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Abstract

Designing biological sequences is an important
challenge that requires satisfying complex con-
straints and thus is a natural problem to address
with deep generative modeling. Diffusion gen-
erative models have achieved considerable suc-
cess in many applications. Score-based generative
stochastic differential equations (SDE) model is a
continuous-time diffusion model framework that
enjoys many benefits, but the originally proposed
SDEs are not naturally designed for modeling dis-
crete data. To develop generative SDE models for
discrete data such as biological sequences, here
we introduce a diffusion process defined in the
probability simplex space with stationary distribu-
tion being the Dirichlet distribution. This makes
diffusion in continuous space natural for model-
ing discrete data. We refer to this approach as
Dirchlet diffusion score model. We demonstrate
that this technique can generate samples that sat-
isfy hard constraints using a Sudoku generation
task. This generative model can also solve Su-
doku, including hard puzzles, without additional
training. Finally, we applied this approach to de-
velop the first human promoter DNA sequence de-
sign model and showed that designed sequences
share similar properties with natural promoter se-
quences.

1. Introduction
Diffusion probabilistic models are a family of models that
reverse diffusion process to generate data from noise. Score-
based generative stochastic differential equation (SDE) is
a type of continuous-time diffusion model that has many
desirable properties, such as allowing likelihood evalua-
tion through a connection to a probability flow ordinary
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differential equation (ODE) and flexibility in sampling ap-
proaches. However, the originally proposed generative
SDEs are not directly suitable for modeling discrete data.
Recent works have proposed methods for adapting diffu-
sion models to discrete data (Campbell et al., 2022; Chen
et al., 2022b; Sun et al., 2022; Austin et al., 2021; Hooge-
boom et al., 2021b;a), including continuous-time diffusion
in discrete space (Campbell et al., 2022), but no methods
are formulated within the continuous-time SDE diffusion
framework (Song et al., 2020), except for quantization-based
methods. In this manuscript, we propose a general mecha-
nism to extend this approach to discrete data, while allow-
ing continuous-time diffusion in probability simplex space.
Specifically, designed to utilize the natural connection be-
tween Dirichlet distribution and discrete data, we consider
continuous-time diffusion within the probability simplex
for which the stationary distribution is Dirichlet distribution.
Forward diffusion (data-to-noise) of discrete data starts from
the vertices of the probability simplex space, and diffuses
continuously in the same space, and the continuous-discrete
space gap can be bridged with a latent variable interpreta-
tion.

While our intended application is in biological sequence gen-
eration, we evaluated our, Dirichlet diffusion score model
(DDSM)1, on a range of discrete data generation tasks to
better understand its performance. In addition to demonstrat-
ing competitive performance on a small benchmark dataset,
binarized MNIST, we applied it to generating Sudoku puz-
zles to test for its ability in generating highly structured
data with strong constraints. The model can not only gener-
ate but also solve Sudoku puzzles including hard puzzles,
which is the first time this is achieved with a purely gen-
erative modeling approach. Finally, we applied DDSM to
a real-world application in biological sequence generation.
Specifically, we developed the first model for designing hu-
man promoter DNA sequences that drive gene expression,
and demonstrate that it designs diverse sequences compara-
ble to human genome promoter sequences.

1Code available at https://github.com/jzhoulab/ddsm
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2. Background
2.1. Score-based Generative Modeling with SDE

Itô diffusion process is defined as

dx = f(x, t)dt+ G(x, t)dw,

where w is the standard Wiener process (a.k.a., Brownian
motion), the drift coefficient f(·, t) : Rn → Rn and dif-
fusion coefficient G(·, t) : Rn → Rn are vector-valued
functions of xt. Song et al. 2020 exploited the remark-
able result by Anderson 1982 that the time-reversal of this
diffusion process can be obtained by the following SDE:

dx =

{
f(x, t)−∇ ·

[
G(x, t)G(x, t)>

]
−G(x, t)G(x, t)>∇x log pt(x)

}
dt

+ G(x, t)dw,

(1)

where ∇ ·
[
G(x, t)G(x, t)>

]
indicates row-sums of

element-wise derivative with respect to x. The correspond-
ing probability flow ODE is defined as

dx =

{
f(x, t)− 1

2
∇ ·
[
G(x, t)G(x, t)>

]
− 1

2
G(x, t)G(x, t)>∇x log pt(x)

}
dt.

(2)

It gives the same distribution at time t as the reverse-time
SDE. Both the reverse-time SDE and the probability flow
ODE can be sampled from given ∇x log pt(x) or the score
of pt(x). Therefore, learning the reverse diffusion becomes
the problem of learning the score function, which is usually
parameterized as a neural network known as the score model.
The training loss is the score matching loss∫ T

0

Ept(xt)

[
λ(t)

∥∥∇x log p
(
xt
)
− sθ

(
xt, t

)∥∥2
2

]
dt, (3)

where sθ (x, t) is the score model to be trained, and λ(t) is
a positive weighting function. The loss is equivalent to the
denoising score matching loss∫ T

0

Ep0(x0)p(xt|x0)

[
λ(t)

∥∥∥∇x log p
(
xt | x0

)
− sθ

(
xt, t

)∥∥∥2
2

]
dt,

(4)

which is used in practice because∇x log p
(
xt | x0

)
is usu-

ally easier to compute. Forward diffusion processes con-
sidered so far have Gaussian stationary distribution and are
applicable for continuous data in Rn.

2.2. Univariate Jacobi Diffusion Process

We consider Jacobi diffusion process2 in the following form

dx =
s

2
[a(1− x)− bx]dt+

√
sx(1− x)dw, (5)

where 0 ≤ x ≤ 1, s > 0 is the speed factor, and a > 0,
b > 0 determines the stationary distribution Beta(a, b). We
usually use s = 1 or s = 2

a+b (see Appendix A.2 for discus-
sion of choices). Note that when x approaches 0 or 1, the
diffusion coefficient converges to 0 and the drift coefficient
converges to a or −b, keeping the diffusion within [0, 1].

The spectral expansion of the transition density function
was derived by Kimura 1955; 1957. Hence, the diffused
density at any time t is computed by the following formula:

pa,b(x
t|x0)

= Ba,b
(
xt
) ∞∑
n=0

eλnt

dn
R(a,b)
n

(
x0
)
R(a,b)
n

(
xt
)

= Ba,b
(
xt
)(

1 +

∞∑
n=1

eλnt

dn
R(a,b)
n

(
x0
)
R(a,b)
n

(
xt
))

,

(6)

where Ba,b(xt) is the Beta(a, b) density, R(a,b)
n (x) denotes

the n-th order modified Jacobi polynomial of order n and
are eigenfunctions of the generator of the Jacobi diffusion
process (Steinrücken et al., 2013a; Griffiths & Spano‘, 2010).
The corresponding eigenvalues are λn = − 1

2sn(n−1+a+
b). The gradient of the log transition density function can
be computed via automatic differentiation.

