < ΦM (b).

Proposition 2: Any summary score of the form

ΦM (a) =

n∑
i=1

ciai (1)

with ci ∈ R ≥ 0, is weakly increasing (proof is given in
Appendix C).

We therefore find that linear combination of scores, if con-
strained to non-negative weights, is weakly order preserving.
We note that this is not the case for more sophisticated non-
linear models, such as deep neural networks, which might
reverse the order of algorithms. We also note that any mono-
tonically increasing function ϕ : R→ R can be applied to
the individual game scores, which we will take advantage of
by using a log transform. We can therefore guarantee that if
algorithm a is strictly better than algorithm b, it can be no
worse when measured using a weighted subset score, which
is, as shown, the best we can do.

3.2. Provide Useful Information

As shown, a weighted subset produces a monotonic measure
of an algorithm’s performance. However, the question of
which subset to use and how to weigh the scores remains. A

trivial solution would be to weigh each score by 0, which
would be fast to generate and weakly order-preserving but
completely uninformative. Therefore, we propose that in-
dividual scores should be weighted such that the summary
score provides meaningful information about the perfor-
mance of the algorithm. For many benchmarks, meaningful
summary performance measures have often already been
established. For example, with ALE, the most common
summary score is median score performance over a set of
57 games. Therefore, we argue that the prediction of an
established summary score (target score) provides a sensi-
ble strategy for selecting and weighting the environments
within the suite. That is, to find the subset of environments
that best predicts the target score and weigh them according
to their linear regression coefficients.

3.3. Procedure

We therefore propose that using linear regression models to
predict a meaningful target summary score provides a good
solution to the desiderata outlined above, and formalize the
procedure. Given m algorithms ak : k = 1...m together
with their individual evaluations ski ∈ R on environments
i ∈ {1 : n} and summary score tk ∈ R, e.g. tk = sk1 +
... + skd or the average or the median. The “training” data
set is hence D = {(sk1 , ..., skn; tk) : k = 1...m}. Let I ⊆
{1 : n} be a subset of games and sI := (si : i ∈ I) be a
corresponding score sub-vector. We want to find a mapping
f∗
I : RI → R that best predicts t from sI , i.e. formally
f∗
I = argminf

∑m
k=1(t

k−f(skI ))
2. Since for I = {1 : d},

the best f is perfect and linear, it is natural to consider linear
f , which leads to an efficiently solvable linear regression
problem. We further want to find small I with small error.
We hence further minimize over all I ⊆ {1 : n} of some
fixed size |I| = C. The optimal set of games I∗ with best
linear evaluation function f∗ based on games in I∗ hence
are

(I∗, f∗) := argmin
|I|=C

argmin
f∈LinearI

m∑
k=1

(tk − f(skI ))
2.

We formally describe the procedure in Algorithm 1. Where
the outputs are coefficients for equation 1, and form a sum-
mary score Φ that is weakly monotonic and which provides
useful information about the algorithm’s performance. It is
also important to note that the purpose of the regressions
here is as a method of feature selection rather than predictive
power. We are more interested in which environments are
selected by this process than in their exact performance in
predicting the target summary score.
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Algorithm 1 BEST SUBSET: Find the best subset of size
C, according to a target summary score.

1: Input C ∈ Z+ the output summary score subset size.
2: Input M benchmark suite made up n environments µi

where i ∈ [1..n].
3: Input D a dataset containing scores for m algorithms,

made up of elements ski , being the evaluation score, for
algorithm k ∈ [1..m] on environment i ∈ [1..n].

4: Input ΦREF(·) target summary score, a mapping from
Rn → R. (e.g. MEAN, or MEDIAN).

5: Input EVAL(c,D, y) a measure of fit for a regression
model with weights c. (e.g. (k-fold) mean-squared
error)

6: Input LM(·, ·) a method that fits a linear regression
model (without intercept), under ordinary least squares
and outputs the model’s coefficients.

7: Input COMB(a, b) a function that returns all combina-
tions of size a, from the set [1..b].

8: sbest ←∞
9: Ibest ← NULL

10: y ← {ΦREF(sk∗)|sk∗ ∈ D}
11: for I in COMB(C, n) do
12: DI ← {ski ∈ D|i ∈ I}
13: c← LM(DI , y)
14: if ANY(ci < 0 for i ∈ C) then
15: continue {model would be non-monotonic}
16: end if
17: s← EVAL(c,D, y)
18: if s < sbest then
19: sbest ← s
20: cbest ← c
21: Ibest ← I
22: end if
23: end for
24: Output Ibest {The subset}
25: Output cbest {The coefficients}

4. Application to ALE
This section provides details for the application of our
method to the popular ALE benchmark,3 but note that this
method could also be applied to other benchmark suites
such as the Procgen (Cobbe et al., 2020), MuJoCo (Todorov
et al., 2012), or even benchmarks outside of RL.

4.1. Data and Processing

We used the website paperswithcode as the primary source
of data for our experiments.4 This website contains scores

3Source code for this paper can be found at https://
github.com/maitchison/Atari-5

4https://paperswithcode.com/dataset/
arcade-learning-environment

for algorithms with published results on various benchmarks,
including ALE. The dataset was then supplemented with
additional results from papers not included on the website.
Additions included various algorithms, such as evolutionary
algorithms and shallow neural networks. A full list of algo-
rithms and their sources contained within the dataset can be
found in Appendix D.

