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Abstract
Paging is a prototypical problem in the area of
online algorithms. It has also played a central
role in the development of learning-augmented al-
gorithms. Previous work on learning-augmented
paging has investigated predictions on (i) when
the current page will be requested again (re-
occurrence predictions), (ii) the current state of
the cache in an optimal algorithm (state predic-
tions), (iii) all requests until the current page gets
requested again, and (iv) the relative order in
which pages are requested. We study learning-
augmented paging from the new perspective of
requiring the least possible amount of predicted
information. More specifically, the predictions
obtained alongside each page request are limited
to one bit only. We develop algorithms satisfy all
three desirable properties of learning-augmented
algorithms – that is, they are consistent, robust
and smooth – despite being limited to a one-bit
prediction per request. We also present lower
bounds establishing that our algorithms are essen-
tially best possible.

1 Introduction
Paging (also known as caching) is a classical online problem,
and an important special case of several other online prob-
lems (Borodin & El-Yaniv, 1998), which can be motivated
through resource management in operating systems. You are
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given a fast cache memory with capacity to simultaneously
store at most a constant number, k, of pages. Requested
pages, according to a sequence of page requests, have to be
loaded into the cache to be served by the operating system.
More specifically, pages are requested one by one in an
online fashion, and each request needs to be immediately
served upon its arrival. Serving a page is done at zero cost
if the requested page currently resides in the cache. If this
is not the case, then a page fault occurs and the page has to
first be loaded into the cache (after potentially evicting some
other page to make space). This incurs a fixed cost. The
underlying algorithmic question is to decide which page to
evict each time a page has to be loaded into the cache, with
the goal to minimize the total incurred cost, i.e., the total
number of page faults.

Paging has been extensively studied and is well-understood.
There exists an optimal offline algorithm, LFD (longest for-
ward distance), that simply follows the so-called Belady’s
rule: always evict the page that will be requested again
the furthest in the future. Note that Belady’s rule can only
be applied to the offline variant of the problem, where all
future page requests are known to the algorithm. With re-
spect to online algorithms, no deterministic online algorithm
can obtain a competitive ratio1 smaller than k (Sleator &
Tarjan, 1985). Two simple deterministic algorithms that
are k-competitive (Sleator & Tarjan, 1985) exist: FIFO
(evict the oldest page in the cache) and LRU (evict the least
recently used/requested page from the cache). Fiat et al.
(1991) developed a randomized algorithm called MARK that
is (2Hk − 1)-competitive2 (Achlioptas et al., 2000). Fur-
thermore this is tight, up to a constant factor of 2, since no
randomized algorithm can obtain a competitive ratio better
than Hk (Fiat et al., 1991). Later, optimal Hk-competitive
randomized algorithms were discovered (Achlioptas et al.,
2000; McGeoch & Sleator, 1991).

The above results are tight in the worst case, although inputs
encountered in many practical situations may allow for a
better performance. The novel research area of learning-
augmented algorithms attempts to take advantage of such

1Competitive ratio is the standard performance metric for on-
line algorithms, see Section 1.1 for a definition.

2Hk =
∑k

i=1 1/i is the k’th harmonic number. Recall that
ln k ≤ Hk ≤ 1 + ln k.
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opportunities and ameliorate shortcomings of worst-case
analysis by assuming that the algorithm has black-box ac-
cess to a set of (e.g., machine-learned) predictions regarding
the input. Naturally, the quality of these predictions is not
known a priori, hence the goal is to design algorithms with
a good performance on the following parameters: robust-
ness, which is the worst-case performance guarantee that
holds independently of the prediction accuracy; consistency,
which is the competitive ratio under perfect predictions; and
smoothness, which describes the rate at which the competi-
tive ratio deteriorates with increasing prediction error.

Given the central role of paging within online algorithms, it
is no surprise that learning-augmented paging has been ex-
tensively studied as well, and actually a significant number
of papers in the area are either directly or indirectly linked to
the paging problem. Examples include the seminal paper by
Lykouris & Vassilvitskii (2021), who studied reoccurrence
predictions, i.e., along with each page request the algorithm
obtains a prediction on the timepoint of the next request
of that page. Their results were later refined by Rohatgi
(2020) and Wei (2020). Jiang et al. (2022) investigated
the setting in which all requests until the next request of
the currently requested page are predicted, whereas Bansal
et al. (2022) considered predictions regarding the relative
order in which the pages are requested. Antoniadis et al.
(2020a) looked into so-called state predictions that predict
the cache-contents of an optimal algorithm.

Although the above algorithms have been analyzed with
respect to their consistency, robustness and smoothness, no
consideration has been made regarding the total amount of
predicted information. Given that the predicted information
needs to be computed through a separate black-box algo-
rithm and also communicated to the actual paging algorithm
for each request, a learning-augmented algorithm that is
based on a large amount of predicted information may be
impractical in a real-world application.

In this paper we study learning-augmented paging while
taking a new approach, requiring a minimal amount of pre-
dicted information. We assume that the predictions must be
encoded in only one bit per request. This is indeed the least
possible amount of predicted information (up to a constant)
since any (deterministic or randomized) algorithm that re-
ceives perfect predictions that can be encoded in sublinearly
many bits (in the length of the request sequence) cannot be
better than Hk-competitive (Mikkelsen, 2016). Moreover,
there are binary classifiers producing one-bit predictions
for paging (Jain & Lin, 2016; Shi et al., 2019) which have
great performance in practice (see Appendix A for more de-
tails) and it is desirable to use them in learning-augmented
algorithms.

We study two natural such setups, with one-bit predictions,
which we call discard predictions and phase predictions.

The predicted bit in discard predictions denotes whether
LFD would evict the current page before it gets requested
again. In phase predictions, the bit denotes whether the
current page will be requested in the following k-phase (the
notion of a k-phase is based on marking algorithms, such
as MARK and LRU, and it is formally defined in Section 2).
Both of these new setups can be interpreted as condensing
the relevant information from the previously existing setups
into one bit per request.

We develop algorithms for each of the two setups that satisfy
all three desirable properties of learning-augmented algo-
rithms – that is, they are consistent, robust and smooth – de-
spite being limited to a one-bit prediction per request. It may
appear that straightforward modifications to pre-existing
paging algorithms from the literature would directly lead to
some of our results. However, we want to stress that new
ideas were required in designing our marking algorithm for
the discard-predictions setup, and novel ideas are employed
in the analysis of our algorithms in both setups. We also
present lower bounds establishing that our algorithms are
essentially best possible.

1.1 Our Contribution
An important preliminary observation is that there is an
asymmetry regarding prediction errors: Wrongly evicting
a page will generally only lead to one page-fault once that
page is requested again, however keeping a page which
should be evicted in the cache can lead to multiple page-
faults while the algorithm keeps evicting pages that will
be requested again soon. For this reason we distinguish
between two types of prediction errors. For a sequence of n
page requests, let p ∈ {0, 1}n be the vector of predictions
and p∗ ∈ {0, 1}n be the ground truth, where, intuitively,
a value of 0 means (in both setups) that, according to the
prediction, the page requested should stay in cache. We
define η0 and η1 as the number of incorrect predictions of
0 and 1, respectively, usually leaving out the parameters p
and p∗ when they are understood:

ηh(p, p
∗) = |{i ∈ [n] | pi = h, p∗i = 1−h}| , for h ∈ {0, 1}.