3. Diffusion Processes for Generative SDE
Modeling of Discrete Data

3.1. Forward Diffusion SDE for Two-Category Data

Using the univariate Jacobi diffusion as the forward diffu-
sion process provides a natural generalization of the score-
based generative SDE approach (Section 2.1) to discrete
data with two categories, encoded as 0 and 1. The forward
diffusion starting from 0 or 1 at the initial timepoint will
continuously diffuse in the [0, 1] interval and converge to
a Beta stationary distribution (see Fig. 1a). If a = 1 and
b = 1 in Eq. 5 and 6 then the Beta stationary distribution is
Beta(1,1) (i.e., a uniform distribution in the interval [0, 1]).

The score-based generative SDE model can be trained via
the denoising score matching objective (see Eq. 4) following
the transition density formula (see Eq. 6). By combining

2It is also known as the univariate Wright-Fisher diffusion
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Figure 1. Schematic overview of forward and reverse diffusion SDEs for Dirichlet diffusion score model. Forward and reverse diffusion
SDEs for 2-category data (a) and k-category data (b) by stick-breaking construction are shown.

equations 1 and 5, we have the following reverse-time SDE:

dx =

{
s

2
[a(1− x)− bx]− s(1− 2x)

− sx(1− x)∇x log pt(x)

}
dt

+
√
sx(1− x)dw.

(7)

Replacing ∇x log pt(x) with score model sθ
(
xt, t

)
allows

sampling from the trained model via reverse diffusion.

3.2. Forward Diffusion SDE for k-Category Data

To model discrete variables with k categories, e.g. DNA
sequence (with four bases A,C,G,T) or protein sequence
(20 amino acid residues), we need to consider diffusion in
probability simplex.

We seek to use a multivariate diffusion process over the
probability simplex for which the stationary distribution is
Dirichlet distribution (see Fig. 1b). Jacobi diffusion process
converges to Beta stationary distribution, a univariate special
case of Dirichlet distribution. Using the connection between
Beta distribution and Dirichlet distribution, we construct a

multivariate diffusion process on probability simplex that
converges to Dirichlet distribution with k − 1 independent
univariate Jacobi diffusion processes by a classical stick-
breaking construction

xt1 = vt1, x
t
2 = (1−vt1)vt2, x

t
3 = (1−vt1)(1−vt2)vt3, · · · ,

where vt1,v
t
2, . . . ,v

t
k−1 are drawn from independent Jacobi

diffusion processes at time t. Thus, we obtain a multivariate
diffusion process with Dirichlet stationary distribution using
xt1,x

t
2, . . . ,x

t
k.

For notation simplicity, we will use v and x to indicate the
k − 1 and k dimensional representations for the rest of the
manuscript, respectively. The conversion between v and x
is done by stick-breaking transform and its inverse.

For obtaining any Dirichlet stationary distribution, we
parameterize the Jacobi diffusion process. For exam-
ple, for the stationary distribution to be the flat Dirich-
let distribution Dir(1, 1, . . . , 1) (i.e., the uniform distri-
bution over the probability simplex), we need to choose
the Jacbobi diffusion processes with stationary distribu-
tions Beta(1, k − 1),Beta(1, k − 2), . . . ,Beta(1, 1) for
v1,v2, . . . ,vk−1 of stick-breaking construction. This can
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be simply achieved by choosing parameters a, b in equa-
tion 5 to be (1, k − 1), (1, k − 2), . . . , (1, 1).

We refer to this multivariate diffusion process as multivari-
ate Jacobi diffusion process by stick-breaking construction,
and the generative modeling approach with this diffusion
process as Dirichlet diffusion score model. An infinite di-
mensional form of this diffusion process with a more general
distribution family has been proposed as the GEM process
(Feng & Wang, 2007). The proposed process is a finite-
dimensional version of the GEM process. We note that
other forms of diffusion processes for which the stationary
distribution is Dirichlet distribution exist (see Steinrücken
et al. 2013b; Bakosi & Ristorcelli 2013). However, they are
much more computationally expensive to use as forward
diffusion processes since they cannot be decomposed into
independent univariate diffusion processes.

3.3. Score Matching Training for k-Category Discrete
Data

Using the multivariate Jacobi diffusion by stick-breaking
construction as the forward diffusion process allows us to
train score-based diffusion model for k-category discrete
data.

The initial value of the diffusion in x space is set to be the
discrete data represented by k-dimensional one-hot encod-
ing such as (0, 0, 1, . . . , 0). To sample from the forward
diffusion, we first map the initial values of x to v space via
inverse stick-breaking transform. For all dimensions of v af-
ter the first 1 that is undetermined by inverse stick-breaking
transform given x, we consider them as drawn from corre-
sponding stationary Beta distribution. Explicitly drawing
the Beta samples for initial values are not needed since the
density remains stationary and the samples and scores at
any time are directly computed from the Beta distributions.

The forward diffusion samples in v space at any time t are
drawn from the Jacobi diffusion processes (for dimension
with deterministic initial values) and stationary Beta distri-
butions (for dimension with undetermined initial values).
The scores for the transition density function in denoising
score-matching loss (Eq. 4) are then computed from the
corresponding Jacobi diffusion transition density function
and Beta density function.

By applying the change-of-variable conversion, we can
equivalently perform score matching in either v space or x
space since we can convert between the score of x to the
score of v:

∂log px(x)

∂x
=

(
∂log pv(v)

∂v
+
∂ log|det ∂v∂x |

∂v

)
∂v

∂x
,

∂log pv(v)

∂v
=
∂log px(x)

∂x

∂x

∂v
−
∂ log|det ∂v∂x |

∂v
.

The score model sθ
(
xt, t

)
is more naturally formulated as

a function of x, and we choose to compute score-matching
loss in v space because of the diagonal form of diffusion
coefficient.

Once the score model is learned, sampling from the reverse
diffusion process in v space is nearly identical to sampling
from multiple univariate reverse diffusion processes as in
Equation 7, except for that the score model takes all dimen-
sions of v as input (after converting to x space).

