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Abstract
Off-policy learning (OPL) aims at finding im-
proved policies from logged bandit data, often by
minimizing the inverse propensity scoring (IPS)
estimator of the risk. In this work, we investi-
gate a smooth regularization for IPS, for which
we derive a two-sided PAC-Bayes generalization
bound. The bound is tractable, scalable, inter-
pretable and provides learning certificates. In
particular, it is also valid for standard IPS with-
out making the assumption that the importance
weights are bounded. We demonstrate the rele-
vance of our approach and its favorable perfor-
mance through a set of learning tasks. Since our
bound holds for standard IPS, we are able to pro-
vide insight into when regularizing IPS is useful.
Namely, we identify cases where regularization
might not be needed. This goes against the belief
that, in practice, clipped IPS often enjoys favor-
able performance than standard IPS in OPL.

1. Introduction
An off-policy contextual bandit (Dudı́k et al., 2011) is a
ubiquitous framework to optimize decision-making using
offline data. In practice, logged data reflecting the prefer-
ences of the agent in an online setting is available (Bottou
et al., 2013). In each round, the agent observes a context,
takes an action, and receives a reward that depends on the
observed context and the taken action. Off-policy evaluation
(OPE) (Dudı́k et al., 2011) aims at evaluating a policy of-
fline by designing an estimator of its expected reward using
logged data. The estimator is often based on the impor-
tance sampling trick and it is generally referred to as inverse
propensity scoring (IPS) (Horvitz & Thompson, 1952). Off-
policy learning (OPL) leverages the latter estimator to learn
an improved policy (Swaminathan & Joachims, 2015a).

The literature on OPL has focused so far on using learn-
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ing principles derived from generalization bounds. First,
Swaminathan & Joachims (2015a) used sample variance
penalization (SVP) that favors policies with high estimated
reward and low empirical variance. Recently, London &
Sandler (2019) derived a novel scalable learning principle
that favors policies with high estimated reward and whose
parameter is not far from that of the logging policy in terms
of L2 distance. While derived from generalization bounds,
these learning principles do not give any guarantees on the
expected performance of the learned policy. Also, they re-
quire additional care to tune their hyper-parameters. Thus,
motivated by the results in Sakhi et al. (2022), we derive
tractable generalization bounds that we optimize directly.

The paper is organized as follows. In Section 2, we intro-
duce the necessary background. In Section 3, we explain the
shortcomings of the widely used hard clipping of IPS and
present a smoother correction, called exponential smoothing.
In Section 4, we focus on OPL and leverage PAC-Bayes
theory to derive a two-sided generalization bound for our
estimator. In contrast with prior works (Swaminathan &
Joachims, 2015a; London & Sandler, 2019; Sakhi et al.,
2022), our bound is also valid for standard IPS without
clipping, and this is without assuming that the importance
weights are bounded. We also discuss our results in detail
in Section 5. In particular, we give insights into the sample
complexity of our learning procedure, an important ques-
tion not addressed in prior OPL works. Finally, we show in
Section 6 that our approach enjoys favorable performance.
A detailed comparative review of the literature is provided
in Appendix A. The proofs are deferred to Appendices B
and C. Refer to Appendix D to reproduce our experiments.

2. Background
Consider an agent interacting with a contextual bandit envi-
ronment over n rounds. In round t ∈ [n], the agent observes
a context xt ∼ ν, where ν is a distribution whose support X
is a compact subset of Rd. Then the agent takes an action
at ∈ A = [K]. Finally, the agent receives a stochastic
cost ct ∈ [−1, 0] that depends on both xt and at. That is
ct ∼ p(·|xt, at) where p(·|x, a) is the cost distribution of
action a in context x. We let c(x, a) = Ec∼p(·|x,a) [c] be the
cost function that outputs the expected cost of action a in
context x. Here we use a negative cost since it is seen as the
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negative value of the reward, that is for any (x, a) ∈ X ×A ,
c(x, a) = −r(x, a) where r : X ×A → [0, 1] is the reward
function that outputs the expected reward of a in context x.

The agent is represented by a stochastic policy π. Given a
context x ∈ X , π(·|x) is a probability distribution over A.
Our goal is to find a policy π ∈ Π among a set of policies
Π that minimizes the risk defined as

R(π) = E(x,a,c)∼µπ
[c] = Ex∼ν,a∼π(·|x) [c(x, a)] , (1)

where µπ is the joint distribution of (x, a, c); µπ(x, a, c) =
ν(x)π(a|x)p(c|x, a). We assume access to logged data
Dn = (xi, ai, ci)i∈[n], where (xi, ai, ci) ∼ µπ0 are i.i.d.
and π0 is a known logging policy. Given a policy π ∈ Π,
OPE consists in building an estimator for its risk R(π) using
Dn such as R̂n(π) ≈ R(π). After that, OPL is used to find
a policy π̂n ∈ Π such that R(π̂n) ≈ minπ∈Π R(π).

In this work, we focus on inverse propensity scoring (IPS)
(Horvitz & Thompson, 1952; Dudı́k et al., 2012). Given a
policy π ∈ Π, IPS estimates the risk R(π) by re-weighting
the samples using the ratio between π and π0 such as

R̂IPS
n (π) =

1

n

n∑
i=1

ciwπ(ai|xi) , (2)

where for any (x, a) ∈ X ×A , wπ(a|x) = π(a|x)/π0(a|x)
are the importance weights. The variance of R̂IPS

n (π) scales
linearly with the importance weights (Swaminathan et al.,
2017) which can be large. Thus other OPE methods that
do not rely on the importance weights or partially use them
were proposed and they can be categorized into two families,
direct method (DM) (Jeunen & Goethals, 2021) and doubly
robust (DR) (Dudı́k et al., 2011). The reader may refer to
Appendix A.1 for more details about these methods.

Let R̂n be an estimator of the risk R. For instance, R̂n

can be R̂IPS
n in (2). The goal in OPL is to minimize the

risk R. But since we cannot access it, we only search for
π̂n = argminπ∈Π R̂n(π) + pen(π) hoping that R(π̂n) ≈
minπ∈Π R(π). Here pen(·) is a penalization term obtained
using generalization bounds of the following form. Let
δ ∈ (0, 1), then we have with probability at least 1− δ that

R(π) ≤ R̂n(π) + g(δ,Π, π, π0, n) , ∀π ∈ Π , (3)

for some function g. Improving upon π0, that is when
R(π) − R(π0) < 0, is guaranteed with high probability
when R̂n(π) + g(δ,Π, π, π0, n) − R(π0) < 0. Thus we
minimize R̂n(π) + g(δ,Π, π, π0, n) − R(π0) in the hope
that the minimum is smaller than 0. Since R(π0) is fixed,
the final objective reads

π̂n = argmin
π∈Π

R̂n(π) + g(δ,Π, π, π0, n) . (4)

This motivated the concept of counterfactual risk minimiza-
tion (CRM) in Swaminathan & Joachims (2015a); London

& Sandler (2019); Sakhi et al. (2022). However, all these
works only derived one-sided inequalities similar to (3). In
contrast, we derive two-sided inequalities of the form

|R(π)− R̂n(π)| ≤ g(δ,Π, π, π0, n) , ∀π ∈ Π . (5)

This is because (5) can attest to the quality of the estimator
R̂n. A one-sided one fails at this. To see why, note that
we have with probability 1 that R(π) ≤ R̂POOR

n (π) with
g(δ,Π, π, π0, n) = 0, considering a poor estimator of the
risk, R̂POOR

n (π) = 0 for any π ∈ Π. This holds since by defi-
nition R(π) ∈ [−1, 0] while R̂POOR

n (π) = 0 for any π ∈ Π.
While this one-sided inequality holds for R̂POOR

n , this estima-
tor is not informative at all about R, so minimizing it is not
relevant. This is why we need to control the quality of the
upper bound on R, and this is achieved by two-sided inequal-
ities similar to (5). Also, (5) leads to oracle inequalities of
the form R(π̂n) ≤ R(π∗) + 2g(δ,Π, π∗, π0, n), where π̂n

is the learned policy in (4) and π∗ = argminπ∈Π R(π) is
the optimal policy. This allows us to quantify the number
of samples n needed so that the risk of the learned policy
R(π̂n) is close to the optimal one R(π∗).

Moreover, in many prior works, the objective in (4) is not op-
timized directly. Instead, the function g is used to motivate
a heuristic-based learning principle. Here we review these
principles briefly. But the reader may refer to Appendix A.2
for more detail. First, Swaminathan & Joachims (2015a)
minimized the estimated risk while penalizing its empirical
variance. This was inspired by a function g that contains
a variance term; discarding more complicated terms like
the covering number of the space of policies Π. Similarly,
London & Sandler (2019) parameterize policies by a mean
parameter and propose to penalize the estimated risk by the
L2 distance between the mean of the logging and the learn-
ing policies; discarding all the other terms from their bound.
In contrast, we follow the theoretically grounded approach
that consists in directly optimizing the objective in (4) as it
is. It may also be relevant to note that some works (Metelli
et al., 2021) derived evaluation bounds and used them in
OPL. In evaluation, we fix a policy π ∈ Π, and show that

P(|R(π)− R̂n(π)| ≤ f(δ, π, π0, n)) ≥ 1− δ ,

for some function f that does not necessarily depend on the
space of policies Π. In contrast, the generalization bound
in (5) holds simultaneously for any policy π ∈ Π, and it
is the one that should be used in OPL. That said, in this
work, we derive a two-sided generalization bound that holds
simultaneously for any policy π ∈ Π as in (5).

3. Exponential Smoothing
The estimator R̂IPS

n (π) in (2) is unbiased when π0(a|x) = 0
implies that π(a|x) = 0 for any (x, a) ∈ X × A. But its
variance can be large as it grows linearly with the importance
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weights wπ(a|x). Thus they are often clipped (Swaminathan
& Joachims, 2015a) such as on the following estimators

IPS-min R̃M
n(π) =

1

n

n∑
i=1

ci min
(
wπ(ai|xi),M

)
,

IPS-max R̂τ
n(π) =

1

n

n∑
i=1

ci
π(ai|xi)

max(π0(ai|xi), τ)
. (6)

Here IPS-min clips the weights while IPS-max only
clips π0 in the denominator since π is always smaller than
1. For instance, M ∈ R+ in R̃M

n(π) trades the bias and
variance of the estimator. When M is large, the bias of
R̃M

n(π) is small but its variance may be large. On the other
hand, the variance goes to 0 when M ≈ 0 since in that case
R̃M

n(π) ≈ 0 for any π ∈ Π. Similarly, τ ∈ [0, 1] trades the
bias and variance of R̂τ

n(π) and can be seen as τ ≈ 1
M .

This hard clipping has some limitations. First, min(·,M)
leads to non-differentiable objectives that may require ad-
ditional care in optimization (Papini et al., 2019). Also,
min(·,M) is constant on [M,∞) leading to objectives with
zero gradients for any policy π that satisfies wπ(ai|xi) > M
for any i ∈ [n]. More importantly, hard clipping is sensitive
to the choice of the clipping threshold M . In practice, tun-
ing M is challenging and may cause the learned policy to
match the logging policy, leading to minimal improvements.
To see this, consider the following illustrative example.

For simplicity, suppose that the problem is non-contextual,
in which case the reward function r only depends on the
actions a ∈ A. It follows that policies do not depend on x ∈
X ; they are now probability distributions π(·) over A. Also,
assume that A = [100] and that the reward received after
taking action a ∈ [100] is binary. That is, r ∼ Bern(r(a))
where r(a) = 0.1− 10−3(a− 1) is the expected reward of
action a, and for any p ∈ [0, 1], Bern(p) is the Bernoulli
distribution with parameter p. This means that the best
action is 1 and the worst is 100. Finally, the logging policy
π0(·) is ϵ-greedy centered at action 50. That is π0(50) =
1− ϵ, and for any a ̸= 50, π0(a) =

ϵ
99 , with ϵ = 0.05,.

Now consider 100 deterministic policies πa(·) for a ∈ [100]
such that πa(·) is the Dirac distribution centered at a. In
Figure 1, we plot the estimated reward of the policies πa

using either IPS in (2) or IPS-min in (6). We generate
n = 50k samples and set M = 100 = O(

√
n) as suggested

by Ionides (2008). With this choice of M , IPS-min under-
estimates the reward of all policies πa for a ̸= 100 since
their weights πa/π0 are either 0 or 99/ϵ > M . The esti-
mated reward of IPS-min is maximized in π50 ≈ π0 only.
Thus, if we optimize R̃M

n (·) over Dirac policies, we will
converge to the logging policy despite its bad performance.

Although the other variant of hard clipping, IPS-max in
(6), is differentiable, it is still sensitive to τ and may induce
high bias similar to Figure 1. This is due to some loss of

information related to the preferences of the logging policy.
Indeed, for two actions a and a′ such that π0(a | xi) ≪
π0(a

′ | xi) < τ for an observed context xi, the propensity
scores π0(a | xi) and π0(a

′ | xi) will be clipped to the same
value τ . Thus the information that, for context xi, action a′

is preferred by the logging policy than action a will be lost.
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Figure 1. Effect of hard clipping on the estimation quality. The
x-axis corresponds to actions a ∈ [100]. The y-axis is the esti-
mated reward of each of the 100 policies πa using either IPS or
IPS-min. The cyan line is the true reward for each policy πa.

To mitigate this, we propose the following exponential
smoothing correction for IPS. Our estimators are defined as

IPS-α : R̂α
n(π) =

1

n

n∑
i=1

ciŵ
α
π (ai|xi) , α ∈ [0, 1] ,

IPS-β : R̃β
n(π) =

1

n

n∑
i=1

ciw̃
β
π(ai|xi) , β ∈ [0, 1] , (7)

where ŵα
π (a|x) =

π(a|x)
π0(a|x)α and w̃β

π(a|x) =
π(a|x)β
π0(a|x)β . Here

standard IPS is recovered for α = 1 and β = 1. These
estimators are differentiable in π and do not suffer from
stationary points in optimization as they are not constant in
π when β ̸= 0 and α ̸= 0. Also, in contrast with IPS-max
in (6), R̂α

n(π) preserves the preferences of the logging policy.
Precisely, for two actions a and a′ such that π0(a | xi) <
π0(a

′ | xi) for an observed context xi, we still have π0(a |
xi)

α < π0(a
′ | xi)

α and the information that action a′ is
preferred by the logging policy than action a is preserved.

While a similar correction to IPS-β was proposed in Korba
& Portier (2022), its use in off-policy contextual bandits is
novel. Also, Su et al. (2020); Metelli et al. (2021) regu-
larized the importance weights w as λ1w

λ1+w2 , λ1 > 0 and
w

1−λ2+λ2w
, λ2 ∈ [0, 1], respectively. Thus, the expression

of both corrections is very different from ours. More im-
portantly, these corrections entail different properties than
ours. Roughly speaking, our correction allows us to simul-
taneously (1) control a tuning parameter α ∈ [0, 1] that is
in a bounded domain [0, 1], (2) without constraining the
resulting importance weights to be bounded, (3) and to ob-
tain PAC-Bayes generalization guarantees as the correction
π
πα
0

is linear in π; a technical requirement of our analysis.
In contrast, Metelli et al. (2021); Su et al. (2020) do not
provide generalization guarantees; they focus on OPE and
only propose heuristics for OPL. Those heuristics are not
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based on theory, in contrast with ours which is directly de-
rived from our generalization bound. Also, our approach
has favorable empirical performance (Appendix D.6).