In order to capture how different types of errors affect the
cost of an algorithm, we generalize the notion of competitive
ratio to what we call (α, β, γ)-competitiveness.
Definition 1.1. A learning-augmented online paging algo-
rithm ALG is called (α, β, γ)-competitive if there exists
a constant b (possibly depending on k) such that for any
instance I with ground truth p∗ and any predictions p,

ALG(I, p) ≤ α ·OPT(I)+β ·η0(p, p∗)+γ ·η1(p, p∗)+ b ,

where ALG(I, p) and OPT(I) denote3 costs incurred on this
instance by the online algorithm and the offline optimal

3Following a standard practice in online algorithms literature,
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algorithm, respectively, and η0, η1 denote the two types of
error of predictions provided to the online algorithm.

Note that the notion of (α, β, γ)-competitiveness general-
izes that of the (classical) competitive ratio: an algorithm is
c-competitive if and only if it is (c, 0, 0)-competitive. Fur-
thermore, it is easy to see that (α, β, γ)-competitiveness
directly implies a consistency of α; it also quantifies the
smoothness of the algorithm. We can achieve robustness as
follows: any deterministic (α, β, γ)-competitive algorithm
for paging can be combined with LRU or FIFO through
the result of Fiat et al. (1991) to give a deterministic algo-
rithm with a consistency of (1 + ϵ)α and a robustness4 of
1+ϵ
ϵ k, for any ϵ > 0. Similarly, any randomized (α, β, γ)-

competitive algorithm for paging can be combined (see
Antoniadis et al. (2020a) and Blum & Burch (2000)) with
an Hk-competitive algorithm (Achlioptas et al., 2000; Mc-
Geoch & Sleator, 1991) to give a ((1 + ϵ)α)-consistent and
((1 + ϵ)Hk)-robust algorithm. Both of these combination
approaches work independently of the considered prediction
setup. We therefore focus the rest of the paper on giving
upper and lower bounds for the (α, β, γ)-competitiveness.

As explained at the beginning of this section, the two types
of prediction errors have significantly different impact: keep-
ing a page in cache while it was safe to evict is potentially
much more costly than evicting a page that should have been
kept. Hence, β will intuitively be much larger than γ in our
results. Our lower bounds also show that α+ β cannot be
smaller than the best classical competitive ratio.

We remark that previous papers on learning-augmented pag-
ing (e.g., Lykouris & Vassilvitskii (2021); Rohatgi (2020);
Wei (2020)) analyze smoothness by expressing the classical
competitive ratio as a function of the normalized predic-
tion error η

OPT
, and that our results could also be stated this

way because every (α, β, γ)-competitive algorithm is also
(α+ β · η0

OPT
+ γ · η1

OPT
)-competitive in the classical sense.

Discard-predictions setup upper bounds. In Section 3
we develop a deterministic and a randomized algorithm for
the discard-predictions setup:

Theorem 1.2. There is a deterministic (1, k − 1, 1)-
competitive algorithm for the discard-predictions setup.

The algorithm realizing Theorem 1.2 is very simple and
natural: On each page-fault, evict a page that is predicted as
safe to evict, if such a page exists. If it does not exist, then

in what follows, we abuse the notation and use ALG and OPT to
denote both the algorithms and their respective costs incurred on
the implicitly understood instance.

4Actually, Fiat et al. (1991) show the more general result that
one can combine m algorithms such that for any input instance I
this combination incurs a cost that is within a factor ci from the
cost of each corresponding algorithm i on I . The constants ci can
be chosen arbitrarily as long as they satisfy

∑m
i=1 1/ci ≤ 1.

just flush the cache, i.e., evict all pages that it contains. The
analysis is based on deriving appropriate bounds on the page-
faults for both ALG and OPT within any two consecutive
flushes, as well as the respective prediction error.

Theorem 1.3. There is a randomized (1, 2Hk, 1)-
competitive algorithm for the discard-predictions setup.

Compared to the deterministic algorithm above, the algo-
rithm from Theorem 1.3 uses an approach resembling the
classical MARK algorithm when evicting pages predicted
0. However, we note that it does not fall into the class of
so-called marking algorithms (see Section 2), as pages pre-
dicted 1 are evicted sooner. This is essential for achieving
α = 1 but requires a different definition of phases and a
novel way of charging evictions of pages predicted 0.

Phase-predictions setup upper bounds. For phase pre-
dictions, in Section 4 we design an algorithm called
MARK&PREDICT which can be seen as a modification of
the classical MARK algorithm giving priority to pages pre-
dicted 1 when choosing a page to evict. We prove two
bounds for this algorithm. The first one is sharper for small
η1 and, in fact, it holds even with deterministic evictions of
pages predicted 1.

Theorem 1.4. MARK&PREDICT is a random-
ized (2, Hk, 1)-competitive algorithm for the phase-
predictions setup.

The second bound exploits the random eviction of pages
predicted 1 and gives a much stronger result for larger η1.

Theorem 1.5. MARK&PREDICT is a randomized(
2, Hk, γ(η1/ OPT)

)
-competitive algorithm for the

phase-predictions setup, where

γ(x) = 2x−1 (ln(x+ 1) + 1) .

In other words, the (expected) cost of MARK&PREDICT is
at most

2
(
ln

( η1
OPT

+ 1
)
+ 2

)
· OPT +Hk · η0.

Note that this expression should not be considered when
η1 ≤ OPT as γ(1) > 1 so the guarantee of the previous
theorem would then be stronger. For η1 > OPT, multi-
ple possibilities exist to phrase the above expression into
our (α, β, γ)-competitiveness notion, so we chose the one
matching the previously established value of α. To illustrate
the gain over the previous bound, with η1/ OPT = Ω(k),
we obtain γ(η1/ OPT) = O

(
log k
k

)
, thus asymptotically

matching the lower bound of Theorem 1.9.

From the proof of the above theorem, it easily follows that
MARK&PREDICT is robust.

Theorem 1.6. MARK&PREDICT is (O(log k))-robust.
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Lower bounds. In Appendix C, we give lower bounds that
show that the upper bounds above are essentially tight. More
specifically, we prove the following for the two considered
setups.

Theorem 1.7. In both the discard-predictions and phase-
predictions setups, there is no deterministic (α, β, γ)-
competitive algorithm such that either α + β < k or
α+ (k − 1) · γ < k.

This directly implies that if α is a constant independent of k,
then β = Ω(k) and γ = Ω(1). A special case is that any 1-
consistent deterministic algorithm must have β at least k−1
and γ at least 1, matching the upper bound of Theorem 1.2,
or, more precisely:

Corollary 1.8. In both setups, no deterministic paging al-
gorithm is (1, k− 1− ϵ, γ)- or (1, β, 1− ϵ)-competitive, for
any constant ϵ > 0 and any value of β and γ.

An analogous lower bound can be obtained for randomized
algorithms as well.

Theorem 1.9. In both the discard-predictions and phase-
predictions setups, there is no (α, β, γ)-competitive ran-
domized algorithm such that either α + β < Hk or
α + (k − 1) · γ < Hk, where Hi = ln i + O(1) is the
i-th harmonic number.