3.4. Weighting Function for Score Matching Loss of
General SDE

The choice of weighting function λ(t) in score matching
loss (Eq. 3 and 4) has previously been studied (Song et al.,
2021; Huang et al., 2021). With the assumption that the
scalar diffusion coefficient g(v, t) of the forward diffusion
process does not depend on the value v being diffused,
λ(t) = g(t)2 is shown to be the likelihood weighting (Song
et al., 2021). Minimizing the loss function with this weight-
ing is equivalent to maximizing the ELBO (Huang et al.,
2021). However, this assumption about g(v, t) does not
hold for the Jacobi diffusion process.

Here we motivate the use of

L(v, t) =

∥∥∥∥∂log pv(v)

∂v
− ∂log qv(v)

∂v

∥∥∥∥2
GGT

=

(
∂log pv(v)

∂v
− ∂log qv(v)

∂v

)
G(v, t)

G(v, t)T
(
∂log pv(v)

∂v
− ∂log qv(v)

∂v

)T (8)

to be the general form of weighted score-matching loss for
any SDE with matrix-form diffusion coefficient G(v, t),
from the argument that the loss function should satisfy the
property of invariance under change-of-variable, which is
satisfied by likelihood function. In Appendix A.3, we show
that this loss function is invariant to change-of-variable by
any bijective, differentiable function x = h(v), while the
unweighted loss is not. If G is scalar or diagonal and does
not depend on v, we recover the likelihood weighting from
Song et al. 2020.

3.5. Likelihood Computation

After the model is trained with score-matching, we can
estimate likelihood using probability flow ODE (see Eq. 2).
Our formulation allows both computing the likelihood from
the continuous distribution over the probability simplex,
and computing a variation lower-bound of the likelihood of
discrete data.
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LIKELIHOOD COMPUTATION FOR CONTINUOUS
VARIABLE IN PROBABILITY SIMPLEX

We will first estimate the likelihood in the v space, which
can be easily converted to likelihood in the x space using the
probability change-of-variable formula (Chen et al., 2018).

Following Song et al. 2021, the probability flow ODE for a
Jacobi diffusion process is:

dv =

{
s

2
[a(1− v)− bv]

− s

2
(1− 2v)− s

2
v(1− v)sθ(v, t)

}
dt = f̃dt

By the instantaneous change-of-variable formula, we have:

p0(v0) = e
∫ t
0
tr(∇v f̃(v

t))dtpt(v
t).

The trace of Jacobian can be unbiasedly approximated by
Hutchinson’s estimator

tr
(
∇v f̃(v

t)
)

= Eε∼N (0,I)[ε
T∇v f̃(v

t)ε]

and pt(v
t) is computed with the stationary distribution.

p0(v0) is converted to p0(x0) by applying the change-of-
variable formula to obtain the likelihood.

Since this continuous-space likelihood is not directly com-
parable with discrete-space likelihood, next we will derive
an evidence lower bound (ELBO) that allows direct compar-
ison with likelihood in discrete data space.

BOUNDING DISCRETE DATA LIKELIHOOD WITH
VARIATIONAL LOWERBOUND

To obtain a variational lowerbound for discrete likelihood,
we consider the continuous variable x in probability sim-
plex space, drawn from the reverse diffusion process, as
directly parameterizing categorical distributions. The dis-
crete data y are drawn from these categorical distributions.
Thus we obtain the discrete likelihood by marginalizing over
x p(y) =

∫
pCat(y|x)p(x)dx.

While this is generally intractable computationally, we use
the variational lowerbound ELBO

log p (y) ≥ EqDiff(x|y)[− log qDiff(x|y) + log pCat(y|x)

+ log pODE(x)],

where qDiff(x|y) is the density of forward diffusion from
y at time t0̃, with t0̃ chosen to be close to 0. pCat(y|x)
is the categorical distribution likelihood. pODE(x) is the
continuous-space likelihood of probability flow ODE as
described in the previous subsection, but with the lower end
of time being t0̃ instead of 0. This expectation is unbiasedly

estimated by sampling from the forward diffusion process.
This ELBO formulation is chosen so that the diffusion model
training will also minimize the variational gap of this ELBO,
which reduces to the KL divergence between the forward
diffusion density and the reverse diffusion density up to a
constant when t0̃ → 0. This bound can be tightened by
choosing t0̃ closer to zero. This bound is fairly tight in
practice when t0̃ is small, and we performed an empirical
analysis on a simple test case (see Appendix B.8).

3.6. Improving Sampling Efficiency and Sample
Quality

Lastly, we introduce two techniques that can be applied to
improve the efficiency of forward diffusion sampling during
training, or improve sample quality post-training, which are
both detailed in Appendix. The sampling strategy for the
forward diffusion process presented in Section 3.3 requires
drawing samples from k − 1 Jacobi diffusion processes for
k-category data, which can be demanding when k is high. In
Appendix A.4, we describe a strategy to simplify sampling,
needing to effectively sample from only one univariate Ja-
cobi diffusion process.

The second technique is designed to improve sample qual-
ity. Comparing to unbiasedly sampling from the learned
model distribution, it is often desirable to sample near the
high probability density regions, which often corresponds
to higher quality samples in suitable applications. In Ap-
pendix A.5 we propose a simple technique, time-dilation,
applicable to reverse diffusion sampling without modifying
the score model, when a flat distribution such as the flat
Dirichlet distribution is the stationary distribution. In Ap-
pendix B.9, we compare sample quality obtained by time
dilation with other sampling strategies which reported to
improve sample quality (Song et al., 2020).

4. Results
4.1. Implementation Notes of Dirichlet Diffusion Score

Model

Sampling from Jacobi diffusion processes is more expen-
sive than commonly used SDEs with Gaussian stationary
distributions (Song et al., 2020), as we need an SDE sampler
such as Euler-Maruyama sampler. However, we only need
to generate samples from two starting points, 0 and 1, for
any categorical data. Hence, we can pre-sample a dictionary
of diffused samples at different time points t and sample
from the dictionary during training time. Similarly, the
log transition density function gradient at the samples can
also be precomputed. This approach allows efficient train-
ing with little additional overhead. We discuss additional
implementation details in the Appendix B.
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Figure 2. Sudoku generation and solving through generative mod-
eling with diffusion model, as a test for constraint satisfaction.

4.2. Application to Binarized MNIST

We first applied the method to a benchmark dataset for
generative modeling, the binarized MNIST dataset, and
obtained competitive performance (Table 1). More details
of all applications are included in Appendix C. Examples of
samples are shown in Appendix D.