Although Korba & Portier (2022, Lemma 1) show that
smoothing the importance weights similarly to IPS-β in
(7) reduces the variance, it might still be unclear how α and
β trade the bias and variance of our estimators in off-policy
contextual bandits. To see this, let α ∈ [0, 1], then we have

|B(R̂α
n(π))| ≤ Ex∼ν,a∼π(·|x)

[
1− π0(a|x)1−α

]
, (8)

V
[
R̂α

n(π)
]
≤ 1

n
Ex∼ν,a∼π(·|x)

[ π(a|x)
π0(a|x)2α−1

]
,

with B(R̂α
n(π)) = E[R̂α

n(π)] − R(π) and V[R̂α
n(π)] =

E[(R̂α
n(π)− E[R̂α

n(π)])
2] are respectively the bias and the

variance of R̂α
n(π). The bound of the bias in (8) is mini-

mized in α = 1 (standard IPS); in which case it is equal to 0
(standard IPS is unbiased). In contrast, the bound of the vari-
ance is minimized in α = 0. Thus if the variance is small or
n is large enough such that E[π(a|x)/π0(a|x)2α−1]/n→ 0,
then we set α→ 1. Otherwise, we set α→ 0. This shows
that α trades the bias and variance of R̂α

n . More details and
a similar discussion for R̃β

n(π) are deferred to Appendix B.

4. PAC-Bayes Analysis for Off-Policy Learning
We now derive generalization bounds for our estimator. We
opt for the PAC-Bayes framework for the following reasons.
First, it is known to provide some of the tightest generaliza-
tion bounds in challenging scenarios (Farid & Majumdar,
2021), for aggregated and randomized predictors (Alquier,
2021). Second, the bounds have a Kullback–Leibler (KL)
divergence (Van Erven & Harremos, 2014) term DKL(Q∥P)
that depends on a fixed prior P and a learning posterior Q
(see Section 4.1 for a brief introduction). This quantity can
be seen as a complexity measure, similarly to the covering
number (Maurer & Pontil, 2009). The difference is that
complexity measures are uniform on the space of policies
while the KL term in PAC-Bayes depends on the prior P and
the posterior Q. This allows getting sharper bounds when
the former is well chosen. Third, the PAC-Bayes perspective
fits very well with OPL. In fact, a policy π can be written
as an aggregation of predictors under some distribution Q.
Thus the prior P can be associated with the logging policy
π0 that we want to improve upon while the posterior Q is
related to the learning policy π. Fourth, London & Sandler
(2019) showed that PAC-Bayes can lead to tractable and
scalable objectives, an important consideration in practice.

4.1. Elements of PAC-Bayes

Let Z = X × Y be an instance space: e.g., X and Y are
the input and output space in supervised learning. LetH =
{h : X → Y} denote a hypothesis space of mappings from

X to Y (predictors). Also, let L : H×Z → R be a loss func-
tion and assume access to data Dn = (zi)i∈[n] drawn from
an unknown distribution D. Let R(h) = Ez∼D [L(h, z)]
be the risk of h ∈ H while R̂n(h) = 1

n

∑n
i=1 L(h, zi) is

its empirical counterpart. Then the main focus in PAC-
Bayes is to study the generalization capabilities of random
hypothesis Q onH by controlling the gap between the ex-
pected risk under Q, Eh∼Q [R(h)] and the expected empiri-
cal risk under Q, Eh∼Q[R̂n(h)]. For example, assume that
L(h, z) ∈ [0, 1] for any (h, z) ∈ H × Z , let P be a fixed
prior distribution onH and let δ ∈ (0, 1). Then with proba-
bility at least 1− δ over Dn ∼ Dn, the following inequality
holds simultaneously for any posterior distribution Q onH

Eh∼Q [R(h)] ≤ Eh∼Q[R̂n(h)] +

√
DKL(Q∥P) + log 2

√
n

δ

2n
.

This was originally proposed by McAllester (1998), and the
reader may refer to Alquier (2021); Guedj (2019) for more
elaborate introductions of PAC-Bayes theory.

4.2. PAC-Bayes for Off-Policy Contextual Bandits

LetH = {h : X → A} be a hypothesis space of mappings
from X (contexts) to A (actions). Given a policy π and a
context x ∈ X , the action distribution π(·|x) is induced by
a distribution Q overH (London & Sandler, 2019) such as

π(a|x) = πQ(a|x) = Eh∼Q
[
I{h(x)=a}

]
. (9)

This is not an assumption since any policy π has this form
when H is rich enough (Sakhi et al., 2022, Theorem 2).
From (9), we observe that policies can be seen as an ag-
gregation Eh∼Q [·] (under some distribution Q on the pre-
defined hypothesis spaceH) of deterministic decision rules
I{h(x)=a}. This allows formulating OPL as a PAC-Bayes
problem. Before showing how this is achieved, we start by
providing two practical policies of such form.

Example 1 (softmax and mixed-logit policies): we define
the space H =

{
hθ,γ ; θ ∈ RdK , γ ∈ RK

}
of mappings

hθ,γ(x) = argmaxa∈A ϕ(x)⊤θa + γa. Here ϕ(x) outputs
a d-dimensional representation of x, and γa is a standard
Gumbel perturbation, γa ∼ G(0, 1) for any a ∈ A. Then

πSOF
θ (a|x) = exp(ϕ(x)⊤θa)∑

a′∈A exp(ϕ(x)⊤θa′)
,

(i)
= Eγ∼G(0,1)K

[
I{hθ,γ(x)=a}

]
, (10)

where (i) follows from the Gumbel-Max trick (GMT) (Luce,
2012; Maddison et al., 2014). Thus a softmax policy πSOF

θ

can be written as in (9). Now we also consider random
parameters θ ∼ N (µ, σ2IdK) with µ ∈ RdK and σ > 0.
Then, let Q = N (µ, σ2IdK) × G(0, 1)K , it follows that
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πQ = πMIXL
µ,σ is a mixed-logit policy and it reads

πMIXL
µ,σ (a|x) = Eθ∼N (µ,σ2Id)

[
exp(ϕ(x)⊤θa)∑

a′∈A exp(ϕ(x)⊤θa′)

]
,

= Eθ∼N (µ,σ2Id) ,γ∼G(0,1)K
[
I{hθ,γ(x)=a}

]
. (11)

Example 2 (Gaussian policies): Sakhi et al. (2022) re-
moved the Gumbel noise γ in (11) and consequently defined
the hypothesis space asH =

{
hθ ; θ ∈ RdK

}
of mappings

hθ(x) = argmaxa∈A ϕ(x)⊤θa for any x ∈ X . Then, let
Q = N (µ, σ2IdK), it follows that πQ = πGAUS

µ,σ reads

πGAUS
µ,σ (a|x) = Eθ∼N (µ,σ2Id)

[
I{hθ(x)=a}

]
. (12)

To see why removing the Gumbel noise can be beneficial,
the reader may refer to Appendix D.2. After motivating
the definition of policies in (9), we are in a position to
relate our estimators to the general PAC-Bayes framework
in Section 4.1. One technical requirement of our proof is
that the estimator should be linear in π. Thus we focus on
R̂α

n(·) since R̃β
n(π) is non-linear in π. Let h ∈ H, x ∈ X ,

a ∈ A and c ∈ [−1, 0], we define the loss Lα as

Lα(h, x, a, c) =
I{h(x)=a}

π0(a|x)α
c . (13)

Using the definition in (9) and the linearity of the expecta-
tion, we have that R̂α

n(·) in (7) can be written as

R̂α
n(πQ) = Eh∼Q

[
1

n

n∑
i=1

Lα(h, xi, ai, ci)

]
.

Moreover, the expectation of R̂n(πQ) reads

Rα(πQ) = Eh∼QE(x,a,c)∼µπ0
[Lα(h, x, a, c)] .

Finally, the main quantity of interest, the risk R(πQ) , can
be expressed in terms of the loss with α = 1 , L1 , as

R(πQ) = Eh∼QE(x,a,c)∼µπ0
[L1(h, x, a, c)] .

Since R̂α
n(πQ) is an unbiased estimator of Rα(πQ), PAC-

Bayes can be used to bound Rα(πQ)− R̂α
n(πQ). This will

allow bounding our quantity of interest R(πQ)− R̂α
n(πQ).

4.3. Main Result

To ease the exposition, we assume that the costs are deter-
ministic. Then, in logged data Dn, ci = c(xi, ai) for any
i ∈ [n]. Note that the same result holds for stochastic costs.
We discuss our result and sketch its proof in Section 5. The
complete proof can be found in Appendix C.1.

Theorem 4.1. Let λ > 0, n ≥ 1, δ ∈ (0, 1), α ∈ [0, 1],
and let P be a fixed prior on H, then with probability at

least 1 − δ over draws Dn ∼ µn
π0

, the following holds
simultaneously for any posterior Q onH

|R(πQ)− R̂α
n(πQ)| ≤

√
KL1(πQ)

2n
+Bα

n (πQ) +
KL2(πQ)

nλ

+
λ

2
V̄ α
n (πQ) .

where KL1(πQ) = DKL(Q∥P) + ln 4
√
n

δ , and

KL2(πQ) = DKL(Q∥P) + ln
4

δ
,

Bα
n (πQ) = 1− 1

n

n∑
i=1

Ea∼πQ(·|xi)

[
π1−α
0 (a|xi)

]
,

V̄ α
n (πQ) =

1

n

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α

]
+

πQ(ai|xi)c
2
i

π0(ai|xi)2α
.

We start by clarifying that the prior P can be any fixed
distribution on H. If we have access to P0 on H such that
π0 = πP0

, then it is natural to set P = P0. But this is
just a choice and one may use priors that do not depend on
π0. Now we explain the main terms in our bound. First,
the terms KL1(πQ) and KL2(πQ) contain the divergence
DKL(Q∥P) which penalizes posteriors Q that differ a lot
from the prior P. Moreover, Bα

n (πQ) is the bias conditioned
on the contexts (xi)i∈[n] ; Bα

n (πQ) = 0 when α = 1 and
Bα

n (πQ) > 0 otherwise. Also, the first term in V̄ α
n (πQ)

resembles the theoretical second moment of the regularized
importance weights π

πα
0

(without the cost) when they are
seen as random variables. Similarly, the second term in
V̄ α
n (πQ) resembles the empirical second moment of π

πα
0
c

(with the cost). Finally, if V̄ α
n (πQ) is bounded, then we

can set λ = 1/
√
n, in which case our bound scales as

O(1/
√
n+Bα

n (πQ)). In practice, we set α ≈ 1 leading to
Bα

n (πQ)) ≈ 0 and the bound would scale as O(1/
√
n).

This bound motivates the idea that we only need to control
the second moments V̄ α

n (πQ) to get generalization guaran-
tees for R̂α

n(·). In particular, one of the main strengths of
our result is that it holds for standard IPS with α = 1 under
the assumption that V̄ 1

n (πQ) is bounded. This assumption is
less restrictive than assuming that the importance weight as
a random variable, πQ(a|x)/π0(a|x), is bounded, a required
assumption for traditional concentration bounds. In contrast,
V̄ α
n (πQ) only involves the expectations of the random vari-

ables πQ(a|xi)/π0(a|xi)
2α, and ratios of π0 evaluated at

observed contexts and actions and (xi, ai)i∈[n], that have
non-zero probabilities under π0 by definition.

Our result holds for fixed λ > 0 and α ∈ [0, 1]. In Ap-
pendix C.2, we extend this to any potentially data-dependent
λ ∈ (0, 1) and α ∈ (0, 1]. The assumption that c ∈ [−1, 0]
can be relaxed to c ∈ [−B, 0] up to additional factors B2

and B in V̄ α
n (πQ) and KL1(πQ), respectively. Finally, our
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bound is suitable for stochastic first-order optimization (Rob-
bins & Monro, 1951) since data-dependent quantities are
not inside a square root. This is important for scalability.

4.4. Adaptive and Data-Driven Tuning of α

Theorem 4.1 assumes that α is fixed (although we extend it
for data-dependent α in Appendix C.2). However, providing
a procedure to tune α in an adaptive and data-dependent
fashion is important in practice. Thus we propose to set

α∗ = argmin
α∈[0,1]

Bα
n (πQ) +

√
2KL2(πQ)V̄ α

n (πQ)

n
, (14)

where all the terms are defined in Theorem 4.1. Roughly
speaking, α∗ establishes a bias-variance trade-off; it min-
imizes the sum of the bias term Bα

n (πQ) and the square
root of the second moment term V̄ α

n (πQ), weighted by√
2KL2(πQ)

n . Here (14) is obtained by minimizing the bound
in Theorem 4.1 with respect to both α and λ as follows.
First, we minimize the bound in Theorem 4.1 with respect

to λ; the minimizer is λ∗ =
√

2KL2(πQ)

nV̄ α
n (πQ)

. Then, the bound in
Theorem 4.1 evaluated at λ = λ∗ becomes√

KL1(πQ)

2n
+Bα

n (πQ) +

√
2KL2(πQ)V̄ α

n (πQ)

n
. (15)

Finally, α∗ is defined as the minimizer of (15) with respect

to α ∈ [0, 1], and
√

KL1(πQ)
2n does not appear in (14) as it

does not depend on α. Note that α∗ depends on both logged
data Dn and the learning policy πQ. Thus it is adaptive; its
value changes in each iteration during optimization.

5. Discussion
We start by interpreting and comparing our results to re-
lated work. Then, we present the technical challenges in
Section 5.2. After that, we sketch our proof in Section 5.3.

5.1. Interpretation and Comparison to Related Work

Theorem 4.1 gives insight into the number of samples
needed so that the performance of π̂n is close to that of the
optimal policy π∗. To simplify the problem, we consider the
Gaussian policies in (12) and assume that there exists Q∗ =
N (µ∗, IdK) with µ∗ ∈ RdK such that the optimal policy
is π∗ = πQ∗ . Also, we let the prior P = N (µ0, IdK) and
assume that π0 is uniform. This is possible since as we said
before, the prior P does not have to depend on the logging
policy π0. Then we have that DKL(Q∗∥P) = ∥µ∗−µ0∥2/2,
Bα

n (πQ∗) = 1 − 1/K1−α and V̄ α
n (πQ∗) ≤ 2K2α. The

last inequality is not tight but it allows getting an easy-
to-interpret term that does not depend on n. Now let
ϵ > 2(1 − Kα−1) for α ∈ [1 − log 2/ logK, 1]. This

condition on α ensures that ϵ ∈ [0, 1] and it is mild as α is
often close to 1. Then, it holds with high probability that

n >̃
(∥µ∗ − µ0∥2 +K2α

ϵ− 2(1−Kα−1)

)2

=⇒ R(π̂n) ≤ R(πQ∗) + ϵ ,

where we omit constant and logarithmic terms in >̃. This
gives an intuition on the sample complexity for our proce-
dure. In particular, fewer samples are needed in four cases.
The first is when ϵ is large, which means that we afford to
learn a policy whose performance is far from the optimal
one. The second is when the prior P is close to Q∗, that is
when ∥µ∗ − µ0∥ is small. This highlights that the choice
of the prior P is important. The third is when the second-
moment term K2α is small. The fourth is when the bias
Bα

n (πQ∗) is small. In particular, when α = 1, the bias is 0.
In contrast, the second-moment term is minimized in α = 0.
This is where the choice of α matters. The proofs of these
claims and more detail can be found in Appendix C.4.

Prior works (Swaminathan & Joachims, 2015a; London &
Sandler, 2019; Sakhi et al., 2022) do not provide such insight
for two reasons. They only derived one-sided inequalities
and thus they cannot relate the risk of the learned policy with
the optimal one as we discussed in the last three paragraphs
of Section 2. Also, their bounds do not contain a bias term
and as a result, they are minimized in τ = 1. In contrast,
ours have a bias term and this allows seeing the effect of α.

