
Learning to Initiate and Reason in Event-Driven Cascading Processes

Yuval Atzmon * 1 Eli A. Meirom * 1 Shie Mannor 1 2 Gal Chechik 1 3

Abstract
Training agents to control a dynamic environment
is a fundamental task in AI. In many environ-
ments, the dynamics can be summarized by a
small set of events that capture the semantic be-
havior of the system. Typically, these events form
chains or cascades. We often wish to change the
system behavior using a single intervention that
propagates through the cascade. For instance,
one may trigger a biochemical cascade to switch
the state of a cell or, in logistics, reroute a truck
to meet an unexpected, urgent delivery. We in-
troduce a new supervised learning setup called
Cascade. An agent observes a system with known
dynamics evolving from some initial state. The
agent is given a structured semantic instruction
and needs to make an intervention that triggers a
cascade of events, such that the system reaches an
alternative (counterfactual) behavior. We provide
a test-bed for this problem, consisting of phys-
ical objects. We combine semantic tree search
with an event-driven forward model and devise
an algorithm that learns to efficiently search in ex-
ponentially large semantic trees. We demonstrate
that our approach learns to follow instructions to
intervene in new complex scenes. When provided
with an observed cascade of events, it can also
reason about alternative outcomes.

1. Introduction
Teaching agents to understand and control their dynamic
environments is a fundamental problem in AI. It becomes
extremely challenging when events trigger other events. We
denote such processes as cascading processes. As an ex-
ample, consider a set of chemical reactions in a cellular
pathway. The synthesis of a new molecule is a discrete

*Equal contribution 1NVIDIA Research, Israel 2Technion, Is-
rael institute of technology 3Bar Ilan University, Israel. Correspon-
dence to: Yuval Atzmon <yatzmon@nvidia.com>, Eli Meirom
<emeirom@nvidia.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

event that later enables other chemical reactions. Cascad-
ing processes are also prevalent in man-made systems: In
assembly lines, when one task is completed, e.g., construc-
tion of gears, it may trigger another task, e.g. building the
transmission system.

Cascading processes are abundant in many environments,
from natural processes like chemical reactions, through man-
aging crisis situations for natural disasters (Zuccaro et al.,
2018; Nakano et al., 2022) to logistic chains or water treat-
ment plants (Cong et al., 2010). A major goal with cascading
processes is to intervene and steer them towards a desired
goal. For example, in biochemical cascades, one tries to
control chemical cascades in a cell by providing chemical
signals; in logistics, a cargo dispatch plan may be com-
pletely modified by assigning a cargo plane to a different
location.

This paper addresses the problem of reasoning about a cas-
cading process and controlling its qualitative behavior. We
describe a new counterfactual reasoning setup called “Cas-
cade”, which is trained via supervised learning. At infer-
ence time, an agent observes a dynamical system, evolving
through a cascading process that was triggered from some
initial state. We refer to it as the “unsatisfied” or “observed”
cascade. The goal of the agent is to steer the system toward
a different, counterfactual, configuration. That target config-
uration is given as a set of qualitative constraints about the
end results and the intermediate properties of the cascade.
We call these constraints the “instruction”. To satisfy that
instruction, the agent may intervene with the system at a
single, specific point in time by changing the state of one
specific element (the “pivot”).

To solve the Cascade learning problem, we train an agent
to select an intervention given a state of a system and an
instruction. Importantly, we operate in a counterfactual
setup (See Pearl, 2000). During training, the agent only
sees scenarios that are “satisfied”, in the sense that the sys-
tem dynamics obey the constraints given in the instruction.
The reason is that in the real world it is not possible to
rewind time and simultaneously obtain both a satisfied and
an unsatisfied sequence of events.

Steering a cascading process is hard. In many cascading
processes, a slight change in one part of the system can
make a qualitative effect on the outcome. This may lead to

1

Learning to Initiate and Reason in Event-Driven Cascading Processes

Input 1: An observed cascade.
t=1.42:
purple ball hits the right-wall

t=2.04:
purple hits gray pin

t=3.04:
yellow hits cyan

t=4.44:
cyan hits gray pin

Output: A solution.
t=3.35:
yellow hits red

t=1.75:
purple ball hits the cyan ball

t=2.24:
purple hits yellow

t=4.85:
yellow hits black pin

Input 2: An instruction.
All the balls are in
motion, in all frames.

Arrows “ ” highlight
the event of each frame.

Figure 1. An experimental test bed for the Cascade setup. Input
1 (the unsatisfied cascade): A set of balls is observed moving in
a confined space, colliding with each other, with walls, and with
static pins (grey & black). Collisions yield a cascade of events
(arrows). Input 2: A complex instruction describes a desired
“counterfactual” cascade of events and its constraints. Output (the
satisfied cascade): The agent intervenes and sets the (continuous,
2D) initial velocity of the purple ball (the “pivot”) to achieve
the goal, satisfying the constraints. Only keyframes are shown.
See full videos here: https://youtu.be/u1Io-ZWC1Sw
(Anonymous)

an exponential number of potential cascades. This “butterfly
effect” (Lorenz, 1993) is typical in cascading systems, like
a billiard ball missing another ball by a thread or a truck
reaching a warehouse right after another truck has already
left.

Consider a natural but naive approach to the Cascade prob-
lem: train an end-to-end regression model that takes the
system and instruction as input and predicts the necessary
intervention. We empirically find that this approach fails,
presumably because the set of possible chains of events
is exponentially large, and the model fails to learn how to
find an appropriate chain that satisfies the instruction. We
discuss other challenges in Section 4.

Technical insights. In designing our approach, we follow
two key ideas. First, instead of modeling the continuous
dynamics of the system, we reduce the search space by
focusing on a small number of discrete, semantic events.
To do this, we design a representation called an “Event
Tree” (Figure 2). In a billiard game, these events would be
collisions of balls. In logistic chains, these events would be
deliveries of items to their target location or assembly of
parts. To reduce the search space, we build a tree of possible
future events, where the root holds the initial world-state.
Each child node corresponds to a possible future subsequent
semenatic event from its parent. Thus, a path in the tree

from a root to a descendant captures a realizable sequence
of events.

Our second idea is to learn how to efficiently search over the
event tree. This is critical because the tree grows exponen-
tially with its depth. We learn a function that assigns scores
to tree nodes conditioned on the instruction and use these
scores to prioritize the search. We also derived a Bayesian
correction term to guide the search with the observed cas-
cade: we first find the path in the event tree that corresponds
to the observed cascade, and then correct the scores of nodes
along that path.

Modelling system dynamics with forward models. A
forward model describes the evolution of the dynamic sys-
tems in small time steps. There is extensive literature on
learning forward models from observations in physical sys-
tems (Fragkiadaki et al., 2016; Battaglia et al., 2016; Lerer
et al., 2016; Watters et al., 2017; Janner et al., 2019). Recent
work also studied learning forward models for cascades (Qi
et al., 2021; Girdhar et al., 2021). However, once the for-
ward model has been learned, the desired initial condition
of the system is found by an exhaustive search. Here, we
show that exhaustive search fails for complex cascades and
with semantic constraints (Section 4). Therefore, our paper
focuses on learning to search, rather than on learning the
forward model. We assume that we are given a special kind
of a “forward” model operating at the level of semantic
events. Namely, given a state of the cascading system, our
forward model allows to query for the next event (”which
objects collide next?”), and predict the outcome of that event
(velocities of objects after collision).

Test bed. We designed a well-controlled environment that
shares key ingredients with real-world cascading processes.
In our test-bed several spheres move freely on a table, col-
liding with each other and with static pins within a confined
space (Figure 1). The chain of collisions forms a complex
cascading process. Naturally, a simulated test-bed cannot
cover the full complexity of real-world scenarios and addi-
tional research may be required. We discuss these topics in
Section 7.

Contributions. This paper proposes a novel approach for
learning to efficiently search for a complex cascade in a
dynamical system. Our contributions are: (1) A new learn-
ing setup, Cascade, where an agent observes a dynamical
system and then changes its initial conditions to meet a
given semantic goal. (2) Learning a principled probabilistic
scoring function over a semenatic Event Tree, for searching
efficiently over the space of interventions. (3) A Bayesian
formulation leveraging the observed cascade to guide the
search in the event tree toward a counterfactual outcome.

2

https://youtu.be/u1Io-ZWC1Sw

Learning to Initiate and Reason in Event-Driven Cascading Processes

2. The “Cascade” learning setup
Cascade is a supervised learning problem. At the inference
phase, The agent is provided with a dynamical system and
two inputs: (1) A sequence of events called the “observed
cascade” together with the respective initial condition of the
system. (2) An instruction that describes desired semantic
properties (”constraints”) of the solution. The observed
cascasde does not satisfy the instruction. The agent is asked
to intervene by controlling the state of one “pivot element”
in the system at a specific point in time. The goal is to find
an intervention that makes the roll out of the dynamical
system satisfy the instruction.

At the training phase, we are only given “successful” labeled
samples. Each sample consists of (1) an instruction; and (2)
the initial state of the system except the controllable pivot.
The ”label” (y) of each sample is the initial state of the pivot,
which yields the desired behavior of the system. During
training we do not provide examples of failing sequences
together with a successful sequence. The reason is that in
reality, one cannot ”roll-back” time and obtain both a failed
sequence and a successful sequence.

More formally, our training set D con-
sists of N labelled samples D =
{features = (xn, gn), label = (y∗n, Q(y∗n), n = 1 . . . N},
where:

• xn is the initial state of a dynamical system, excluding
those of its pivot element.

• gn ∈ RG is a structured representation of an instruction.

• y∗n ∈ Y ⊂ Rd is the pivot’s initial state of the solution.

• Q(y∗n) = {sk}Kk=1 is a sequence of events that occur
when the system is played out with the pivot initial value
yn.

At test time, a novel sample is drawn, describing an unseen
dynamical system and instruction (x, g); and an observed
cascade roll-out (yobs, Q(yobs)) which fails to fulfill the
instruction. Our goal is to provide an alternative (counter-
factual) initial state for the pivot element ŷ, such that the
instruction is fulfilled when the system is rolled-out.

Our test bed: We introduce a new simulated test bed that
abstract away from specific applications. An agent observes
a physical world with several moving and static objects go-
ing through a cascade of events (Figure 1 top), and it is given
a complex instruction “Push: purple ball . . . ”. It then ma-
nipulates the direction and speed of the purple ball (Figure
1 bottom) manifesting a new cascading process that satisfy
the complex set of constraints given by the instruction. In
the Cascade setup, the agent is trained on a set of scenes
and their goals, and is tested on new scenes and their goals.

a)

b)

�

�����

�����

��

��� = [(cyan, purple), (red, black)]
��� = �|Q � = , , …

��� = � �� | �� ∈ ��, � ∈ ���

�� = [(cyan, purple)]
�� = �| Q � = , … .

�� = � �� | �� ∈ �����, � ∈ ��

����� = []
����� = �

feasible dynamic
configurations

����� = { }

Figure 2. (a) The Event Tree data structure, illustrated according
to our test-bed. S is the collision sequence of a node; Y is the
intervention subset of a node; W is the node’s world-state. See
Section 3.1. (b) Tessellation of the intervention space.

3. Methods
Solving the Cascade setup poses three major challenges.
First, our model needs to identify semantic events, but sim-
ulations of dynamical systems typically follow fixed and
small timesteps, which are indifferent to events. Second, the
set of desired constraints and dynamical systems is compo-
sitional and large. The agent should learn to generalize to
different systems and configurations that were not observed
during training. Third, we wish to benefit from the example
of the failed cascade that is only available at inference time
(the counterfactual setup).