Table 1. Binarized MNIST benchmark performance

Method NLL (nats) ↓
DDSM (ours) 78.04± 0.37
CR-VAE 76.93
Locally Masked PixelCNN 77.58
PixelRNN 79.20
PixelCNN 81.30
EoNADE 84.68
MADE 86.43
NADE 88.33

4.3. Sudoku Generation as a Constraint Satisfying
Generation Test

To test the ability to generate highly structured data that sat-
isfy hard constraints, we applied our method to the problem
of generating and solving Sudoku. This problem has not
been solved through generative modeling to the best of our
knowledge.

For training, we used a Sudoku generator to continuously
produce Sudoku puzzles. A fully-filled Sudoku puzzle can
be encoded with 81 categorical variables with the number
of categories k = 9. The model architecture we adopt is
based on a 20-block transformer architecture with a relative
positional encoding designed for the Sudoku problem.

Specifically, a Sudoku puzzle is represented by a set of 81
elements and a binary relative positional encoding that is 27
dimensional (81 x 81 x 27), corresponding to whether two

Table 2. Sudoku generation and solving accuracies for single sam-
ples with DDSM. With multiple samples, all Sudoku puzzles we
tested were solved. See Appendix C.3 for comparison with base-
line diffusion methods.

Task Time dilation Accuracy (%)

Generation 8x 100
4x 99.88± 0.06
2x 98.87± 0.16
1x 95.08± 0.46

(Heuristic algorithm baseline) 0.31
Solving 8x 98.26± 0.18

4x 97.54± 0.18
2x 96.45± 0.32
1x 93.85± 0.42

elements are of the same row, same column, or the same
3x3 block. The relative positional encoding is transformed
by a linear layer and added to the transformer’s attention
prior to the softmax.

The generative capability of the model is evaluated by the
percentage of generated Sudoku that is correctly filled (Ta-
ble 2). Only whether a Sudoku is completely correct is
considered, with no partial credit given. Applying the time-
dilation technique (Appendix B.3) to drive samples toward
high-density areas improved sample quality to up to 100%.
In contrast, the heuristic algorithm for generating of Sudoku
that we used to generate training data, has only 0.31% suc-
cess rate. Even though no previous generative modeling
approach has been applied to Sudoku, we also trained the
Sudoku Transformer with Bit Diffusion (Chen et al., 2022b)
and D3PM-uniform/Multinomial Diffusion (Hoogeboom
et al., 2021b; Austin et al., 2021), using the same model
architectures. DDSM with time dilation achieved the best
performance in comparison with these methods (Appendix
C.3).

Interestingly, similar to prior observations on image genera-
tion quality (Song et al., 2020), we also observe a trade-off
between Sudoku-solving ability and computational budget,
with improved Sudoku-generation accuracy using a higher
number of sampling steps and time-dilation.

4.4. Solving Sudoku via Conditional Generation

We applied the Sudoku generative SDE model to solving
Sudoku puzzles by a conditional generation with the inpaint-
ing method (Song et al., 2020) of clamping entries to the
given clues of the puzzle. We evaluated the model on an
easy Sudoku dataset with 36 clues on average (Wang et al.,
2019) and a hard Sudoku dataset with minimally 17 clues
(Palm et al., 2018), which is the minimum number of clues
possible for Sudoku (McGuire et al., 2014).

Even though no additional training is done for solving Su-
doku, the generative SDE model trained with DDSM solved
most puzzles in the easy dataset with a single sample (Ta-
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ble 2). In contrast, both models trained with Bit Diffusion
and D3PM-uniform have difficulties in the Sudoku solving
task, with only < 10% of easy puzzles solved with a single
sample.

The Sudoku-solving performance of the DDSM model can
be further improved by increasing time-dilation, and a single
sample solves 99.4% of the easy dataset and 42.4% of the
hard dataset (128x time-dilation). When multiple samples
are allowed, the model can solve 100% of all puzzles. The
number of samples required to solve a Sudoku puzzle signif-
icantly increases with lower than 25 clues, with about 2.3x
increase per one fewer clue given which is still significantly
better than random guesses (Appendix E). This allows us
to solve 100% hard Sudoku puzzles in the dataset. Neither
models trained with Bit Diffusion nor D3PM-uniform have
the ability to solve hard puzzles. Previous state-of-the-art
supervised models SATNET (Wang et al., 2019) and Recur-
rent relational network (Palm et al., 2018) can solve most
but not all of them (see Appendix E for more discussion).

4.5. Generation of Promoter DNA Sequences

Finally, we applied the method to designing human pro-
moter DNA sequences (Figure 3). Promoters are key DNA
sequences that drive the transcription of genes and partially
determine gene expression levels. Designing promoter se-
quences can have broad applications in biomedical research
and bioengineering applications, such as controlling syn-
thetic gene expression. Human promoter sequences are
known to be highly diverse and rules that determine pro-
moter sequence activity are not fully understood (Wang
et al., 2017). Thus it is an ideal problem to be addressed
through deep generative modeling. No prior computational
approach for designing human promoter sequences exists to
our knowledge.

To enable human promoter sequence design, we trained
a conditional Dirichlet diffusion score model to perform
conditional generation of promoter sequences using tran-
scription initiation signal profile as an additional input to
the score model (Figure 3). Transcription initiation signal
profiles reflect the transcription initiation activity at every
sequence position and are obtained from CAGE experiments
(Consortium et al. 2014). The conditional generation model
allows controlling the transcription initiation signal profile
produced by the sequence, including controlling the expres-
sion level. We constructed the human promoter sequence
dataset containing 100,000 promoter sequences and corre-
sponding transcription initiation signal profiles, with each
sequence 1024 basepairs long and centered at the annotated
transcription start site position (Hon et al., 2017). This set of
promoters spans the whole range of human promoter activity
levels from highly expressed protein-coding gene promoters
to ncRNA gene promoters with very low expression.

Table 3. Promoter design performance comparison for different
models. We trained all models with the same Promoter Designer
architecture and the same early stopping criterion for this compari-
son.