This result implies that, in the upper bounds of Theorems 1.4
and 1.5 for MARK&PREDICT, the value of β is tight up
to an additive term of 2 and the asymptotic value of γ,
when η1/ OPT is large, cannot be improved by more than a
constant factor in Theorem 1.5.

Corollary 1.10. In both setups, no randomized paging algo-
rithm is (2, Hk−2− ϵ, γ)- or (2, β, Hk−2

k−1 − ϵ)-competitive,
for any constant ϵ > 0 and any value of β and γ.

The previous theorem implies a subconstant lower bound
(≈ 1

k log k) on γ for a value of α up to o(log k). We com-
plement it by showing that γ is lower bounded by a constant
if we want to achieve α = 1.

Theorem 1.11. There is no (1, β, γ)-competitive random-
ized algorithm such that γ < 1/7 for the discard-predictions
setup or γ < 1/2 for the phase-predictions setup.

The last two theorems imply that, in the upper bound of
Theorem 1.3, the values of β and γ cannot be improved by
more than a constant factor.

Corollary 1.12. In the discard-predictions setup, no ran-
domized paging algorithm is (1, Hk−1−ϵ, γ)- or (1, β, 1

7−
ϵ)-competitive, for any constant ϵ > 0 and any value of β
and γ.

Similarly to the lower bounds known for classical paging,
all three of our lower bound results are based on instances
coming from a universe of k + 1 many pages. However, in

order to achieve the desired bounds, we need to carefully
define the prediction sequence. Somewhat surprisingly, in
each of our lower bound results, we are able to use the same
prediction sequence for both prediction setups.

We provide in Appendix A a more extensive discussion on
related work regarding learning-augmented algorithms, the
usage of few predictions, the differences between our setups
and the classic lookahead, the field of advice complexity
and the practicality of discard predictions.

1.2 Open Problems
Better dependence on η1 in discard-predictions setup.
For the case of large η1, we provide a stronger guarantee for
MARK&PREDICT in Theorem 1.5. However, we were not
able to obtain a comparable result for the discard-predictions
setup, and it would be interesting to further close this gap.
Somewhat surprisingly, an important challenge towards that
direction seems to be that of recognizing the presence of an
incorrect 0-prediction early enough. This can be easily done
in the phase-predictions setup; and we do actually properly
account for all incorrect 0-predictions (see Observation 4.1).
On the other hand, our criterion in the discard-predictions
setup (see Observation 3.1) may overlook some of them.
This in turn may lead an algorithm to keep the cache full
with pages associated with 0-predictions, forcing it to evict
all pages with 1-predictions, implying γ ≥ 1.

Other online problems with succinct predictions. For
many online problems, the possibility of obtaining good
succinct predictions might be more realistic than obtaining
more precise, lengthy predictions. It would be interesting
to see if such predictions still allow for effective learning-
augmented algorithms. Prior results on advice complexity
give meaningful lower bounds on the size of such predic-
tions and may provide guidance on what to predict.

2 Preliminaries
Classical paging. In paging, we have a (potentially large)
universe U of pages and a cache of size k. At each time
step i = 1, . . . , n, we receive a request ri to a page in U
which needs to be satisfied by loading the page associated
to ri to the cache (if it is not in the cache already). This may
require evicting some other page to make space for the re-
quested page. The goal of an algorithm is to serve the whole
request sequence at minimal cost. The cost of an algorithm
is the number of page loads (or page faults) performed to
serve the request sequence. Note that this number is within
an additive term k from the number of page evictions. In our
analyses, we can choose to work with whichever of these
two quantities is easier to estimate, because of the additive
constant in the definition of competitiveness.
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When making space for the page associated to ri, online al-
gorithms have to decide which page to evict without knowl-
edge of ri+1, . . . , rn, while offline algorithms have this in-
formation.

Marking algorithms. For the purpose of designing mark-
ing algorithms, we partition the request sequence into k-
phases. A k-phase is a maximal subsequence of at most k
distinct pages. The first k-phase starts at the first request,
and any subsequent k-phase i starts at the first request fol-
lowing the last request of k-phase i− 1.

The following automatic procedure helps designing algo-
rithms for caching: at the beginning of each k-phase, we
unmark all pages. Whenever a page is requested for the
first time in a k-phase, we mark it. We say that an algo-
rithm belongs to the class of marking algorithms, if it never
evicts a marked page. All marking algorithms are (at most)
k-competitive (Torng, 1998) and they have the same cache
content at the end of each k-phase: the k marked pages
which were requested during that k-phase.

Algorithm MARK (Fiat et al., 1991) evicts an unmarked
page chosen uniformly at random. In the ith k-phase, with ci
pages requested that were not requested in k-phase i − 1
(we call such pages new, the others are called old), it has
in expectation

∑k−ci
j=1

ci
k−(j−1) ≤ ci(Hk −Hci + 1) page

faults. One can show that OPT ≥ 1
2

∑m
i=1 ci, where m is the

total number of k-phases in the request sequence, and hence
MARK is at most 2Hk-competitive. We refer to Borodin &
El-Yaniv (1998) for more details.

Receiving predictions. Each request ri comes with a pre-
diction, pi ∈ {0, 1}. If a request comes with a prediction
of 0 (resp. 1), we call it a 0-prediction (resp. 1-prediction),
and the requested page a 0-page (resp. 1-page) until the next
time it is requested. Throughout the paper, we use ri to
refer both to the request and to the page associated with that
request.

Discard-predictions setup. In this setup, we fix an op-
timal offline algorithm, say LFD. When a requested page
is not in cache, LFD evicts any page that will never be re-
quested again, if such a page exists, and otherwise evicts the
unique page of the k pages in cache that will be requested
again furthest out in the future.

Prediction pi for request ri is supposed to predict the ground
truth p∗i defined as:

p∗i =

{
1, if LFD evicts ri before it is requested again.
0, otherwise.

For a page ri that LFD retains in cache until the end of the
request sequence, p∗i = 0.

For simplicity, we define p∗ with respect to a fixed optimal
algorithm. However, if the prediction vector p happens
to predict well the behavior of any other (good but not
necessarily optimal) algorithm, then our upper bounds hold
also with respect to the performance of that algorithm in
place of OPT.

Phase-predictions setup. In this setup, we partition the
request sequence into k-phases, as described above in the
paragraph on marking algorithms. We stress that the notion
of k-phases is algorithm-independent and only depends on
the input sequence.

We define the ground truth p∗i for request ri in some k-
phase j as follows:

p∗i =

{
1, if ri is not requested in k-phase j + 1,
0, if ri is requested in k-phase j + 1.

Note that, in both setups, at the point where a decision is
made as to which page to evict, the algorithms only consider
the most recent prediction for each page, the one from the
most recent request to the page. In the discard-predictions
setup, this is the only possibility. In the phase-predictions
setup, there could be a page, p, requested more than once
in phase i, where the prediction (whether or not it will be
requested in phase i + 1) is inconsistent within phase i.
We assume that the last prediction is the most relevant, so
only this one is used by our algorithms, and only this one
contributes towards a possible error in η0 or η1. In fact, we
could avoid running the predictor at repeated requests by
only producing predictions at the end of each phase, for the
pages in the cache at that point. In addition, in the phase-
predictions setup, predictions in the last phase do not count
at all, and in particular, do not count in ηh.