We develop an approach that addresses these three chal-
lenges. To address the first, we develop a representation
that focuses on key “semantic” events of the dynamics (e.g.,
collisions). We build a tree of possible outcomes such that
a path in the tree captures a realizable cascade of events.
To address the second challenge, we learn a scoring func-
tion that assigns values to tree nodes conditioned on the
instruction. This allows us to generalize to unseen setups,
and at inference time, we use the predicted scores to search
efficiently over the space of interventions. To address the
third challenge, We develop a Bayesian formulation that
allows to integrate the “counterfactual” information with
the score predictions. Next, we describe each component in
more detail.

3.1. The Event Tree: A tree of possible futures

We now describe the main data structure that we use to
represent the search problem - the Event Tree. The event
tree is designed to provide a searchable data structure for
realizable sequences of events. To make these searches
efficient, we represent the system behavior at the semantic
level. These could be any key interactions between system
components, like manufacturing an item in supply chains,

3

Learning to Initiate and Reason in Event-Driven Cascading Processes

or a protein binding the DNA to regulate the expression of
a gene. Importantly, in our approach, we require that it is
possible to compute the state of the system right after an
event.

Each node corresponds to a sequence of semantic events.
The node’s children correspond to realizable continuations
of the event sequence. Namely, all possible events that could
happen after the sequence Su. We now formally describe
the node properties and the expansion of the event tree.

Tree Nodes. In the event tree, each node represents a subset
of interventions Yu ⊂ Y that share the same sequence of
preceding events. These preceding events are referred to
as the node’s prefix of semantic events. Each node has a
unique prefix, Su ≜ (s1, s2, . . . su). Although different
interventions within a node result in the same prefix, they
may have different subsequent events after the prefix.

The root node describes the set of possible interventions
at t = 0 and its sequence of events Sroot is empty. Its
intervention subset is Yroot = Y . See Figure 2, top.

We define wu
y as the state of the system after it evolved from

y ∈ Y and yielded the sequence Su. Then, a “world-state”
of a node is defined as the set Wu =

{
wu

y |y ∈ Yu

}
.

Given the world state of a current node, we propose an
event-driven forward model f(·). It takes as input a state
wu

y and outputs the next immediate semantic event. We
parallelized it on a GPU to detect possible futures for the
world state Wu. Appendix I describes the forward model in
detail.

Node Expansion. Suppose we decide to expand node u.
We apply the forward model f(·) to each wu

y ∈ Wu. A
new node u′ is composed of all f(wu

y) that share a same
next semantic event s′. The event sequence of the child
node u′ is Su′ = concat(Su, s

′); the intervention set is
Yu′ = {y|Q(y) has prefix Su′}.

Expanding the tree can be viewed as a tessellation refine-
ment of the intervention space Y . At each step, we pick
one cell and split it into multiple cells, where each child
cell represents a different event that occurs after a shared
sequence of events, represented by the parent cell.

If the tree is fully expanded, it covers all possible futures.
However, expanding the whole tree is expansive, as it grows
exponentially with its depth. In the next subsection, we
discuss how one can learn a scoring function and use it to
guide an efficient tree search.

3.2. Assigning and learning a scoring function for nodes

The number of nodes in such trees grows exponentially with
the tree depth and exceeds billions of nodes even in our
basic setup (Section 4). Therefore, an exhaustive search is

infeasible, and a search method must be devised. To search
the tree for a node that satisfies the goal, we prioritize which
node to expand by learning a scoring function that assigns
scores for nodes, conditioned on the instruction g. There are
three key challenges in learning a score function. First, we
do not have ground-truth (target) scores for tree nodes, and
it is unclear what would be an effective assignment of scores.
Second, the training data contains only positive examples of
correctly designed plans. Finally, we wish to leverage the
information about the faulty observed cascade, but a faulty
cascade is only observed during inference time.

To motivate our approach, consider the following naive
approach to set target scores. For a given tree, let the “target”
u∗ be the node that represents the ground-truth sequence
Su∗ . A natural choice for setting scores would be to set
V (u∗) = 1, and set all other scores to zero (“All-or-None”).
However, this provides little guidance for searching the
tree, as no signal is provided until the search hits the target
node. Instead, a desired property of the learning algorithm
would be to guide the search by assigning monotonically
increasing scores along the path from the root to u∗.

To address these three challenges we design a principled
probabilistic approach for setting the score function. We
train our model to predict the likelihood that a sample from
Yu, when rolled out, will satisfy the instruction g.

V (u) = Pr (Q(y) satisfies g|y ∈ Yu, g) . (1)

Here, nodes on the path from the root to u∗ are assigned
monotonically increasing scores, as the tessellation gets
finer and concentrates on Yu∗ . Additionally, this proba-
bilistic perspective allows us to take a maximum-likelihood
approach at inference time to prioritize nodes.

We use a sampling-based estimate of V (u) to calculate the
ground-truth scores for training. We take a finite sample of
Ŷroot ⊂ Y , collecting say 106 points, and use it to expand
the tree. The node’s score is then the fraction of the samples
from Ŷu that reach the target node u∗.

V̂ (u) = Pr
(
yi ∈ Ŷu∗ |yi ∈ Ŷu, g

)
=

∥∥∥Ŷu∗ ∩ Ŷu

∥∥∥ / ∥∥∥Ŷu

∥∥∥ .
(2)

Nodes outside that sequence get a score of 0. In Section 4,
we empirically explore alternative approaches for assigning
ground-truth scores to nodes.

Counterfactual update for the score function. During
inference, we observe a cascade that does not satisfy the
instruction, and are asked to retrospectively suggest a better
solution. How can the observed cascade be used to find a
solution? The probabilistic score function we defined allows
us to formalize this problem in a Bayesian setting. We treat
the model predictions as a prior for the true score, and the
information about the observed cascade as evidence. We
then ask how to update the score function given the observed

4

Learning to Initiate and Reason in Event-Driven Cascading Processes

evidence. Formally, our goal is to solve Eq. (1) when it is
conditioned by the evidence, V (u|Suobs doesn’t satisfy g).

During training, our model learns to estimate the uncondi-
tioned score function V (·). In the appendix, we show that
we can express the Bayesian update of the scores in terms
of V (uobs), V (u),

V (u|Suobs doesn’t satisfy g) = V (u)−V (uobs)·fr(yobs, yu).
(3)

where fr(uobs, u) = Pr(y ∈ Yuobs |y ∈ Yu) is the probabil-
ity that an intervention y ∈ Yu will result in sequence with
prefix Suobs . It is estimated in a fashion similar to Eq. (2).

A model for the score function. Next, we describe the rep-
resentation and architecture for modelling the score function.
The model takes as inputs the instruction g and sequence of
events Su that define the node u, and predicts a scalar score
with ground-truth labels according to Eq. (2).

A naive approach is to represent Su as a sequence. How-
ever, such representation may not convey well the relations
describing the cascade of events. For illustration, in the
following sequence of collision events [(A, B), (C, D), (A,
E)], the collision (A,E) is driven by (A,B), because A is
common for both, while (C,D) is less relevant for describing
the events that lead to (A,E). Instead, we transform each
sequence to a Directed Acyclic Graph (DAG) that captures
relations in the cascade of events. A node in this DAG is an
event that involves some elements. Each edge represents an
element shared by two subsequent events. See Figure 3 for
a concrete illustration.

Architecture We use a Graph Neural Network (GNN) to
parameterize our score function. We represent the graph as
a tuple (A,X,E, z) where A ∈ {0, 1}n×n is the graph
adjacency matrix, Y ∈ Rn×d is a node feature matrix,
E ∈ Rm×d′

is an edge feature matrix, and z ∈ Rd′′ is
a global graph feature. We chose to use a popular message
passing GNN model (Battaglia et al., 2018). We describe
its architecture in detail in the appendix.

3.3. Inference

Our agent searches the tree for the maximum scored node
uMAX . Then, it randomly selects an intervention from its
intervention subset y ∈ YuMAX

. We consider two variants.

Maximum likelihood search: The agent performs a tree
search that expands the most likely nodes. At any given
step, the agent stores a sorted list of nodes together with
their likelihood scores, it then picks the highest scoring node
from this list and expands it. The node children are then
added to the list with their predicted scores, and the agent
resorts the list.

We limit the tree search to expand only 80 nodes, whereas
in our test bed a full event tree, which contains all possible

� = [(cyan, purple), (red, black), (yellow, purple), (red, yellow),
(purple, gray), (cyan, wall), (yellow, black),…]

Red Yellow Cyan Purple

Purple-
Cyan #1

Purple-
Yellow #3

Yellow-
Black #6

Red-
Yellow #4 Purple-

Gray #5
Wall-

Cyan #7

Red-
Black #2

…

Figure 3. Illustrates transforming a sequence of events (top) to a
DAG (bottom). It corresponds to the video in Figure 1 bottom.

realizations, have billions of nodes, ∼×2.8 per unit of depth
(empirically).

Counterfactual search: Here we explain how we lever-
age the information in the observed cascade for inference.
Consider the case where the sequence of the solution is
complex and the observed sequence diverges from the so-
lution at a late point. In this case, it is likely that a part of
the observed chain will be informative about the solution,
and will diverge at some point. To use that information,
we apply the Bayesian correction (Eq. 3) term to the pre-
dicted score of every node along the observed sequence.
We pick the highest scoring node, and initialize the search
up to that node. Then we continue the search as described
by the “Maximum likelihood search”. In practice, we trim
the observed sequence, at Nobserved nodes. Nobserved is a
hyper-parameter.

4. Experiments
We compared our approach to state-of-the-art baselines,
including human performance. Then, we follow with an ab-
lation study to examine the contributions of different compo-
nents in our approach. Next, we describe our experimental
protocol, compared methods, and evaluation metrics.

4.1. A simulation benchmark

We created a well-controlled environment that closely mim-
ics the key characteristics of real-world cascading processes.
1 This environment has been designed to be: (1) sensitive to
initial conditions, allowing a wide range of future cascades,
(2) contain diverse scenes, each representing a unique dy-
namical system. (3) incorporate semantic goals that depend
on intermediate outcomes; and (4) capable of benchmarking
counterfactual scenarios.

1Examples: link #1, link #2, link #3.

5

https://youtu.be/QLMTD6R2Z54
https://youtu.be/RCKFBRrCRw0
https://youtu.be/4s9MmY2J__I

Learning to Initiate and Reason in Event-Driven Cascading Processes

Scenes. In our test-bed, several spheres move freely on a
frictionless table, colliding with each other and with static
pins within a confined four-walled space (Figure 1). Each
episode describes a different scene, which includes tens of
collisions.

Instructions. A structured instruction describes (i) A pivot
element to manipulate “Push: green ball”; (ii) A target
semantic event (collision) to fulfill “Target: red hits black
pin”; and (iii) constraints, of two possible types. First,
is a “count” constraint. It resembles constraining the total
amount of resources available on a logistic chain. It specifies
an accumulated number of collisions, on all the paths from
the pivot to the target, e.g. “Chain Count: 3”. Second, is a
“bottleneck” constraint, which resembles a bottleneck along
a logistic chain. It enforces a specific collision to occur
before the target collision, e.g. “Bottleneck: red hits top
wall”. The appendix describes the instruction generation
process with more examples.

The task. The agent’s objective is to intervene with the
initial state of the scene by setting the velocity of the pivot
object, in order to cause a set of collisions described in
the instruction. This often requires a precise “trick shot”,
that requires careful reasoning about how the subsequent
events will unfold. Dataset. We generated a dataset with
∼46K scenes (we limited generation time to 80 hours), each
includes 4-6 moving balls, 0-2 pins, and 4 walls and up to 5
semantic instructions (∼4.25 on average). The data is split
by unique scenes, into 470 unseen scenes for test, 69 scenes
for selecting hyper-parameters (val. set), and the rest are
used for training. See Appendix H for more details.