Our paper derives a tractable generalization bound for an
estimator other than clipped IPS in (6), which also holds
for the standard IPS in (2). The bounds in Swaminathan &
Joachims (2015a); London & Sandler (2019); Sakhi et al.
(2022) have a multiplicative dependency on the clipping
threshold (M or 1/τ in (6)). Standard IPS is recovered
when M → ∞ (or τ = 0) in which case their bounds
explode. We successfully avoid any similar dependency on
α. Moreover, Swaminathan & Joachims (2015a); London
& Sandler (2019) only used their generalization bounds to
inspire learning principles. Although we directly optimize
our theoretical bound (Theorem 4.1) in our experiments,
our analysis also inspires a learning principle where we
simultaneously penalize the L2 distance, the variance and
the bias. That is, we find µ ∈ RdK that minimizes

R̂α
n(πµ) + λ1∥µ− µ0∥2 + λ2V̄

α
n (πµ) + λ3B

α
n (πµ) . (16)

Here λ1, λ2 and λ3 are tunable hyper-parameters, πµ can be
the Gaussian policy in (12), πµ = πGAUS

µ,1 , with a fixed σ = 1,
and µ0 is the mean of the prior P = N (µ0, IdK). Existing
works either penalize the L2 distance or the variance. For
completeness, we also show that this learning principle
should be preferred over existing ones in Appendix D.5.

5.2. Technical Challenges

London & Sandler (2019); Sakhi et al. (2022) derived PAC-
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Bayes generalization bounds for the estimator IPS-max
in (6). Extending their analyses to our case is not straight-
forward. First, their estimator IPS-max is lower bounded
by −1/τ , and thus they relied on traditional techniques for
[0, 1]-losses (Alquier, 2021). In contrast, our loss in (13) is
not lower bounded, and controlling it without assuming that
the importance weights are bounded is challenging.

Moreover, their bounds have a multiplicative dependency
on 1/τ , hence they explode as τ → 0. This makes them
vacuous for small values of τ and inapplicable to the stan-
dard IPS estimator in (2) recovered for τ = 0. In contrast,
our bound does not have a similar dependency on α and it is
also valid for standard IPS recovered for α = 1. Moreover,
we derive two-sided inequalities rather than one-sided ones
for the important reasons that we priorly discussed. This
requires carefully controlling in closed-form the absolute
value of the bias. Prior works only used that the bias is
negative which was enough to obtain one-sided inequalities.

Explaining other challenges requires stating a result that in-
spired our analysis: Kuzborskij & Szepesvári (2019) derived
PAC-Bayes generalization bounds for unbounded losses
by only controlling their second moments. Recently, Had-
douche & Guedj (2022) proposed a similar result using
Ville’s inequality (Bercu & Touati, 2008). Adapting their
theorem to our problem is given Proposition 5.1. We slightly
adapt their proof to get a two-sided inequality for a negative
loss. The proof is deferred to Appendix C.3.
Proposition 5.1. Let λ > 0, n ≥ 1, δ ∈ (0, 1), α ∈ [0, 1]
and let P be a fixed prior on H, then with probability at
least 1 − δ over draws Dn ∼ µn

π0
, the following holds

simultaneously for all posteriors, Q, onH

|Rα(πQ)− R̂α
n(πQ)| ≤

DKL(Q∥P) + log 2
δ

λn
(17)

+
λ

2n

n∑
i=1

πQ(ai|xi)

π2α
0 (ai|xi)

c2i +
λ

2
E(x,a,c)∼µπ0

[
πQ(a|x)
π2α
0 (a|x)

c2
]
,

There are two main issues with Proposition 5.1. First, the
term E(x,a,c)∼µπ0

[ πQ(a|x)
π2α
0 (a|x)c

2
]

in (17) is intractable. One
could bound c2 by 1, but the resulting term will still be
intractable due to the expectation over the unknown distri-
bution of contexts ν. Second, we need an upper bound of
|R(πQ)− R̂α

n(πQ)| while Proposition 5.1 only provides one
for |Rα(πQ)− R̂α

n(πQ)|. Thus it remains to quantify the ap-
proximation error |R(πQ)−Rα(πQ)|. This will also require
computing an expectation over x ∼ ν, which is intractable.

5.3. Sketch of Proof for Theorem 4.1

We conclude by showing how the technical challenges above
were solved. First, We decompose R(πQ)− R̂α

n(πQ) as

R(πQ)− R̂α
n(πQ) = I1 + I2 + I3 , where

I1 = R(πQ)−
1

n

n∑
i=1

R(πQ|xi) ,

I2 =
1

n

n∑
i=1

R(πQ|xi)−
1

n

n∑
i=1

Rα(πQ|xi) ,

I3 =
1

n

n∑
i=1

Rα(πQ|xi)− R̂α
n(πQ) ,

R(πQ|xi) = Ea∼πQ(·|xi) [c(xi, a)] ,

Rα(πQ|xi) = Ea∼π0(·|xi)

[ πQ(a|xi)

π0(a|xi)α
c(xi, a)

]
.

I1 is the estimation error of the empirical mean of the risk
using n i.i.d. contexts (xi)i∈[n]. This term is introduced to
avoid the intractable expectation over x ∼ ν. Moreover, I2
is the bias term conditioned on the contexts (xi)i∈[n] and we
bound it in closed-form. Finally, I3 is the estimation error
of the risk conditioned on the contexts (xi)i∈[n]. Again, this
conditioning allows us to avoid the intractable expectation
over x ∼ ν and to consequently bound |I3| by tractable
terms. First, Alquier (2021, Theorem 3.3) yields that with
probability at least 1− δ

2 , it holds for any Q onH that

|I1| ≤

√
DKL(Q∥P) + log 4

√
n

δ

2n
.

Also, |I2| is bounded similarly to (8) as

|I2| ≤
1

n

n∑
i=1

Ea∼πQ(·|xi)

[
1− π1−α

0 (a|xi)
]
.

Bounding |I3| is achieved by expressing it using martin-
gale difference sequences (fi(ai, h))i∈[n] that we construct
as follows. Let (Fi)i∈{0}∪[n] be a filtration adapted to
(Si)i∈[n] where Si = (aℓ)ℓ∈[i] for any i ∈ [n], we define

fi (ai, h) = Ea∼π0(·|xi)

[ I{h(xi)=a}c(xi, a)

π0(a|xi)α

]
−
I{h(xi)=ai}ci

π0(ai|xi)α
.

Then we show that for any h ∈ H, (fi(ai, h))i∈[n] is a
martingale difference sequence. After that, we apply Had-
douche & Guedj (2022, Theorem 5) and obtain that with
probability at least 1− δ/2, it holds for any Q onH that

|Eh∼Q [Mn(h)]| ≤
DKL(Q∥P) + log 4

δ

λ
+

λ

2
Eh∼Q

[
V̄n(h)

]
,

where Mn(h) =
∑n

i=1 fi (ai, h) and V̄n(h) =∑n
i=1 fi (ai, h)

2
+ E

[
fi (ai, h)

2 |Fi−1

]
. Then notice that

Eh∼Q [Mn(h)] can be expressed in terms of I3 as

Eh∼Q [Mn(h)] =

n∑
i=1

Rα(πQ|xi)− nR̂α
n(πQ) = nI3 ,

7
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Moreover, Eh∼Q
[
V̄n(h)

]
is bounded by

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α

]
+

πQ(ai|xi)

π0(ai|xi)2α
c2i .

Thus with probability at least 1− δ
2 , it holds for any Q that

|I3| ≤
DKL(Q∥P) + log 4

δ

nλ
+

λ

2n

n∑
i=1

πQ(ai|xi)

π0(ai|xi)2α
c2i

+
λ

2n

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α

]
.

Our result is obtained by bounding |I1|+ |I2|+ |I3|. One
shortcoming of our analysis is that V̄ α

n (πQ) is not exactly
and only resembles the sum of the theoretical and em-
pirical second moments of our estimator. Precisely, the
terms πQ/π

2α
0 should be π2

Q/π
2α
0 . This problem arises due

to our definition of the martingale difference sequences
(fi(ai, h))i∈[n] in (13). Precisely, in our proof, we compute
the square fi(ai, h)

2. However, the square of an indica-
tor function is the indicator function itself. Thus applying
the expectation afterwards, Eh∼Q

[
fi(ai, h)

2
]
, leads to πQ

appearing instead of π2
Q. This issue is inherent in the PAC-

Bayes formulation and seminal works (London & Sandler,
2019; Sakhi et al., 2022) would suffer the same issue. Solv-
ing this would be beneficial and we leave it to future work.

6. Experiments
We briefly present our experiments. More details and dis-
cussions can be found in Appendix D. We consider the
standard supervised-to-bandit conversion (Agarwal et al.,
2014) where we transform a supervised training set STR

n

to a logged bandit data Dn as described in Algorithm 1 in
Appendix D.1. Here the action space A is the label set and
the context space X is the input space. Then, Dn is used to
train our policies. After that, we evaluate the reward of the
learned policies on the supervised test set STS

nTS
as described

in Algorithm 2 in Appendix D.1. Roughly speaking, the
resulting reward quantifies the ability of the learned pol-
icy to predict the true labels of the inputs in the test set.
This is our performance metric; the higher the better. We
use 4 image classification datasets MNIST (LeCun et al.,
1998), FashionMNIST (Xiao et al., 2017), EMNIST (Co-
hen et al., 2017) and CIFAR100 (Krizhevsky et al., 2009).

The logging policy is defined as π0 = πSOF
η0·µ0

in (10), where
µ0 = (µ0,a)a∈A ∈ RdK and η0 ∈ [0, 1] is the inverse-
temperature parameter. The higher η0, the better the perfor-
mance of π0. When η0 = 0, π0 is uniform. The parameters
µ0 are learned using 5% of the training set STR

n . In our
experiments, we consider both, Gaussian and mixed-logit
policies, in (11) and (12), for which we set the prior as
P = N (η0µ0, IdK) and P = N (η0µ0, IdK) × G(0, 1)K ,

respectively. Given that µ0 are learnt on 5% of STR
n , we

train our policies on the remaining 95% portion of STR
n to

match our theory that requires the prior to not depend on
training data. The policies are trained using Adam (Kingma
& Ba, 2014) with a learning rate of 0.1 for 20 epochs.

We compare our bound to those in London & Sandler (2019);
Sakhi et al. (2022); discarding the intractable bound in
Swaminathan & Joachims (2015a) as it requires computing
a covering number. Here we do not include the learning
principles in Swaminathan & Joachims (2015a); London &
Sandler (2019) since we directly optimize our bounds. But
we make such a comparison in Appendix D.5 for complete-
ness, showing the favorable performance of our bound and
the newly proposed learning principle in (16). Also, we do
not compare to Su et al. (2020); Metelli et al. (2021) since
they do not provide generalization guarantees; they focus
on OPE and only propose a heuristic for OPL. However,
we still show the favorable performance of our approach in
OPL compared to Su et al. (2020); Metelli et al. (2021) in
Appendix D.6 for completeness.

Prior methods are not named. Thus we refer to them as
(Author, Policy) where Author ∈ {Ours, London et al.,
Sakhi et al. 1, Sakhi et al. 2} and Policy ∈ {Gaussian,
Mixed-Logit}. Here Ours, London et al., Sakhi et al. 1
and Sakhi et al. 2 correspond to Theorem 4.1, London &
Sandler (2019, Theorem 1), Sakhi et al. (2022, Proposition
1), and Sakhi et al. (2022, Proposition 3), respectively. Since
we have two classes of policies, each bound leads to two
baselines. For example, London & Sandler (2019, Theorem
1) leads to (London et al., Gaussian) and (London et al.,
Mixed-Logit). More details are provided in Appendix D.3.

In Figure 2, we report the reward of the learned policies.
Here we fix τ = 1/ 4

√
n ≈ 0.06 and α = 1− 1/ 4

√
n ≈ 0.94

so that when n is large enough, both R̂τ
n(π) and R̂α

n(π) ap-
proach R̂IPS

n (π) (Ionides, 2008). This is because standard
IPS should be preferred when n → ∞. To have a fair
comparison, we fixed α instead of tuning it in an adaptive
fashion as described in Section 4.4. However, we also pro-
vide the results with an adaptive α in Figure 3. Let us start
with interpreting Figure 2 (with fixed α and τ ). Overall, our
method outperforms all the baselines. We also observe that
Gaussian policies behave better than mixed-logit policies.
However, this is less significant for our method where the
performances of both Gaussian and mixed-logit policies are
comparable. Moreover, our method reaches the maximum
reward even when the logging policy has an average per-
formance. In contrast, the baselines only reach their best
reward when the logging policy is well-performing (η0 ≈ 1),
in which case minor to no improvements are made. Finally,
the baselines induce a better reward when the logging policy
is uniform (η0 = 0). But our method has a better reward
when η0 > 0, which is more common in practice.
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Figure 2. The reward of the learned policy using one of the baselines with varying quality of the logging policy η0 ∈ [0, 1].

Our choice of τ and α does not affect the above conclusions.
In Figure 3 (left-hand side), we compare our method with
the best baseline, (Sakhi et al. 2) with Gaussian policies, for
20 evenly spaced values of τ ∈ (0, 1) and α ∈ (0, 1). We
also include the results using the adaptive tuning procedure
of α described in Section 4.4 (green curve). This procedure
is reliable since the performance with an adaptive α (green
curve) is comparable with the best possible choice of α.
Also, our method consistently outperforms the best baseline
(Sakhi et al. 2) with the best value of τ when the logging
policy is not uniform (η0 > 0). Also, there is no very
bad choice of α, in contrast with τ = 10−5 (dark blue plot)
which led to minimal improvement upon all logging policies.
This might be due to the 1/τ dependency in existing bounds.

To see the effect of α, we consider the following experi-
ment. We split the logging policies into two groups. The
first is called modest logging which corresponds to logging
policies π0 whose η0 is between 0 and 0.5. This group
includes the uniform policy and other average-performing
policies. The second is called good logging and it includes
the logging policies whose η0 is between 0.5 and 1. Then,
for each α, we compute the average reward of the learned
policy, with that value of α, across these two groups. This
leads to the two red and green curves in Figure 3 (right-hand
side). Overall, we observe that α ≈ 0.7 leads to the best
performance across the modest logging group. Thus when
the performance of the logging policy is bad or average,
which is common in practice, regularization can be critical.
In contrast, when the performance of the logging policy is
already good and n is large enough, regularization might
not be needed and α ≈ 1 would also lead to good perfor-
mance. This is one of the main strengths of our bound;
it holds for the standard IPS recovered with α = 1. This
result goes against the belief that clipped IPS should always
be preferred to standard IPS. Here, our bound applied to
standard IPS outperformed clipping by a large margin when
the logging policy is relatively well-performing. Similar
results for the other datasets are deferred to Appendix D.4.
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Figure 3. On the left-hand side is the reward of the learned policy
with varying τ ∈ (0, 1), α ∈ (0, 1) and η0 ∈ [0, 1], and for an
adaptive α using the procedure in Section 4.4 (green curve). The
blue-to-cyan and red-to-yellow colors correspond to varying values
of τ and α, respectively. The lighter the color, the higher the value
of τ or α. The green curve corresponds to the reward of the learned
policy with an adaptive and data-dependent α (Section 4.4). On
the right-hand side is the average reward of the learned policies
using our method across the modest and good logging groups,
η0 ∈ [0, 0.5] (red) and η0 ∈ [0.5, 1] (green), respectively.

7. Conclusion
In this paper, we investigated a smooth regularization of IPS
in the context of OPL. First, we highlighted the pitfalls of
hard clipping and advocated for a soft regularization alterna-
tive, called exponential smoothing. Moreover, we addressed
some fundamental theoretical limitations of existing OPL
approaches. Those limitations include the use of one-sided
inequalities instead of two-sided ones, the use of learning
principles and the use of evaluation bounds in OPL. Build-
ing upon this, we successfully derived a tractable two-sided
PAC-Bayes generalization bound for our estimator, which
we directly optimize. We demonstrated, both theoretically
through our bias-variance trade-off analysis in (8) and our
bound in Theorem 4.1, and empirically, that this smooth
regularization may be critical in some situations. In contrast
with all prior works, our bound also applies to the standard
IPS. This allowed us to also show that in some other cases,
slight to no correction of IPS is needed in OPL.
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Organization of the Supplementary Material
The supplementary material is organized as follows.