Model SP-MSE ↓
DDSM (time dilation 4x) 0.0334
DDSM (time dilation 2x) 0.0348
DDSM (time dilation 1x) 0.0363
D3PM-uniform / Multinomial Diffusion 0.0375
Bit Diffusion (one-hot encoding) 0.0395
Bit Diffusion (bit-encoding) 0.0414

4.6. Evaluation of Designed Promoter DNA Sequences

With a custom score-model architecture that we call Pro-
moter Designer, the generative model obtained a conditional
NLL estimate of ≤ 1.32 bits per basepair for promoters that
are from test set chromosomes and among the top 10,000
promoters, whereas simple baselines using position-specific
base composition achieves only 1.92 bits. Promoter se-
quences with higher activity levels also obtained better NLL
estimates (Figure 4a), in line with the expectation that se-
quences of high-activity promoters are less random com-
pared to low-activity promoters. Multiple sequence samples
conditioned on the same transcriptional initiation signal pro-
file are typically diverse (Figure 3) while sharing similar
characteristics. The generated sequences return no hits when
compared with the human genome using BLAST (Morgulis
et al., 2008), thus the model does not simply memorize
human genomic sequences.

The sequence samples are observed to contain highly similar
properties as promoter sequences from the human genome
(Figure 4b-d), such as position-specific nucleotide composi-
tion relative to the transcription start site (Figure 4b) as well
as distribution of known promoter related motifs (Figure
4c).

To evaluate whether the generated sequences recapitulated
more complex sequence rules of promoter activity, we ap-
plied a published deep learning sequence model Sei that can
predict active promoter from sequence (based on chromatin
mark H3K4me3 predictions) (Chen et al., 2022a), the gener-
ated sequence has comparable predicted promoter activity
with the human genome sequence, for both high and low ac-
tivity promoters (Figure 4d). Applying time-dilation further
increased predicted promoter activity (Appendix F).

We also trained models with baseline discrete data diffusion
approaches. The evaluation is based on comparing gen-
erated sequences and human genome promoter sequences
(ground truth) on the test chromosomes similar to Figure 4c.
The metric SP-MSE is the MSE between the predicted pro-
moter activity of generated sequences and human genome
sequences (lower is better). Our model trained with DDSM
outperforms models trained with baseline approaches (Table
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GTGAACGTTAGAAACGAATAGCAGCCAATGAATCAGCTGGGGGGGGCGGAGCAGTGACGTTTATTGCGGAGGGGGCCGCTTCGAATCGGCGGCGGCCAGCTTGGTGGCCTGGGCCAATGAACGGCCTCCAACGAGCAGGGCCTTCACCAATCGGCGGCCTCCACGACGGGGCTGGGGGAGGGTATATAAGCCGAGTAGGCGACGGTGAGGTC...

ACCCGCGACAGACACCAAACTGGCGCTGCCCTGTGGGACGCGGACACTCGATCTCGGAGCTCATTGCACGCTGCTGCGGTTCAGGTCGGGGAACGCCAGCTGCGCAGCGCGAAGCACGATGGGCCAGCTAATGGTCGGGGCATGGACCAATTGGCGTCGACGGGGGCGGGATCGGGGGAAGGTATATAAGCCAGCCGGGCGGCCCGGGGCCC...

CCAGGAACAGGAGCCCACACGGGCCCCAGGCCCCGCCCCCTCCCTGCCTTCCGCTGGCCTTTATTCCGCCCGTCCCCGACTCAAGGTCCCGCTCATTGAATACGCAGGATGAGTTAATGACGACTATCTAACAAATGGATCAAGTGCCAATTGAGATCGCTGGGGGCGGGGATAAGGAAGGGTATATAACCCGAACTGACGCCGCAGGCCCT...

GCCGTGATTGGCCTGAAGCGGGGATCCCTCCTAGGAGCCGGAAGCACATCCTATCGGCGCTTATTGGCCCCAAGCTTAGCTCACAGCCCTGATGCCCAACTGCGAAGCGCAGTCCAAAAACAGCCAATGAGCATCGCGAGTAATCAACGAGTGACGCTAGCGGGGGCGGGGCTGGGGGGAGGTGTATAACCCGCCCGGACGCTCTGGGGCCC...

TCTTCCCAAACCAATTACGGCCTTTCTTGAAAACAAAAAAAAGGCGGGCCCTATCGACAGCTATTAGCGTCGGCGCCGCTTTGGTTTCCCGCTGCCCGACTCCCTCCTGCAGGGTGATGTCGCTTGCTCGCTGTGTGCGGCAACTACCAAACAGCGCTAACGGGGGCGGGGTCCTGGGAGGGTATATAAGCCGCTCGGGCGGCGCTGGGCCC...

GTGTCGCCAGCCGGCAGGGGTGGGATTTTCTGTTTTTTTCCCATCGCGAAATATCTGAGCTCATTGGAAGAGAAGCCAAATCGTGCTCCCAGTCCCCGACTGCGCGGCATGAACTAATGTAGTCCGATTAGTGCGGGAGCCAATCACCGATTGCCGCCGTCCGGGGCGGGGTCGGGGGAGGGTACATAACCCGCCCGGGCGCCCCTGGCCCT...
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divided by baseline prediction for average genomic sequences.

3).

5. Related Work
Diffusion models were first proposed in Sohl-Dickstein et al.
2015; Ho et al. 2020, including their first application to
discrete data using a binomial diffusion process for a bi-
nary dataset (Sohl-Dickstein et al., 2015). Song et al. 2020
proposed the score-based generative SDE diffusion model

framework with continuous time for continuous data. Re-
cent works for generalizing diffusion models to discrete data
have mostly considered discrete time (Hoogeboom et al.,
2021b; Austin et al., 2021). More recent works (Campbell
et al., 2022; Sun et al., 2022) proposed continuous-time ap-
proaches for discrete-space diffusion based on a continuous-
time Markov chain formulation. Another direction of work
is to apply existing continuous-time continuous-space dif-
fusion approach to discrete data encodings, such as bit en-
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coding (Chen et al., 2022b) or word embedding (Li et al.,
2022), and quantize the continuous samples. Concurrent to
this work, Richemond et al. 2022 proposed to use k indepen-
dent Cox-Ingersoll-Ross (CIR) processes as a forward SDE
for which the stationary distribution is Gamma distribution.
The authors proposed to normalize the k-dimensional vector
obtained by the CIR processes to unit sum, and the station-
ary distribution of the normalized k-vector is the Dirichlet
distribution. In addition, Lou & Ermon 2023 introduced
reflected SDEs to score-based diffusion model, which can
be applied to restrict the diffusion to the probability simplex.

Latent diffusion models also allow generative modeling of
discrete data by modeling only the distribution of continuous
latent variable with diffusion (Vahdat et al., 2021; Lovelace
et al., 2022). While the reverse diffusion process in our
approach can also be interpreted as a latent variable that
emits discrete data (Section 3.5), the relationship between
latent and discrete variables is fixed rather than learned.