4.2. Experiment details

Compared Methods: We compared the following meth-
ods. (1) ROSETTE (Reasoning On SEmanTic TreEs):
Our approach described in Section 3. Search uses the “coun-
terfactual” variant of the tree search (Section 3.3), by first
expanding the nodes along the “observed” sequence. (2)
ROSETTE-max-l.: Like #1, but using “Maximum likeli-
hood search” (Section 3.3) - not using the “observed” se-
quence. For a fair comparison, we make sure that ROSETTE
expands the same number of nodes in total as ROSETTE-
max-l. (3) (Qi et al., 2021), The SOTA on PHYRE, based
on a learned forward model, goal-satisfaction classifier and
exhaustive search. For a fair comparison we replace their
learned forward model by the full simulator of Makoviychuk
et al. (2021). Hence, this baseline benefitted from using
an exact forward model. (4) Cross Entropy: A standard
planner (de Boer et al., 2005; Greenberg et al., 2022) that op-
timizes the objective function learned by compared method
(3). Similarly to (3), this baseline had access to the exact
model. (5) Sequential: Using a sequential representation
for a tree chain, instead of a DAG. Specifically, we repre-
sent the sequence as a graph with edges along the sequence.

(Litany et al., 2022) compared a recurrent versus standard
synchronous propagation in GNN models and found them
empirically equivalent. (6) Deep Sets regression: Embed-
ding the instruction and the initial world state to predict a
continuous intervention. We embed the objects’ initial posi-
tions and velocities using the permutation-invariant “Deep
Sets” architecture (Zaheer et al., 2017), and use an L2 loss
with respect to ground-truth interventions in the “counterfac-
tual” training samples. (7) Random: Sample interventions
at random from an estimated distribution of ground-truth
interventions. Details appear in the appendix.

Ablation: We also carry a thorough ablation study: First,
we explore alternative approaches to label node scores along
the ground-truth sequence. Linear: Linearly increases the
score by V (u) = depth(u)/depth(u∗). Step: Give a fixed
medium score to nodes along the sequence, and a maximal
score to the target node: V (u) = 0.5 + 0.51u∗(u). All-
or-None: Sets V (u) = 1u∗(u), this baseline is equivalent
to the naive approach discussed in Section 3.2. Second,
we compare the “Counterfactual” search to the “Maximum
Likelihood” search by comparing their performance on a
dataset that includes more complex instructions. This
dataset includes a third constraint. We partition the dataset to
“Easy” and “Hard” instructions, and compare these search
methods on both types of instructions. We describe this
dataset in the appendix. Third, we assess the impact of
varying “levels” of diverging points on overall performance
when presented with an observed cascade. Specifically, we
aimed to quantify the benefits of the counterfactual update
in situations where the observed sequence diverges from the
solution at a later point. Last, we test how ablating parts of
the instruction affects the ROSETTE model performance.
Implementation details of the baselines and ablations are
described in Section D.

TREE SIMULATOR
SUCCESS SUCCESS

RANDOM NA 17.6 ± 0.3%
DEEPSET REGRESSION NA 18.4 ± 0.5%
(QI ET AL., 2021) NA 21.1 ± 0.9%
CROSS ENTROPY NA 20.9 ± 0.4%
SEQUENTIAL 52.4 ± 0.6% 43.1 ± 0.3%

ROSETTE (OURS) 60.8 ± 0.3% 48.8 ± 0.3%

Table 1. Success rates of Our approach and baselines. TREE is
not applicable to the first three baselines since they do not use an
event tree.

TREE
SUCCESS

ALL-OR-NONE 33.5 ± 1.6%
STEP 45.1 ± 1.0%
LINEAR 48.7 ± 0.7%
ROSETTE-MAX-L (OURS) 59.7 ± 0.3%

Table 2. Success rates of the score function variants (see Abla-
tion).

6

Learning to Initiate and Reason in Event-Driven Cascading Processes

DIVERGE ROSSETTE ROSSETTE-MAX-L N

<=2 55.4 ± 0.6% 55.5 ± 0.6% 6750
3. . . 4 58.9 ± 1.% 54.2 ± 1.% 2435
5+ 50.4 ± 1.2% 44.5 ± 1.2% 1765

Table 3. The impact of varying levels of diverging points from the
observed cascade on overall performance (see Ablation). The coun-
terfactual update didn’t provide a significant advantage for early
diverging points (<=2). However, it did result in a noteworthy
13% increase in success rate for later diverging points (50.4% vs
44.5%).

ACO (3 constraints)Figure 4. Comparing “Counterfactual” search (ROSETTE) with
“Maximum likelihood” search (ROSETTE-max-l) for 2 levels of
instruction complexity (“Hard”: 2 or more constraints) and for two
levels of “count” instructions (“5+”: 5 or more). Using the ob-
served cascade, ROSETTE performs better in complex scenarios.

Evaluation metrics: For each episode and goal, we predict
an intervention and evaluate their success rate using the fol-
lowing metrics. Simulator success rate: The success rate
when rolling out the predicted intervention using a physical
simulator (Makoviychuk et al., 2021). This metric mimics
experimenting in the real world. Tree success rate (where
applicable): Each node in the tree represents a sequence
of events. A tree based algorithm selects a node. A “tree
success” is when the selected node’s sequence satisfy the in-
struction. This metric evaluates the performance of the score
function and tree search, independently from errors that may
be introduced due to the event-driven forward model.

We further measured refinements of these metrics by con-
ditioning on various properties of the instruction and scene.
(1) Condition tree success rate on instruction type: Un-
constrained: The instruction only specifies target colli-
sions. Bottleneck: also contains an “bottleneck” constraint.
Count: contains a “count” constraint. B&C: contains both
“bottleneck” and “count” constraints. (2) Condition tree
success rate on complex scenarios: (2.1) Instructions with
2 or more constraints are marked as “Hard”, and the rest as
“Easy”; (2.2) Instructions with a “count” constraint value
≥ 5 are considered hard. Complex scenario conditioning
was evaluated on the complex instruction dataset. Using the
main dataset demonstrate a similar trend (See appendix K).

We report mean value and standard error of the mean across
5 model seeds.

4.3. Human evaluation

To assess a human baseline, we conducted a user study with
Amazon Mechanical Turk. We designed a game, where
a player is given a video of the observed cascade and is
asked to select one of 44 combinations of orientations (11)
and speeds (4). The game is based on 30 test episodes.
For comparing with ROSETTE, we select the one (of 44)
which is nearest (in L2) to ROSETTE’s predicted velocity.
Appendix C, describes the experiment design and further
analysis of the results.

5. Results
We first compare the performance of ROSETTE with base-
line methods and human performance. We then study its
properties in greater depth, through a series of ablation ex-
periments. We discuss the baselines’ results in Appendix
A.1, and we provide qualitative examples in Appendix B.

Table 1 describes the Tree and the Simulator success rates
of ROSETTE and compared methods. ROSETTE achieves
the highest success rate for both the “Tree” success rate
(60.8%) and the “Simulated” success rate (48.8%). Achiev-
ing ∼80% conversion rate from Tree to Simulated. The
random baseline success rate is (17.6%), which is close
to the performance of the regression model. We conjec-
ture that the regression model fails, because it can’t rep-
resent the outcomes as ROSETTE can. The Sequential
approach is the strongest baseline, reaching Tree = 52.4%
and Simulated = 43.1% success rates.

In the human study, ROSETTE achieves the highest average
success rate (43.3% ± 1.3% vs 23.9% ± 2.6%). Humans
displayed a large range of success rates, ranging from 10%
to 41.4%, with a median of 25%. ROSETTE performed
more persistent, with 46.6%, 43.3% and 40% for the best,
median, and worst.

Ablation experiments: We highlight some key obser-
vations.(1) Table 2 shows the advantage of the probabilis-
tic formulation of the score function (ROSETTE-max-l),
compared to the several heuristics described in Section 4.
The strongest baseline (“Linear”) only reaches 48.7% vs.
59.7% for ROSETTE-max-l. (2) The All-or-None variant
establishes the value of event-drivenness. It is similar to
a classifier-based search like (Qi et al., 2021), but uses an
underlying event-driven forward model instead of a fixed
time stamp model as in (Qi et al., 2021). Comparing the two,
we see that using EDFM with current SOTA improves the
success rate, from 21% to 33.5%. (3) Comparing ROSETTE-
max-l to the All-or-None variant further establishes value
of learning to search, which improves the success rate

7

Learning to Initiate and Reason in Event-Driven Cascading Processes

from 33.5% to 59.7%. (3) Figure 4 quantifies the benefit
gained by using “Counterfactual” search (ROSETTE) over
Maximum-Likelihood search (Section 3.3). ROSETTE
shows a relative improvement of 7.7% (45.1% vs 41.9%)
for complex instructions. (4) Table 3 examines how dif-
ferent levels of diverging points affect performance. Early
diverging points (<=2) don’t benefit from the counterfac-
tual update. However, later diverging points result in a 13%
relative improvement in success rate with the counterfactual
update (50.4% vs 44.5%). (5) Table 4 (Appendix A) allows
an in-depth examination of the strengths and weaknesses
of ROSETTE, across 4 types of ablations, as described in
Section 4. First, we observe that the sequential baseline can
find target collisions that depend on a bottleneck collision,
as well as ROSETTE. However, it fails with “count” instruc-
tions (46.3% vs 60.8%), since it has no capacity for that
reasoning task. Second, we observe that ROSETTE is able
to effectively use the instruction, as removing any part of
the instruction hurts the success rate.

6. Related work
Learning and reasoning in physical systems. Several
papers studied cascading events in the context of physical
systems. There, the main focus was to use object interac-
tions to learn a forward model from observations. PHYRE,
Virtual Tools, and CREATE (Bakhtin et al., 2019; Allen
et al., 2020; Jain et al., 2020) are benchmarks for physi-
cal reasoning for computer vision. They differ from our
learning setup in three key aspects. First, the current paper
focuses on the search problem, looking to satisfy a set of
semantic constraints on the event sequence. Second, in the
prior benchmarks, all tasks have to satisfy the same final
goal, rather than being conditioned on a semantic goal. Last,
their setup is a sequential decision reinforcement learning
setup, allowing exploration, collecting rewards from the
environment, and multiple retries, which are not allowed
in our setup. In addition, no event-driven forward model
(EDFM) is currently available for these benchmarks, and
training an EDFM requires additional annotations and is be-
yond the scope of this work. There are several approaches to
learn such models from temporal data, like dynamic Bayes
nets (Bhattacharjya et al., 2020; Ghahramani, 1998; Gu-
nawardana & Meek, 2016), which can also handle latent
variables.

Allen et al. (2020) takes a Bayesian approach for updating
the distribution of initial conditions given a reward. We con-
sider the underlying chain of events and update the value of
the node scores in the event tree according to the observed
cascade. CLEVRER, CoPhy, CRAFT, CATER, and IntPhys
(Yi et al., 2020; Baradel et al., 2020; Ates et al., 2021; Gird-
har & Ramanan, 2020; Riochet et al., 2018) are benchmarks
for reasoning over observed temporal and causal structures

in video. They differ from our setup in a few key aspects: (1)
They focus on video-tracking and question answering rather
than acting. (2) In CLEVRER and CoPhy, the observed
cascade is available during training, which may not be a rea-
sonable assumption for real-world problems (see Section 2).
(3) CoPhy estimates the value of a static observed property,
like gravity, while we focus on the cascade evolution.