• In Appendix A, we give a detailed comparative review of the literature of OPE and OPL.

• In Appendix B, we provide some results and proofs for the bias and variance trade-off for our estimators.

• In Appendix C, we prove Theorem 4.1. We also provide the proofs for all the claims made in Section 4.

• In Appendix D, we present in detail our experimental setup for reproducibility. This appendix also includes additional
experiments.

A. Related Work
A contextual bandit (Lattimore & Szepesvari, 2019) is a popular and practical framework for online learning to act under
uncertainty (Li et al., 2010; Chu et al., 2011). In practice, the action space is large and short-term gains are important.
Thus the agent should be risk-averse which goes against the core principle of online algorithms that seek to explore the
action space for the sake of long-term gains (Auer et al., 2002; Thompson, 1933; Russo et al., 2018). Although some
practical algorithms have been proposed to efficiently explore the action space of a contextual bandit (Zong et al., 2016;
Hong et al., 2022; Zhu et al., 2022; Aouali et al., 2023). A clear need remains for an offline procedure that allows optimizing
decision-making using offline data. Fortunately, we have access to logged data about previous interactions. The agent can
leverage such data to learn an improved policy offline (Swaminathan & Joachims, 2015a; London & Sandler, 2019; Sakhi
et al., 2022) and consequently enhance the performance of the current system. In this work, we are concerned with this
offline, or off-policy, formulation of contextual bandits (Dudı́k et al., 2011; 2012; Dudik et al., 2014; Wang et al., 2017;
Farajtabar et al., 2018). Before learning an improved policy, an important intermediary step is to estimate the performance
of policies using logged data, as if they were evaluated online. This task is referred to as off-policy evaluation (OPE) (Dudı́k
et al., 2011). After that, the resulting estimator is optimized to approximate the optimal policy, and this is referred to as
off-policy learning (OPL) (Swaminathan & Joachims, 2015a). Next, we review both OPE and OPL approaches.

A.1. Off-Policy Evaluation

Off-policy evaluation in contextual bandits has seen a lot of interest these recent years (Dudı́k et al., 2011; 2012; Dudik et al.,
2014; Wang et al., 2017; Farajtabar et al., 2018; Su et al., 2019; 2020; Kallus et al., 2021; Metelli et al., 2021; Kuzborskij
et al., 2021; Saito & Joachims, 2022; Sakhi et al., 2020; Jeunen & Goethals, 2021). We can distinguish between three
main families of approaches in the literature. First, direct method (DM) (Jeunen & Goethals, 2021) learns a model that
approximates the expected cost and then uses it to estimate the performance of evaluated policies. Unfortunately, DM can
suffer from modeling bias and misspecification. Thus DM is often designed for specific use cases, in particular large-scale
recommender systems (Sakhi et al., 2020; Jeunen & Goethals, 2021; Aouali et al., 2021; 2022). Second, inverse propensity
scoring (IPS) (Horvitz & Thompson, 1952; Dudı́k et al., 2012) estimates the cost of the evaluated policies by removing
the preference bias of the logging policy in logged data. Under the assumption that the evaluation policy is absolutely
continuous with respect to the logging policy, IPS is unbiased, but it can suffer high variance. Note that it can also be
highly biased when such an assumption is violated (Sachdeva et al., 2020). The variance issue is acknowledged and some
fixes were proposed. For instance, clipping the importance weights (Ionides, 2008; Swaminathan & Joachims, 2015a), self
normalizing them (Swaminathan & Joachims, 2015b), etc. (see Gilotte et al. (2018) for a survey). Third, doubly robust
(DR) (Robins & Rotnitzky, 1995; Bang & Robins, 2005; Dudı́k et al., 2011; Dudik et al., 2014; Farajtabar et al., 2018) is a
combination of DM and IPS. Here a model of the expected cost is used as a control variate for IPS to reduce the variance.
Finally, the accuracy of an estimator R̂n(π) in OPE is assessed using the mean squared error (MSE) defined as

MSE(R̂n(π)) = E
[(
R̂n(π)−R(π)

)2]
= B(R̂n(π))

2 + V
[
R̂n(π)

]
,

where B(R̂n(π)) = EDn
[R̂n(π)]−R(π) and V[R̂n(π)] = EDn

[(R̂n(π)−EDn
[R̂n(π)])

2] are respectively the bias and the
variance of the estimator. It may be relevant to note that Metelli et al. (2021) argued that high-probability concentration rates
should be preferred over the MSE to evaluate OPE estimators as they provide non-asymptotic guarantees. In this work, we
highlighted the effect of α and β in OPE following the common methodology of using the MSE as a performance metric.
However, we also derived two-sided high-probability generalization bounds that attest to the quality of our estimator.
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A.2. Off-Policy Learning

Previous works focused on deriving learning principles inspired by generalization bounds. First, Swaminathan & Joachims
(2015a) derived a generalization bound for the IPS-min estimator in (6) of the form

R(π) ≤ R̃M
n (π) +O

√
V̂n(π)Cn(Π, δ)

n
+M

Cn(Π, δ)
n

 , (18)

where Cn(Π, δ) is the complexity measure of the class of learning policies Π while V̂n(π) is the empirical variance of the
estimator on the logged data Dn. The term Cn(Π, δ) is not necessarily tractable. Thus the generalization bound above was
only used to inspire the following learning principle

min
µ

R̃M
n (πµ) + λ

√
V̂n(πµ)

n
, (19)

where λ is a tunable hyper-parameter. This learning principle favors policies that simultaneously enjoy low estimated cost
and empirical variance. Faury et al. (2020) generalized their work using distributional robustness optimization while Zenati
et al. (2020) generalized it to continuous action spaces. The latter also proposed a soft clipping scheme but they derived a
generalization bound similar to the one in Swaminathan & Joachims (2015a). Hence they also used the learning principle in
(19). Our paper improves upon these work in different ways. First, (18) has a multiplicative dependency on M . Therefore, it
is not applicable to standard IPS recovered for M → ∞. In contrast, our bound in Theorem 4.1 does not have a similar
dependency on α and thus it also provides generalization guarantees for standard IPS without assuming that the importance
weights are bounded. Second, the complexity measure Cn(Π, δ) is often hard to compute while our bound is tractable
and the KL terms can be computed or bounded in closed-form for Gaussian and mixed-logit policies. Third, our bound is
differentiable and scalable while the learning principle in (19) requires additional care in optimization (Swaminathan &
Joachims, 2015a). Fourth, it is challenging to tune λ in (19) using a procedure that is aligned with online metrics. Finally,
we follow the theoretically grounded approach where we optimize our bound directly instead of using a learning principle.
This direct optimization of the bound does not require any additional hyper-parameters tuning.

Recently, London & Sandler (2019) elegantly made the connection between PAC-Bayes theory and OPL. As a result, they
derived a generalization bound for IPS-max in (6) which roughly has the following form

R(πµ) ≤ R̂τ
n(πµ) +O

√
(R̂τ

n(πµ) +
1
τ )∥µ− µ0∥2

τn
+
∥µ− µ0∥2

τn

 . (20)

Again, this bound was used to inspire a novel learning principle in the form

min
µ

R̂τ
n(πµ) + λ∥µ− µ0∥2 , (21)

where λ is a tunable hyper-parameter and µ0 ∈ RdK is the parameter of the logging policy. This principle favors policies
with low estimated cost and whose parameter is not far from that of the logging policy in terms of L2 distance. While the
bound of London & Sandler (2019) is tractable, it still has a multiplicative dependency on 1/τ . This makes it inapplicable
to standard IPS recovered for τ = 0. It is also not suitable for stochastic first-order optimization (Robbins & Monro,
1951) since the data-dependent quantity R̂τ

n(πµ) is inside a square root. Moreover, optimizing directly their bound leads to
minimal improvements over the logging policy in practice. In their work, they used the learning principle in (21) instead
which suffers the same issues that we discussed before for Swaminathan & Joachims (2015a), except that it is scalable.
Recently, Sakhi et al. (2022) derived novel generalization bounds for a doubly robust version of the IPS-max estimator in
(6). Sakhi et al. (2022) optimized the theoretical bound directly instead of using some form of learning principle and they
showed favorable performance over existing methods. Unfortunately, their bounds have the same multiplicative dependency
on 1/τ which makes them vacuous for small values of τ and inapplicable to standard IPS. Moreover, we derive two-sided
generalization bounds while all these works only derived one-sided generalization bounds. Unfortunately, the latter does not
provide any guarantees on the expected performance of the learned policy. Also, we propose a different estimator to the
clipped IPS traditionally used for OPL and we demonstrate empirically that it has better performance.
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B. Bias and Variance Trade-Off
In this section, we provide additional results on how β and α control the bias and variance of R̃β

n(·) and R̂α
n(·), respectively.

Precisely, in Propositions B.1 and B.2 we upper bound the absolute bias and variance of R̂α
n(·) and R̃β

n(·), respectively.

B.1. Bias and variance of IPS-α

The following proposition states the bias-variance trade-off for R̂α
n(·).

Proposition B.1 (Bias and variance of IPS-α). Let α ∈ [0, 1], the following holds for any evaluation policy π ∈ Π that is
absolutely continuous with respect to π0

|B(R̂α
n(π))| ≤ Ex∼ν,a∼π(·|x)

[
1− π0(a|x)1−α

]
,

V
[
R̂α

n(π)
]
≤ 1

n
Ex∼ν,a∼π(·|x)

[ π(a|x)
π0(a|x)2α−1

]
.

Proof. We first bound the bias as

B(R̂α
n(π)) = E

[
R̂α

n(π)
]
−R(π) ,

=
1

n

n∑
i=1

Exi∼ν,ai∼π0(·|xi),ci∼p(·|xi,ai)

[
ci

π(ai|xi)

π0(ai|xi)α

]
−R(π) ,

(i)
= E(x,a,c)∼µπ0

[
c

π(a|x)
π0(a|x)α

]
−R(π) ,

= Ex∼ν

[∑
a∈A

c(x, a)
π(a|x)

π0(a|x)α−1

]
− Ex∼ν

[∑
a∈A

c(x, a)π(a|x)

]
,

= Ex∼ν

[∑
a∈A

c(x, a)π(a|x)(π0(a|x)1−α − 1)

]
,

= Ex∼ν,a∼π(·|x)
[
c(x, a)(π0(a|x)1−α − 1)

]
,

where (i) follows from the i.i.d. assumption. Since π0(a|x)1−α ≤ 1 for any x ∈ X and a ∈ A, we have that

|B(R̂α
n(π))| ≤ Ex∼ν,a∼π(·|x)

[
|c(x, a)||π0(a|x)1−α − 1|

]
,

≤ Ex∼ν,a∼π(·|x)
[
1− π0(a|x)1−α

]
.

The variance is bounded as

V
[
R̃β

n(π)
]
=

1

n2

n∑
i=1

Vxi∼ν,ai∼π0(·|xi),ci∼p(·|xi,ai)

[
ci

π(ai|xi)

π0(ai|xi)α

]
,

=
1

n
V(x,a,c)∼µπ0

[
c

π(a|x)
π0(a|x)α

]
,

≤ 1

n
E(x,a,c)∼µπ0

[
c2

π(a|x)2

π0(a|x)2α
]
,

≤ 1

n
Ex∼ν,a∼π0(·|x)

[ π(a|x)2

π0(a|x)2α
]
,

=
1

n
Ex∼ν

[ ∑
a∈A

π(a|x)2

π0(a|x)2α−1

]
,

=
1

n
Ex∼ν,a∼π(·|x)

[ π(a|x)
π0(a|x)2α−1

]
.
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B.2. Bias and variance of IPS-β

The following proposition states the bias-variance trade-off for R̃β
n(·).

Proposition B.2 (Bias and variance of IPS-β). Let β ∈ [0, 1], the following holds for any evaluation policy π ∈ Π that is
absolutely continuous with respect to π0

|B(R̃β
n(π))| ≤ Ex∼ν,a∼π(·|x)

[∣∣( π(a|x)
π0(a|x)

)β−1 − 1
∣∣] ,

V
[
R̃β

n(π)
]
≤ 1

n
Ex∼ν,a∼π(·|x)

[( π(a|x)
π0(a|x)

)2β−1]
.

Proof. We first bound the bias as

B(R̃β
n(π)) = E

[
R̃β

n(π)
]
−R(π)

=
1

n

n∑
i=1

Exi∼ν,ai∼π0(·|xi),ci∼p(·|xi,ai)

[
ci

( π(ai|xi)

π0(ai|xi)

)β
]
−R(π) ,

(i)
= E(x,a,c)∼µπ0

[
c
( π(a|x)
π0(a|x)

)β
]
−R(π) ,

= Ex∼ν,a∼π0(·|x)

[
c(x, a)

( π(a|x)
π0(a|x)

)β
]
− Ex∼ν,a∼π(·|x) [c(x, a)] ,

= Ex∼ν

[∑
a∈A

c(x, a)
π(a|x)β

π0(a|x)β−1

]
− Ex∼ν

[∑
a∈A

c(x, a)π(a|x)

]
,

= Ex∼ν

[∑
a∈A

c(x, a)π(a|x)
((π0(a|x)

π(a|x)

)1−β

− 1
)]

,

where (i) follows from the i.i.d. assumption. It follows that

|B(R̃β
n(π))| ≤ Ex∼ν

[∑
a∈A
|c(x, a)|π(a|x)

∣∣∣(π0(a|x)
π(a|x)

)1−β

− 1
∣∣∣] ,

≤ Ex∼ν

[∑
a∈A

π(a|x)
∣∣∣(π0(a|x)

π(a|x)

)1−β

− 1
∣∣∣] ,

= Ex∼ν,a∼π(·|x)

[∣∣∣(π0(a|x)
π(a|x)

)1−β

− 1
∣∣∣] .

The variance is bounded as

V
[
R̃β

n(π)
]
=

1

n2

n∑
i=1

Vxi∼ν,ai∼π0(·|xi),ci∼p(·|xi,ai)

[
ci

( π(ai|xi)

π0(ai|xi)

)β]
,

=
1

n
V(x,a,c)∼µπ0

[
c
( π(a|x)
π0(a|x)

)β]
,

≤ 1

n
E(x,a,c)∼µπ0

[
c2
( π(a|x)
π0(a|x)

)2β]
,

≤ 1

n
Ex∼ν,a∼π0(·|x)

[( π(a|x)
π0(a|x)

)2β]
,

=
1

n
Ex∼ν

[ ∑
a∈A

π(a|x)2β

π0(a|x)2β−1

]
,

=
1

n
Ex∼ν,a∼π(·|x)

[ π(a|x)2β−1

π0(a|x)2β−1

]
.
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B.3. Discussion

Here we show using Propositions B.1 and B.2 how α and β trade the bias and variance of R̂α
n(π) and R̃β

n(π), respectively.
Let us start with R̂α

n(π), from Proposition B.1, the bound on the bias is minimized in α = 1; in which case it is equal to 0.
In contrast, the bound on the variance is minimized in α = 0; in which case the variance is bounded by 1/n. Let α∗ be the
minimizer of the corresponding bound of the MSE

α∗ = argminα∈[0,1]Ex∼ν,a∼π(·|x)
[
1− π0(a|x)1−α

]2
+ Ex∼ν,a∼π(·|x)

[ π(a|x)
π0(a|x)2α−1

]
/n .

We observe that when the variance is small or n is large enough such that Ex∼ν,a∼π(·|x)
[ π(a|x)
π0(a|x)2α−1

]
/n→ 0, then we have

that α∗ → 1. Thus it is better to use the standard IPS in this case. Otherwise, we have α∗ → 0 and this is when regularization
helps; basically when we have few samples or when the evaluation policy induces high variance. This demonstrates that the
choice of α matters as it trades the bias and variance of R̂α

n .