On generative modeling for biological sequence design,
deep generative models have been recently applied to DNA
sequence design (Killoran et al., 2017; Wang et al., 2020;
Zrimec et al., 2022), even though no diffusion model has
been developed. No prior method exists for designing hu-
man promoter sequences to our knowledge. On the protein
sequence design problem, several deep generative models
have been developed to generate sequences conditioned on
protein structure (Ingraham et al., 2019; Dauparas et al.,
2022), and diffusion models have been applied to generate
protein structure (Trippe et al., 2022; Watson et al., 2022;
Lee & Kim, 2022). Recently works also jointly generate
structure and sequence with diffusion (Luo et al., 2022;
Anand & Achim, 2022).

Our contribution is to propose the approach for discrete data
modeling with continuous-time SDE diffusion in probability
simplex space, and applied this approach to develop the first
method for human promoter sequence design and a novel
application to generative modeling of Sudoku. All exist-
ing works using score-based generative SDEs are based on
diffusion processes that converge to Gaussian stationary dis-
tributions, and here we expand the generative SDE toolkit
to include ones that converge to Dirichlet stationary distribu-
tion. In addition, we propose a simple and easily applicable
technique, time-dilation, to improve sample quality.

6. Discussion
We provided a continuous-time Dirichlet diffusion score
model framework (DDSM), for generative modeling of bio-
logical sequences, which can also be used for other types of
discrete data. The approach also provides a plug-in substi-
tute for Gaussian stationary distribution SDEs for discrete
variables and expands the toolkit of generative diffusion

model.

The size of the continuous diffusion state scales linearly with
the number of categories and thus may not directly scale
to a very high number of categories due to memory and
computational constraints. A potential way to address this
issue is to use bit encoding or hierarchical encoding schemes
that can reduce the encoding dimensions required down to
log2(C), where C is the number of categories. However,
the current approach is ideal for applications in modeling
biological sequences, such as DNA and RNA sequences
(4 bases) and protein sequences (20 amino acid residues),
as well as other data that can be encoded with a moderate
number of categories.

We are encouraged by the promising results in designing
human promoter sequences and the strong constraint satis-
faction capability demonstrated in generating and solving
sudoku, and look forward to further development in biologi-
cal sequence design based on this approach.
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A. Supplemental Information for Dirichlet Diffusion Score Model
A.1. Transition Density Function of Jacobi Diffusion Process

For Jacobi diffusion process
dx =

s

2
[a(1− x)− bx]dt+

√
sx(1− x)dw,

the transition density function is

pa,b(x
t|x0) = Ba,b

(
xt
) ∞∑
n=0

eλnt

dn
R(a,b)
n

(
x0
)
R(a,b)
n

(
xt
)

= Ba,b
(
xt
)(

1 +

∞∑
n=1

eλnt

dn
R(a,b)
n

(
x0
)
R(a,b)
n

(
xt
))

,

where Ba,b(xt) is the Beta(a, b) density,

R(a,b)
n (x) = P (b−1,a−1)

n (2x− 1)

denotes the n-th order modified Jacobi polynomial of order n.

dn =
a(n)b(n)

(a+ b)(n−1)(2n+ a+ b− 1)n!

is the n-th order constant.

a(n) =
Γ(a+ n)

Γ(a)
=

n−1∏
k=0

(a+ k)

denotes rising factorial also known as the Pochhammer symbol and

P (α,β)
n (x) =

Γ(α+ n+ 1

n! Γ(α+ β + n+ 1)

n∑
m=0

(
n

m

)
Γ(α+ β + n+m+ 1)

Γ(α+m+ 1)

(
x− 1

2

)m
is the Jacobi polynomial. R(a,b)

n (x) are eigenfunctions of the generator of the Jacobi diffusion process (Steinrücken et al.,
2013a; Griffiths & Spano‘, 2010). The corresponding eigenvalues are λn = − 1

2sn(n− 1 + a+ b).

A.2. Choosing Speed Factor s in Jacobi Diffusion Processes for Dirichlet Diffusion Score Model

Let us recall Jacobi diffusion process from Section 2.2:

dx =
s

2
[a(1− x)− bx]dt+

√
sx(1− x)dw.

The choice of s affects the convergence speed of Jacobi diffusion process while having no effect on the stationary distribution.
In other words, the diffusion process converges to stationary distribution faster with higher s.

For modeling 2-category data with univariate Jacobi diffusion processes, the choice of s only affects the appropriate selection
of maximum time in the diffusion model, which should be chosen inversely proportional to s. For modeling k-category
data with multivariate Jacobi diffusion process by stick-breaking construction, the selection of s can affect the relative
convergence speed for each independent univariate Jacobi forward diffusion processes.

We propose two options of s:

(i) The first option, s = 1, was empirically observed to achieve uniform convergence speed in x space across dimensions
corresponding to different categories. This also generates samples that are nearly identical to fast sampling strategies
described in Section A.4. Choosing s = 1 generally requires selecting a lower maximum time for more categories, to
compensate for the faster convergence with higher k.

(ii) The second option, s = 2
a+b , ensures uniform converge speed in the v space. This is motivated by choosing the

first eigenvalue of the transition density function λ1 = − 1
2s(a+ b) to be equal across Jacobi diffusion processes. It

also allows conveniently keeping a fixed maximum time for diffusion modeling (e.g. 4), regardless of the number of
categories k in the data or the a, b parameters of the Jacobi diffusion.
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We tested both variants of s and obtained good empirical results. Hence, these choices are often interchangeable. We used
s = 1 for Sudoku generation and s = 2

a+b for promoter sequence design. The binarized MNIST application uses only the
univariate Jacobi diffusion process where the two options are equal. We recommend comparing the choices on specific
applications.

A.3. Weighting Function for Score Matching Loss Invariant to Change-of-Variable

Here we will show that the proposed weighted score matching loss is invariant to change-of-variable for any SDE. To first
show that the unweighted score matching loss is not invariant to change-of-variable, we consider change of variable by any
bijective, differentiable function x = h(v). Applying the change-of-variable equation for probability density function, the
unweighted score matching loss∥∥∥∥∂log px(x)

∂x
− ∂log qx(x)

∂x

∥∥∥∥2
2

=

∥∥∥∥(∂log pv(v)

∂v
− ∂log qv(v)

∂v

)
∂v

∂x

∥∥∥∥2
2

is not invariant to the change of variable due to the extra ∂v
∂x term. We now show that the loss function Equation 8 (also

shown below) is invariant to change of variable x = h(v, t) (where x = h(v) is a special case).