Roussel et al. (2019) studied the chain reaction problem,
with a different focus than ours. Their cascading configura-
tion is fully given and they study how to tune that config-
uration using a simulator. Our work focuses on finding a
cascading configuration given a partial description of it.

Finally, reasoning about observed content in a new set of
environments was studied by Agrawal et al. (2021). They
focused on reasoning by elimination as a means of investi-
gating the ability to make accurate inferences about never-
before-seen objects or concepts. To construct the reasoning
policy, they employed reinforcement learning.

Graph Neural Networks have been used in physical envi-
ronments (Kim & Shimanuki, 2019; Shen et al., 2020; Bapst
et al., 2019), representing the underlying state as a graph,
without considering temporal consequences. Temporal con-
sequences are vital for our decision system. We propose
how to transform a temporal sequence of events to a DAG.

Reinforcement learning: The “Cascade” learning setup
is fundamentally different from a reinforcement learning
framework (Sutton & Barto, 2005). The problem we try
to solve is not a standard planning problem (Hafner et al.,
2019), where a series of actions are taken sequentially. Here,
an action is taken once and sets the cascade of events (“Fire
and forget”).

Our problem shares similarities with the problem of eval-
uating a Markov Reward Process (MRP). Instead of look-
ing at individual physical states, we group them into sets
based on a common sequence of semantic events that led to
them. In Appendix L we define an MRP reward function
and demonstrate that this reward function induces a value
function that is aligned with our score function. Neverthe-
less, our approach has the advantage of directly learning the
score (value) function, by leveraging the problem’s structure.
Additionally, we can naturally incorporate counterfactual
information into the cascading process structure.

Our problem can also be posed as a contextual bandit prob-
lem (Bouneffouf et al., 2020). However, this does not offer
an algorithm that will allow us to benefit from the counter-
factual information and the cascading process structure.

Monte Carlo tree search approaches (Chaslot et al., 2008)
build a search tree by stochastic tree expansions and evalu-
ate the outcomes. In our approach, we construct an auxiliary
structure (the “event-tree”) to support our planning algo-

8

Learning to Initiate and Reason in Event-Driven Cascading Processes

rithm. Expanding the event tree refines (tessellates) the
intervention set. In contrast, expanding the tree in MCTS
represents an interaction with the environment (“action”).
This interaction involves a reward, a new state, and a new
chance to interact with the environment. All of these are not
present in our setup. Our approach shares some similarities
with MuZero (Schrittwieser et al., 2020) as both approaches
use a forward model to simulate a node’s semantic represen-
tation based on its parent’s representation.

Our problem can also be posed as a contextual bandit prob-
lem, this does not offer an algorithm that will allow us to
benefit from the counterfactual information and the cascad-
ing process structure.

Planning in robotics: Pertsch et al. (2020); Jayaraman
et al. (2019) learned from video data to predict key-frames,
conditioned on a start frame and an end frame (goal). These
works rely on a visual end goal. It is unclear how to use
them with a semantic goal that includes constraints. They
also rely on taking multiple actions, which is not applicable
in our ”Fire and forget” setup.

Causal inference: Counterfactual reasoning was studied in
causal inference (Pearl, 2000). Most relevant is (Buesing
et al., 2019) that used counterfactually augmented data for
training a RL policy.

Few-shot learning and Meta Reinforcement learning:
The counterfactual setup we use is similar to a probabilis-
tic perspective of few-shot learning (Fei-Fei et al., 2006;
Samuel et al., 2020) and meta-learning (Greenberg et al.,
2023; Ortega et al., 2019; Zintgraf et al., 2021; Rakelly et al.,
2019), which aim to make decisions based on limited ob-
servations. However, there are two main differences. First,
we cannot access training data to learn a meta-algorithm
because we operate in a counterfactual mode. According
to Pearl (2000), during training in a counterfactual mode,
the agent only observes successful scenarios, as obtaining
both satisfied and unsatisfied scenarios simultaneously in
the real world is impossible. Second, the observed cascade
is always a failure case, unlike successful examples used in
traditional few-shot learning and meta-learning.

7. Discussion
In this paper, we took a first step towards understanding
how to affect a complex system of cascading events. We
presented a new learning setup, called Cascade, where an
agent observes a cascade of events in a dynamical system
and is asked to intervene and change its initial state to make
the system meet a given goal. We use an event-tree repre-
sentation and a principled probabilistic score function for
searching efficiently over the space of interventions. We
also describe an approach to counterfactually reason about
an observed cascade during the tree search.

Our approach is best applied in problems that are naturally
described by event-driven dynamics. As an example, con-
sider cascading failures in power grids (Schäfer et al., 2018).
Here, semantic events are failures of nodes (transformers,
power generators, . . .) or edges (power lines). The power
flow obeys a known set of differential equations for a given
grid. When flow exceeds a powerline capacity, that line fails
(an event), resulting in an effectively different grid and a
different set of equations that govern the dynamics. The
transmission system operator may wish to define goals like
“no more than three failures”, “no more than n people af-
fected”, “that important node must not fail”. We elaborate
on this use-case and other use-cases, such as logistics and
evolution of natural disasters in Appendix J.

An important question remains: How do studies that use
our toy testbed can generalize to real-world scenarios? We
believe it can follow a similar paths as in other areas of AI
where approaches mature from toy datasets to realistic prob-
lems: First, by creating a benchmark dataset for a real-world
domain, annotated with semantic events. Some fields have
datasets that can be very natural for the problem we dis-
cussed. These may include logistics (Appendix J), evolution
of natural disasters and their consequences (Zuccaro et al.,
2018), and cascading failures in power grids (Schäfer et al.,
2018). Second, an event-driven forward model (EDFM)
needs to be trained using this dataset. Domain specific prop-
erties can be used to improve the accuracy and robustness of
an EDFM learned. Finally, given the EDFM, our approach
can be applied.

9

Learning to Initiate and Reason in Event-Driven Cascading Processes

References
Agrawal, H., Meirom, E. A., Atzmon, Y., Mannor, S., and

Chechik, G. Known unknowns: Learning novel con-
cepts using reasoning-by-elimination. In Conference on
Uncertainty in Artificial Intelligence, 2021.

Allen, K. R., Smith, K. A., and Tenenbaum, J. B. Rapid trial-
and-error learning with simulation supports flexible tool
use and physical reasoning. Proceedings of the National
Academy of Sciences, 117:29302 – 29310, 2020.

Ates, T., Atesoglu, M. S., Yigit, C., Kesen, I., Kobas, M.,
Erdem, E., Erdem, A., Goksun, T., and Yuret, D. Craft:
A benchmark for causal reasoning about forces and inter-
actions, 2021.

Bakhtin, A., van der Maaten, L., Johnson, J., Gustafson,
L., and Girshick, R. B. Phyre: A new benchmark for
physical reasoning. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld,
K. L., Kohli, P., Battaglia, P. W., and Hamrick, J. B.
Structured agents for physical construction. In ICML,
2019.

Baradel, F., Neverova, N., Mille, J., Mori, G., and Wolf,
C. Cophy: Counterfactual learning of physical dynamics,
2020.

Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D., and
Kavukcuoglu, K. Interaction networks for learning about
objects, relations and physics. In Advances in Neural
Information Processing Systems (NeurIPS), 2016.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C.,
Song, F., Ballard, A., Gilmer, J., Dahl, G., Vaswani, A.,
Allen, K., Nash, C., Langston, V., Dyer, C., Heess, N.,
Wierstra, D., Kohli, P., Botvinick, M., Vinyals, O., Li,
Y., and Pascanu, R. Relational inductive biases, deep
learning, and graph networks, 2018.

Bhattacharjya, D., Shanmugam, K., Gao, T., Mattei, N.,
Varshney, K. R., and Subramanian, D. Event-driven con-
tinuous time bayesian networks. In AAAI, 2020.

Bouneffouf, D., Rish, I., and Aggarwal, C. Survey on appli-
cations of multi-armed and contextual bandits. In 2020
IEEE Congress on Evolutionary Computation (CEC), pp.
1–8. IEEE, 2020.

Buesing, L., Weber, T., Zwols, Y., Heess, N., Racaniere,
S., Guez, A., and Lespiau, J.-B. Woulda, coulda,
shoulda: Counterfactually-guided policy search. In In-
ternational Conference on Learning Representations,

2019. URL https://openreview.net/forum?
id=BJG0voC9YQ.

Chaslot, G., Bakkes, S., Szita, I., and Spronck, P. Monte-
carlo tree search: A new framework for game ai. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, volume 4,
pp. 216–217, 2008.

Cong, Q., Yu, W., and you Chai, T. Cascade process model-
ing with mechanism-based hierarchical neural networks.
International journal of neural systems, 20 1:1–11, 2010.

de Boer, P. T., Kroese, D. P., Mannor, S., and Rubinstein,
R. Y. A tutorial on the cross-entropy method. Annals of
Operations Research, 134:19–67, 2005.

Fei-Fei, L., Fergus, R., and Perona, P. One-shot learning of
object categories. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28:594–611, 2006.

Fragkiadaki, K., Agrawal, P., Levine, S., and Malik, J.
Learning visual predictive models of physics for play-
ing billiards, 2016.

Ghahramani, Z. Learning dynamic Bayesian networks, pp.
168–197. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1998. ISBN 978-3-540-69752-7. doi: 10.1007/
BFb0053999. URL https://doi.org/10.1007/
BFb0053999.

Girdhar, R. and Ramanan, D. Cater: A diagnostic dataset
for compositional actions and temporal reasoning, 2020.

Girdhar, R., Gustafson, L., Adcock, A., and van der Maaten,
L. Forward prediction for physical reasoning. Time Series
Workshop, ICML, 2021.

Greenberg, I., Chow, Y., Ghavamzadeh, M., and Mannor, S.
Efficient risk-averse reinforcement learning. In Advances
in Neural Information Processing Systems, 2022.

Greenberg, I., Mannor, S., Chechik, G., and Meirom, E. A.
Train hard, fight easy: Robust meta reinforcement learn-
ing. ArXiv, abs/2301.11147, 2023.

Gunawardana, A. and Meek, C. Universal models of multi-
variate temporal point processes. In AISTATS, 2016.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565, 2019.

Hagberg, A., Swart, P., and S Chult, D. Exploring net-
work structure, dynamics, and function using networkx.
Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

10

https://openreview.net/forum?id=BJG0voC9YQ
https://openreview.net/forum?id=BJG0voC9YQ
https://doi.org/10.1007/BFb0053999
https://doi.org/10.1007/BFb0053999

Learning to Initiate and Reason in Event-Driven Cascading Processes

Jain, A., Szot, A., and Lim, J. J. Generalization to new
actions in reinforcement learning. In ICML, 2020.

Janner, M., Levine, S., Freeman, W. T., Tenenbaum, J. B.,
Finn, C., and Wu, J. Reasoning about physical interac-
tions with object-oriented prediction and planning. In
Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

Jayaraman, D., Ebert, F., Efros, A., and Levine, S. Time-
agnostic prediction: Predicting predictable video frames.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=SyzVb3CcFX.

Kim, B. and Shimanuki, L. Learning value functions with re-
lational state representations for guiding task-and-motion
planning. In CoRL, 2019.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Lerer, A., Gross, S., and Fergus, R. Learning physical
intuition of block towers by example, 2016.

Litany, O., Maron, H., Acuna, D., Kautz, J., Chechik, G.,
and Fidler, S. Federated learning with heterogeneous
architectures using graph hypernetworks, 2022.

Lorenz, E. N. The Essence of Chaos. UCL Press, London,
1993.

Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey,
K., Macklin, M., Hoeller, D., Rudin, N., Allshire, A.,
Handa, A., and State, G. Isaac gym: High performance
gpu-based physics simulation for robot learning, 2021.

Nakano, R., Hirabayashi, M., Agrusa, H. F., Ferrari, F.,
Meyer, A. J., Michel, P., Raducan, S. D., Lana, D. P. S.,
and Zhang, Y. Nasa’s double asteroid redirection test
(dart): Mutual orbital period change due to reshaping in
the near-earth binary asteroid system (65803) didymos.
The Planetary Science Journal, 3, 2022.

Ortega, P. A., Wang, J. X., Rowland, M., Genewein, T.,
Kurth-Nelson, Z., Pascanu, R., Heess, N. M. O., Ve-
ness, J., Pritzel, A., Sprechmann, P., Jayakumar, S. M.,
McGrath, T., Miller, K. J., Azar, M. G., Osband, I., Rabi-
nowitz, N. C., György, A., Chiappa, S., Osindero, S., Teh,
Y. W., Hasselt, H. V., de Freitas, N., Botvinick, M. M., and
Legg, S. Meta-learning of sequential strategies. ArXiv,
abs/1905.03030, 2019.

Pearl, J. Causality: models, reasoning and inference, vol-
ume 29. Springer, 2000.

Pertsch, K., Rybkin, O., Yang, J., Zhou, S., Derpanis, K. G.,
Daniilidis, K., Lim, J. J., and Jaegle, A. Keyframing the

future: Keyframe discovery for visual prediction and plan-
ning. In Learning for Dynamics & Control Conference,
2020.

Qi, H., Wang, X., Pathak, D., Ma, Y., and Malik, J. Learning
long-term visual dynamics with region proposal interac-
tion networks. In ICLR, 2021.

Rakelly, K., Zhou, A., Quillen, D., Finn, C., and Levine,
S. Efficient off-policy meta-reinforcement learning via
probabilistic context variables. 2019.

Riochet, R., Castro, M. Y., Bernard, M., Lerer, A., Fergus,
R., Izard, V., and Dupoux, E. Intphys: A framework and
benchmark for visual intuitive physics reasoning. ArXiv,
2018.

Roussel, R., Cani, M.-P., Léon, J.-C., and Mitra, N. J. De-
signing chain reaction contraptions from causal graphs.
ACM Trans. Graph., 38(4), 2019. ISSN 0730-0301.
doi: 10.1145/3306346.3322977. URL https://doi.
org/10.1145/3306346.3322977.

Samuel, D., Atzmon, Y., and Chechik, G. From generalized
zero-shot learning to long-tail with class descriptors. 2021
IEEE Winter Conference on Applications of Computer
Vision (WACV), pp. 286–295, 2020.

Schäfer, B., Witthaut, D., Timme, M., and Latora, V. Dy-
namically induced cascading failures in power grids. Na-
ture Communications, 9, 2018.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., Lillicrap, T., and Silver, D. Mastering
atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, dec 2020. doi:
10.1038/s41586-020-03051-4. URL https://doi.
org/10.1038%2Fs41586-020-03051-4.

Shen, W., Trevizan, F. W., and Thi’ebaux, S. Learning
domain-independent planning heuristics with hypergraph
networks. In ICAPS, 2020.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. IEEE Transactions on Neural Networks, 16:
285–286, 2005.

Watters, N., Tacchetti, A., Weber, T., Pascanu, R., Battaglia,
P., and Zoran, D. Visual interaction networks. In
Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Yi, K., Gan, C., Li, Y., Kohli, P., Wu, J., Torralba, A., and
Tenenbaum, J. B. Clevrer: Collision events for video
representation and reasoning, 2020.

11

https://openreview.net/forum?id=SyzVb3CcFX
https://openreview.net/forum?id=SyzVb3CcFX
https://doi.org/10.1145/3306346.3322977
https://doi.org/10.1145/3306346.3322977
https://doi.org/10.1038%2Fs41586-020-03051-4
https://doi.org/10.1038%2Fs41586-020-03051-4

Learning to Initiate and Reason in Event-Driven Cascading Processes

Zaheer, M., Kottur, S., Ravanbakhsh, S., Póczos, B.,
Salakhutdinov, R., and Smola, A. Deep sets. In NIPS,
2017.

Zintgraf, L. M., Schulze, S., Lu, C., Feng, L., Igl, M.,
Shiarlis, K., Gal, Y., Hofmann, K., and Whiteson, S.
Varibad: Variational bayes-adaptive deep rl via meta-
learning. Journal of Machine Learning Research, 22:
289:1–289:39, 2021.

Zuccaro, G., Gregorio, D. D., and Leone, M. F. Theoreti-
cal model for cascading effects analyses. International
Journal of Disaster Risk Reduction, 2018.

12

Learning to Initiate and Reason in Event-Driven Cascading Processes

A. Additional results
Here we describe additional results and provide further discussion.

UNCONSTRAINED BOTTLENECK COUNT B & C

ROSETTE (OURS) 76.5 ± 0.8% 68.5 ± 1.0% 60.8 ± 0.7% 49.5 ± 0.5%
-COUNT 75.8 ± 0.9% 68.4 ± 0.8% 6.1 ± 0.6% 17.1 ± 0.5%
-BOTTLENECK 76.4 ± 0.9% 21.5 ± 1.1% 61.1 ± 1.2% 34.1 ± 0.7%
-COUNT -BOTTLENECK 76.6 ± 0.8% 21.4 ± 1.1% 6.1 ± 0.5% 4.2 ± 0.3%
-FULL 60.8 ± 0.5% 32.7 ± 0.9% 11.7 ± 0.5% 6.6 ± 0.1%
SEQUENTIAL 77.9 ± 0.4% 66.9 ± 1.3% 46.3 ± 1.3% 36.5 ± 1.3%

Table 4. Ablation study. In red, results that perform much worse than ROSETTE.

A.1. Baseline results discussion

(Qi et al., 2021) baseline: We believe that the (Qi et al., 2021) baseline fails for three main reasons: (1) The baseline does
not use an event-based representation. (2) It employs a classifier that is trained to provide an all-or-none signal, rather than
guiding the search. The ablation study (Table 1, right) demonstrates the importance of guiding the search (compare “Ours”
59.7% vs “All-or-None” 33.5%) (3) The baseline architecture cannot reason over the temporal DAG structure of a cascade,
as our GNN can. The importance of capturing the DAG structure is demonstrated when comparing “Our” (60.8%) to the
SEQUENTIAL baseline (52.4%) (Table 1, left)

Existing Planners: We wish to provide further insight into why it is challenging to apply existing planners to this setup.
The main challenge is that the optimization objective is given in semantic terms about the end goal. To apply a Cross-
Entropy-Method (CEM) planner, we derive a corresponding objective function by training a classifier that checks if the goal
was achieved for a given scene and plan. Specifically, we used the existing SoTA PHYRE classifier (Qi et al., 2021). A
main drawback is that classifiers provide an “all or none” signal, hence fail in guiding the planner through optimization.
Conversely, our approach provides a score (Eq. 1) that monotonically increases through the tree, and it is constructed to
assist the search.

B. Qualitative examples
Here we provide links to qualitative examples that we uploaded to YouTube. They are best viewed in ×0.25 slow motion.
The YouTube account we use is anonymous.

For each episode, we show a side-to-side video of the observed cascade, the ROSETTE successful case, and ROSETTE-max-l
failure case. The instruction is displayed on top of each video.

• Push: cyan ball, Target: blue hits red, Bottleneck: cyan hits bottom wall, Chain Count: 6
In this example, ROSETTE semantically follows the first 10 collisions (in chonological order) as in the observed
cascade. It then diverges from the observed cascade, making the blue hit the red. The cyan pivot comes into play
already on the 1st collision, and the agent adjusts its velocity such that it shall yield the goal. The ROSETTE-max-l
baseline, hits the target, however it fails with the count constraint. The bottleneck collision occurs, but not on the chain
from the pivot to the target. See the complete video here: https://youtu.be/RCKFBRrCRw0

• Push: cyan ball, Target: green hits red, Bottleneck: purple hits red, Chain Count: 4
In this example, ROSETTE semantically follows the first 5 collisions (in chonological order) as in the observed cascade.
The cyan pivot comes into play on the 3rd collision. It then diverges from the observed cascade, and follows another
chain of events, making the purple hit the red, and concluding with the target hit within 4 collisions in the chain that
started at the cyan ball. This task is too hard for the ROSETTE-max-l baseline, as it completely fails to satisfy the
instruction. See the complete video here: https://youtu.be/4s9MmY2J__I

• Push: green ball, Target: green hits cyan, Bottleneck: green hits purple, Chain Count: 5
In this example, ROSETTE semantically follows the first 6 collisions (in chonological order) as in the observed cascade.
It then diverges from the observed cascade, making the green hit the purple, fulfiling the bottleneck constraint. The
cyan pivot comes into play only on the 6th collision, and the agent adjusts its velocity such that both the target and the

13

https://youtu.be/RCKFBRrCRw0
https://youtu.be/4s9MmY2J__I

Learning to Initiate and Reason in Event-Driven Cascading Processes

count constraint will by satisfied. The ROSETTE-max-l baseline, hits the bottleneck, however it fails to hit the target.
See the complete video here: https://youtu.be/iMedd_7YndQ

• Push: yellow ball, Target: cyan hits red, Bottleneck: purple hits red, Chain Count: -
In this example, ROSETTE semantically follows the first 5 collisions (in chonological order) as in the observed cascade.
The yellow pivot comes into play only on the 5th collision, and the agent adjusts its velocity to satisfy the bottleneck
constraint and the target. The ROSETTE-max-l baseline, completely fails in this task. See the complete video here:
https://youtu.be/QLMTD6R2Z54

• Push: red ball, Target: blue hits red, Bottleneck: red hits bottom wall, Chain Count: -
In this example, ROSETTE semantically follows the first 4 collisions (in chonological order) as in the observed cascade.
The red pivot comes into play already on the 2nd collision, and the agent adjusts its velocity to satisfy the bottleneck
constraint and the target. The ROSETTE-max-l baseline, satisfy the bottleneck but does not satisfy the target. See the
complete video here: https://youtu.be/vT1ivd1ECJs

• Push: yellow ball, Target: blue hits purple, Bottleneck: blue hits right wall, Chain Count: -
In this example, ROSETTE semantically follows only the first 2 collisions (in chonological order) as in the observed
cascade. The red pivot comes into play on the 3rd collision, and the agent adjusts its velocity to satisfy the bottleneck
constraint and the target. The ROSETTE-max-l baseline, completely fails in this task. See the complete video here:
https://youtu.be/rgzWBfx-LqY

Importantly, these examples demonstrate the usefulness of the observed cascade for tree search. ROSETTE followed
the observed cascade along the part of the path that was useful to satisfy the instruction. It diverged from the path when
necessary, and found a solution when long cascades were essential, while ROSETTE-max-l struggled.

Finally, we note that this observation is also quantitatively supported: As we show in Figure 4 and Figure A.3. When
conditioning the Tree Success rate on producing long cascades, with Chain count constraint values greater or equal to 5,
ROSETTE performs at 34.8± 0.8%, while ROSETTE-max-l performs at 31.3± 1.1%, showing ∼11.1% improvement. For
Chain count values smaller than 5, they are statistically equivalent 75.1± 0.4% and 75.4± 0.4%.