We removed any algorithms that had results for fewer than
40 of the 57 games in the standard ALE dataset on the
grounds that a reasonable median estimate could not be ob-
tained. This reduced our dataset of 116 algorithms down to
62. When fitting models for subsets, any algorithm missing
a score for a required game was excluded for that subset.
We also excluded any games with results for fewer than 40
of the remaining 62 algorithms. The only game meeting this
criteria was Surround, which we removed from the dataset.
All scores were normalised using the standard approach
from (Bellemare et al., 2013)

Zi(x) := 100× xi − ri
hi − ri

(2)

where ri and hi are the human and random scores for en-
vironment i respectively, which we include in Appendix
12. We found that, even after normalisation, scores differed
across games by many orders of magnitude and produced
non-normal residuals. We, therefore, applied the following
transform

ϕ(x) := log10(1 + max(0, x)) (3)

ϕ−1(x) = 10x − 1 (4)

to the normalised scores, producing log normalised scores.
Clipping was required as algorithms occasionally produce
scores slightly worse than random, generating a negative
normalised score. Both input and target variables were
transformed using ϕ, and all loss measures were calculated
in transformed space. This transformation also has the ef-
fect that larger scoring games would not dominate the loss,
which we discuss in further detail in Section 8.2.

4.2. Predictive Ability of Individual Games

To better understand the games within ALE, we produced
single-game linear models where the score from a single
environment was used to predict the median Atari-57 score.
We then ranked games according to their predictive ability
as measured by their R2. Due to a small parameter count
(n=2), cross-validation was not used.

4.3. Subset Search

To assess the best selection of games for each subset, we
evaluated all subsets of the ALE games of size five three or

4
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one that met our criteria as defined in Section 4.1.5 Subsets
were evaluated by fitting linear regression models to the
data using the log normalised scores of games within the
subset to predict the median overall, selecting the model
with the lowest 10-fold cross-validated mean-squared-error.
For these models, we disabled intercepts as we wanted a
random policy to produce a score of 0.6

To make the best use of the 57 games available, we carefully
ordered the subset searches to maximize the performance
of the subset size we believed would be most commonly
used (5) while maintaining the property that smaller subsets
are true subsets of their larger counterparts. All subsets of
five games were evaluated, with the best subset selected
as Atari-5. The Atari-3 subset was then selected as the
best triple-game subset of the Atari-5 subset and Atari-1 as
the best single-game subset of Atari-3. Doing this ensures
that only five games are included in the test set and also
that evaluations on Atari-1 or Atari-3 can more easily be
upgraded to Atari-5 if required. For the validation subsets,
we selected the best three games, excluding the games used
in Atari-5, as the validation set. We then extended this set to
5 games by choosing the best two additional games. Finally,
the ten-game Atari-10 set was generated by selecting the
best five additional games, not in Atari-5 nor Atari-5-Val.

Searching over all subsets took approximately 1-hour on a
12-core machine.7 No GPU resources were used.

4.4. Prediction over All Game Scores

To better understand how much information our subsets
capture about the 57 game dataset, we trained 57 linear
regression models for the best five-game and ten-game sub-
sets, predicting log-normalised scores for each game within
the 57-game set. We then evaluated each of the 57 models
according to their R2, allowing us to identify well or poorly-
captured environments by the subset. These models also
enable score predictions for any game within the 57-game
set.

5. Results
In this section, we present the results of our subset search
on the ALE dataset using the Atari-57 median score as the
target metric.

5We found diminishing returns after five games, however, we
do also provide models for a larger ten-game set if additional
precision is required.

6ALE environments are typically normalised such that a policy
that takes actions uniformly at random scores 0. Introducing an
intercept into our model would lead to a scenario where a non-zero
median score estimate is generated, even when all game scores are
normalised to zero.

7By running multiple regressions in parallel we were able to
perform approximately 1,000 regressions per second.

5.1. Single Environment Performance

We found a significant difference in the ability of games
within the ALE benchmark suite to predict median score
estimates (Figure 2). For single-game subsets, Zaxxon per-
formed best with R2 = 0.903, and Surround the worst with
R2 = 0.002. The environment Name this Game had the
interesting property that its intercept was close to 0 (-0.03)
and its scale close to 1 (1.01). As a result, normalised scores
from Name This Game provide relatively good estimates
for the median performance of an algorithm, by themselves,
without modification.

We also note that several games have close to no predictive
power when used by themselves. In the case of Pong, Sur-
round, and Tennis, this is most likely due to a low score cap,
which most algorithms easily achieve. Games within the
hard exploration subset also performed poorly at predict-
ing the median score due to many algorithms achieving no
better than random performance.

5.2. Optimal Subsets

As a baseline reference, we include results for the 7-game
set used in the DQN paper (Mnih et al., 2015). The re-
sult demonstrates the importance of game selection in that
our single-game model outperforms the 7-game baseline
set used by the DQN paper. Table 2 gives the results for
the top-performing regression model for each subset size.
Coefficients are provided in Appendix E.

We also approximated the expected relative error of the me-
dian score, using loge(10) times the mean absolute error in
log space, which, for small residuals, is a good approxima-
tion of the relative error.8 We found that Atari-5 is generally
within 10% of the true median score. In Table 3, we give
the performance of popular algorithms on the Atari-5 bench-
mark.

5.3. Robustness to Environmental Settings

To assess the impact of significantly different environmen-
tal settings, we used Atari-5 to evaluate the algorithm Go-
Explore (Ecoffet et al., 2021), which was not included in our
training set. Go-Explore uses 400,000 frame time limits for
each game, rather than the 108,000 used by the algorithms
in our dataset. For many games, this difference fundamen-
tally changes the skills the game requires and, importantly,
the maximum possible score. For example, in the Space
Invaders-like game Demon Attack, a shorter time limit re-
quires an agent to take risks to score points more quickly.
In contrast, an extended time limit emphasises staying alive
instead. Given the differences, we were surprised to find

8The authors were unable to find a reference for this, and so
have provided proof in Appendix G.
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Figure 2. Not all games are good predictors of median score in the ALE. Games in the ALE benchmark sorted from least predictive (left)
to most predictive (right), when used as the sole predictor for Atari-57 median performance.

Table 2. Performance, and included games, for each of the best models for each subset size.

Name Games R2 ≈ Rel. Err.