In a given phase, the pages that are in cache at the beginning
of the phase are called old pages. Pages requested within
a phase that are not old are called new pages. Thus, all
requests in the first phase are to new pages.

3 Algorithms with Discard Predictions
We first investigate the discard-predictions setup. The fol-
lowing simple observation is useful in the analyses of our
algorithms.
Observation 3.1. Consider a moment when there is a set S
of 0-pages (whose most recent prediction is 0) of size k +
c− 1 and a page r /∈ S is requested. Then, at least c pages
from S have incorrect predictions.

Proof. Page r surely has to be in cache. Each ρ ∈ S has
prediction 0 by the definition of S. Since the cache has
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size k, any algorithm needs to have evicted at least 1 +
|S| − k = c pages from S. In particular this is true for
LFD. Therefore at least c pages from S have incorrect
predictions.

3.1 Deterministic Algorithm
Our first algorithm is deterministic, and, despite being very
simple, it attains the best possible (α, β, γ)-competitiveness
for 1-consistent deterministic algorithms (see the lower
bound in Theorem 1.7).

Theorem 1.2. There is a deterministic (1, k − 1, 1)-
competitive algorithm for the discard-predictions setup.

Proof. Consider the deterministic algorithm, ALG, that on
a fault evicts an arbitrary 1-page, if there is such a page in
cache, and flushes the cache otherwise.

We count evictions, and note that up to an additive constant
(depending on k), this is the same as the number of faults.
We divide the request sequence into stages, starting a new
stage when ALG flushes the cache (i.e., when it is full and
contains only 0-pages). We assume an integer number of
stages (an assumption that also only adds up to an additive
constant, depending on k) and consider one stage at a time.

First consider 0-pages that are evicted. By definition, ALG
evicts k such pages in the stage. Since k 0-pages have ar-
rived in the stage, and a new page must arrive for ALG to
flush, at least one of the 0-pages has an incorrect prediction
(obvious here, but captured more generally by Observa-
tion 3.1) and OPT must have evicted at least one of these
k + 1 pages.

Letting a superscript, s, denote the values of just this
stage, and a subscript denote 0-pages and 1-pages, respec-
tively, since both OPTs

0 and ηs0 are at least one, ALGs
0 ≤

OPTs
0 +(k − 1)ηs0.

Considering 1-pages, ALG clearly obtains the same result
as OPT, except when there is a misprediction, which adds a
cost of 1. Thus, ALGs

1 ≤ OPTs
1 +ηs1.

Summing over both predictions and all stages, ALG ≤
OPT +(k − 1)η0 + η1.

Remark 3.2. In Theorem 1.2, the choices α = 1 and β =
k − 1 can be generalized, showing that the algorithm is
(α, k − α, 1)-competitive, for 1 ≤ α ≤ k (compare with
Theorem 1.7).

3.2 Randomized Algorithm
Now, we present MARK0, a randomized algorithm that
evicts all 1-pages immediately. Therefore, whenever the
cache is full and eviction is needed, all the pages in the cache
must be 0-pages and this situation signals a presence of an

incorrect 0-prediction. Since we cannot know which 0-page
has an incorrect prediction, we evict a random unmarked
one in order to make sure that such evictions can be charged
to η0 in the analysis. MARK0 is described in Algorithm 1.
Before proving the competitive ratio of MARK0, we state a
few observations, starting by a simple bound on the evictions
of 1-pages.

Algorithm 1 MARK0 Eviction Strategy
1: S := ∅
2: evict all 1-pages
3: for i = 1 to n do
4: if ri is not in cache then
5: if cache is full and all pages from S in cache are

marked then
6: S := current cache content
7: unmark all pages
8: end if
9: if ri ∈ S is unmarked and cache contains some

unmarked page from S then
10: evict an unmarked page chosen uniformly at

random
{evict it even if the cache is not full}

11: end if
12: if cache is full then
13: evict an unmarked page chosen uniformly at

random
14: end if
15: bring ri to cache
16: end if
17: mark ri
18: if pi = 1 then
19: evict ri
20: end if
21: end for

Pages are marked when they are requested and only un-
marked at the end of the phase. So, all the unmarked pages
considered for eviction in lines 10 and 13 were in cache from
the beginning of the phase and belong to S. In line 19, we
evict ri regardless of its marking status. Therefore, MARK0
is not a marking algorithm5.
Observation 3.3. The number of 1-pages that MARK0 evicts
is at most OPT +η1.

Therefore it is enough to count evictions of 0-pages. We call
a period between two executions of line 7 a phase. Phases
are similar to k-phases in marking algorithms, with the
difference being that 1-pages are directly evicted by the

5For example, it can happen that a there is a page fault on
a marked page belonging to S: A page in S could be evicted
from cache, later requested with a prediction of 1 and evicted
immediately, and finally requested with a prediction of 0, all in the
same phase.

6
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algorithm, even though such a page is still marked. Phase 1
starts the first time that the cache is full and a page-fault oc-
curs (recall that this implies that there has been an incorrect
prediction on a 0-page), since S = ∅ and the condition on
all pages from S in cache being marked is vacuously true.
We define phase 0 to be the time from the beginning of the
request sequence until the start of Phase 1.

Observation 3.4 bounds the number of evictions of 0-pages
based on the number of times an eviction is caused by a
full cache. Such an eviction leads to an unmarked page
from S being evicted. A classical probabilistic argument is
then used to bound the number of times a randomly evicted
unmarked page is requested again in the phase.
Observation 3.4. Consider a phase with c executions of
line 13. The expected number of evictions of 0-pages is at
most cHk.

Proof. Note that the number of evictions of 0-pages is equal
to the number of evictions in lines 13 and 10. There are c
evictions made in line 13 and we just need to count evictions
made in line 10.

In each execution of line 13, we evict a page from S. In each
execution of line 10, one previously evicted page from S
replaces another page from S in the cache (which is evicted).
The former increases the number of evicted unmarked pages
from S by one, while the latter maintains the number of
evicted unmarked pages from S.

Consider the first time, t, when there are no unmarked pages
from S contained in the cache. Until t, whenever an un-
marked page from S is loaded to the cache, it is marked
and another unmarked page from S is evicted. Therefore,
there are precisely c unmarked pages from S which are not
present in cache at time t: the pages evicted at line 13 or
the ones these have replaced at line 10. Afterwards, no
more evictions of 0-pages are made and such pages are only
loaded to the cache until it becomes full and a new phase
starts.

To count evictions made in line 10, we need to estimate
the probability of a requested unmarked page from S being
missing from the cache. We use an approach similar to the
classical analysis of the algorithm MARK (Fiat et al., 1991;
Borodin & El-Yaniv, 1998). Since it makes the situation
only more costly for the algorithm, we can assume that
all the evictions in line 13 are performed in the beginning
of the phase and the evictions in line 10 are all performed
afterwards. When the jth page from S is being marked,
it is present in the cache with probability k−c−(j−1)

k−(j−1) (the
numerator is the number of unmarked pages from S present
in the cache at that moment and the denominator is the total
number of unmarked pages in S) and the probability of a
page fault is c

k−(j−1) . Therefore, the expected number of

evictions in line 10 until time t is

k−c∑
j=1

c

k − (j − 1)
= c(Hk −Hc).