C. User study
We conducted a user study with Amazon Mechanical Turk (AMT) using 30 test episodes. We designed a game where a
player (rater) is given a video of the observed cascade and is asked to select one of 44 combinations of orientations (11) and
relative speeds (4) (magnitude of velocity). One combination of orientation and speed was aligned with the ground-truth
solution, and the rest were spaced in relation to that solution. In an offline stage, we tested which of the other orientations
and speeds satisfy the goal and included those as valid solutions. We allowed the players to freely replay the observed video.
We paid 1$ per game.

Figure A.1 shows one test episode. The upper panel provides an instruction that states the goal of that specific episode. On
the left, we provide a set of simple guidelines. The center panel provides the observed (failed) video. The right panel shows
the initial frame, overlaid with the set of possible orientations and a set of HTML radio buttons to select the orientation
and speed. The upper tab provides a set of four examples with solutions and explanations. Those examples are given in
Figure A.2.

To maintain the quality of the queries, we only picked users with AMT “masters” qualification, demonstrating a high degree
of approval rate over a wide range of tasks. Furthermore, we also executed a qualification test with a few curated episodes
that are very simple. To qualify users, we made sure they do not randomly pick an answer by only qualifying users who
completed 5 episodes and had a single error at most. Additionally, we deleted queries from one qualified user, who submitted
answers at a rate of 3-4 episodes per minute, as we qualitatively observed that it should take 1-3 minutes to complete an
episode.

Qualified users received a bonus of 0.5$, accompanied with the following message:

Thank you for doing the qualification batch for our colliding balls game.
Our full study is now online. You can start doing it. Please remember to PLAY THE VIDEO and use it to decide
about your answer. And also, take another look at the examples, as they can provide more intuition about the task.

14

https://youtu.be/iMedd_7YndQ
https://youtu.be/QLMTD6R2Z54
https://youtu.be/vT1ivd1ECJs
https://youtu.be/rgzWBfx-LqY

Learning to Initiate and Reason in Event-Driven Cascading Processes

Figure A.1. One test episode of the user study. See Section C for details.

11 players have passed our qualification tests, playing 25 episodes on average. Table 5 compares the human success rate
with ROSETTE and a Random baseline. Showing Average, Median and Best statistics. For the Median and Best statistics,
we only included users who played a minimum number of 20 episodes (8 of 11 users).

Average Median Best

Random 17.6 ± 1.1%
Humans 23.9 ± 2.6% 25% 41.4%

ROSETTE 43.3 ± 1.3% 43.3% 46.7%

Table 5. Success rate statistics for the user study. ± error denotes the standard error of the mean (S.E.M) across the samples.

D. Additional experimental details
D.1. Hyperparameter tuning

We train the model and baselines for 15 epochs. Batch size was set to 8192 to maximize the GPU memory usage. We use the
PyTorch’ default learning rate for Adam (Kingma & Ba, 2015) (0.001). For inference, we set Nobserved to 9, the maximal
tree depth to 30, we sample 106 initial states and expand 80 nodes per episode which takes ∼13 seconds. The GNN uses 5
layers, with a hidden state dimension of 128. Hyper parameters were tuned one at a time, during an early experiment on a
validation set.

D.2. Random Baseline

We sample an intervention at random from an estimated distribution of ground-truth interventions. The distribution is
estimated by calculating a 2D-histogram with 30× 30, and approximating the distribution within each bin to be uniform.

D.3. Deepset regression Baseline

Overview: For the Deepset regression baseline, we embed the instruction and the initial world state to predict a continuous
intervention. We use the permutation-invariant “Deep Sets” architecture (Zaheer et al., 2017), and use an L2 loss with
respect to ground-truth interventions in the “counterfactual” training samples.

15

Learning to Initiate and Reason in Event-Driven Cascading Processes

Figure A.2. Examples provided in the user study. See Section C for details.

16

Learning to Initiate and Reason in Event-Driven Cascading Processes

The input to the Deepset architecture (Zaheer et al., 2017) is a set of feature vectors. Each feature vector corresponds to a
dynamic or static object in the scene. The output is a vector ∈ R2, for predicting the controlled velocity of the pivot object.

Feature representation: Each feature vector in the set is represented by a concatenation of the following fields
[obj feat(o), instruction emb, position, velocity], where obj feat(o) is defined by Eq. (4), instruction emb, is de-
fined by Eq. (7), position, velocity are the initial position and velocity of the object, as given by the observed cascade.

Labels and loss: For ground-truth labels, we use the ground-truth velocity of the solution. We use a L2 loss comparing the
ground-truth labels with the output of the Deepset architecture.

D.4. (Qi et al., 2021) Baseline

Overview: Qi2021 is the state-of-the-art approach for solving PHYRE. It uses a learned forward model, a learned goal-
satisfaction classifier, and exhaustive search. For a fair comparison with our analytic event-driven forward model, we replace
their learned forward model by a full simulator (Makoviychuk et al., 2021).

Therefore, for the goal-satisfaction classifier, in each frame, we replace the set of input feature vectors coming from the
region-proposal-interaction-network (RPIN) of (Qi et al., 2021) by a set of feature vectors corresponding to each object
in the scene, and its kinematic state as given by the simulator. To condition the classifier on the goal, we concatenate the
instruction representation to each feature vector.

Feature representation: Each feature vector of an object in a frame, is represented by a concatenation of the following fields
[obj feat(o), instruction emb, position, velocity, time], where obj feat(o) is defined by Eq. (4), instruction emb, is
defined by Eq. (7), position, velocity, time are the respective readings from the simulator in the frame.

Positive and Negative examples: For training the goal-satisfaction classifier with positive examples, we use the simulation
of the solution cascade. For negative examples, we use the simulation of the observed cascade.

Classifier Architecture: We use the classifier architecture of (Qi et al., 2021), as provided in their public implementation,
with the following adaptations: (1) We replace the RPIN representation by the simulator-driven representation described
above. (2) We allow replacing the last fully connected layer by a multi-layer-perceptron (MLP) (3) We allowed more than
four equally spaced input frames.

Simulator configuration: The RPIN forward model is a fixed timestamp model, working at 1 frame-per-second. In the
full simulator we used (Makoviychuk et al., 2021), we observed that it does not perform well in such a coarse-grained
resolution, making objects to sometimes go through the walls. Therefore, we increased the simulator resolution to 10
frames-per-second.

Hyperparam search: We searched for the best hyper-parameters configuration that minimizes the validation loss over
the following ranges: Number of MLP hidden-layers ∈ [0, 1, . . . 6], Number of input frames ∈ [4, 6, 10, 20], batch-size
∈ [128, 256]. Number of training epoch was set according to early stopping on the validation set.

Finally, we used the following hyper-parameters to evaluate the model performance on the test set: Number of MLP
hidden-layers = 2, Number of input frames = 4 (as in (Qi et al., 2021) paper), batch-size=128, Number of training epoch =
17.

Evaluation: For evaluation, we randomly selected a subset of 208 episodes (10% of the test subset), because inference for a
single episodes took ∼5.5 minutes.

D.5. Cross entropy Baseline

Overview: The cross entropy method is a black box optimizer for solving optimization problems. We used (Qi et al., 2021)
baseline’s classifier as our objective function. At each step, we sampled 100 points and updated the sampling distribution
based on their score. We have repeated this process for 100 iterations, and chosen the highest scored intervention for
evaluation. Our code is based on a standard implementation Greenberg et al. (2022) of the cross entropy method.

For evaluation, we randomly selected a subset of 208 episodes (10% of the test subset), because inference for a single
episodes took ∼4 minutes.

17

Learning to Initiate and Reason in Event-Driven Cascading Processes

D.6. Sequential Baseline

We used the validation set to select the number of layers for this baseline, ∈ [5, 10, 20, 30]. There wasn’t any significant
difference when using 5 or 10 layers, and the success rate degraded for 20 or 30 layers. Therefore, we used 5 layers for
evaluating performance on the test set.

D.7. Instruction ablation Baselines

We report the “count” and “bottleneck” ablations by zeroing their respective features in the instruction and using the same
model weights that were used to report the performance of the ROSETTE model. We did not retrain the model for these
cases because the ROSETTE model was trained to handle these cases, as is evident by the “Unconstained” metric.

For ablating the “full” instruction, we retrained the model, while completely zeroing the representation vector of the input
instruction.

E. Implementation details of the model of the score function
We use a Graph Neural Network (GNN) to parameterize our score function. We represent the graph as a tuple (A,X,E, z)
where A ∈ {0, 1}n×n is the graph adjacency matrix, Y ∈ Rn×d is a node feature matrix, E ∈ Rm×d′

is an edge feature
matrix, and z ∈ Rd′′ is a global graph feature. we chose to use a popular message passing GNN model (Battaglia et al.,
2018) that maintains learnable node, edge and global graph representations.

Architecture The model is composed of several message passing layers, Lk ◦ · · · ◦ L1 where each Li updates all
representations, i.e.:

Xi+1, Ei+1, zi+1 = Li(A,Xi, Ei, zi; θi),

Each layer Li updates the features sequentially: the node and edge features are updated by aggregating local information,
while the global feature is updated by aggregating over the whole graph. We denote the parameters of the MLPs that are
used in a layer Li as θi, and note that these are the only learnable parameters in the model. At the last layer i = k we use a
single dimension for the global feature, i.e., d′ = 1, which is then used as the score of the event node.

Feature representation We describe next the feature representation of the inputs to the node feature matrix Y , the edge
feature matrix E, and the global graph feature z.

We start by describing a feature representation of any of the dynamic and static objects in the scene: An object o feature
representation, noted by obj feat(o), is a concatenation of the following fields

obj feat(o) = [one hot(o), is stationary, is active,

instruct inner prod, bottleneck ind, count, count ind], (4)

where one hot(o) is a one-hot vector ∈ R12, as represented by the instruction; is stationary indicates whether the object
is stationary; is active means that in the context of a current collision, the object dynamics were coming from a collision
chain that included the pivot; instruct inner prod is the results of an inner product of one hot(o) with each of the 5
object representations at the instruction embedding (Section H.3). Finally, bottleneck ind, count, count ind are copied
from the instruction embedding.

The graph node and edge features are derived from the DAG representation (Figure 3). Each row of the node feature matrix
Y concatenates the two objects that participate at a collision [obj feat(obja), obj feat(objb)]. Each row at the edge feature
matrix E represents obj feat(o) of the object on that edge.

Last, the global feature z is a copy of the instruction embedding Eq. (7).

Training data For calculating the training labels of the score function, we traverse the semantic tree along the ground-truth
sequence of the solution cascade and collect the positive labels using Eq. (2). If the event tree cannot reproduce the solution

18

Learning to Initiate and Reason in Event-Driven Cascading Processes

sequence of a sample (due to errors accumulated by the event-driven forward model), then Eq. (2) cannot be calculated, and
we drop that sample from the training set. We collect negative examples (with V = 0) by (1) taking the child nodes that
diverge from the path to the ground-truth solution. (2) Traverse a random path along the tree with the same length as the
ground truth sequence, and set the score of all the nodes along that path to 0. Note that setting the scores of every node
along these paths to V = 0 is a heuristic and may introduce some label noise with respect to negative examples. Additional
research may be required to analyze the label-noise consequences and address it.

F. Counterfactual update for the score function
In this section, we derive the expression of the score function update according to the observed cascade (Eq. (3)). We start
the derivation by repeating the preliminary derivation steps introduced in the main text in more detail.

During inference, we observe a cascade that does not satisfy the instruction, and are asked to retrospectively suggest a
better solution. How can the information can be used to find a better solution? The probabilistic score function allows
us to formalize this problem in a Bayesian setting. We treat the model predictions as a prior for the true score, and the
information about the observed cascade as evidence. We then ask how to update the score function given the observed
evidence. Formally, we condition Eq. (1) by the evidence, V (u|Suobs doesn’t satisfy g).