Atari-1 Name This Game 0.864 27.4%
Atari-3 Battle Zone, Name This Game, Phoenix 0.976 13.7%
Atari-5 Battle Zone, Double Dunk, Name This Game, Phoenix, Q*Bert 0.984 10.4%
Atari-10 Amidar, Bowling, Frostbite, Kung Fu Master, River Raid, 0.992 7.2%

Battle Zone, Double Dunk, Name This Game, Phoenix, Q*Bert

Atari-3-Val Assault, Ms. Pacman, Yar’s Revenge 0.952 17.1%
Atari-5-Val Bank Heist, Video Pinball, Assault, Ms. Pacman, Yar’s Revenge 0.972 14.3%

DQN-7 Beam Rider, Breakout, Enduro, Pong, Q*Bert, Seaquest, S. Invaders 0.756 38.9%

Table 3. Results for MuZero (Schrittwieser et al., 2020), Agent57
(Badia et al., 2020), Ape-X (Horgan et al., 2018), IQN (Dabney
et al., 2018), and Rainbow DQN (Hessel et al., 2018). Atari-5
predictions fall close the true Atari-57 median scores, and the
ranking of the algorithms is generally preserved.

Algorithm Median Atari-5 Rel. Error

MuZero 2,041 2,091 2.5%
Agent57 1,975 1,817 8.0%
Ape-X 434 475 9.6%
IQN 237 215 9.2%
Rainbow DQN 227 225 0.9%

that Atari-5 produced an overestimate of only 12.2% (an
estimate of 1,620 compared to 1,446). While this result
supports the robustness of Atari-5 to provide useful perfor-
mance information, even when environmental settings have
been changed, we still recommend that it not be used in
these cases.

5.4. Fairness of Atari-5 Scores

To assess the fairness of Atari-5, we split the algorithms
with scores for all five games in the Atari-5 dataset into

tertiles, ordered by their true median score performance.
We looked for differences in accuracy between the groups
by comparing the root mean squared (RMS) relative error
and looked for bias by comparing the average relative error.
No statistically significant difference was found between
any pairs using the standard p=0.05 threshold and Wilson’s
two-sided T-test.

Low Medium High

0.3

0.2

0.1

0.0

0.1

0.2

0.3
Bias

Low Medium High
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RMS

Figure 3. Fairness of the dataset. No statistically significant differ-
ences were found in either the accuracy or the bias of the estimates
across the low, medium and high-performing algorithms.

5.5. Predicting All Game Scores

We found that Atari-5 was able to produce surprisingly
accurate score estimates for many of the other games in
the ALE benchmark, as shown in Figure 4. There were 17
games which showed a high degree of correlation, with R2
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greater than 0.8, and together, the models explain 71.5% of
the variance in log-scores within the dataset.

Inspired by this result, we tested the ‘vital few, trivial many’
principle (Juran, 2003),9 by repeating the experiment with
the Atari-10 dataset (17.5% of the environments) and found
that those games could explain 80.0% of the variance of
the full 57-game set. Because of this, in many cases, other
performance measures (for example, the number of games
with human-level performance) could potentially be approx-
imated using the Atari-10 game set. Model parameters for
predicting scores for these games is given in Appendix E.
We also note that while the Atari-5 games predict many of
the games well, they perform poorly in Bellemare’s hard
exploration games (Bellemare et al., 2016).

6. Structure Within in the ALE
While the ALE dataset contains a diverse range of games,
there are still some games within the dataset that are highly
correlated. Therefore, we assessed the similarity between
scores in games in the ALE benchmark by calculating the
Pearson Correlation Coefficient (PCC) (Benesty et al., 2009)
on the log-transformed normalised game scores for each
game pair in the 57-game dataset. We considered a pair
with a coefficient above 0.9 to be highly correlated. The
most correlated twenty-four pairings are shown in Figure 5,
with highly correlated pairs depicted with bold edges. We
found that the two most correlated games were Alien and Ms.
Pacman, which was not surprising as these games are both
Pacman-like games with very similar rules and primarily
differ only in their graphical presentation. We also separated
games into categories based on their genre10 and note that
games of similar categories are often clustered together.

We also checked to see if any games were negatively corre-
lated and found Skiing scores were moderately negatively
correlated with Alien (-0.51), Frostbite (-0.55), Ms. Pacman
(-0.51), and River Raid (-0.50). Skiing is unlike most other
ALE games in that all score is deferred until the terminal
state of the episode and that the locally optimal but globally
sub-optimal policy of racing to end ignoring penalty flags
is easily learnable. This suggests that Skiing may require
novel approaches to solve.

7. Case Study
Our experimental results show strong results for Atari-5 on
the dataset used to fit the model. In addition, K-fold cross-
validation scores indicate that our model is not overfitting
the training data and suggest the model should generalize to

9Sometimes referred to as the 80/20 rule, or the Pareto Princi-
ple.

10Genres were taken from Wikipedia entries for each of the
games.

unseen data well. However, changes in algorithmic trends
or environmental settings may result in poorer performance
when applied to unseen data. For this reason, we performed
a case study where we applied Atari-5 retroactively to a re-
cent paper not included in our training set. We then asked the
following question. If this paper had used Atari-5 instead
of the full ALE, would the results have changed materially?

We set up our experiment as follows. First, we searched for
accepted papers submitted to AAAI-22 that referenced ALE.
We then selected the first paper, which contained results for
no less than 40 games and which included results for the
five games in the Atari-5 benchmark. The first paper we
found meeting this requirement was Conjugated Discrete
Distributions for Distributional Reinforcement Learning
(Lindenberg et al., 2022), which contains results for C51,
IQN, and Rainbow, as well as their own algorithm C2D.11

We defined two evaluation metrics, which are relative error
on predicted median score as compared to the true median
score, and the inversion count between the order of the
algorithms under the median score, as compared to the
order under Atari-5. We used the arXiv preprint version
of the paper, which included the supplementary material
containing the required results. The results of our study are
given in Table 4.

Table 4. Median and Atari-5 scores for the algorithms in the paper.
Atari-5 consistently underestimates the true median, however the
ordering of algorithms remains largely unchanged.