Similarly, from Proposition B.2, we define β∗ as

β∗ = argminβ∈[0,1]Ex∼ν,a∼π(·|x)
[∣∣( π(a|x)

π0(a|x)
)β−1 − 1

∣∣]+ 1

n
Ex∼ν,a∼π(·|x)

[( π(a|x)
π0(a|x)

)2β−1]
.

Again, we observe that if Ex∼ν,a∼π(·|x)
[( π(a|x)

π0(a|x)
)2β−1]

/n→ 0, then β∗ → 1; in which case it is better to use standard IPS.
Otherwise, we have β∗ → 0 to regularize the importance weights.

C. Proofs for Off-Policy Learning
In this section, we provide the complete proofs for our OPL results in Section 4. We start with proving Theorem 4.1 in
Appendix C.1. We then state the extension of Theorem 4.1 along with its proof in Appendix C.2. After that, in Appendix C.3,
we provide the proof for Proposition 5.1. Finally, in Appendix C.4, we discuss in detail and prove our claims regarding the
number of samples needed so that the performance of the learned policy is close to that of the optimal policy.

C.1. Proof of Theorem 4.1

In this section, we prove Theorem 4.1.

Proof. First, we decompose the difference R(πQ)− R̂α
n(πQ) as

R(πQ)− R̂α
n(πQ) = R(πQ)−

1

n

n∑
i=1

R(πQ|xi)︸ ︷︷ ︸
I1

+
1

n

n∑
i=1

R(πQ|xi)−
1

n

n∑
i=1

Rα(πQ|xi)︸ ︷︷ ︸
I2

+
1

n

n∑
i=1

Rα(πQ|xi)− R̂α
n(πQ)︸ ︷︷ ︸

I3

,

where

R(πQ) = Ex∼ν ,a∼πQ(·|x) [c(x, a)] ,

R(πQ|xi) = Ea∼πQ(·|xi) [c(xi, a)] ,

Rα(πQ|xi) = Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)α
c(xi, a)

]
,

R̂α
n(π) =

1

n

n∑
i=1

π(ai|xi)

π0(ai|xi)α
ci .

Our goal is to bound |R(πQ)− R̂α
n(πQ)| and thus we need to bound |I1|+ |I2|+ |I3|. We start with |I1|, Alquier (2021,

Theorem 3.3) yields that following inequality holds with probability at least 1− δ/2 for any distribution Q onH

|I1| ≤

√
DKL(Q∥P) + log 4

√
n

δ

2n
. (22)
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Moreover, |I2| can be bounded by decomposing it as

|I2| =

∣∣∣∣∣ 1n
n∑

i=1

Ea∼πQ(·|xi) [c(xi, a)]−
1

n

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

πα
0 (a|xi)

c(xi, a)

]∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

∑
a∈A

πQ(a|xi)c(xi, a)− π0(a|xi)
πQ(a|xi)

πα
0 (a|xi)

c(xi, a)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

∑
a∈A

(
πQ(a|xi)−

πQ(a|xi)

πα−1
0 (a|xi)

)
c(xi, a)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

∑
a∈A

(
1− π1−α

0 (a|xi)
)
πQ(a|xi)c(xi, a)

∣∣∣∣∣ ,
≤ 1

n

n∑
i=1

∑
a∈A

∣∣1− π1−α
0 (a|xi)

∣∣πQ(a|xi) |c(xi, a)| .

But 1− π1−α
0 (a|x) ≥ 0 and |c(x, a)| ≤ 1 for any a ∈ A and x ∈ X . Thus

|I2| ≤
1

n

n∑
i=1

Ea∼πQ(·|xi)

[
1− π1−α

0 (a|xi)
]
. (23)

Finally, we need to bound the main term |I3|. To achieve this, we borrow the following technical lemma from Haddouche &
Guedj (2022). It is slightly different from the one in Haddouche & Guedj (2022); their result holds for any n ≥ 1 while we
state a simpler version where n is fixed in advance.

Lemma C.1. Let Z be an instance space and let Sn = (zi)i∈[n] be an n-sized dataset for some n ≥ 1. Let (Fi)i∈{0}∪[n]

be a filtration adapted to Sn. Also, letH be a hypothesis space and (fi (Si, h))i∈[n] be a martingale difference sequence
for any h ∈ H, that is for any i ∈ [n], and h ∈ H , we have that E [fi (Si, h) |Fi−1] = 0. Moreover, for any h ∈ H, let
Mn(h) =

∑n
i=1 fi (Si, h). Then for any fixed prior, P, onH, any λ > 0, the following holds with probability 1− δ over the

sample Sn, simultaneously for any Q, onH

|Eh∼Q [Mn(h)]| ≤
DKL(Q∥P) + log(2/δ)

λ
+

λ

2
(Eh∼Q [⟨M⟩n(h) + [M ]n(h)]) ,

where ⟨M⟩n(h) =
∑n

i=1 E
[
fi (Si, h)

2 |Fi−1

]
and [M ]n(h) =

∑n
i=1 fi (Si, h)

2.

To apply Lemma C.1, we need to construct an adequate martingale difference sequence (fi(Si, h))i∈[n] for h ∈ H that
allows us to retrieve |I3|. To achieve this, we define Sn = (ai)i∈[n] as the set of n taken actions. Also, we let (Fi)i∈{0}∪[n]

be a filtration adapted to Sn. For h ∈ H, we define fi (Si, h) as

fi (Si, h) = fi (ai, h) = Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]
−

I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai) .

We stress that fi(Si, h) only depends on the last action in Si, ai, and the predictor h. For this reason, we denote it by
fi(ai, h). The function fi is indexed by i since it depends on the fixed i-th context, xi. The context xi is fixed and thus
randomness only comes from ai ∼ π0(·|xi). It follows that the expectations are under ai ∼ π0(·|xi). First, we have that
E [fi (ai, h) |Fi−1] = 0 for any i ∈ [n] , h ∈ H. This follows from

E [fi (ai, h) |Fi−1] = Eai∼π0(·|xi)

[
fi (ai, h)

∣∣∣a1, . . . , ai−1

]
,

= Eai∼π0(·|xi)

[
Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]
−

I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai)

∣∣∣a1, . . . , ai−1

]
,

(i)
= Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]
− Eai∼π0(·|xi)

[ I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai)

∣∣∣a1, . . . , ai−1

]
.
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In (i) we use the fact that given xi, Ea∼π0(·|xi)

[
I{h(xi)=a}
π0(a|xi)α

c(xi, a)
]

is deterministic. Now ai does not depend on a1, . . . , ai−1

since logged data is i.d.d. Hence

Eai∼π0(·|xi)

[ I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai)

∣∣∣a1, . . . , ai−1

]
= Eai∼π0(·|xi)

[ I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai)

]
,

= Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]
.

It follows that

E [fi (ai, h) |Fi−1] = Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]
− Eai∼π0(·|xi)

[ I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai)

∣∣∣a1, . . . , ai−1

]
,

= Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]
− Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]
,

= 0 .

Therefore, for any h ∈ H, (fi(ai, h))i∈[n] is a martingale difference sequence. Hence we apply Lemma C.1 and obtain that
the following inequality holds with probability at least 1− δ/2 for any Q onH

|Eh∼Q [Mn(h)]| ≤
DKL(Q∥P) + log(4/δ)

λ
+

λ

2
(Eh∼Q [⟨M⟩n(h) + [M ]n(h)]) , (24)

where

Mn(h) =

n∑
i=1

fi (ai, h) ,

⟨M⟩n(h) =
n∑

i=1

E
[
fi (ai, h)

2 |Fi−1

]
,

[M ]n(h) =

n∑
i=1

fi (ai, h)
2

Now these terms can be decomposed as

Eh∼Q [Mn(h)] =

n∑
i=1

Eh∼Q [fi (ai, h)] ,

=

n∑
i=1

Eh∼Q

[
Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]
−

I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai)

]
,

(i)
=

n∑
i=1

Eh∼Q

[
Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]]
− Eh∼Q

[ I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai)

]
,

(ii)
=

n∑
i=1

Ea∼π0(·|xi)

[
Eh∼Q

[
I{h(xi)=a}

]
π0(a|xi)α

c(xi, a)

]
−

Eh∼Q
[
I{h(xi)=ai}

]
π0(ai|xi)α

c(xi, ai) ,

(iii)
=

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)α
c(xi, a)

]
−

n∑
i=1

πQ(ai|xi)

π0(ai|xi)α
c(xi, ai) ,

where we use the linearity of the expectation in both (i) and (ii). In (iii), we use our definition of policies in (9). Therefore,
we have that

Eh∼Q [Mn(h)] =

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)α
c(xi, a)

]
−

n∑
i=1

πQ(ai|xi)

π0(ai|xi)α
c(xi, ai) ,

(i)
=

n∑
i=1

Rα(πQ|xi)− nR̂α
n(πQ) ,

= nI3 , (25)
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where we used the fact that ci = c(ai, xi) for any i ∈ [n] in (i).

Now we focus on the terms ⟨M⟩n(h) and [M ]n(h). First, we have that

fi (ai, h)
2
=

(
Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]
−

I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai)

)2

, (26)

= Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]2
+

( I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai)

)2

− 2Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

] I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai) ,

= Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]2
+

I{h(xi)=ai}

π0(ai|xi)2α
c(xi, ai)

2

− 2Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

] I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai) .

Moreover, fi (ai, h)
2 does not depend on a1, . . . , ai−1. Thus

E
[
fi (ai, h)

2 |Fi−1

]
= Eai∼π0(·|xi)

[
fi (ai, h)

2 |Fi−1

]
= Eai∼π0(·|xi)

[
fi (ai, h)

2
]
= Ea∼π0(·|xi)

[
fi (a, h)

2
]
.

Computing Ea∼π0(·|xi)

[
fi (a, h)

2
]

using the decomposition in (26) yields

E
[
fi (ai, h)

2 |Fi−1

]
= Ea∼π0(·|xi)

[
fi (a, h)

2
]
,

= −Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

]2
+ Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)2α
c(xi, a)

2

]
(27)

Combining (26) and (27) leads to

E
[
fi (ai, h)

2 |Fi−1

]
+ fi (ai, h)

2
= Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)2α
c(xi, a)

2

]
+

I{h(xi)=ai}

π0(ai|xi)2α
c(xi, ai)

2

− 2Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)α
c(xi, a)

] I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai) ,

(i)

≤ Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)2α
c(xi, a)

2

]
+

I{h(xi)=ai}

π0(ai|xi)2α
c(xi, ai)

2 . (28)

The inequality in (i) holds because −2Ea∼π0(·|xi)

[
I{h(xi)=a}
π0(a|xi)α

c(xi, a)
]

I{h(xi)=ai}
π0(ai|xi)α

c(xi, ai) ≤ 0. Therefore, we have that

⟨M⟩n(h) + [M ]n(h) ≤
n∑

i=1

Ea∼π0(·|xi)

[ I{h(xi)=a}

π0(a|xi)2α
c(xi, a)

2

]
+

I{h(xi)=ai}

π0(ai|xi)2α
c(xi, ai)

2 .

Finally, by using the linearity of the expectation and the definition of policies in (9), we get that

Eh∼Q [⟨M⟩n(h) + [M ]n(h)] ≤
n∑

i=1

Ea∼π0(·|xi)

[
Eh∼Q

[
I{h(xi)=a}

]
π0(a|xi)2α

c(xi, a)
2

]
+

Eh∼Q
[
I{h(xi)=ai}

]
π0(ai|xi)2α

c(xi, ai)
2 ,

=

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α
c(xi, a)

2

]
+

πQ(ai|xi)

π0(ai|xi)2α
c(xi, ai)

2 . (29)

Combining (24) and (29) yields

n|I3| = |
n∑

i=1

Rα(πQ|xi)− nR̂α
n(πQ)|

≤ DKL(Q∥P) + log(4/δ)

λ
+

λ

2

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α
c(xi, a)

2

]
+

πQ(ai|xi)

π0(ai|xi)2α
c(xi, ai)

2 . (30)
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This means that the following inequality holds with probability at least 1− δ/2 for any distribution Q onH

|I3| ≤
DKL(Q∥P) + log(4/δ)

nλ
+

λ

2n

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α
c(xi, a)

2

]
+

λ

2n

n∑
i=1

πQ(ai|xi)

π0(ai|xi)2α
c(xi, ai)

2 . (31)

However we know that c(x, a)2 ≤ 1 for any x ∈ X and a ∈ A and that c(xi, ai) = ci for any i ∈ [n]. Thus the following
inequality holds with probability at least 1− δ/2 for any distribution Q onH

|I3| ≤
DKL(Q∥P) + log(4/δ)

nλ
+

λ

2n

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α

]
+

λ

2n

n∑
i=1

πQ(ai|xi)

π0(ai|xi)2α
c2i . (32)

The union bound of (22) and (32) combined with the deterministic result in (23) yields that the following inequality holds
with probability at least 1− δ for any distribution Q onH

|R(πQ)− R̂α
n(πQ)| ≤

√
DKL(Q∥P) + log 4

√
n

δ

2n
+

1

n

n∑
i=1

Ea∼πQ(·|xi)

[
1− π1−α

0 (a|xi)
]
+

DKL(Q∥P) + log(4/δ)

nλ

+
λ

2n

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α

]
+

λ

2n

n∑
i=1

πQ(ai|xi)

π0(ai|xi)2α
c2i . (33)

C.2. Extensions of Theorem 4.1

Proposition C.2 (Extension of Theorem 4.1 to hold simultaneously for any λ ∈ (0, 1)). Let n ≥ 1, δ ∈ [0, 1], α ∈ [0, 1],
and let P be a fixed prior onH, then with probability at least 1−δ over drawsDn ∼ µn

π0
, the following holds simultaneously

for any posterior Q onH, and for any λ ∈ (0, 1) that

|R(πQ)− R̂α
n(πQ)| ≤

√
KL′

1(πQ, λ)

2n
+Bα

n (πQ) +
KL′

2(πQ, λ)

nλ
+

λ

2
V̄ α
n (πQ) .

where

KL′
1(πQ, λ) = DKL(Q∥P) + log

8
√
n

δλ
,

KL′
2(πQ, λ) = 2

(
DKL(Q∥P) + log

8

δλ

)
,

Bα
n (πQ) = 1− 1

n

n∑
i=1

Ea∼πQ(·|xi)

[
π1−α
0 (a|xi)

]
,

V̄ α
n (πQ) =

1

n

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α

]
+

πQ(ai|xi)

π0(ai|xi)2α
c2i .

Proof. Let δ ∈ (0, 1). For any i ≥ 1, we define λi = 2−i and let δi = δλi. Then Theorem 4.1 yields that for any i ≥ 1, the
following inequality holds with probability at least 1− δi for any Q onH

|R(πQ)− R̂α
n(πQ)| ≤

√
DKL(Q∥P) + log 4

√
n

δi

2n
+Bα

n (πQ) +
DKL(Q∥P) + log 4

δi

nλi
+

λi

2
V̄ α
n (πQ) .

Now notice that
∑∞

i=1 λi = 1, and hence
∑∞

i=1 δi = δ. Therefore, the union bound of the above inequalities over i ≥ 1
yields that with probability at least 1− δ, the following inequality holds with probability at least 1− δ for any Q onH and
for any i ≥ 1

|R(πQ)− R̂α
n(πQ)| ≤

√
DKL(Q∥P) + log 4

√
n

δi

2n
+Bα

n (πQ) +
DKL(Q∥P) + log 4

δi

nλi
+

λi

2
V̄ α
n (πQ) . (34)
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Let ⌈·⌉ denote the ceiling function, then we have that for any λ ∈ (0, 1), there exists j = ⌈− log λ
log 2 ⌉ ≥ 1 such that

λ/2 ≤ λj ≤ λ. Since (34) holds for any i ≥ 1, it holds in particular for j. In addition to this, we have that 1
λj
≤ 2

λ , that
λj ≤ λ and that 1

δj
= 1

λjδ
≤ 2

δλ . This yields that the following inequality holds with probability at least 1− δ for any Q on
H and for any λ ∈ (0, 1)

|R(πQ)− R̂α
n(πQ)| ≤

√
DKL(Q∥P) + log 8

√
n

δλ

2n
+Bα

n (πQ) + 2
DKL(Q∥P) + log 8

δλ

nλ
+

λ

2
V̄ α
n (πQ) . (35)

The additional 2 in 2
DKL(Q∥P)+log 8

δλ

nλ appears since we used that 1
λj
≤ 2

λ . Similarly, the additional 2
λ in the logarithmic

terms is due to the fact that 1
δj
≤ 2

δλ . Finally, setting

KL′
1(πQ, λ) = DKL(Q∥P) + log

8
√
n

δλ
,

KL′
2(πQ, λ) = 2

(
DKL(Q∥P) + log

8

δλ

)
,

concludes the proof.