L(v, t) =

∥∥∥∥∥∂log pv(v)

∂v
− ∂log qv(v)

∂v

∥∥∥∥∥
2

GGT

=

(
∂log pv(v)

∂v
− ∂log qv(v)

∂v

)
G(v, t)G(v, t)T

(
∂log pv(v)

∂v
− ∂log qv(v)

∂v

)T
.

For Ito diffusion process
dv = f(v, t)dt+ G(v, t)dw,

change-of-variable to v gives the following Ito diffusion process due to Ito’s lemma

dx =

{
∂x

∂t
+
∂x

∂v
f(v, t) +

1

2
Tr

[
G(v, t)T

(
∂2x

∂v2

)
G(v, t)

]}
dt+

∂x

∂v
G(v, t)dw.

Thus, G(x, t) = ∂x
∂vG(v, t). Plugging this in equation 8, we see that L(x, t) = L(v, t).

A.4. Improving Sampling Efficiency for Data with High Number of Categories

The sampling strategy for the forward diffusion process presented in Section 3.3 requires drawing samples from k− 1 Jacobi
diffusion processes for k-category data, which can be demanding when k is high. Here we describe a strategy to accelerate
sampling, needing to effectively sample from only one univariate Jacobi diffusion process.

We assume that the stationary distribution is the flat Dirichlet distribution Dir(1, 1, . . . , 1). We reorder the sequence of
stick-breaking construction, starting from the dimension with value 1 in one-hot encoding first, which allows us to initialize
with v1 = 1 and diffuse with Jacobi diffusion (a = 1, b = k − 1). This reordering allows all other vi values to be drawn
without sampling from Jacobi diffusion as they can be drawn directly from their stationary distribution vi ∼ Beta(1, k − i).
The samples will be converted to x space and reordered back to the original order. Reordering does not change the initial or
stationary distribution of the diffusion process.

This sampling strategy leads to exactly k − 1 fold speed up and lower memory consumption during precomputation of the
samples and scores. During training time, we also observed it to be faster than the regular sampling (for example, 2.08 vs
2.87 ms for the fast sampling method vs regular sampling method for 10, 000 dimensions).

Empirically, the fast sampling method generates nearly identical samples as the original multivariate Jacobi diffusion process
by stick-breaking construction with all s factors set to constant. We find it hard to detect any noticeable decrease in sample
quality or in log likelihood, showing that the effect is likely very small (on a synthetic data set, we observed 2.08 bits /dim
using the model trained with the fast sampling strategy, whereas the ground truth optimal likelihood is 2 bits/dim). For
example, our Sudoku model is trained with the fast sampling strategy and achieves perfect accuracy in Sudoku generation
(see Appendix C.2 for more details).
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A.5. Improving Sample Quality by Biasing Reverse Diffusion Toward High-Density Areas

Compared to unbiasedly sampling from the learned model distribution, it is often desirable to sample near the high probability
density regions. These regions often correspond to higher-quality samples. We propose a simple technique applied to reverse
diffusion sampling without modifying the score model when a flat distribution is the stationary distribution (e.g., the flat
Dirichlet distribution).

There are two equivalent modifications of the reverse diffusion process during sampling:

(i) increasing the maximum time of reverse diffusion by a factor of k while querying the score model (and diffusion
coefficient if it is time-dependent) with time proportionally scaled back to the original; or

(ii) accelerating the reverse SDE by a factor c while keeping the maximum time and score model of reverse diffusion
unchanged. More specifically, we have

dx = c

{
f(x, t)−∇ ·

[
G(x, t)G(x, t)>

]
−G(x, t)G(x, t)>∇x log pt(x)

}
dt+

√
cG(x, t)dw.

We call these techniques time dilation.

The modified SDE can be considered a reverse-time SDE for the forward diffusion accelerated by c. However, the score
function is biased upward since it is estimated from the original forward diffusion which converges to stationary distribution
slower. Thus, the samples tend to lie in higher-density areas. Since time dilation drives samples toward high-density areas,
sometimes it is only desired to do locally instead of globally. Therefore, we find it effective to achieve so by starting
time-dilation only at later stages of reverse diffusion.

It is also important to note that time dilation does not increase the time complexity of the sampling unless the number
of sampling steps is increased. For example, 128x time dilation on 3200 time steps involves only 3200 evaluations. We
generally recommend increasing the number of sampling steps proportional to the time dilation.

Overall, time dilation represents a general technique that can be applied to any continuous-time diffusion model.

B. Implementation Notes of Dirichlet Diffusion Score Model (continued)
B.1. Implementation of the Jacobi Diffusion Transition Density Function

We compute Jacobi polynomials using dynamic programming. Hence, the time complexity of the algorithm is linear with
respect to the number of terms in the Jacobi diffusion process. Table 4 provides information about the computation time of
the Jacobi diffusion density function with up to 1000 terms in eigendecomposition for the input of 10000 dimensions.

Order of Jacobi Polynomials 10 50 100 500 1000
Runtime - Pytorch (ms) 0.27 1.33 2.33 9.33 19.8

Table 4. Runtime of Jacobi diffusion density function computation on PyTorch 1.10.1.

By choosing the number of terms for computing the Jacobi diffusion density function, one seeks a trade-off between running
time and numerical issues. Table 5 contains the relative error for the log gradient of the Jacobi diffusion density function
(a = 1, b = 3) for different time points, averaged over 1000 samples for each time point, using scores evaluated with 10000
terms as the ground truth. Table 5 shows that 1000 terms are sufficient for precisely computing the score for t = 0.001, 100
terms are sufficient for t = 0.01, and 20 terms are sufficient for t = 0.1.

We decided to be conservative and chose to use 1000 terms for all our experiments. For numerical accuracy, we recommend
evaluating Jacobi diffusion with eigendecomposition up to the 1000th term as well, with double precision floating point
arithmetic, for time greater or equal to 0.001. It is also recommended to perform the stick-breaking transform and its inverse
transform in double precision. Using double precision in these steps generally incurs negligible performance costs and
noticeably improves numerical accuracy.

As described in the main text, we can presample a dictionary of diffused samples for each independent Jacobi diffusion
process at uniformly spaced time points to allow efficient training. In the next section, we will discuss it in more detail.
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# of terms t=0.001 t=0.01 t=0.1 t=1
10 11.2 14.0 1.1 0
20 10.8 7.4 0 0
50 7.5 0 0 0

100 0.2 0 0 0
200 0 0 0 0
500 0 0 0 0
1000 0 0 0 0

Table 5. The relative error for the log gradient of Jacobi diffusion density function for different time points, averaged over 1000 samples
for each time point.