Algorithm Median Atari-5 Rel.Error

C51 109 96 12.6%
IQN 129 95 26.0%
C2D 133 111 17.0%
Rainbow 147 118 19.8%

Relative error on these four algorithms was higher than
expected (12.6%-26.0%, average of 18.9%). However, we
found that Atari-5 scores consistently underpredicted the
true results by a similar ratio (≈ 0.80). We hypothesise
that this may be due to differences in the environmental
settings (evidenced by Rainbow DQN scoring 147 on their
experiments compared to 223 in our dataset). Since it is
often useful to measure the performance of an algorithm
relative to some baseline, we also considered the scores
normalised to the best performing algorithm, Rainbow DQN.
We present the results in and Table 5. Because Atari-5
is consistent in its under prediction, with this adjustment,
relative error for all models fell below 10% (3.5% - 9.0%,

11Their results for C51, IQN, and Rainbow do not match those
in our training set. This is not unexpected as results on these
algorithms are highly dependent on both the implementation details
and the environmental settings.
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Figure 4. The five games selected in Atari-5 are able to predict accurate scores for many of the other games within the ALE benchmark.
However, hard exploration games are less well predicted by the subset.

average of 6.7%). We note only one inversion in the order:
the swapping of C51, and IQN.

Table 5. Median and Atari-5 scores normalised to the Rainbow
result. These results indicate the relative performance of each
algorithm as compared to Rainbow.

Algorithm Median Atari-5 Rel.Error

C51 0.74 0.81 9.0%
IQN 0.87 0.81 7.7%
C2D 0.90 0.94 3.5%
Rainbow 1.00 1.00 0.0%

Given these results, we conclude that, had Atari-5 been
used instead of the full ALE dataset, while the median
score would have varied substantially (18.9%), the relative
performance differences would have been similar (6.7%).
This degree of error was not significant enough to change the
paper’s outcome, which was that C2D outperformed both
C51 and IQN and underperformed Rainbow. We, therefore,
conclude that had Atari-5 been used, the results would not
have changed materially.

8. Discussion
In this section, we outline the recommended use of the
Atari-5 benchmark, discuss its primary value and limita-
tions, and consider the broader impact of our work. We
intend Atari-3-Val to be used for hyperparameter tuning
and algorithm development and Atari-5 to be used to gen-
erate evaluation results. In some cases, researchers might
want to include results for specific games that demonstrate a
strength or weakness of their algorithm while also providing
a measure of general performance in the form of Atari-5.
Because Atari-5 and median scores differ in their bias, it
is recommended to always compare Atari-5 scores with
Atari-5 scores, and not against median scores directly. For
this reason, we have provided Atari-5 scores for common
algorithms in Table 3.

Atari-5 provides three key points of value. First, it captures
a significant portion of the information gained from a full
ALE evaluation using one-tenth of the evaluations. Second,
it provides a standard subset to ALE, selected using a prin-
cipled process. Third, it provides backwards compatibility
with prior work allowing results on previous algorithms to
be generated after the fact, so long as scores for the five
games were included.

8.1. Limitations

Algorithms included in our training dataset are very di-
verse and include neural network and non-neural network
approaches. Because of this, Atari-5 generates results ro-
bust to algorithmic and training choices, such as how many
frames an algorithm was trained for. However, any changes
made to the environment, for example, changing the time-
limit, would affect the result, as they modify the optimal
policy and potentially the maximum score. We also note
that stochasticity in the form of the probability of repeating
actions is an environmental change but that our dataset con-
tains both stochastic and deterministic variants. This does
not seem to make a significant difference to the prediction
accuracy.

We also note that Atari-5 does not do well at incorporating
hard-exploration games (see Figure 4). We, therefore, rec-
ommend, for algorithms where this matters, to run individ-
ual tests for these games. Researchers could then establish
their algorithm’s general performance via Atari-5, while
also demonstrating a specific ability on hard-exploration
problems by giving individual results on those games.

8.2. Potential Negative Societal Impacts

Any new benchmark will invariably advantage some algo-
rithms while disadvantaging others. We identified poor or
biased performance on lower-scoring algorithms, and the
dominance of the current trend of deep neural networks, as
potential areas of concern. We addressed these by includ-
ing a diverse range of algorithms in our dataset and using

8
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Figure 5. Structure within the ALE dataset. Edges indicate PCC, colours the games’ category.

log scores to avoid high-scoring algorithms dominating the
regression.

9. Conclusions
We have introduced a new benchmark, Atari-5, that provides
median score estimates to within 10% of their true values
but using less than one-tenth of the computational resources
A key feature of Atari-5 is that, as a subset of ALE, it can be
applied retroactively to prior results, without retraining, so
long as scores for all five games are provided. We have also
shown that our extended benchmark Atari-10 can generate
useful score estimates for all games within the ALE dataset.
We hope this new benchmark can offset the trend of increas-
ingly high computation requirements required to develop
and reproduce results on the ALE benchmark and increase
RL participation while providing backwards-compatible re-
sults to prior work.
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A. Estimation of Cost to Reproduce for Selected Papers
Retroactive estimation of costs and carbon emissions can be difficult (Patterson et al., 2021). Due to missing details in
the publications, our estimations required many assumptions about the hardware and time needed to reproduce a result.
Our estimates do not include overheads such as air-conditioning, testing, hyper-parameter searches, or ablation studies.
Therefore these estimates should be taken as useful lower bound estimates on the cost to reproduce a work. We also note the
large difference between preemptive and standard costs which are approximately one-third of the cost. However, preemptive
computing may not always be feasible due to congestion near conference deadlines. We took the computing requirements
from the papers and used Google Cloud Compute to estimate the cost of reproducing the work.12

For some older algorithms, it may be possible to reduce the costs given here by training on more modern hardware (for
example, an A100 or TPU). However, if the algorithm is CPU constrained, this could increase, not decrease, the cost due to
the underutilization of the device. Therefore we estimate reproduction costs with our best guess at the hardware that would
have been used at the time of publication. A summary of the calculations and results is given in Table 6. In addition, we
detail the assumptions made for each algorithm in the paragraphs below.