Next, we provide a similar proof to extend Theorem 4.1 to any α ∈ (0, 1]. While we only provide a one-sided inequality, the
same covering technique can be used to obtain the other side of the inequality.

Proposition C.3 (One-sided extension of Theorem 4.1 to hold simultaneously for any α ∈ (0, 1) ∪ {1} ). Let n ≥ 1,
δ ∈ [0, 1], λ > 0, and let P be a fixed prior onH, then with probability at least 1− δ over draws Dn ∼ µn

π0
, the following

holds simultaneously for any posterior Q onH, and for any α ∈ (0, 1] that

R(πQ) ≤ R̂α
n(πQ) +

√
KL′′

1(πQ, α)

2n
+Bα

n (πQ) +
KL′′

2(πQ, α)

nλ
+

λ

2
V̄ α
n (πQ) .

where

KL′′
1(πQ, α) = DKL(Q∥P) + log

8
√
n

δα
,

KL′′
2(πQ, α) = DKL(Q∥P) + log

8

δα
,

Bα
n (πQ) = 1− 1

n

n∑
i=1

Ea∼πQ(·|xi)

[
π1−α
0 (a|xi)

]
,

V̄ α
n (πQ) =

1

n

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α

]
+

πQ(ai|xi)

π0(ai|xi)2α
c2i .

Proof. Let δ ∈ (0, 1). For any i ≥ 0, we define αi = 2−i and let δi = δαi/2. Then Theorem 4.1 yields that for any i ≥ 0,
the following inequality holds with probability at least 1− δi for any Q onH

|R(πQ)− R̂αi
n (πQ)| ≤

√
DKL(Q∥P) + log 4

√
n

δi

2n
+Bαi

n (πQ) +
DKL(Q∥P) + log 4

δi

nλ
+

λ

2
V̄ αi
n (πQ) .

Now notice that
∑∞

i=0 αi = 2, and hence by definition of δi, we have
∑∞

i=0 δi = δ. Therefore, the union bound of the
above inequalities over i ≥ 0 yields that with probability at least 1− δ, the following inequality holds with probability at
least 1− δ for any Q onH and for any i ≥ 0

|R(πQ)− R̂αi
n (πQ)| ≤

√
DKL(Q∥P) + log 4

√
n

δi

2n
+Bαi

n (πQ) +
DKL(Q∥P) + log 4

δi

nλ
+

λ

2
V̄ αi
n (πQ) . (36)

Let ⌊·⌋ denote the floor function, then we have that for any α ∈ (0, 1], there exists j = ⌊− logα
log 2 ⌋ ≥ 0 such that

α ≤ αj ≤ 2α. Since (34) holds for any i ≥ 0, it holds in particular for j. In addition, we have that Bα
n (πQ) and R̂α

n(πQ) are
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decreasing in α while V̄ α
n (πQ) is increasing in α. Therefore, we have that R̂αj

n (πQ) ≤ R̂α
n(πQ) , B

αj
n (πQ) ≤ Bα

n (πQ) , and
V̄

αj
n (πQ) ≤ V̄ 2α

n (πQ). Moreover, we have that 1
δj
≤ 2

δα . This yields that the following inequality holds with probability at
least 1− δ for any Q onH and for any α ∈ (0, 1]

R(πQ) ≤ R̂α
n(πQ) +

√
DKL(Q∥P) + log 8

√
n

δα

2n
+Bα

n (πQ) +
DKL(Q∥P) + log 8

δα

nλ
+

λ

2
V̄ 2α
n (πQ) . (37)

Finally, setting

KL′′
1(πQ, α) = DKL(Q∥P) + log

8
√
n

δα
,

KL′′
2(πQ, α) = DKL(Q∥P) + log

8

δα
,

concludes the proof.

C.3. Proof of Proposition 5.1

Haddouche & Guedj (2022, Theorem 7) provides an application of Lemma C.1 to the general PAC-Bayes learning problems
in Section 4.1. We cannot apply their theorem directly to get Proposition 5.1 for two reasons. They assume that the loss
function is non-negative and they derive a one-sided generalization bound. In our case, the loss function is negative and we
want to derive a two-sided generalization bound. Fortunately, we show with a slight modification of their proof that the
result can be extended to two-sided inequalities with negative losses. In fact, the only requirement is that the sign of loss is
fixed. We show next how this is achieved.

Proof. First, note that Lemma C.1 does not make any assumption on the sign of the martingale difference sequence
(fi(Si, h))i∈[n] nor on the sign of the terms that decompose it. Now similarly to the proof in Appendix C.1, we define
Sn = (xi, ai)i∈[n] as the set of n observed contexts and taken actions. Also, we let (Fi)i∈{0}∪[n] be a filtration adapted to
Sn. For h ∈ H, we define fi (Si, h) as

fi (Si, h) = fi (xi, ai, h) = f (xi, ai, h) = Ex∼ν,a∼π0(·|x)

[ I{h(x)=a}

π0(a|x)α
c(x, a)

]
−

I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai) .

Here fi(Si, h) only depends on the last samples xi, ai and the predictor h. For this reason, we denote it by fi (xi, ai, h).
Also, the function fi does not depend on i and this is why we simplify the notation as fi (xi, ai, h) = f (xi, ai, h). Moreover,
the randomness in f (xi, ai, h) is only due xi ∼ ν and ai ∼ π0(·|xi); all other terms are deterministic. Thus the expectations
are under xi ∼ ν, ai ∼ π0(·|xi). Now similarly to the proof in Appendix C.1, we have that E [f (xi, ai, h) |Fi−1] = 0
for any i ∈ [n] , h ∈ H. Therefore, (f(xi, ai, h))i∈[n] is a martingale difference sequence for any h ∈ H. Thus we apply
Lemma C.1 and get that that with probability at least 1− δ, the following holds simultaneously for any distribution Q onH

|Eh∼Q [Mn(h)]| ≤
DKL(Q∥P) + log(2/δ)

λ
+

λ

2
(Eh∼Q [⟨M⟩n(h) + [M ]n(h)]) , (38)

where

Mn(h) =

n∑
i=1

f (xi, ai, h) ,

⟨M⟩n(h) =
n∑

i=1

E
[
f (xi, ai, h)

2 |Fi−1

]
,

[M ]n(h) =

n∑
i=1

f (xi, ai, h)
2
.
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Now we compute Eh∼Q [Mn(h)] as

Eh∼Q [Mn(h)] =

n∑
i=1

Ex∼ν,a∼π0(·|x)

[
πQ(a|x)
π0(a|x)α

c(x, a)

]
− πQ(ai|xi)

π0(ai|xi)α
c(xi, ai) ,

= nEx∼ν,a∼π0(·|x)

[
πQ(a|x)
π0(a|x)α

c(x, a)

]
−

n∑
i=1

πQ(ai|xi)

π0(ai|xi)α
c(xi, ai) , (39)

where we used the linearity of the expectation Eh∼Q [·] and the definition of policies in (9). Moreover, similarly to the proof
in Appendix C.1, we have that

⟨M⟩n(h) + [M ]n(h) =

n∑
i=1

E
[
f (xi, ai, h)

2 |Fi−1

]
+ f (xi, ai, h)

2

=

n∑
i=1

Ex∼ν,a∼π0(·|x)

[ I{h(x)=a}

π0(a|x)2α
c(x, a)2

]
+

I{h(xi)=ai}

π0(ai|xi)2α
c(xi, ai)

2

− 2Ex∼ν,a∼π0(·|x)

[ I{h(x)=a}

π0(a|x)α
c(x, a)

] I{h(xi)=ai}

π0(ai|xi)α
c(xi, ai) ,

(i)

≤ nEx∼ν,a∼π0(·|x)

[ I{h(x)=a}

π0(a|x)2α
c(x, a)2

]
+

n∑
i=1

I{h(xi)=ai}

π0(ai|xi)2α
c(xi, ai)

2 , (40)

where (i) holds since −2Ex∼ν,a∼π0(·|x)

[
I{h(x)=a}
π0(a|x)α c(x, a)

]
I{h(xi)=ai}
π0(ai|xi)α

c(xi, ai) ≤ 0 for any i ∈ [n]. This is where the

non-negative loss assumption is not needed. Our loss Lα(h, x, a, c) =
I{h(x)=a}
π0(a|x)α c is negative since c ∈ [−1, 0]. However,

we only need the product between the loss and its expectation to be non-negative. This holds in particular when the loss has
a fixed sign. In that case, the expectation of the loss and the loss itself will have the same sign and thus their product will be
non-negative. In our case, the loss has a fixed negative sign and this is all we needed. Now notice that

nEx∼ν,a∼π0(·|x)

[
πQ(a|x)
π0(a|x)α

c(x, a)

]
= nRα(πQ) ,

n∑
i=1

πQ(ai|xi)

π0(ai|xi)α
c(xi, ai) = nR̂α

n(πQ) ,

where we used that c(xi, ai) = ci for any i ∈ [n] in the second equality. Using these two equalities and plugging (39) and
(40) in (38) yields that with probability at least 1− δ, the following holds simultaneously for any distribution Q onH

n
∣∣∣Rα(πQ)− R̂α

n(πQ)
∣∣∣ ≤ DKL(Q∥P) + log(2/δ)

λ
+

λ

2

(
nEx∼ν,a∼π0(·|x)

[
πQ(a|x)
π0(a|x)2α

c(x, a)2
]

+

n∑
i=1

πQ(ai|xi)

π0(ai|xi)2α
c(xi, ai)

2
)
. (41)

Again we used the linearity of the expectation Eh∼Q [·] and the definition of policies in (9). Finally, we have that
c(xi, ai) = ci for any i ∈ [n]. Thus with probability at least 1− δ the following inequality holds for any distribution Q onH

∣∣∣Rα(πQ)− R̂α
n(πQ)

∣∣∣ ≤ DKL(Q∥P) + log(2/δ)

nλ
+

λ

2
Ex∼ν,a∼π0(·|x)

[
πQ(a|x)
π0(a|x)2α

c(x, a)2
]

+
λ

2n

n∑
i=1

πQ(ai|xi)

π0(ai|xi)2α
c2i . (42)

This concludes the proof.
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C.4. Sample Complexity

Proposition C.4. LetM1(H) be the set of probability distributions on the hypothesis space H, and let λ > 0, n ≥ 1,
δ ∈ [0, 1], α ∈ [0, 1], and let P be a fixed prior onH, then with probability at least 1− δ over draws Dn ∼ µn

π0
, we have

R(πQ̂n
) ≤ R(πQ∗) + 2

√
KL1(πQ∗)

2n
+ 2Bα

n (πQ∗) + 2
KL2(πQ∗)

nλ
+ λV̄ α

n (πQ∗) .

where πQ̂n
is the learned policy with Q̂n = argminQ∈M1(H) R̂

α
n(πQ) +

√
KL1(πQ)

2n + Bα
n (πQ) +

KL2(πQ)
nλ + λ

2 V̄
α
n (πQ) ,

Q∗ = argminQ∈M1(H) R(πQ), and

KL1(πQ) = DKL(Q∥P) + log
4
√
n

δ
, KL2(πQ) = DKL(Q∥P) + log

4

δ
,

Bα
n (πQ) = 1− 1

n

n∑
i=1

Ea∼πQ(·|xi)

[
π1−α
0 (a|xi)

]
, V̄ α

n (πQ) =
1

n

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α

]
+

πQ(ai|xi)c
2
i

π0(ai|xi)2α
.

Proof. First, Theorem 4.1 holds for any potentially data dependent distribution Q onH. In particular, we have that with
probability at least 1− δ the following inequalities hold simultaneously for Q̂n and Q∗

|R(πQ̂n
)− R̂α

n(πQ̂n
)| ≤

√
KL1(πQ̂n

)

2n
+Bα

n (πQ̂n
) +

KL2(πQ̂n
)

nλ
+

λ

2
V̄ α
n (πQ̂n

) ,

|R(πQ∗)− R̂α
n(πQ∗)| ≤

√
KL1(πQ∗)

2n
+Bα

n (πQ∗) +
KL2(πQ∗)

nλ
+

λ

2
V̄ α
n (πQ∗) .

Taking only one side of these inequalities yields that with probability at least 1 − δ the following inequalities hold
simultaneously for Q̂n and Q∗

R(πQ̂n
) ≤ R̂α

n(πQ̂n
) +

√
KL1(πQ̂n

)

2n
+Bα

n (πQ̂n
) +

KL2(πQ̂n
)

nλ
+

λ

2
V̄ α
n (πQ̂n

)︸ ︷︷ ︸
(I)

,

R̂α
n(πQ∗) ≤ R(πQ∗) +

√
KL1(πQ∗)

2n
+Bα

n (πQ∗) +
KL2(πQ∗)

nλ
+

λ

2
V̄ α
n (πQ∗) .

Now using the definition of πQ̂n
, we know that

I ≤ R̂α
n(πQ∗) +

√
KL1(πQ∗)

2n
+Bα

n (πQ∗) +
KL2(πQ∗)

nλ
+

λ

2
V̄ α
n (πQ∗) .

This yields that with probability at least 1− δ the following inequalities hold simultaneously for Q̂n and Q∗

R(πQ̂n
) ≤ R̂α

n(πQ∗) +

√
KL1(πQ∗)

2n
+Bα

n (πQ∗) +
KL2(πQ∗)

nλ
+

λ

2
V̄ α
n (πQ∗) ,

R̂α
n(πQ∗) ≤ R(πQ∗) +

√
KL1(πQ∗)

2n
+Bα

n (πQ∗) +
KL2(πQ∗)

nλ
+

λ

2
V̄ α
n (πQ∗) .

Computing the sum of these two inequalities concludes the proof.

Corollary C.5 (Special case of Proposition C.4). Let H =
{
hθ ; θ ∈ RdK

}
of mappings hθ(x) = argmaxa∈A ϕ(x)⊤θa

for any x ∈ X . Let n ≥ 1, δ ∈ [0, 1], α ∈ [0, 1], and let P = N (µ0, IdK) be a fixed prior on H, then with probability at
least 1− δ over draws Dn ∼ µn

π0
, we have that

R(πQ̂n
) ≤ R(πQ∗) +

√
∥µ∗ − µ0∥2 + 2 log 4

√
n

δ√
n

+ 2(1−Kα−1) +
∥µ∗ − µ0∥2 + 2 log 4

δ√
n

+
K2α−1 +K2α

√
n

.

where πQ̂n
is the learned policy with Q̂n = argminQ=N (µ,IdK) R̂

α
n(πQ) +

√
KL1(πQ)

2n +Bα
n (πQ) +

KL2(πQ)
nλ + λ

2 V̄
α
n (πQ) ,

Q∗ = argminQ=N (µ,IdK) R(πQ).
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Proof. This result follows from the general Proposition C.4 by simply setting P = N (µ0, IdK) and Q∗ = N (µ∗, IdK).
First, since the covariance matrices of both distributions are IdK , their KL divergence is DKL(Q∥P) = ∥µ∗ − µ0∥2/2.
Moreover, since the logging policy is uniform then Bα

n (πQ) = (1−Kα−1) and V̄ α
n (πQ) ≤ K2α−1 +K2α. Using these

quantities, setting λ = 1/
√
n and applying Proposition C.4 yields that with probability at least 1− δ over draws Dn ∼ µn

π0
,

we have that

R(πQ̂n
) ≤ R(πQ∗) +

√
∥µ∗ − µ0∥2 + 2 log 4

√
n

δ√
n

+ 2(1−Kα−1) +
∥µ∗ − µ0∥2 + 2 log 4

δ√
n

+
K2α−1 +K2α

√
n

.