The total expected number of evictions of 0-pages during
this phase is then

c+ c(Hk −Hc) ≤ cHk.

We observe that as a consequence of how the phases are
defined, every page residing in the cache at the timepoint
between two consecutive phases must have received its pre-
diction during the phase that just ended. More formally,
Observation 3.5. Let S(i) be the content of the cache when
phase i − 1 ends and phase i starts. Then all the pages
in S(i) received their predictions during phase i− 1.

Proof. This is a consequence of marking: Every page re-
quested during phase i− 1 received a new prediction. The
only pages from S(i− 1) which did not, are the unmarked
ones. Yet, such pages are not present in the cache at the end
of phase i − 1. And all pages from S(i) \ S(i − 1) must
have been requested and loaded during phase i− 1.

We are now ready to analyze the (α, β, γ)-competitiveness
of the algorithm. It combines the previous results and uses
the fact that evictions caused by a full cache can be charged
to an erroneously predicted 0-page, as trusting the predic-
tions would require keeping more than k pages in cache. An
additional factor is required in the dependency on η0 as a
wrong prediction may impact both the current phase and the
following one.

Theorem 1.3. There is a randomized (1, 2Hk, 1)-
competitive algorithm for the discard-predictions setup.

Proof. Let us show that MARK0 is (1, 2Hk, 1)-competitive.
Consider a request sequence with optimum cost, OPT, dur-
ing which MARK0 performs m phases and receives η0 in-
correct predictions 0 and η1 incorrect predictions 1. Let ci
denote the number of executions of line 13 during phase i.
Combining Observations 3.3 and 3.4, the expected cost of
MARK0 is at most

OPT +η1 +

m∑
i=1

ciHk.

It is enough to show that
∑m

i=1 ci ≤ 2η0 holds.

Consider the moment during phase i when line 13 is exe-
cuted for the cith time. At this moment, there are k 0-pages
in cache: some of them belong to S(i), others were loaded
during this phase. Moreover, there are ci−1 unmarked pages
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from S(i) already evicted, these are also 0-pages. By Obser-
vation 3.1, at least ci of these pages must have an incorrect
prediction of 0. This prediction was received either during
phase i− 1 (if it is an unmarked page from S(i)), or during
phase i (all other cases). Therefore, denoting η0(i) the num-
ber of incorrect predictions 0 received during phase i, we
have ∑

i

ci ≤
m∑
i=1

(
η0(i− 1) + η0(i)

)
≤ 2η0,

which concludes the proof.

4 Algorithm with Phase Predictions
In this section, we consider the phase-predictions setup and
give a randomized algorithm, MARK&PREDICT. The idea
of this algorithm is to follow the classical MARK algorithm
except that, instead of evicting a page uniformly at random
among the set of unmarked pages, we select an unmarked
1-page if the cache contains one. We provide two analyses
on the performance of MARK&PREDICT, which differ on
the bound of the γ parameter, the second bound providing
an improvement for large values of η1. The second proof is
deferred to Appendix B.

Algorithm 2 MARK&PREDICT Eviction Strategy
1: mark all pages in cache
2: for i = 1 to n do
3: if ri is not in cache then
4: if all pages in cache are marked then
5: unmark all pages {Start of a new phase}
6: end if
7: if there is an unmarked 1-page then
8: evict an unmarked 1-page chosen uniformly at

random
9: else

10: evict an unmarked 0-page chosen uniformly at
random

11: end if
12: bring ri into cache
13: end if
14: mark ri
15: end for

The following observation is used in both proofs to estimate
the value of η0.
Observation 4.1. Consider a phase with c new pages. If
ℓ ≤ c of the 1-pages present at the beginning of the phase
were not requested during the phase, then precisely z = c−ℓ
pages had incorrect 0-predictions at the start of the phase.

Proof. Let S denote the set of 0-pages and L the set of
1-pages that were present at the beginning of the phase.

Denote by z the number of pages in S which were not re-
quested during this phase, so their predictions at the be-
ginning of the phase were incorrect. During the phase
k = c+(|L| − ℓ)+ (|S| − z) distinct pages were requested.
Since |S|+ |L| = k, we get z = c− ℓ.

We first provide an analysis which also holds if an arbitrary
1-page is evicted at Line 8, in a deterministic manner, say
using LRU.

Theorem 1.4. MARK&PREDICT is a random-
ized (2, Hk, 1)-competitive algorithm for the phase-
predictions setup.

Proof. Again, we use standard arguments for the com-
petitive analysis of the randomized paging algorithm,
MARK (Fiat et al., 1991), using terminology from the text-
book by Borodin & El-Yaniv (1998). We first consider the
case where all predictions are correct. Pages that arrive
are always marked, so they are never evicted in the cur-
rent k-phase. Thus, the number of 1-pages that arrive in the
current phase will be the number of 1-pages in cache at the
beginning of the next phase. If all predictions in a phase are
correct, the number of new pages in the next k-phase equals
the number of 1-pages at the beginning of that phase, and
the new pages will replace those 1-pages. There will be no
faults on the 0-pages. Let ci be the number of new pages in
the ith k-phase and m be the total number of phases. Since
the algorithm faults only on new pages, it faults

∑m
i=1 ci

times. We now turn to OPT. During the i − 1st and ith k-
phases, at least k + ci distinct pages have been requested.
Since OPT cannot have had more than k of them in cache at
the beginning of phase i− 1, it must have at least ci faults
in these two phases. Considering the even phases and the
odd phases separately and taking the maximum, OPT must
fault at least 1

2

∑m
i=1 ci times. This proves 2-consistency.

As long as 1-pages are evicted, the faults are charged to OPT
(if it is a correct prediction) or to η1 (if the prediction is in-
correct). Since OPT is at least 1/2 times the total number of
new pages, this gives a contribution of at most 2 OPT +η1.

If the algorithm runs out of pages with 1-predictions to evict,
there are only 0-pages from the previous phase remaining.
For each new page processed after this point, there is an
incorrect 0-prediction. Let zi be the number of new pages
causing a 0-page to be evicted in Phase i. These new pages,
causing evictions of pages with 0-predictions, arrive after
the new pages that evicted pages with 1-predictions. The
number of 1-pages present in the cache at the start of Phase i
is ci − zi.

We can assume that all new pages arrive before any of the
old pages, as this only increases the algorithm’s cost. When
the first new page evicting a 0-page arrives, there are k −
(ci − zi) pages from the previous phase still in cache and
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these k− (ci − zi) pages are all 0-pages. When the first old
page arrives, there are k− ci pages from the previous phase
in cache, so the arriving page has a probability of k−ci

k−(ci−zi)

of still being in the cache.

Consider the probability that the jth old page (in the
order they arrive in this phase) is in cache the first
time it is requested in the ith phase. This probability
is k−ci−(j−1))

k−(ci−zi)−(j−1) , so the probability that there is a fault on
it is zi

k−(ci−zi)−(j−1) . Hence the expected number of faults
in Phase i due to incorrect 0-predictions is at most

zi +

k−ci∑
j=1

zi
k − (ci − zi)− (j − 1)

= zi(1 +Hk−ci+zi −Hzi) ≤ ziHk−ci+zi .