Table 6. Estimated cost to reproduce a full evaluation on ALE. These are the estimated costs for a single run, some papers include multiple
runs, or ablation studies.

Year Algorithm Compute / env. GPU hours Cost (preemptive) Cost (standard)

2018 Rainbow DQN (Hessel et al., 2018) 10 GPU days 13,680 $10,670 USD $35,759 USD
2020 Agent-57 (Badia et al., 2020) 375 hours (est) 21,375 $30,673 USD $110,352 USD

Rainbow DQN Rainbow DQN required 10 days on a single GPU for each of the 57 environments.(Hessel et al., 2018)
The hardware used is not mentioned in the paper so we assume a V100, with an E2-standard-4 (16GB) instance,13 which has
a GPU/CPU cost per hour of $2.48/$0.134 (standard), and $0.74/$0.04 (preemptive). We also note that (Ceron & Castro,
2021) also produced estimates for Rainbow DQN, but used 5-days of GPU time instead of 10.

Agent-57 Agent-57 trains at ≈ 260 environment steps per second per actor with 256 actors (Badia et al., 2020). To
generate the 90B frames needed would then take 375 hours. The paper states that a single GPU is used, and for the purposes
of our estimate, we assume that this also requires 375 hours.14 The hardware used is not stated, so we assume an A100,
which is the best available GPU at the time of their publication. We assume a 64 CPU machine (N2-highcpu-64) would be
needed as our observation is that Atari environments typically run at 1,000 environment steps per CPU. The GPU/CPU cost
per hour is $2.9333/$2.2294 (standard) and $0.88/$0.555 (preemptive).

Power Usage and Carbon Emissions We estimate the power required to reproduce the Agent-57 result as follows. A
single A100 uses up to 400W.15 We use 215W as the estimated power consumption for the CPU, which is taken from
the Xeon Phi 7210 specifications.16 We do not include estimates for air-conditioning, power supply inefficiency, or other
components such as RAM, networking, and storage. The use of TDP is only an approximate measure as devices frequently
run under the TDP limit and may also occasionally run over it too. Using the estimates above, the total power required to
reproduce a result would be 13.166mWh. Because our compute estimations were based on Google Cloud Compute servers
in the U.S., we used the 2019 U.S. carbon emissions rate of 0.92 pounds per kWh.17 We note that this could be higher in
developing countries. This equates to approximately 6.05 tones of CO2 per 57-game run.

12https://cloud.google.com/compute/gpus-pricing
13Smaller instances might not be feasible due to RAM requirements.
14Even though Agent-57 uses a distributed training/roll-out architecture, we believe this to be reasonable based on the assumption that

actors and learners are limited in how out of sync they can become.
15NVIDIA lists two variants at https://www.nvidia.com/en-au/data-center/a100/ one with a 400W max TDP and

one with 250W. Cards likely run below their maximum power limits. However, this is partly balanced out by power supply inefficiencies.
16
https://ark.intel.com/content/www/us/en/ark/products/94033/intel-xeon-phi-processor-7210-16gb-1-30-ghz-64-core.html

17https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
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B. Subsets Used by Other Papers

Table 7. Subsets of Atari used by various works.

Paper Games

DQN (Mnih et al., 2015) Beam Rider, Breakout, Enduro, Pong,
Q*bert, Seaquest, Space Invaders.

A3C (Mnih et al., 2016) Beam Rider, Breakout, Pong, Q*bert, Space Invaders.
Unifying Count-Based Exploration (Hard Exploration) Freeway, Gravitar, Montezuma’s Revenge, Pitfall!,
(Bellemare et al., 2016) Private Eye, Solaris, Venture.
Playing hard exploration games (Hard Exploration) Montezuma’s Revenge, Pitfall, Private Eye.
(Aytar et al., 2018)
Agent57 (Challenging Set) Freeway, Gravitar, Montezuma’s Revenge, Pitfall!
(Badia et al., 2020) Private Eye, Solaris Venture, Beam Rider, Pong, Skiiing.
Compress and Control (Veness et al., 2015) Q*bert, Pong, Freeway.

C. Proof of Proposition 2
We prove the more general case of Proposition 2 using some fixed (weakly) increasing ϕ : R→ R, where Proposition 2 can
be recovered by selecting ϕ(x) = x.

Consider two algorithms a, b, and a set of scores for each of n environments a1...an, b1...bn, where ai is the score on the i-th
environment for algorithm a, and bi is the score on the i-th environment for algorithm b. Given some (weakly) increasing
function ϕ : R→ R, and constants ci ∈ R ≥ 0, we have that

ai ≥ bi ∀ i ∈ [1..n] (5)
⇒ϕ(ai) ≥ ϕ(bi) (ϕ is weakly increasing) (6)
⇒ciϕ(ai) ≥ ciϕ(bi) (for ci ≥ 0). (7)

(8)

Since this holds for all i ∈ [1..n] we have

n∑
i=1

ciϕ(ai) ≥
n∑

i=1

ciϕ(bi) (9)

as required.

D. Algorithms Included in the Dataset
We included in our dataset only algorithms with results on 40 or more ALE games. They are listed in Table 8, along with
how many games each algorithm had results for. Games that are not part of the 57-game canonical set were not included.
The names are provided from PapersWithCode, and some algorithms appear multiple times as they included multiple
configurations.

E. Models for Individual Games
We provide coefficients for each of the Atari-X and Atari-Val-X models in Table 9, as well as models for predicting scores
for all games within the 57-game ALE dataset (Table 10, 11). An estimated normalised game score (sest) can be calculated
using the following formula
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slog = c+

10∑
i=1

xi log10(1 + si) (10)

sest = 10slog − 1 (11)

where si are the normalised scores for the appropriate game using normalisation constants taken from Table 12. Not all
models make use of the intercept constant c.