We denote the set of interventions that satisfy the instruction g as Gg ⊂ Y , and the evidence by E. Note that an equivalent
definition for the unconditioned score function V (·) is

V (u) = Pr (Q(y) satisfies g|y ∈ Yu, g)

= Pr (y ∈ Gg|y ∼ U (Yu))

Our evidence is that for a particular ỹ ∈ Yobs, we have ỹ /∈ Gg. Now, by definition, every y, y′ ∈ Yobs share the same
observed cascade Suobs . Therefore, the evidence E can be equally formulated as y′ /∈ Gg for any y′ sampled uniformly from
Yuobs , y′ ∼ U(Yuobs). For brevity, we set Yobs = Yuobs .

The conditioned score function is then,

Pr (y ∈ Gg|y ∼ U (Yu) , E)

We use the law of total probability and write,

Pr (y ∈ Gg|y ∼ U (Yu) , E)

=Pr (y ∈ Ggy ∼ U (Yu) , E, y ∈ Yobs) Pr (y ∈ Yobs|y ∼ U (Yu) , E)

+Pr (y ∈ Gg|y ∼ U (Yu) , E, y ∈ Y c
obs) Pr (y ∈ Y c

obs|y ∼ U (Yu) , E)

=Pr (y ∈ Gg|y ∼ U (Yu ∩ Yobs) , E) Pr (y ∈ Yobs|y ∼ U (Yu) , E)

+Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs) , E) Pr (y ∈ Y c

obs|y ∼ U (Yu) , E)

Furthermore,

Pr (y ∈ Yobs|y ∼ U (Yu) , E) = Pr (y ∈ Yobs|y ∼ U (Yu))

Pr (y ∈ Y c
obs|y ∼ U (Yu) , E) = Pr (y ∈ Y c

obs|y ∼ U (Yu))

As the conditioned event y ∈ Yobs is independent of E.

The relations between node Uobs and u can be one of the three: a) the observed node is a descendant of u (and therefore
Yu ∩ Yobs = Yu) b) u and the observed node belong to different branches, and therefore Yu ∩ Yobs = ∅, or c) u is a
descendant of the observed node (and therefore Yu ∩ Yobs = Yobs). However, uobs represents a complete cascade rather
than a partial sequence, and therefore the observed node does have any children, and we can ignore c).

Let us consider each case separately.

19

Learning to Initiate and Reason in Event-Driven Cascading Processes

u and the observed node are along different paths. In this case,

Yu ∩ Yobs = ∅
Yu ∩ Y c

obs = Yu

Pr (y ∈ Y c
obs|y ∼ U (Yu)) = 1

Pr (y ∈ Yobs|y ∼ U (Yu)) = 0,

and we’re left to evaluate Pr (y ∈ Gg|y ∼ U (Yu) , E). Since the evidence in this case provides information about a set that
y is not conditioned on, it is independent of y, and therefore we conclude with,

Pr (y ∈ Gg|y ∼ U (Yu) , E) = Pr (y ∈ Gg|y ∼ U (Yu)) = V (u)

u is a descendant of the observed node. Here,

Yu ∩ Yobs = Yobs

Pr (y ∈ Yobs|y ∼ U (Yu)) = fr(yobs, yu)

In this case,

Pr (y ∈ Gg|y ∼ U (Yu) , E)

=Pr (y ∈ Gg|y ∼ U (Yu ∩ Yobs) , E) fr(yobs, yu)

+Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs) , E) (1− fr(yobs, yu))

=Pr (y ∈ Gg|y ∼ U (Yobs) , E) fr(yobs, yu)

+Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs) , E) (1− fr(yobs, yu)) (5)

Now,

Pr (y ∈ Gg|y ∼ U (Yobs) , E)

=Pr (y ∈ Gg|y ∼ U (Yobs) , {∀y′ ∈ Yobs, y
′ /∈ Gg})

=0

Since the evidence indicates that for every y′ ∈ Yobs the resulting sequence Suobs does not satisfy the goal. Furthermore,

Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs) , E) = Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c

obs)) (6)

As E does not add information when we sample from (Yu ∩ Y c
obs).

Therefore,
Pr (y ∈ Gg|y ∼ U (Yu) , E) = Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c

obs)) (1− fr(yobs, yu))

Now

Pr (y ∈ Gg|y ∼ U (Yu)) = Pr (y ∈ Gg|y ∼ U (Yu ∩ Yobs)) fr(yobs, yu)

+ Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs)) (1− fr(yobs, yu))

Namely,
V (u) = V (uobs) · fr(yobs, yu) + Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c

obs)) (1− fr(yobs, yu))

20

Learning to Initiate and Reason in Event-Driven Cascading Processes

or

Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs)) =

V (u)− V (uobs) · fr(yobs, yu)
1− fr(yobs, yu)

.

Plugging this back to Eq. 6 we obtain:

Pr (y ∈ Gg|y ∼ U (Yobs) , E) = V (u)− V (uobs) · fr(yobs, yu)

which is our final result.

G. Relation to Causal-Inference
The DAG representation (Section 3.2) is useful for graphically representing one instance of a cascade, but we intentionally
avoid naming it a Causal DAG, because it can’t represent dependencies between events that are not explicitly observed in
the video. E.g., in the example [(A, B), (C, D), (A, E)] in Section 3.2, it may be that (A,E) depends on (C,D) because C
blocks D from reaching to E before A do. The event tree can simulate this behaviour, while the DAG (C,D) ; (A,B)-¿(A,E)
is unaware of it. From a formal causal inference perspective (Pearl, 2000), our event tree is the part of our approach that
can be related to the formal ”Structured” Causal Model (SCM). As it is a generative model that reflects the data generation
process; it can account for complex dependencies between events; and every edge corresponds to a function, namely, the
event-driven forward model.

H. Data generation details
H.1. Video generation details

In this section, we describe the generation process of the dynamical scene. We first create an “unperturbed” video. Then,
we perturb the video by modifying the velocity of a specific element, which will be later designated as the pivot. We let
the perturbed video roll out, validate that it is indeed semantically different than the unperturbed video, and label it as
the “observed” video. The unperturbed video can now be used as reference for our instruction generation process. It is a
realization of a specific, complex, semantic chain of events that is both semantically different than the perturbed (“observed”)
video and is also feasible, e.g, by setting the intervention value as to revert the perturbation. This flow guarantees that we
can ask meaningful instructions on the “observed” that are guaranteed to be realizable.

The unperturbed video. We construct the unperturbed video by iteratively adding spheres and collisions in a physical
simulator (IsaacGym (Makoviychuk et al., 2021)) increasing the video complexity. We start by placing a sphere in the
confined four-walled space and assign it a random velocity.

The dynamics of a sphere moving freely in a confined square area can be expressed analytically. We pick a random time t1,
hitting velocity, and hitting angle for the first collision. We analytically solve for the initial position and velocity at t0 = 0
that will result in the a collision at t1 with the specific hitting velocity and angle. We assign these value to a randomly
colored sphere.

Due to discrepancies between the simulator dynamics and the kinematic analytic model, we roll out the dynamical system in
the simulator, and record the system state immediately after a collision.

We continue adding spheres iteratively. Given a state at ti, we randomly select a sphere Oi from the existing spheres,
collision time ti+1, hitting angle and velocity. We solve analytically and find the initial position and velocity at t0 = 0 that
will result in a collision with Oi corresponding parameters. We roll out the dynamical system, and update the velocities and
positions records after each collision with the empirical values from the simulator.

Our simple kinematic model assumes the target sphere and the newly added move freely. However, other spheres may cross
their trajectories, resulting in an a collision that will distract the spheres from their designated path. However, this simply
means that the planned random collision was replaced by a different collision. Since we update our records of the resulting
collisions and corresponding output velocities and positions using the simulator, this does not pose any serious limitations.

The observed video. We pick a random sphere from the set of spheres and assign it a different velocity at t = 0. We roll out
the system in the simulator and log all resulting collisions. We validate that the resulting collision sequence is different than

21

Learning to Initiate and Reason in Event-Driven Cascading Processes

the unperturbed video collision sequence. We now have two videos that differ only in the initial velocity of a specific sphere,
but result in a substantially different semantic chain of events.

H.2. Instruction generation details

We describe the instruction generation process when given an “observed” video, and a “counterfactual” video that displays
an alternative cascade of events.

Given a ground-truth video, its sequence of collisions, and a pivot, we randomly sample an instruction: Starting by randomly
sampling a target collision from the sequence. And then, we randomly sample up to two constraints that accompany the
goal. For constructing the constraints, we first represent the sequence of collisions using a DAG, in a similar fashion as
described in Figure 3, then we use standard NetworkX functionality (Hagberg et al., 2008) for graph traversal: (1) We use
“dag.ancestors()” to get a list of nodes for the “bottleneck” constraint. (2) We use ”all simple paths()” to count the nodes in a
chain reaction between the pivot and the target collision.

To avoid trivial goals, we drop an instruction if it is fulfilled by the observed video (rather than the “counterfactual” video).
We sample up to 5 unique instructions for each scene (∼4 on average).

H.3. Instruction feature representation

We assume perfect lexical perception, and provide the agent with the a structured vector representation of each instruction,
by concatenating the following fields:

instruction emb = [target obj a, target obj b, pivot obj, bottleneck obj a,

bottleneck obj b, bottleneck ind, count, count ind], (7)

where target obj a, target obj b are the object representations of the target collision. pivot obj represents the pivot.
bottleneck obj a, bottleneck obj b, bottleneck ind represent the two “bottleneck” objects and a binary indicator scalar.
If an “bottleneck” constraint is not applicable for an instruction, we them all to 0. count, count ind are 2 scalar values: One
for the number of collisions of the chain “count” constraint, and another used as a binary indicator for the “count” constraint.
Similarly if a “count” constraint is not applicable for an instruction, we set both count and count ind to 0.

Finally, note that each object is represented by a one-hot vector ∈ R12, because the environment has 12 types of unique
objects: 6 colored balls, 2 static pins, and 4 walls.

H.4. Complex instructions dataset

For the complex instructions dataset, we add a third object centric constraint that counts the number of interactions a specific
object makes on the paths from the pivot to the target collision. It resembles constraining the amount of resources available
per instance on a logistic chain. With an additional constraint we can test our approach on a more challenging task that has a
large variety of instructions that have 2 or more constraints. We split the evaluation set to “Hard” instructions that have 2 or
more constraints, and “Easy” instruction with 0-1 constraints. We generated instructions for the same scenes as in the main
dataset, which yields ∼4.5 instructions per scene. The test set consists of 2190 episodes, where 54% are “Hard” instructions.

I. The forward model
In our physical setup, the dynamics are prescribed by the position and velocity cji = (posji , vel

j
i), j = 1 . . . n of each of n

objects in the environment. The world state wu
i of a node u is then a tuple

wu
i = (c1i , c

2
i , ...c

n
i , ti), (8)

where for the root node ti = 0 for all xi.

The forward module takes as input a world state wi it outputs the next semantic event (s′), and a state f(wi) = w′
i =

(c′
1
i , c

′2
i , ...c

′n
i , t

′
i) immediately after the predicted semantic event at t′i. The section is divided into three parts. First, we

describe the analytical equations that control if two objects will collide. Then we show how can leverage the analytic model
to efficiently branch out from a node in the event tree. Finally, we fill in the missing details and present the full forward
model.