This concludes the proof.

The above corollary allows us to give insights into the sample complexity of our procedure. That is, the number of samples
needed so that the performance of the learned policy πQ̂n

is close to that of the optimal one. Let ϵ > 2(1 −Kα−1) for
α ∈ [1− log 2/ logK, 1]. This condition on α ensures that ϵ ∈ [0, 1] and it is mild as α is often close to 1. Let δ, then the
following implication holds

ϵ ≥

√
∥µ∗ − µ0∥2 + 2 log 4

√
n

δ√
n

+ 2(1−Kα−1) +
∥µ∗ − µ0∥2 + 2 log 4

δ√
n

+
K2α−1 +K2α

√
n

=⇒ P(R(πQ̂n
) ≤ R(πQ∗) + ϵ) ≥ 1− δ . (43)

First, we use that
√
∥µ∗ − µ0∥2 + 2 log 4

√
n

δ ≤ ∥µ∗ − µ0∥+
√

2 log 4
√
n

δ . Moreover we bound K2α−1 +K2α ≤ 2K2α.
Then the implication in (43) becomes

√
n ≥

∥µ∗ − µ0∥+ ∥µ∗ − µ0∥2 + 2 log 4
δ +

√
2 log 4

√
n

δ + 2K2α

ϵ− 2(1−Kα−1)
=⇒ P(R(πQ̂n

) ≤ R(πQ∗) + ϵ) ≥ 1− δ . (44)

We only provide intuition on the sample complexity and aim at having easy-to-interpret terms. Thus we omit the logarithmic
terms in (44) and assume that ∥µ∗ − µ0∥2 ≥ ∥µ∗ − µ0∥. This leads to the claim made in Section 5.1. Of course, a more

precise sample complexity analysis can be made by studying the function h(x) =
√
x−

√
2 log 4

√
x

δ /(ϵ− 2(1−Kα−1))

and finding x such that f(x) ≥ ∥µ∗−µ0∥+∥µ∗−µ0∥2+2 log 4
δ+2K2α

ϵ−2(1−Kα−1) .

D. Experiments
D.1. Setup

We consider the standard supervised-to-bandit conversion (Agarwal et al., 2014). Precisely, let STR
n and STS

nTS
be the training

and testing set of a classification dataset, respectively. First, we transform the training set STR
n to a logged bandit data Dn as

described in Algorithm 1. The resulting logged data Dn is then used to train our policies. After that, the learned policies are
tested on STS

nTS
as described in Algorithm 2. We consider that the resulting reward in Algorithm 2 is a good proxy for the

unknown true reward of the learned policies. This will be our performance metric, the higher the better.

In our experiments, we use the following image classification datasets MNIST (LeCun et al., 1998), FashionMNIST
(Xiao et al., 2017), EMNIST (Cohen et al., 2017) and CIFAR100 (Krizhevsky et al., 2009). We provide a summary of the
statistics of these datasets in Table 1. Algorithm 1 takes as input a logging policy π0 which we define as

π0(a|x) =
exp(η0 · ϕ(x)⊤µ0,a)∑

a′∈A exp(η0 · ϕ(x)⊤µ0,a′)
, ∀(x, a) ∈ X ×A . (45)

Here ϕ(x) ∈ Rd is the feature transformation function that outputs a d-dimensional vector, µ0 = (µ0,a)a∈A ∈ RdK are
learnable parameters and η0 is an inverse-temperature parameter for the softmax in (45). We explain next how these
quantities are derived in detail.

The feature transformation function ϕ(x) ∈ Rd: for all the datasets, except CIFAR100, the feature transformation
function ϕ(·) is defined as ϕ(x) = x

∥x∥ for any x ∈ X . That is, we simply normalize the features x ∈ X by their L2
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Table 1. Statistics of the datasets used in our experiments.

DATA SET NBR. TRAIN SAMPLES n NBR. TEST SAMPLES nTS NBR. ACTIONS K DIMENSION d

MNIST 60000 10000 10 784
FASHIONMNIST 60000 10000 10 784
EMNIST 112800 18800 47 784
CIFAR100 50000 10000 100 2048

norm ∥x∥. In contrast, CIFAR100 is a more challenging problem. Thus we use transfer learning to extract features ϕ(x)
expressive enough so that a linear softmax model would enjoy a reasonable performance. Precisely, we retrieve the last
hidden layer of a ResNet-50 network, pre-trained on the ImageNet dataset, to output 2048-dimensional features. Finally,
the obtained features are normalized as x

∥x∥ and this whole process (ResNet-50 + normalization) corresponds to ϕ(·) for
CIFAR100.

The parameters µ0 = (µ0,a)a∈A ∈ RdK: we learn the parameters µ0 using 5% of the training set STR
n . Precisely, we

use the cross-entropy loss with an L2 regularization of 10−6 to prevent the logging policy π0 from being degenerate.
This ensures that the learning policies are absolutely continuous with respect to the logging policy π0, a condition under
which standard IPS is unbiased. In optimization, we use Adam (Kingma & Ba, 2014) with a learning rate of 0.1 for 10
epochs. In all the experiments, we set the prior P = N (η0µ0, IdK) for the Gaussian policies in (12) and we set it as
P = N (η0µ0, IdK)×G(0, 1)K for the mixed-logit policies in (11). Our theory requires that the prior does not depend on
data. Given that µ0 is learned on the 5% portion of data, we only train our learning policies on the remaining 95% portion
of the data to match our theoretical requirements.

The inverse-temperature parameter η0 ∈ R: this controls the performance of the logging policy. A high positive value of
η0 leads to a well-performing logging policy, while a negative one leads to a low-performing logging policy. When η0 = 0,
π0 is identical to the uniform policy. In our experiments η0 varies between 0 and 1.

Algorithm 1 Supervised-to-bandit: creating logged data
Input: training classification set STR

n = {(xi, yi)}ni=1, logging policy π0.
Output: logged bandit data Dn = (xi, ai, ci)i∈[n].
Initialize Dn = {}
for i = 1, . . . , n do

ai ∼ π0(·|xi)
ci = −I{ai=yi}
Dn ← Dn ∪ {(xi, ai, ci)} .

Algorithm 2 Supervised-to-bandit: testing policies
Input: image classification dataset STS

nTS
= {(xi, yi)}nTS

i=1, learned policy π̂n.
Output: reward r.
for i = 1, . . . , nTS do

ai ∼ π̂n(·|xi)
ri = I{ai=yi}

r = 1
nTS

∑nTS

i=1 ri .

Now it remains to explain the learning policies πQ and the corresponding closed-form bounds using either our results or
those in existing works (London & Sandler, 2019; Sakhi et al., 2022).

D.2. Policies

Here we present the two families of policies that we use in our experiments, Gaussian and mixed-logit policies.
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D.2.1. MIXED-LOGIT

Let H =
{
hθ,γ ; θ ∈ RdK , γ ∈ RK

}
be a hypothesis space of mappings hθ,γ(x) = argmaxa∈A ϕ(x)⊤θa + γa for any

x ∈ X . Here ϕ(x) outputs a d-dimensional representation of context x ∈ X . Now assume that for any a ∈ A, γa is a
standard Gumbel perturbation, γa ∼ G(0, 1), then we have that

πSOF
θ (a|x) = exp(ϕ(x)⊤θa)∑

a′∈A exp(ϕ(x)⊤θa′)
,

= Eγ∼G(0,1)K
[
I{hθ,γ(x)=a}

]
. (46)

In addition, we randomize θ such as θ ∼ N (µ, σ2IdK) where µ ∈ RdK and σ > 0. It follows that the posterior Q is a
multivariate Gaussian N (µ, σ2IdK) over the parameters θ with standard Gumbel perturbations γ ∼ G(0, 1)K . We denote
such policies by πMIXL

µ,σ and they are defined as

πMIXL
µ,σ (a|x) = Eθ∼N (µ,σ2IdK)

[
exp(ϕ(x)⊤θa)∑

a′∈A exp(ϕ(x)⊤θa′)

]
,

= Eθ∼N (µ,σ2IdK) [π
SOF
θ (a|x)] ,

= Eθ∼N (µ,σ2IdK) ,γ∼G(0,1)K
[
I{hθ,γ(x)=a}

]
. (47)

To sample from the mixed-logit policies πMIXL
µ,σ , we first sample θ ∼ N (µ, σ2IdK) and γ ∼ G(0, 1)K and then set the

sampled action as a ← hθ,γ(x). Now we also need to compute the gradient of the expectation in (47). This needs
additional care since the distribution under which we take the expectation depends on the parameters µ, σ. Fortunately, the
reparameterization trick can be used in this case. Roughly speaking, it allows us to express a gradient of the expectation in
(47) as an expectation of a gradient. In our case, we use the local reparameterizaton trick (Kingma et al., 2015) which is
known for reducing the variance of stochastic gradients. Precisely, we rewrite (47) as

πMIXL
µ,σ (a|x) = Eϵ∼N (0,∥ϕ(x)∥2IK)

[
exp(ϕ(x)⊤µa + σϵa)∑

a′∈A exp(ϕ(x)⊤µa′ + σϵa′)

]
.

= Eϵ∼N (0,IK)

[
exp(ϕ(x)⊤µa + σϵa)∑

a′∈A exp(ϕ(x)⊤µa′ + σϵa′)

]
,

where we used that ∥ϕ(x)∥2 = 1 since features are normalized. It follows that gradients read

∇µ,σπ
MIXL
µ,σ (a|x) = Eϵ∼N (0,IK)

[
∇µ,σ

exp(ϕ(x)⊤µa + σϵa)∑
a′∈A exp(ϕ(x)⊤µa′ + σϵa′)

]
.

Moreover, the propensities are approximated as

πMIXL
µ,σ (a|x) ≈ 1

S

∑
i∈[S]

exp(ϕ(x)⊤µa + σϵi,a)∑
a′∈A exp(ϕ(x)⊤µa′ + σϵi,a′)

, ϵi ∼ N (0, IK) ,∀i ∈ [S] . (48)

In all our experiments, we set S = 32.

D.2.2. GAUSSIAN

We define the hypothesis spaceH =
{
hθ ; θ ∈ RdK

}
of mappings hθ(x) = argmaxa∈A ϕ(x)⊤θa for any x ∈ X . It follows

that the learning policies πQ = πGAUS
µ,σ read

πGAUS
µ,σ (a|x) = Eθ∼N (µ,σ2IdK)

[
I{hθ(x)=a}

]
. (49)

To see why this can be beneficial (Sakhi et al., 2022), let π∗ be the optimal policy. Given x ∈ X , π∗(·|x) should be
deterministic; it chooses the best action for context x with probability 1. That is, there exists µ∗ ∈ RdK such that
π∗ = I{hµ∗ (x)=a}. When µ→ µ∗ and σ → 0, the Gaussian policy in (49) approaches π∗. In contrast, the mixed-logit policy
in (47) approaches πSOF

µ∗
. However, πSOF

µ∗
is not deterministic due to the additional randomness in γ and is equal to π∗ only if
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ϕ(x)⊤µ∗,a∗(x) →∞. This explains the choice of removing the Gumbel noise. First, Sakhi et al. (2022) showed that (49)
can be written as

πGAUS
µ,σ (a|x) = Eϵ∼N (0,1)

[ ∏
a′ ̸=a

Φ
(
ϵ+

ϕ(x)⊤ (µa − µa′)

σ∥ϕ(x)∥
)]

,

where Φ is the cumulative distribution function of a standard normal variable. But ∥ϕ(x)∥ = 1 in all our experiments. Thus

πGAUS
µ,σ (a|x) = Eϵ∼N (0,1)

[ ∏
a′ ̸=a

Φ
(
ϵ+

ϕ(x)⊤ (µa − µa′)

σ

)]
.

Then similarly to mixed-logit policies, the gradient reads

∇µ,σπ
GAUS
µ,σ (a|x) = Eϵ∼N (0,1)

[
∇µ,σ

∏
a′ ̸=a

Φ
(
ϵ+

ϕ(x)⊤ (µa − µa′)

σ

)]
.

Moreover, the propensities are approximated as

πGAUS
µ,σ (a|x) ≈ 1

S

∑
i∈[S]

∏
a′ ̸=a

Φ
(
ϵi +

ϕ(x)⊤ (µa − µa′)

σ

)
, ϵi ∼ N (0, 1) ,∀i ∈ [S] . (50)

In all our experiments, we set S = 32.

D.3. Baselines

Here we present all the methods that we use in our experiments. For each method, we state the result that holds for any
learning policy π. After that, we derive the corresponding closed-form bounds for Gaussian and mixed-logit policies that we
presented previously. All the baselines require computing the KL divergence between the prior P and the posterior Q. Thus
before presenting them, we state the following lemma that allows bounding the KL divergence between the prior P and the
posterior Q in the cases of mixed-logit or Gaussian policies.
Lemma D.1 (KL divergence for Gaussian distributions with Gumbel noise). For distributions P = N

(
µ0, σ

2
0IdK

)
×

G(0, 1)K and Q = N
(
µ, σ2IdK

)
×G(0, 1)K , with µ0, µ ∈ RdK and 0 < σ2 ≤ σ2

0 <∞,

DKL(Q∥P) ≤
∥µ− µ0∥2

2σ2
0

+
dK

2
log

σ2
0

σ2
.

Moreover, this result holds when the Gumbel noise is removed. That is when P = N
(
µ0, σ

2
0IdK

)
and Q = N

(
µ, σ2IdK

)
.

We borrow this lemma from London & Sandler (2019). In particular, Lemma D.1 shows that the KL terms for both policies
can be bounded by the same quantity. As a result, the corresponding bounds will be the same; the only difference is the space
of learning policies on which we optimize. For completeness, however, we write these bounds for both types of policies
although they are similar. Since existing approaches are not named, we name them as (Author, Policy) where Author ∈
{Ours, London et al., Sakhi et al. 1, Sakhi et al. 2} and Policy ∈ {Gaussian, Mixed-Logit} . Here Ours, London et
al., Sakhi et al. 1 and Sakhi et al. 2 correspond to Theorem 4.1, London & Sandler (2019, Theorem 1), Sakhi et al. (2022,
Proposition 1), Sakhi et al. (2022, Proposition 3), respectively. For example, London & Sandler (2019, Theorem 1) leads to
two baselines (London et al., Gaussian) and (London et al., Mixed-Logit). In all our experiments, the learning policies
are trained using Adam (Kingma & Ba, 2014) with a learning rate of 0.1 for 20 epochs.

D.3.1. OURS, THEOREM 4.1

(Ours, Gaussian) Here we use the Gaussian policies in (49). Thus we only replace the term, DKL(Q∥P), with its
closed-form bound in Lemma D.1. This leads to the following objective.

min
µ∈RdK ,σ>0

(
R̂α

n

(
πGAUS
µ,σ

)
+

√
∥µ−µ0∥2

2 − dK
2 log σ2 + log 4

√
n

δ

2n
+Bα

n (π
GAUS
µ,σ ) +

∥µ−µ0∥2

2 − dK
2 log σ2 + log 4

δ

nλ

+
λ

2
V̄ α
n (πGAUS

µ,σ )
)
,
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where we used that σ0 = 1 since our prior is P = N (η0µ0, IdK) for Gaussian policies. Moreover, we set

λ =

√
2

∥µ−µ0∥2
2 − dK

2 log σ2+log 4
δ

nV̄ α
n (πGAUS

µ,σ )
.