F. normalisation Constants
For completeness we include the average human reference scores used for normalisation in Table 12 which have been taken
from (Badia et al., 2020). Note, these differ from the professional human scores given by (Mnih et al., 2015).

G. Log Residuals as an Approximation to Relative Error
Here we show that log residuals are approximations to the relative error. For a residual using a biased log transform given by

δ = log(ϵ+ ŷ)− log(ϵ+ y) (12)

where y is the true value, and ŷ the prediction, with y, ŷ ∈ R ≥ 0 and ϵ ∈ R > 0 we have

δ := log(ϵ+ ŷ)− log(ϵ+ y) (13)

= log(
ϵ+ ŷ

ϵ+ y
) (14)

= log(1 + (
ϵ+ ŷ

ϵ+ y
− 1)) (15)

≈ ϵ+ ŷ

ϵ+ y
− 1 (for

ϵ+ ŷ

ϵ+ y
close to 1) (16)

=
ŷ − y

ϵ+ y
, (17)

which, for ϵ≪ y, approximates the relative error. When using logarithms other than the natural logarithm, the log residual δ
must first be multiplied by the natural log of the base used.
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Table 8. Algorithms included in the dataset.
Algorithm Games Median Score

MuZero 57 2041.1
Agent57 57 1975.8
R2D2 57 1926.7
SEED 8 TPU v3 cores 57 1846.5
R2D2(Retrace) 57 1342.8
NGU (32-0) 57 1208.1
GDI-H3(200M frames) 56 1030.9
MuZero (Res2 Adam) 57 1010.6
GDI-I3 50 868.0
NGU (32-0.3) 57 568.8
LASER No Sweep (200M) 57 454.9
Ape-X 57 434.1
LASER Shared (200M) 57 413.7
LASER Shared (50M) 57 365.0
IQN 57 237.8
Rainbow (noop) 56 227.0
DreamerV2 55 214.7
QR-DQN-1 57 210.7
QR-DQN-0 57 199.2
Prior+Duel noop 50 194.8
IMPALA (deep) 57 191.8
Reactor 57 186.8
Planning 50 183.3
Reactor ND 57 180.4
C51 57 177.7
NoisyNet-Dueling 54 174.4
Bootstrapped DQN 49 153.4
DDQN+Pop-Art noop 49 147.4
Distrib DQN (noop) 56 146.7
Duel DDQN (noop) 56 142.3
A2C + SIL 49 140.0
Prior noop 49 140.0
Priority DDQN (noop) 56 136.6
A3C LSTM hs 50 133.2
Duel hs 50 131.4
Prior+Duel hs 52 128.8
A3C FF hs 50 120.0
Prior hs 50 118.0
Persistent AL 57 116.5
DDQN (noop) 56 115.2
Noisy DQN (noop) 56 114.9
Advantage Learning 57 114.3
DDQN (tuned) hs 50 114.3
Human Ref 57 100.0
Adam Huber 54 97.8
Adam MSE 54 92.5
Bellman 57 87.7
NEAT Object 56 87.2
POP3D 49 83.6
Nature DQN 48 82.7
DQN (noop) 56 77.6
CMA-ES Object 56 77.5
H-NEAT Object 56 76.7
DQN hs 50 70.7
CNE Object 56 70.5
NEAT Noise 56 69.2
A3C FF (1 day) hs 50 68.2
Gorila 49 68.1
CNE Noise 56 58.0
RMSProp Huber 54 57.3
ES FF (1 hour) noop 45 55.8
CGP 56 53.0
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Table 9. Parameters for each of the best subset models
Dataset Games Parameters

Atari-1 NameThisGame 0.9976

Atari-3 BattleZone, NameThisGame, Phoenix 0.3706, 0.5133, 0.1015

Atari-5 BattleZone, DoubleDunk, NameThisGame, Phoenix, Qbert 0.3820, 0.0679, 0.3108, 0.1241, 0.0805

Atari-10 Amidar, Bowling, Frostbite, KungFuMaster, RiverRaid 0.0825, 0.0559, 0.0691, 0.0986, 0.0486,
BattleZone, DoubleDunk, NameThisGame, Phoenix, QBert 0.1888, 0.0852, 0.1287, 0.1643, 0.0592

Atari-3-Val Assault, MsPacMan, YarsRevenge 0.3353, 0.4236, 0.1916

Atari-5-Val BankHeist, VideoPinball, Assault, MsPacman, YarsRevenge 0.1072, 0.0959, 0.2234, 0.2943, 0.2239
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Table 10. Atari-5 linear regression models for each game in the ALE.
Game c x1 x2 x3 x4 x5