By Observation 4.1, the number of pages with incorrect 0
prediction at the beginning of the phase i is zi. So, this sum
over all phases is at most Hkη0.

The total number of faults is at most 2 OPT +Hkη0+η1.
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A Further Related Work
Paging with few predictions. In a recent paper, Im et al. (2022) consider a different approach to limiting the amount
of predicted information within learning-augmented paging. Their algorithm has access to an ML-oracle which can be
queried at any time about the reoccurrence prediction for any page in the cache. They analyze the tradeoffs between the
number of queries, the prediction error and algorithm performance. The competitive ratio of the obtained algorithms is
O(min{logb+1 n+ E[η]

OPT
], logk}), where b is the number of queries per page fault. Thus, the consistency of the algorithm

would generally be quite far from those of the algorithms presented in this paper. In particular, to achieve a constant
consistency, the algorithm has to make poly(k) queries for each cache miss, each query requiring log n bits, where n is the
number of requests. Therefore, the number of requested bits is smaller than for our algorithms only for instances with very
low cache-miss rates.

Comparison to lookahead. Due to possibilities of pipe-lining in computer hardware, online paging has been studied
theoretically using the concept of lookahead (Young, 1991; Albers, 1997; Breslauer, 1998; Dorrigiv et al., 2009; Boyar
et al., 2007; Angelopoulos et al., 2019). An algorithm with lookahead has access to accurate predictions for a set of future
requests, the lookahead, satisfying some property. The models for lookahead are clearly different from our scenario in two
major respects: They assume that the lookahead predictions are always correct, an oversimplification since some errors will
occur due to imperfect branch predictions, and, additionally, the lookahead predictions contain much more information.
However, Albers’ strong lookahead (Albers, 1997) is very related to our phase-predictions setup for paging with predictions.
The strong lookahead contains a consecutive sequence of pages containing at least ℓ+ 1 distinct pages, not counting the
page for the current request. Thus, when ℓ = k − 2, the pages in the k-phase that was just started are known. Albers proves,
for example, that 2-competitiveness is optimal when ℓ = k − 2. More than one algorithm is considered and a randomized
algorithm considered is basically MARK with strong lookahead of size ℓ.

Other learning-augmented online algorithms. In addition to the already mentioned results on learning-augmented
paging, several exciting learning-augmented algorithms have been developed for various online problems, including among
others weighted paging (Bansal et al., 2022), k-server (Lindermayr et al., 2022), metrical task systems (Antoniadis et al.,
2020a), ski-rental (Purohit et al., 2018; Antoniadis et al., 2021), non-clairvoyant scheduling (Purohit et al., 2018; Lindermayr
& Megow, 2022a), online-knapsack (Im et al., 2021; Zeynali et al., 2021; Boyar et al., 2022), secretary and matching
problems (Dütting et al., 2021; Antoniadis et al., 2020b), graph exploration (Eberle et al., 2022), as well as energy-efficient
scheduling (Bamas et al., 2020; Antoniadis et al., 2022; 2021). Machine- learned predictions have also been considered
for designing offline algorithms with an improved running time, see for instance the results of Dinitz et al. (2021) on
matchings, Chen et al. (2022) on graph algorithms, Ergun et al. (2022) on k-means clustering, Sakaue & Oki (2022) on
discrete optimization, and Polak & Zub (2022) on maximum flows. An extensive list of results in the area can be found
on the website maintained by Lindermayr & Megow (2022b). We would also like to point the reader to the surveys by
Mitzenmacher & Vassilvitskii (2020; 2022).

We note that, although our work is closer in spirit to the aforementioned results on learning-augmented paging, our
notion of (α, β, γ)-competitiveness is an extension of the (ρ, µ)-competitiveness from Antoniadis et al. (2021). While
(ρ, µ)-competitiveness captures the tradeoff between the dependence on the optimal cost and the prediction error, (α, β, γ)-
competitiveness captures the three-way tradeoff between the dependence on the optimal cost and the two kinds of prediction
errors.

Advice complexity. An inspiration for considering paging with succinct predictions is that ideas from the research area of
advice complexity could possibly be applied to learning-augmented algorithms; in particular, the advice from Dobrev et al.
(2009) for the paging problem. The goal, when studying online algorithms with advice, is to determine for online problems
how much information about the future is necessary and sufficient to perform optimally or to achieve a certain competitive
ratio. This is formalized in different computational models, all of which assume that the online algorithm is given some
number of bits of advice (Dobrev et al., 2009; Hromkovič et al., 2010; Böckenhauer et al., 2017; Emek et al., 2011). (See the
survey on online algorithms with advice (Boyar et al., 2017).) The difference from learning-augmented algorithms is that
the advice is always correct, so robustness is not a consideration, and the emphasis is on the number of bits the algorithms
use, rather than if one could realistically expect that the advice could be obtained. The advice-complexity result that is
probably the closest to our work is by Dobrev et al. (2009) who studied advice that is equivalent to the ground truth for
our discard predictions. Their result implies for our setting that when the predictions are guaranteed to be perfect (as one
assumes in advice complexity), then one can obtain a simple 1-competitive algorithm, with predictions of just one bit per
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request. However, it does not immediately imply a positive result in our setting when the predictions are of unknown quality.

Discard predictions in practice. Previous research shows the practicality of the succinct predictions presented in
this paper. Jain & Lin (2016) proposed Hawkeye, an SVM-based binary classifier whose goal is to predict whether a
requested page is likely to be kept in cache by the optimal Belady’s algorithm. The classifier labels each page as either
cache-friendly or cache-averse, which directly corresponds to zero and one, respectively, in our discard-predictions setup.
Hawkeye’s predictions were accurate enough for winning the 2nd Cache Replacement Championship. Later, Hawkeye was
outperformed by Shi et al.’s Glider (Shi et al., 2019), a deep learning LSTM-based predictor that solves the same binary
classification problem. In short, accurate succinct discard predictions are available for practical applications. On the other
hand, machine-learning models capable of producing reoccurrence predictions and state predictions only recently started
being developed, and, while they also have a surprisingly high accuracy, they are prohibitively large and slow to evaluate for
performance-critical applications (Liu et al., 2020).

B Complementary Analysis of MARK&PREDICT

We provide another analysis of MARK&PREDICT (see Section 4) which exploits the uniformly-random selection of an
unmarked 1-page to evict in line 8, and improves on the bound from Theorem 1.4 for larger values of η1. We also show that
MARK&PREDICT is robust.

Lemma B.1. Consider a phase with c new pages, such that MARK&PREDICT starts with η0 and η1 pages with incorrect
predictions 0 and 1 in its cache. The expected cost incurred by MARK&PREDICT is at most

c
(
Hη1+c −Hc + 1

)
+Hk η0.

Proof. Each phase starts at line 5 by unmarking all pages. We denote L the set of 1-pages contained in the cache at this
moment. Note that any unmarked 1-page evicted at line 8 always belongs to L. We analyze two parts of the phase separately:
(a) the first part when there are still unmarked 1-pages in the cache and evictions are done according to line 8 and (b) when
all unmarked 1-pages are evicted and evictions are done by line 10.