22

Learning to Initiate and Reason in Event-Driven Cascading Processes

The collision detector. Assume two spheres i = α, β moving freely on a plane with an initial velocity of vi and position ri
at t = 0. Each sphere has a radius of li. If the two sphere collide, then, at the moment of collision, the spheres intersect at a
single point. We can use a simple geometric calculation to find their planar distance. The distance between the center of
spheres is lα + lβ , while the vertical distance between the two centers is |lα − lβ |. The resulting planar distance is then:

d =
√
(lα + lβ)2 − (lα − lβ)2 = 2

√
lαlβ . (9)

Therefore, in order to check if the spheres collide, we can check if the planar distance between the two spheres is ever equal
to d,

∥r(t)∥2 = ∥rα + vα · t− rβ − vβ · t∥2 = d2 (10)

This is a quadratic equation in t, which we can solve for analytically. If the discriminant is non-negative, the collision time
corresponds to the smaller root. The spheres’ velocities immediately after the collision are given by:

v′
1 = v1 − 2m2

m1 +m2

⟨v1 − v2,y1 − y2⟩
∥y1 − y2∥2

· (y1 − y2) (11)

v′
2 = v2 − 2m2

m1 +m2

⟨v1 − v2,y1 − y2⟩
∥y1 − y2∥2

· (y2 − y1) (12)

Likewise, it is trivial to obtain an analytical expression for the collision time and output velocity of a collision between a
freely moving sphere and each of the static walls bounding the spheres (should the collision occur). The sphere’s velocity
in the direction orthogonal to the walls flips, while the parallel velocity remains the same.

Parallelizing collision detection. The collision detector provides an analytic condition that validates whether a specific
collision occurs.

(∆r ·∆v)2 − 4(∥∆r∥2 − d2)∥∆v∥2 > 0 (13)

Eqs. 9-13 can be solved in parallel for multiple tuples of (r1,v1, r2,v2) on a GPU using packages such as PyTorch. Given
an intervention set of Yu, and a corresponding world-state set Wu, we iterate over all possible collisions Sij = (Oi, Oj).
For each collision between object i and j we can apply our collision detector by extracting the corresponding coordinates
ciw, c

j
w, tw from w ∈ Wu (Eq 8). We can do in parallel for all world states w ∈ Wu. If a collision is predicted, we construct a

new node child u′ of u. We associate with it the interventions for which the collision detector returned a non-null time for the
collision, Y ′

u, the corresponding set of post-collision world state W ′
u, and the event sequence S′

u = concat(Su, (Oi, Oj))

The complexity is quadratic in the number of object rather than linear in the number of interventions. This allows us to
apply our algorithm with a high number of interventions, and therefore enable us to consider delicate sequences of collision
that would require refined ”trick shots”.

This approach considers every two objects Oi, Oj as moving freely. However, another object in the environment, e.g, Ok,
may interact with Oi (without loss of generality) before the collision. This necessarily means that the collision time tik
precedes tij . In order to account for this, we hold an additional structure that maintains the minimal collision time for every
w ∈ Wu. We update it as we iterate over all possible collisions. Then, we associate each w ∈ Wu and its corresponding
y ∈ Yu to the event node corresponding to the collision with the earliest collision time.

J. Additional setups
Here, we present examples for additional setups for which our formalism can be applied.

J.1. Logisitics

While logistics is a complex field, we describe a simple model that captures the essential components of a logistics problem.

23

Learning to Initiate and Reason in Event-Driven Cascading Processes

Consider a large logistics enterprise that needs to coordinate shipping from multiple locations. The enterprise has multiple
carriers (e.g, trucks or airplanes) vi, i = 1..m and routes them between logistic centers at rj , j = 1..n.

A plan is a schedule for each carrier τj , where a schedule τj is a sequence of arrivals and departures between various logistic
centers,

τj = {(r0j , t0in, t0out), (r1j , t1in, t1out), ...}

Not all plans are feasible. Each carrier can travel at a range of velocities, resulting in a range of arrival times to the possible
destinations. Carriers can exchange cargo is they are present at the same logistic center.

Now, assume a logistic center is suddenly shut down. Rescheduling all carriers is unfeasible, as some may be already
committed to a route, or may not be easily diverted (e.g., are airborne). Furthermore, recomputing a new plan for the
complete enterprise might be computationally heavy. Finally, it seems reasonable that re-planning of only the routes of
carriers that were suppose to arrive to the closed logistic center may be enough. We denote those k carriers as the rescheduled
carriers. Note that while only some of routes may be re-planned, other carriers might be affected as well due to a cascade of
delays or even cargo exchange cancellations.

Such re-planning may be constrained by semantic instruction. For example: ”Carrier X should only make two deliveries”,
”Carrier Y should meet carrier Z before meeting Carrier W”, etc. .

We now cast this problem into our general framework, described in Section 3. An event is the arrival or departure of a carrier
to a logistic center. Each intervention y ∈ Y is a set of plans the rescheduled carriers,

y = (τ0, τ1, ..., τk).

A world state wj is the position of the k carriers at different time ((p0j , t
0
j), ..., (p

k
j , t

k
j)) The forward model takes as input a

world state and outputs all world state that obey the following two rules: 1) At least one carrier moved to a different logistic
center. 2) The transition of carriers follow physical constraints. If carrier i can move at velocity range [vimin, v

i
max] and it

moves between two logistics centers ra and rb, then the transition time must be in[
∥ra − rb∥
vimax

,
∥ra − rb∥
vimin

]
. (14)

For simplicity, we assume that there is no cargo limit.

The expressions for the induced probability, Eqs. 2 -3, remains the same.

J.2. Failure cascades in power grids

Cascading failures in power grid may cause large blackout with substantial economical damage (Schäfer et al., 2018).
Cascading Power failures may be induced due to random fluctuations and can develop on orders of seconds. Human
operators or complex control mechanism may not be able react in time. The transmission system operator may use an
event-driven forward model to find fast automated reactions for unseen dynamical configurations to avoid cascading failures.

Here, semantic events are failures of nodes (nodes; e.g., transformers, power generators, etc.) or power lines (edges). Power
flow follows a known set of ODE for a given grid (eqs 14-15 in (Schäfer et al., 2018)):

d

dt
θi = ωi, (15)

Ii
d

dt
ωi = Pi − γiωi +

N∑
j=1

Kij sin (θj − θi) , (16)

where, θi, ωi are the dynamical variable at node i, Pi is the power input (or output) at node i, and Kij is a weighted
adjacency matrix representing the grid connectivity. If at some point in time the flow Fij exceeds the powerline capacity
αkij , α ∈ [0, 1] (eqs 1-2), the line fails. This condition can be formally written as

Fij (t) = Kij sin (θj (t)− θi (t)) > αKij .

24

Learning to Initiate and Reason in Event-Driven Cascading Processes

AC (2 constraints)
Figure A.3. Comparing “Counterfactual” search (ROSETTE) with “Maximum likelihood” search (ROSETTE-max-l) for 2 levels of
instruction complexity (“Hard”: 2 or more constraints) and for two levels of “count” instructions (“5+”: 5 or more). Here we use the
main dataset. Using the observed cascade, ROSETTE performs better in complex scenarios.

If the line fails, the dynamics are governed by a new effective coupling matrix Kij, and the dynamics in Eqs. 15-16 changes
accordingly.

A failure of a node may induce outage to some region. The transmission system operator (TSO) might define goals such as
“no more than three failures”, “the maximal number of affected people should be less than n”, “these highly important nodes
should not fail” etc.

J.3. Evolution of natural disasters

Finally, another use case is the evolution of natural disasters. (Zuccaro et al., 2018) provides a full description of an event
tree. It models transitions between events like a “seismic shock” which can lead to “landslide” and result with “traffic
accident”, and how taking preventive measures like “evacuate population” can influence the total damage caused by the
crisis.

K. Complex scenario conditioning for the main dataset
In Figure A.3 we provide the results for complex scenario conditioning for the main dataset (with two type of constraints).
The results demonstrate a similar trend as in the complex instruction dataset in Figure 4.

L. An alternative Markov Reward Process Formalism
To describe our approach in Markov Reward Process (MRP) terms, one should first find the analoue of MRP states in our
system. A straightforward approach would be to treat each physical state as a state of the MRP. Yet, in our approach, an
event tree node represents a set of physical states that have a common sequence of semantic events preceding them. We
developed a representation, the event-tree, which aggregates physical states into semantic events, corresponding to MRP
states.

Next, one should find parallels between the MRP reward and value function and our score function. To do this we: (1) define
a reward function that (2) induces a value function, which (3) matches our score function. We now follow these steps.

(1) In MRPs, rewards are defined over edges (transitions); in our setup, scores are defined over nodes (states). We add a
“null” child Nu for every node u in the event tree. This null node represents the subset of interventions that do not result in
additional events after Su. In terms of MRPs, there are terminal states. We also assume that every Markov chain will result
in a terminal absorbing state. Then, we set the reward function as 1 for a transition from a node u that solves the goal and its
null child Nu and 0 otherwise, R(Nu|u, u satisfies g) = 1, Otherwise R = 0.

25

Learning to Initiate and Reason in Event-Driven Cascading Processes

(2) This reward function induces a value function. Lets denote it with V MRP .

(3) We now show that V MRP is equivalent to the value function presented in the paper V . Specifically, we now prove that

V MRP = Pr(u satisfies g) = V (17)

Proof. Set γ = 1. Recall that fr(u′, u) represents the transition probability from state u to u′. We consider two cases.

(a) If Su doesn’t satisfy g, we have, for every u′,

V MRP (u) =
∑

u’ child of u

fr(u′, u) · (R(u′|u) + V (u′))

where we used recursion and the rule of total probability.

(b) If Su satisfies g, every descent of u satisfies g. Consider the subtree Tu rooted at u, namely, the subtree containing u and
all its descendants. We prove that V MRP (u) = V (u) = 1 by induction on the depth of Tu. If the depth= 1, then the graph
contains the single edge (u,Nu), and by definition

V MRP (u) = R(Nu|u) + V (Nu) = 1 = V (u).

For a general tree depth k, we have an expression similar to the previous case:

V MRP (u) =
∑

u’ child of u

fr(u′, u) · (R(u′|u) + V (u′)) (18)

= fr(Nu, u)R(Nu|u) +
∑

u’ child of u, u’ ̸=Nu

fr(u′, u)V (u′) (19)

=
∑

u’ child of u

fr(u′, u) (20)

= 1 = V (u) (21)

Where the transition from Eq. 19 to Eq. 20 is based on R(Nu|u) = 1 by definition. Eq. 21 follows as u′ satisfies g, and Tu′

has depth less than k. Therefore, according to the induction hypothesis V (u′) = 1.

This shows the parallels between our approach and MRPs. Let us also highlight the benefits of our approach in representing
the problem.

First, our approach provides a direct way to learn the score (value) function, leveraging the probem’s structure. Second, it
allows us to incorporate counterfactual information into the cascading process structure using a natural formulation.

26

	Introduction
	The ``Cascade'' learning setup
	Methods
	The Event Tree: A tree of possible futures
	Assigning and learning a scoring function for nodes
	Inference

	Experiments
	A simulation benchmark
	Experiment details
	Human evaluation

	Results
	Related work
	Discussion
	Additional results
	Baseline results discussion

	Qualitative examples
	User study
	Additional experimental details
	Hyperparameter tuning
	Random Baseline
	Deepset regression Baseline
	qi2021learning Baseline
	Cross entropy Baseline
	Sequential Baseline
	Instruction ablation Baselines

	Implementation details of the model of the score function
	Counterfactual update for the score function
	Relation to Causal-Inference
	Data generation details
	Video generation details
	Instruction generation details
	Instruction feature representation
	Complex instructions dataset

	The forward model
	Additional setups
	Logisitics
	Failure cascades in power grids
	Evolution of natural disasters

	Complex scenario conditioning for the main dataset
	An alternative Markov Reward Process Formalism