Alien -0.807 0.717 -0.106 0.362 0.195 0.100
Amidar -0.180 0.426 -0.013 0.289 -0.160 0.471
Assault -0.559 0.015 0.389 0.669 0.191 0.204
Asterix -0.449 -0.478 -0.149 0.897 0.665 0.356
Asteroids -2.150 0.671 0.114 -0.214 0.791 -0.043
Atlantis 1.860 -0.097 0.134 -0.016 0.245 0.346
Bankheist -0.342 0.378 0.095 0.447 -0.128 0.334
Battlezone 0.000 1.000 0.000 0.000 0.000 0.000
Beamrider -1.113 -0.152 -0.045 1.149 0.259 0.100
Berzerk -0.556 0.472 0.065 -0.058 0.568 -0.038
Bowling 0.772 0.848 -0.180 0.574 -0.415 -0.301
Boxing 1.581 -0.138 0.396 0.088 0.023 0.050
Breakout 0.998 -0.574 -0.017 0.873 0.134 0.398
Centipede -1.313 1.013 -0.161 0.642 0.550 -0.599
Choppercommand -0.988 1.051 0.065 -0.461 0.595 0.114
Crazyclimber 1.105 -0.208 -0.048 0.425 0.015 0.472
Defender 0.584 0.486 0.234 -0.818 0.699 0.095
Demonattack 1.052 -0.380 0.076 0.449 0.392 0.338
Doubledunk 0.000 0.000 1.000 0.000 0.000 0.000
Enduro 0.100 0.833 -0.064 0.918 -1.163 0.575
Fishingderby 1.412 -0.119 0.094 0.224 0.030 0.119
Freeway 1.297 0.713 0.020 0.125 -0.439 -0.060
Frostbite -1.273 0.927 -0.229 1.166 -0.327 0.073
Gopher 0.597 -0.226 0.035 0.665 0.301 0.221
Gravitar -0.408 1.351 0.133 -0.561 -0.035 -0.025
Hero 0.927 -0.118 -0.107 0.286 0.070 0.277
Icehockey 0.152 0.363 0.234 0.197 0.092 -0.105
Jamesbond -0.133 0.881 0.320 -0.226 0.440 -0.139
Kangaroo 1.482 0.209 -0.089 0.546 -0.245 0.090
Krull 0.201 0.999 0.194 0.205 -0.126 -0.020
Kungfumaster 1.339 0.270 0.049 -0.055 0.182 -0.022
Montezumarevenge -0.070 1.256 -0.178 -1.161 0.118 0.316
Mspacman -0.118 0.561 -0.113 0.684 -0.137 -0.012
Namethisgame 0.000 0.000 0.000 1.000 0.000 0.000
Phoenix 0.000 0.000 0.000 0.000 1.000 0.000
Pitfall 0.891 0.453 -0.188 -0.391 -0.038 0.171
Pong 1.401 -0.168 0.085 0.200 -0.015 0.128
Privateeye 1.016 1.326 -0.226 -0.855 -0.194 -0.042
Qbert 0.000 0.000 0.000 0.000 0.000 1.000
Riverraid 0.125 -0.167 -0.161 1.025 0.053 0.072
Roadrunner 0.385 0.180 0.093 0.600 -0.039 0.234
Robotank 1.262 0.036 0.178 0.490 -0.118 0.010
Seaquest -2.222 1.123 -0.235 0.900 -0.226 0.263
Skiing 1.864 -0.083 0.400 -0.518 -0.163 0.080
Solaris 1.019 0.435 0.376 -0.844 0.004 0.040
Spaceinvaders 0.171 -0.170 0.168 0.120 0.591 0.176
Stargunner 0.676 -0.123 -0.056 0.380 0.423 0.235
Surround 0.686 -0.290 0.138 0.744 -0.068 -0.059
Tennis 1.637 0.123 0.219 -0.344 0.059 0.140
Timepilot -0.729 0.889 0.281 -0.406 0.688 -0.068
Tutankham 0.357 -0.035 0.067 0.776 -0.181 0.143
Upndown -0.351 0.215 0.166 -0.110 0.596 0.267
Venture 0.415 0.946 -0.102 -0.008 -0.611 0.336
Videopinball 1.846 0.021 0.114 0.212 0.165 0.052
Wizardofwor 0.104 0.503 0.082 0.229 0.188 0.008
Yarsrevenge -0.082 0.823 0.074 -0.494 0.342 0.121
Zaxxon -0.145 0.355 -0.060 0.468 0.250 0.029
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Table 11. Atari-10 linear regression models for each game in the ALE.