Part (a) Marked pages are always in cache, therefore we only need to count page faults when an unmarked page ri is
requested. Let ca ≤ c denote the number of new pages to arrive during the part (a). Without loss of generality, we can
assume that all of them arrive in the beginning. There are three possibilities:

• ri is new: MARK&PREDICT incurs a cost of 1.

• ri is not new and was a 0-page (i.e., the previous prediction on the page ri is 0): MARK&PREDICT incurs a cost of 0
(all such pages are in cache now)

• ri is not new and was a 1-page: MARK&PREDICT incurs a cost of ζi in expectation,

where ζi = ca/(|L| − (j − 1)) if this was the j-th page from L being marked. This follows by an argument similar to the
classical analysis of MARK, as in the proof of Theorem 1.4: The probability that ri is in cache is |L|−ca−(j−1)

|L|−(j−1) , implying
that the probability that ri is missing from the cache is ca/(|L| − (j − 1)).

Therefore, our expected cost during part (a) is at most

ca +

|L|−ca∑
j=1

ca
|L| − (j − 1)

= ca(1 +H|L| −Hca).

At the end of the part (a), we have precisely ca pages in L that are no longer in the cache, because part (b) starts only if there
are more new pages in the phase than pages in L that are never marked. All the pages from L that are marked at the end of
the phase had incorrect predictions, so we have η1 ≥ |L| − ca implying |L| ≤ η1 + ca. Therefore, our expected cost is at
most

ca(Hη1+ca −Hca + 1) ≤ c(Hη1+c −Hc + 1).

13
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Part (b) This part never happens if c is the number of pages in L with correct prediction 1, i.e., those left unmarked until
the end of the phase. If c is higher, then there must have been some pages with incorrect prediction 0. Without loss of
generality, we can assume that all c− ca new pages are requested in the beginning of part (b). Again, we only need to count
page faults due to requests ri where ri is unmarked. We have the following cases:

• ri is new: MARK&PREDICT incurs a cost of 1,

• ri ∈ L: MARK&PREDICT incurs a cost of 1 because all unmarked pages from L are evicted by the end of part (a),

• ri /∈ L: MARK&PREDICT incurs a cost of ζi.

Similar to the previous case, we have ζi = (c− ca)/(k − |L| − (j − 1)) if this is the jth 0-page being marked, because the
phase starts with k − |L| 0-pages in cache and they are not evicted during part (a). By Observation 4.1, each arrival of a new
page and each request to a further unmarked page in L increases η0 by 1. Moreover, we have c− ca ≤ η0. Therefore, our
cost is at most

η0 +

k−|L|−(c−ca)∑
j=1

η0
k − |L| − (j − 1)

≤ η0(Hk −Hη0 + 1) ≤ η0Hk.

We next give a second upper bound on the (α, β, γ)-competitiveness of MARK&PREDICT, which is stronger for large values
of η1.
Theorem 1.5. MARK&PREDICT is a randomized

(
2, Hk, γ(η1/ OPT)

)
-competitive algorithm for the phase-predictions

setup, where
γ(x) = 2x−1 (ln(x+ 1) + 1) .

Proof. Let ci, η1(i), η0(i) be the number of new pages, 1-errors, and 0-errors in ith phase, respectively. Then, by the
preceding lemma, the cost of the algorithm is at most∑

i

(
ci
(
Hη1(i)+ci −Hci + 1

)
+Hk η0(i)

)
≤

∑
i

ci

(
ln
(η1(i)

ci
+ 1

)
+ 2

)
+Hk η0,

where the sum is over all phases. The inequality above holds because Hη+c −Hc ≤ ln(η+c
c ) + 1. By the concavity of

logarithm, the worst case happens when η1(i)/ci is the same in all the phases, i.e., η1(i)/ci = η1/ OPT for all i. In addition,
OPT ≥ 1

2

∑
i ci ≥

1
2 OPT. Therefore, the expected cost of MARK&PREDICT is at most

2 OPT
(
ln(

η1
OPT

+ 1) + 2
)
+Hkη0

≤ 2 OPT +Hk η0 +

(
ln(

η1
OPT

+ 1) + 1

)
2 OPT

η1
η1.

Lemma B.1 can also be used to show that MARK&PREDICT is robust.
Theorem 1.6. MARK&PREDICT is (O(log k))-robust.

Proof. If a phase has c new pages, there were c pages evicted during the previous phase. Let E denote the set of c pages
evicted in that previous phase. The correct predictions for all of the pages in E is 1, and it is 0 for all other pages in that
previous phase. Considering the current phase, the one using those predictions, η0 ≤ |E| = c and η1 ≤ k − |E| = k − c.
The bound from Lemma B.1 is thus at most c(Hk −Hc + 1) + cHk ∈ O(c log k). Summing this over all phases, we can
bound MARK&PREDICT’s cost by O((log k) OPT).
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C Lower Bounds
In this section, we provide lower bounds on the possible values of α, β and γ for (α, β, γ)-competitive algorithms, in both
setups. These bounds imply that the results of the previous two sections are essentially tight.

We first consider deterministic algorithms.

Theorem 1.7. In both the discard-predictions and phase-predictions setups, there is no deterministic (α, β, γ)-competitive
algorithm such that either α+ β < k or α+ (k − 1) · γ < k.

Proof. Consider any deterministic paging algorithm ALG, and the following two paging problem instances on a universe of
k + 1 pages, each with n requests, where n > k can be arbitrarily large. When there are only k + 1 pages used, the concept
of k-phases for marking algorithms (Torng, 1998) is used to show that LFD faults on the first occurrence of each of the first
k pages requested in the first phase and on the first page in each phase after that, for a total of OPT ≤ k +

⌈
n−k
k

⌉
faults.

Ignoring the first and last phases, LFD always evicts the only page not present in that phase, so correct predictions in the
discard-predictions and phase-predictions setups are identical, with zeros for every request, except for the last occurrence of
the page not requested in the next phase. (If the last phase contains fewer than k different pages, there could be more than
one correct 1-prediction in the next to last phase, but one is sufficient. In the last phase, the correct predictions would all be
zeros.)

In both instances, after k requests, one to each of k different pages, the unique page absent in the cache of ALG is always
requested. This leads to a cost of n for ALG, since it faults on all requests.

In the first instance, all predictions are 0. Thus, η0 ≤ OPT −k and η1 = 0. Writing ALG ≤ α OPT +βη0 + γη1, we obtain
that

n = ALG ≤ α ·
(
k +

⌈
n− k

k

⌉)
+ β ·

⌈
n− k

k

⌉
.

Taking the limit as n goes to infinity, one must have

α+ β ≥ k.

In the second instance, all predictions are 1. Thus, η0 = 0 and η1 ≤ n− (OPT −k). Writing ALG ≤ α OPT +βη0 + γη1,
we obtain that

n = ALG ≤ α · OPT +γ · (n− (OPT −k)).

Since α ≥ 1, α ≥ γ. Then, OPT ≤ k +
⌈
n−k
k

⌉
implies that

n = ALG ≤ α ·
(
k +

⌈
n− k

k

⌉)
+ γ ·

(
n−

⌈
n− k

k

⌉)
.