(Ours, Mixed-Logit) Here we use the mixed-logit policies in (47). Thus we only replace the terms, DKL(Q∥P), with their
closed-form bound in Lemma D.1. This leads to the following objective.

min
µ∈RdK ,σ>0

(
R̂α

n

(
πMIXL
µ,σ

)
+

√
∥µ−µ0∥2

2 − dK
2 log σ2 + log 4

√
n

δ

2n
+Bα

n (π
MIXL
µ,σ ) +

∥µ−µ0∥2

2 − dK
2 log σ2 + log 4

δ

nλ

+
λ

2
V̄ α
n (πMIXL

µ,σ )
)
,

where we used that σ0 = 1 since our prior is P = N (η0µ0, IdK)×G(0, 1)K for mixed-logit policies. Moreover, we set

λ =

√
2

∥µ−µ0∥2
2 − dK

2 log σ2+log 4
δ

nV̄ α
n (πMIXL

µ,σ )
.

D.3.2. LONDON & SANDLER (2019, THEOREM 1)

Proposition D.2. Let τ ∈ (0, 1), n ≥ 1, δ ∈ (0, 1) and let P be a fixed prior onH, then with probability at least 1− δ over
draws Dn ∼ µn

π0
, the following holds simultaneously for all posteriors, Q, onH that

R (πQ) ≤ R̂τ
n (πQ) +

√√√√2
(
R̂τ

n (πQ) +
1
τ

) (
DKL(Q∥P) + log n

δ

)
τ(n− 1)

+
2
(
DKL(Q∥P) + log n

δ

)
τ(n− 1)

. (51)

Baseline 1: (London et al., Gaussian) Here we use the Gaussian policies in (49). Thus we only replace the terms,
DKL(Q∥P), with their closed-form bound in Lemma D.1. This leads to the following objective.

min
µ∈RdK ,σ>0

(
R̂τ

n

(
πGAUS
µ,σ

)
+

√√√√2
(
R̂τ

n

(
πGAUS
µ,σ

)
+ 1

τ

)(
∥µ−µ0∥2

2 − dK
2 log σ2 + log n

δ

)
τ(n− 1)

+
2
(

∥µ−µ0∥2

2 − dK
2 log σ2 + log n

δ

)
τ(n− 1)

)
,

where we used that σ0 = 1 since our prior is P = N (η0µ0, IdK) for Gaussian policies.

Baseline 2: (London et al., Mixed-Logit) Here we consider the mixed-logit policies in (47). Since the additional Gumbel
noise does not affect the KL divergence (Lemma D.1), we have the same objective as in the Gaussian case. That is

min
µ∈RdK ,σ>0

(
R̂τ

n

(
πMIXL
µ,σ

)
+

√√√√2
(
R̂τ

n

(
πMIXL
µ,σ

)
+ 1

τ

)(
∥µ−µ0∥2

2 − dK
2 log σ2 + log n

δ

)
τ(n− 1)

+
2
(

∥µ−µ0∥2

2 − dK
2 log σ2 + log n

δ

)
τ(n− 1)

)
,

where we used that σ0 = 1 since our prior is P = N (η0µ0, IdK)×G(0, 1)K for mixed-logit policies.

D.3.3. SAKHI ET AL. (2022, PROPOSITION 1)

Proposition D.3. Let τ ∈ (0, 1), n ≥ 1, δ ∈ (0, 1) and let P be a fixed prior onH, then with probability at least 1− δ over
draws Dn ∼ µn

π0
, the following holds simultaneously for all posteriors, Q, onH that

R (πQ) ≤ min
λ>0

1

τ (eλ − 1)

(
1− e−τλR̂τ

n(πQ)+
DKL(Q∥P)+log

2
√

n
δ

n

)
. (52)
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Baseline 3: (Sakhi et al. 1, Gaussian) Here we use the Gaussian policies in (49).

min
µ∈RdK ,σ>0,λ>0

( 1

τ (eλ − 1)

(
1− e−τλR̂τ

n(π
GAUS
µ,σ )+

∥µ−µ0∥2
2

− dK
2

log σ2+log
2
√

n
δ

n

))
, (53)

where we used that σ0 = 1 since our prior is P = N (η0µ0, IdK) for Gaussian policies.

Baseline 4: (Sakhi et al. 1, Mixed-Logit) Here we consider the mixed-logit policies in (47).

min
µ∈RdK ,σ>0,λ>0

( 1

τ (eλ − 1)

(
1− e−τλR̂τ

n(π
MIXL
µ,σ )+

∥µ−µ0∥2
2

− dK
2

log σ2+log
2
√

n
δ

n

))
. (54)

where we used that σ0 = 1 since our prior is P = N (η0µ0, IdK)×G(0, 1)K for mixed-logit policies.

D.3.4. SAKHI ET AL. (2022, PROPOSITION 3)

Proposition D.4. Let τ ∈ (0, 1), n ≥ 1, δ ∈ (0, 1), let P be a fixed prior onH, and let Λ = {λi}i∈[nλ]
a set of nλ positive

scalars. Then with probability at least 1− δ over draws Dn ∼ µn
π0

, the following holds simultaneously for all posteriors, Q,
onH and any λi ∈ Λ,

R (πQ) ≤ R̂τ
n (πQ) +

√
DKL(Q∥P) + log 4

√
n

δ

2n
+

DKL(Q∥P) + log 2nλ

δ

λ
+

λ

n
g

(
λ

τn

)
Vτ
n (πQ) , (55)

where g : u→ exp(u)−1−u
u2 and Vτ

n(πQ) =
1
n

∑n
i=1 Ea∼πQ(·|xi)

[
π0(a|xi)

max(τ,π0(a|xi))
2

]
, .

Baseline 5: (Sakhi et al. 2, Gaussian) Here we consider the Gaussian policies in (49).

min
µ∈RdK ,σ>0,λ∈Λ

(
R̂τ

n

(
πGAUS
µ,σ

)
+

√
∥µ−µ0∥2

2 − dK
2 log σ2 + log 4

√
n

δ

2n
+

∥µ−µ0∥2

2 − dK
2 log σ2 + log 2nλ

δ

λ

+
λ

n
g

(
λ

τn

)
Vτ
n

(
πGAUS
µ,σ

) )
, (56)

where we used that σ0 = 1 since our prior is P = N (η0µ0, IdK) for Gaussian policies.

Baseline 6: (Sakhi et al. 2, Mixed-Logit) Here we consider the mixed-logit policies in (47).

min
µ∈RdK ,σ>0,λ∈Λ

(
R̂τ

n

(
πMIXL
µ,σ

)
+

√
∥µ−µ0∥2

2 − dK
2 log σ2 + log 4

√
n

δ

2n
+

∥µ−µ0∥2

2 − dK
2 log σ2 + log 2nλ

δ

λ

+
λ

n
g

(
λ

τn

)
Vτ
n

(
πMIXL
µ,σ

) )
, (57)

where we used that σ0 = 1 since our prior is P = N (η0µ0, IdK)×G(0, 1)K for mixed-logit policies.

D.4. Additional Results and Discussion

In Figure 4, we report the reward of the learned policy using one of the considered methods. We make the following
observations:

• Choice of τ and α: in Figure 4, we set τ = 1/ 4
√
n ≈ 0.06 and α = 1− 1/ 4

√
n ≈ 0.94 so that when n is large enough,

both R̂τ
n(π) and R̂α

n(π) approach R̂IPS
n (π) (Ionides, 2008). This is because standard IPS should be preferred when

n→∞. For completeness, we also show in Figure 5 that the choice of α and τ does not affect the conclusions that
we make here. We also include in Figure 5 the results with an adaptive and data-dependent α obtained using (14) in
Section 4.4. The results in Figure 5 will be discussed in detail after we finish analyzing the results in Figure 4.
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• Overall performance: our method outperforms the baselines for any class of learning policies (Gaussian or mixed-logit)
and any choice of logging policies. The only exception is when the logging policy is uniform.

• Effect of the class of learning policies: the class of policies, Gaussian or mixed-logit, affects the performance of all
the baselines. In general, Gaussian policies behave better than mixed-logit policies. However, this is less significant for
our method; the performance of both Gaussian and mixed-logit policies are comparable, and in both cases, our method
outperforms the baselines with Gaussian policies. Therefore, in general, Gaussian policies should be preferred over
mixed-logit policies. But in case engineering constraints impose the choice of mixed-logit or softmax policies, then the
performance of our method is robust to this choice.

• Effect of the logging policy: our method reaches the maximum reward even when the logging policy is not performing
well. In contrast, the baselines only reach their best reward when the logging policy is already well-performing
(η0 ≈ 1), in which case minor to no improvements are made. Note that the baselines have a better reward than ours
when the logging policy is uniform. But our method has better reward when the logging policy is not uniform, that
is when η0 > 0. This is more common in practice since the logging policy is deployed in production and thus it is
expected to perform better than the uniform policy.

In Figure 5, we compare our method to (Sakhi et al. 2) with Gaussian policies since this was the best-performing baseline
in our experiments in Figure 4. Note that we did not include CIFAR100 in Figure 4 as it was computationally heavy to
run these experiments with varying η0, α and τ for a very high-dimensional dataset such as CIFAR100. We consider 20
varying values of τ and α evenly spaced in (0, 1). We also include the results using the adaptive tuning procedure of α
described in Section 4.4 (green curve). We make the following observations:

• Adaptive and data-dependent α: This procedure is reliable since the performance with an adaptive α (green curve) is
comparable with the best possible choice of α. This is consistent for the three datasets.

• Effect of the choice α: as we observed before, the only case where the choice of α may lead to bad-performing
policies is when the logging policy is uniform. When the logging policy is not uniform, our method outperforms the
best baseline with the best τ for a wide range of values of α. Also, note that there is no very bad choice of α, in contrast
with τ ≈ 0 that led to a very bad performing policy that slightly improved upon the logging policy. This attests to the
robustness of our method to the choice of α. Moreover, our bound regularizes better α; it contains a bias-variance
trade-off term for α. Also, the bound of (Sakhi et al. 2) has a 1/τ making it vacuous for small values of τ .

• Best choice of α: To see the effect of α for varying problems, we consider the following experiment. We split the
logging policies into two groups. The first is modest logging which corresponds to logging policies whose η0 is between
0 and 0.5. This includes uniform logging policies and other average-performing logging policies. The second is good
logging which corresponds to logging policies whose η0 is between 0.5 and 1. After that, for each α, we compute the
average reward of the learned policy across either the group of modest or good logging policies. For each dataset,
this leads to the two red and green curves in the second row of Figure 5. Overall, we observe that α ≈ 0.7 leads
to the best performance for the modest logging group. Thus when the performance of the logging policy is average,
regularizing the importance weights can be critical. In contrast, when the performance of the logging policy is already
good, regularization is less needed and we can set α ≈ 1. Fortunately, one of the main strengths of this work is that our
bound also holds for standard IPS recovered for α = 1. The bounds in all prior works cannot provide good performance
for standard IPS due to their dependency on 1/τ .
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Figure 4. The reward of the learned policy for four datasets with varying quality of the logging policy η0 ∈ [0, 1].
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Figure 5. In the first row, we report the reward of the learned policy with 20 evenly space values of τ ∈ (0, 1) and α ∈ (0, 1) and varying
η0 ∈ [0, 1], and for an adaptive and data-dependent α obtained using (14) in Section 4.4. The blue-to-cyan colors correspond to different
values of τ . The lighter the color, the higher the value of τ . For instance, the cyan lines correspond to high values of τ while the blue
ones correspond to very small values of τ . Similarly, the red-to-yellow colors correspond to different values α. The lighter the color, the
higher the value of α. For instance, the yellow lines correspond to high values of α while the red ones correspond to very small values of
α. Finally, the green curve corresponds to the reward of the learned policy using an adaptive and data-dependent α described in (14)
(Section 4.4). In the second row, we report the average reward of the learned policies using our method across the modest logging group
(η0 ∈ [0, 0.5] in red) and the good logging group (η0 ∈ [0.5, 1] in green).

D.5. Learning Principles

Here we compare our bound in Theorem 4.1 and our learning principle in (16) to the one in London & Sandler (2019). We
do not include the learning principle in Swaminathan & Joachims (2015a) since the one in London & Sandler (2019) enjoys
similar performance and is far more scalable. The learning principle of London & Sandler (2019) is defined as

min
µ

R̂τ
n(πµ) + λ∥µ− µ0∥2 . (58)

where λ is a tunable hyper-parameters, πµ is the softmax policy defined in (46) and µ ∈ RdK is its parameter vector. This
learning principle is referred to as (London et al., LP). In contrast, our learning principle is defined as

R̂α
n(πµ) + λ1∥µ− µ0∥2 + λ2V̄

α
n (πµ) + λ3B

α
n (πµ) , (59)

where λ1, λ2 and λ3 are tunable hyper-parameters and πµ is the Gaussian policy in (12) with a fixed σ = 1. Our learning
principle is referred to as (Ours, LP). Finally, our bound in Theorem 4.1 with Gaussian policies is referred to as (Ours,
Bound). Similarly to the previous experiments, we set τ = 1/ 4

√
n ≈ 0.06 and α = 1− 1/ 4

√
n ≈ 0.94 so that when n is

large enough, both R̂τ
n(π) and R̂α

n(π) approach R̂IPS
n (π) (Ionides, 2008). For the learning principles, we tried multiple values

of hyper-parameters λ, λ1, λ2 and λ3, all between 10−5 and 10−1. For instance, we found that the best hyper-parameter for
London & Sandler (2019) is λ = 10−5 which matches the value they found in their FashionMNIST experiments. For our
learning principle, the best hyper-parameters were λ1 = 10−5, λ2 = 10−5 and λ3 = 10−5. In contrast, our bound does
not require hyper-parameter tuning. We report in Figure 6 the reward of the learned policy on the FashionMNIST for all
these methods with varying values of hyper-parameters. To reduce clutter, we only report the reward for good choices of
hyper-parameters λ, λ1, λ2 and λ3. We observe that for a wide range of hyper-parameters, our learning principle outperforms
the one in London & Sandler (2019). However, both learning principles are sensitive to the choice of hyper-parameters.
In contrast, our bound does not require the tuning of any additional hyper-parameter and it achieves the best performance
except for the uniform logging policy. In addition to being more theoretically grounded, this approach also enjoys favorable
empirical performance without additional hyper-parameter tuning, an important practical consideration.
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Figure 6. The reward of the learned policy using either our bound in Theorem 4.1 (referred to as (Ours, Bound) in green), our learning
principle in (16) (referred to as (Ours, LP) in red for multiple values of hyper-parameters) or the learning principle in London & Sandler
(2019) (referred to as (London et al., LP) in blue) for multiple values of hyper-parameters).

D.6. Other Importance Weight Corrections

Su et al. (2020); Metelli et al. (2021) also proposed corrections that are different from hard clipping (a detailed comparison
is given in Section 3). However, they were not included in our main experiments since they do not provide generalization
guarantees; they focus on OPE and only propose a heuristic for OPL in their Appendix B.2 and Section 6.1.2, respectively.
Those heuristics are not based on theory, in contrast with ours which is directly derived from our generalization bound.
However, for completeness, we also compare our regularization of importance weights to theirs. To make such a comparison,
we use the hyper-parameters and tuning procedures provided in Section 6 and Appendix B.2 for Metelli et al. (2021) and
Sections 5 and 6.1.2 for Su et al. (2020). Overall, we observe in Figure 7 that our method outperforms these baselines in
OPL and the gap is more significant when the logging policy is not performing well.
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Figure 7. The reward of the learned policy with varying quality of the logging policy η0 ∈ [0, 1] using either our regularization (α-IPS)
or the ones in Su et al. (2020); Metelli et al. (2021).
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