Game c x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Alien -1.411 0.457 0.224 -0.024 0.336 0.512 0.337 -0.006 -0.354 0.245 -0.065
Amidar 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Assault -0.094 0.124 -0.167 0.152 0.070 -0.463 -0.237 0.290 1.069 0.195 0.151
Asterix 0.246 0.209 -0.063 0.354 0.110 -0.324 -1.084 -0.186 0.898 0.732 0.302
Asteroids -3.862 -0.270 0.260 -0.454 0.606 0.998 0.900 0.197 -0.881 0.708 0.102
Atlantis 2.692 0.128 -0.352 0.180 -0.043 -0.413 -0.209 0.015 0.405 0.202 0.234
Bankheist 0.675 -0.072 0.165 0.293 -0.714 -0.476 0.238 0.199 0.360 0.265 0.349
Battlezone 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Beamrider -0.606 0.146 -0.011 0.059 -0.187 0.199 -0.287 -0.021 0.875 0.308 0.040
Berzerk -1.226 0.343 -0.289 -0.211 0.519 -0.297 0.590 -0.097 0.570 0.371 -0.247
Bowling 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Boxing 1.983 0.067 -0.067 0.079 -0.158 -0.216 -0.181 0.378 0.217 0.085 0.001
Breakout 1.858 0.339 -0.264 0.090 -0.229 -0.106 -0.626 -0.079 0.992 0.108 0.198
Centipede -3.331 -0.319 0.412 -0.216 0.956 -0.241 0.763 -0.199 0.978 0.492 -0.307
Choppercommand -3.172 0.415 -0.136 -0.621 1.290 0.548 1.185 -0.118 -0.159 0.064 -0.027
Crazyclimber 1.689 0.382 -0.153 0.085 -0.120 0.152 -0.353 -0.049 0.194 0.027 0.261
Defender 0.160 -0.295 -0.080 -0.104 0.141 0.694 0.876 0.312 -1.328 0.562 0.149
Demonattack 1.261 0.137 -0.124 0.051 0.219 0.059 -0.633 0.005 0.474 0.294 0.304
Doubledunk 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
Enduro 2.754 0.412 -0.137 0.809 -0.718 -0.384 -0.092 -0.017 0.503 -0.884 0.412
Fishingderby 1.736 0.098 -0.038 0.041 -0.154 0.018 -0.141 0.106 0.137 0.084 0.054
Freeway 3.306 -0.284 -0.419 0.338 -1.026 -1.388 1.052 -0.102 1.292 -0.196 -0.068
Frostbite 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Gopher 0.717 -0.030 -0.297 0.228 0.632 -0.626 -0.680 -0.169 1.380 0.107 0.273
Gravitar -1.119 -0.132 0.272 0.080 0.368 0.182 1.054 0.229 -1.010 0.072 0.079
Hero 1.319 0.255 0.042 0.051 -0.237 0.440 -0.209 -0.010 -0.332 0.171 0.137
Icehockey -0.103 -0.174 -0.087 -0.130 0.028 0.022 0.675 0.208 0.382 0.013 -0.066
Jamesbond -0.386 -0.222 -0.565 0.132 0.817 -0.212 0.916 0.116 0.380 0.009 -0.107
Kangaroo 1.989 0.658 0.088 0.306 0.132 -0.179 -0.625 -0.075 0.235 -0.076 -0.143
Krull 0.858 0.043 0.163 0.392 0.016 -0.588 0.251 0.171 0.355 0.030 0.084
Kungfumaster 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
Montezumarevenge 0.012 -0.465 0.244 0.338 0.069 0.189 0.922 -0.043 -1.737 0.226 0.581
Mspacman -0.492 0.150 0.255 0.031 0.103 0.363 0.323 0.007 0.072 -0.026 -0.047
Namethisgame 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
Phoenix 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
Pitfall 0.523 0.270 0.606 0.170 0.033 0.710 -0.198 0.086 -1.748 0.238 0.182
Pong 1.846 0.191 -0.012 0.092 -0.190 0.163 -0.276 0.133 -0.115 0.058 0.023
Privateeye 0.063 0.067 0.889 -0.111 -0.042 1.267 0.919 0.112 -2.498 0.015 0.124
Qbert 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
Riverraid 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
Roadrunner 1.603 0.024 -0.218 0.329 -0.302 -0.221 -0.046 0.079 0.558 0.076 0.170
Robotank 1.923 0.187 -0.308 0.050 -0.184 -0.276 0.147 0.093 0.844 -0.161 -0.148
Seaquest -1.653 0.450 0.214 -0.055 -0.608 1.048 1.125 -0.016 -0.360 -0.061 0.047
Skiing 1.881 0.124 0.103 -0.442 -0.382 -0.298 0.183 0.276 0.207 -0.176 0.125
Solaris -0.063 -0.084 0.642 -0.172 0.331 0.213 -0.049 0.453 -1.175 0.130 0.305
Spaceinvaders -0.066 0.502 -0.173 -0.152 0.455 -0.141 -0.434 -0.016 0.596 0.381 -0.006
Stargunner 1.104 0.150 -0.328 -0.182 -0.271 0.114 0.326 -0.126 0.593 0.316 0.065
Surround 0.427 0.133 -0.037 -0.076 0.087 0.245 -0.326 0.126 0.643 -0.117 -0.074
Tennis 1.574 -0.010 -0.087 0.090 0.274 -0.208 -0.047 0.156 -0.120 -0.020 0.160
Timepilot -1.986 -0.348 0.322 -0.112 0.524 0.471 0.808 0.376 -0.892 0.688 0.149
Tutankham 0.340 0.203 0.167 -0.006 0.004 0.059 -0.303 0.088 0.612 -0.112 0.119
Upndown -0.761 -0.248 -0.224 0.011 0.493 0.132 0.296 0.104 -0.031 0.399 0.332
Venture 1.629 -0.086 0.422 0.308 -0.870 0.428 0.602 0.150 -1.086 -0.186 0.433
Videopinball 1.715 -0.120 0.007 -0.035 0.098 -0.465 -0.037 0.031 0.713 0.207 0.134
Wizardofwor -0.557 -0.098 0.035 0.020 0.487 0.006 0.360 0.066 0.242 0.099 0.077
Yarsrevenge -0.154 -0.186 -0.012 0.076 0.122 0.116 0.789 0.097 -0.667 0.362 0.177
Zaxxon -0.188 -0.035 0.097 0.014 -0.053 0.538 0.365 0.048 -0.155 0.280 0.034
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Table 12. The canonical 57 Atari games with random and human scores used for normalisation.
Game Random Av. Human

Alien 227.75 7127.7
Amidar 5.77 1719.5
Assault 222.39 742.0
Asterix 210.0 8503.3
Asteroids 719.1 47388.7
Atlantis 12850.0 29028.1
Bank Heist 14.2 753.1
Battle Zone 2360.0 37187.5
Beam Rider 363.88 16926.5
Berzerk 123.65 2630.4
Bowling 23.11 160.7
Boxing 0.05 12.1
Breakout 1.72 30.5
Centipede 2090.87 12017.0
Chopper Command 811.0 7387.8
Crazy Climber 10780.5 35829.4
Defender 2874.5 18688.9
Demon Attack 152.07 1971.0
DoubleDdunk -18.55 -16.4
Enduro 0.0 860.5
Fishing Derby -91.71 -38.7
Freeway 0.01 29.6
Frostbite 65.2 4334.7
Gopher 257.6 2412.5
Gravitar 173.0 3351.4
Hero 1026.97 30826.4
Ice Hockey -11.15 0.9
James Bond 29.0 302.8
Kangaroo 52.0 3035.0
Krull 1598.05 2665.5
Kung Fu Master 258.5 22736.3
Montezuma Revenge 0.0 4753.3
Ms Pacman 307.3 6951.6
Name This Game 2292.35 8049.0
Phoenix 761.4 7242.6
Pitfall -229.44 6463.7
Pong -20.71 14.6
Private eye 24.94 69571.3
Qbert 163.88 13455.0
Riverraid 1338.5 17118.0
Road Runner 11.5 7845.0
Robotank 2.16 11.9
Seaquest 68.4 42054.7
Skiing -17098.09 -4336.9
Solaris 1236.3 12326.7
Space Invaders 148.3 1668.7
Star Gunner 664.0 10250.0
Surround -9.99 6.53
Tennis -23.84 -8.3
Time Pilot 3568.0 5229.2
Tutankham 11.43 167.6
Up n Down 533.4 11693.2
Venture 0.0 1187.5
Video Pinball 0.0 17667.9
Wizard of Wor 563.5 4756.5
Yars Revenge 3092.91 54576.9
Zaxxon 32.5 9173.3
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