Taking the limit as n goes to infinity, one must have

α+ (k − 1) · γ ≥ k.

We now focus on randomized algorithms. The next result first considers a single instance with different predictions to exhibit
two tradeoffs on the possible competitive ratios, and the second tradeoff is then improved using a different adversarial
strategy.

Theorem 1.9. In both the discard-predictions and phase-predictions setups, there is no (α, β, γ)-competitive randomized
algorithm such that either α+ β < Hk or α+ (k − 1) · γ < Hk, where Hi = ln i+O(1) is the i-th harmonic number.

Proof. Consider any randomized paging algorithm ALG, and two paging problem instances on a universe of k + 1 pages.
In order to simplify the mathematical expressions, we assume that the instance starts with a full cache with predictions
associated to each page. Since there is an additive constant in the definition of the competitive ratio, this does not affect the
result.

In this proof, we build on the well-known proof using Yao’s principle for the Hk lower bound for paging (Borodin &
El-Yaniv, 1998).
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In the first instance, for each request, one of the k + 1 pages is chosen uniformly at random, with a prediction of 0. This
leads to an expected cost of n/(k + 1) for ALG, as the probability that the requested page is the only one absent from the
cache of ALG is 1/(k + 1).

The expected optimal cost is equal to the expected number of k-phases in the instance. The expected length of a phase
is, by the Coupon Collector problem, (k + 1)Hk+1 − 1 = (k + 1)Hk, where Hi is the i-th harmonic number. So
E[OPT] = n/((k + 1)Hk).

For the discard-predictions setup, this means that η0 = OPT and η1 = 0 as each optimal eviction is equivalent to a prediction
error.

For the phase-predictions setup, this also means that η0 = OPT and η1 = 0 as each phase contains a single erroneous
prediction, on the last request of the page not requested in the following phase.

Hence, we obtain that, for both setups,
n

k + 1
= E[ALG] ≤ αE[OPT] + βE[η0] + γη1

≤ (α+ β) · n

(k + 1)Hk
,

so
α+ β ≥ Hk.

We note below that replacing the predictions from 0 to 1 does not lead to the target bound. Indeed, consider an instance such
that, at each round, one of the k + 1 pages is requested at random, with a prediction of 1. This again leads to an expected
cost of n/(k + 1) for ALG and n/((k + 1)Hk) for OPT. This means that η1 ≤ n and η0 = 0 for both setups. Hence, we
obtain that, for both setups,

n

k + 1
= E[ALG] ≤ αE[OPT] + βη0 + γE[η1]

≤ (α+ (k + 1)Hk · γ) · n

(k + 1)Hk
,

so
α+ (k + 1)Hk · γ ≥ Hk.

In order to improve this bound, we keep a universe of k + 1 pages and from an optimal solution, we build an instance
phase by phase, based on OPT’s cache, C, before the start of each phase. The first request is the page p0 not in C. Then,
we consider a uniformly random permutation σ1, . . . , σk−1 of k − 1 among the k elements of C. The phase will then be
described as a composition of blocks of requests, where the ith block contains i+ 1 page requests: p0 and the σj for j ≤ i.
For instance, if the permutation is (a, b, c, d, e), the blocks will be:

p0a, p0ab, p0abc, p0abcd, p0abcde.

Each block is furthermore repeated several times before requesting the next block to ensure that the cache of any sensible
algorithm contains the pages inside a block afterwards.

We now compute a lower bound on the expected cost of any algorithm on such a sequence. Before the first block, p0 is
contained in the cache, so the probability that requesting a incurs a cache miss is 1/k, as, except p0, one of the k other pages
in the universe incurs a cache miss. Similarly, the probability that the second block incurs a cache miss is 1/(k− 1), and the
total expected number of cache misses after the last block is Hk − 1. We now notice that we can also charge one eviction for
p0 at the start of the phase. Indeed, after the previous phase was finished, the algorithm’s cache must contain the k pages of
the last block, to avoid suffering too many evictions. Therefore, its cache at the start of the phase matches the one of OPT so
does not contain p0. So the algorithm’s cost is at least Hk per phase while OPT’s is one per phase.

We now describe predictions: all requests come with a prediction 0 except the last iteration of the last block where all k
requests have a prediction 1.

For the discard-predictions setup, the zero-predictions are correct as these pages are requested again in the same phase, and
k − 1 one-predictions are wrong on the last iteration as only a single page should be evicted, so η0 = 0 and η1 = k − 1 per
phase.
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For the phase-predictions setup, only the last iteration counts towards the error, and a single page will not appear in the next
phase so we also have η0 = 0 and η1 = k − 1 per phase. Therefore, generalizing to all phases, we have

Hk = E[ALG] ≤ αE[OPT] + βη0 + γE[η1] ≤ α+ (k − 1) · γ.

The previous result shows a subconstant lower bound on γ (≈ 1
k ln k) for a logarithmic value of α (up to O(log k)), and we

complement it by showing that γ is lower bounded by a constant if we want to achieve α = 1.

Theorem 1.11. There is no (1, β, γ)-competitive randomized algorithm such that γ < 1/7 for the discard-predictions setup
or γ < 1/2 for the phase-predictions setup.

Proof. We consider a universe of k + 1 pages. We construct an instance composed of m rounds of k − 1 requests, m being
a large integer. At the start of each round, request the page 1, 2 or 3 with equal probability associated to a prediction 1. Then,
all pages from 4 to k + 1 are requested with a prediction 0.

An optimal algorithm never evicts the pages 4 to k + 1 and needs to evict a single page per phase, where phases are defined
as for marking algorithms. Any online algorithm has a probability at least 1/3 to perform an eviction at each round: either
one page among {1, 2, 3} is not in the cache at the start of the round, or another page is absent which enforces an eviction.

The expected number of rounds in a phase is equal to the expected length of a phase of a uniformly random request sequence
over 3 pages and k = 2, which is 3H2 = 4.5. So E[OPT] = m/4.5.

We now focus on the prediction errors. First, note that η0 = 0 in both setups: the pages predicted 0 are requested in every
phase and should never be evicted by an optimal algorithm.

Then, we have E[η1] = m− E[OPT] = 3.5m/4.5 in the discard-predictions setup. Indeed, the pages 1, 2 and 3 combined
are predicted 1 a total of m times, are never predicted 0 and OPT only evicts these three pages. So there is an error when
such a page is not evicted by OPT before its subsequent request.

In the phase-predictions setup, there is one error per phase, for the last prediction of the unique page among {1, 2, 3} which
is both requested in that phase but not the following one. Therefore, E[η1] = m/3H2 = m/4.5.

Therefore, we have:

E[ALG] ≤ 1 · E[OPT] + γE[η1]

γ ≥ E[ALG]− E[OPT]

E[η1]

γ ≥ m

E[η1]
·
(
1

3
− 1

3H2

)
≥ m

E[η1]
·
(
1.5− 1

4.5

)
≥ m

9E[η1]

So, in the discard-predictions setup, we get E[ALG] ≥ 1/7 and for the phase-predictions setup, we obtain E[ALG] ≥
1/2.
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