B.2. Efficient Sampling and Score Computation from Jacobi Diffusion Processes

The computational complexity of both sampling and score computation from diffusion process for k category data is O(n),
where n is the dimensions of the input (e.g., a length of 1000 sequence with 4 categories has 4000 dimensions). We note that
our diffusion process is specifically designed to be linear with respect to the number of categories, whereas other choices
of multivariate diffusion processes with Dirichlet stationary distribution may have quadratic complexity (e.g. multivariate
Wright-Fisher diffusion) with respect to the number of categories.

While our diffusion evaluation is more expensive than the commonly used diffusion process with Gaussian stationary
distribution, all Jacobi diffusion-related computations can be precomputed prior to training and do not add to training time.
This is feasible because we only need to generate samples from two starting points, 0 and 1, for any categorical data.

Thus, we can presample a dictionary of diffused samples for each independent Jacobi diffusion process at uniformly spaced
time points to allow efficient training. For most applications, it suffices to sample a dictionary containing 100, 000 diffusion
samples for each of 400 uniformly spaced time points for each Jacobi diffusion process. The presampled dictionary can be
saved and reused for applications using the same forward diffusion processes. This approach applies to not just the standard
sampling approach but also the fast sampling approach in Section A.4.

Sampling during training is done by choosing randomly from the pre-sampled samples and scores. The sampling time is
negligible compared to neural network training. Thus, training/sampling/likelihood evaluation processes have the same
complexity as the previous score-based SDE diffusion model. For example, only 2.87ms is needed for both generating a
sample and its score for 10, 000 dimensions combined.

We believe that the whole process can be further optimized since only time points very close to zero would require a high
number of terms to ensure numerical accuracy (see Appendix B.1). These optimizations together with JIT-based speed
up may eliminate the need for precomputation without slowing down the training, sampling, and likelihood computation
processes.

B.3. Importance Sampling of Time During Denoising Score-Matching Training

Importance sampling is often needed to stabilize the training of diffusion model with likelihood weighting (Song et al.,
2021), since the scores for the forward diffusion transition density functions are usually large when time is small. Importance
sampling is thus used as a variance reduction technique that samples time non-uniformly during training. By sampling time
points where the scale of the score is higher more often and down-weight the sample loss accordingly, the variance of the
gradient can be reduced. We determine the importance sampling weight based on the scale of the scores at each time point
observed empirically. While different choices of importance sampling weights can be used, we found

w(t) ∝ Ep0(v0)p(vt|v0)

∥∥∥∥sv(1− v)∇x log p
(
xt | x0

) ∂x
∂v

∥∥∥∥
F

,

where the norm is the Frobenius norm, to be a good choice for most applications.

B.4. Score Model Design

While the architecture of the score model should be designed for the specific data type and problem. There are several
aspects of score model design that are shared in common.
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First, the score model should take continuous time t as input, we found Gaussian Fourier projection to work well as the time
embedding function following Song et al. 2020 which in turn followed Tancik et al. 2020.

Second, as discussed in Section B, the scale of the score function is dependent on time, especially when t is small. We
can leave it to the score model to learn this time dependency or introduce a time-dependent scaling explicitly in the score
model thus the model needs to learn the residual dependencies on time and input. For example, the last layer output can be
multiplied with the time-dependent weight w(t) in the above section with linear interpolation between time points.

B.5. Sampling

We used Euler Maruyama sampler and the modified version with time dilation (Section A.4) for all our applications for
simplicity. Many improved sampling approaches have been proposed for more efficient sampling. We leave the exploration
of applying these sampling approaches with Dirichlet diffusion score models for future research.

We discretize the samples by using argmax to choose the sampled category among k categories, even though mapping
samples to discrete samples is trivial for trained models since the samples are generally close to 1 in one category and close
to 0 in all other categories.

B.6. Selection of the Minimum Time for Diffusion Processes

The score of the transition density function at t = 0 does not exist and the score at very small t tends to become very large
and cause numerical issues. Thus in practice, a choice of the minimum time used for training, sampling, and likelihood or
ELBO evaluation is needed. With typical choices for diffusion parameters suggested in the manuscript, a minimum time of
0.01 or 0.001 is sufficient.

B.7. Randomization of Stick-Breaking Construction Order

We do not in general observe the order of stick-breaking construction in multivariate Jacobi diffusion to affect the model
performance or samples. However, it is possible to enforce order invariance by randomizing the stick-breaking construction
order during training or sampling. As the score model is formulated in x space, it can be converted to v space with any
stick-breaking transform order.

B.8. The empirical assessment on the tightness of ELBO

For measuring the gap, we created a simple test case with 4 categories for which the ground truth data density is known.
Table 6 contains the measured gap between the ELBO and the ground truth likelihood. It represents an upper bound of the
ELBO variational gap.

t0̃ Gap (bits/dim)
0.001 0.0023
0.002 0.0045
0.005 0.0111
0.010 0.0219

Table 6. Empirical assessment of the gap between our ELBO and the ground truth likelihood. t0̃ is a time close to 0.

We conclude that this gap should be tight enough for most applications and can be further tightened by lowering t0̃, where
t0̃ is a time close to 0.

B.9. Comparison of Time Dilation Approach with Other Improving Sample Techniques

We compared the proposed time dilation approach with predictor-correct sampling using the sudoku generation task (see
Appendix C.2 for more details about the sudoku experiments). Table C.2 contains results from the Predictor-Corrector
sampler with the number of corrector steps being 1, 3, 7 and from the time dilation approach. Both techniques use the same
number of evaluations. From Table C.2, we conclude that time dilation approach consistently shows better performance.
However, it is important to note that time dilation is a biased sampling technique (i.e., sample preferentially from high-density
areas), whereas predictor-corrector sampling is intended for unbiased sampling.
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Model Accuracy
Time dilation 8x 100
Time dilation 4x 99.88 ± 0.06
Time dilation 2x 98.87 ± 0.16

Predictor-Corrector (7 corrector steps) 98.86 ± 0.26
Predictor-Corrector (3 corrector steps) 97.70 ± 0.26
Predictor-Corrector (1 corrector step) 95.16 ± 0.47

Baseline 95.08 ± 0.46

Table 7. Accuracy comparison of different sampling methods.

C. Application Details
In this section, we provide more details about the experiments and applications.

C.1. Binarized MNIST

The model architecture is adopted from Ho et al. 2020, and replaces the time embedding with Gaussian Fourier projection-
based continuous-time embedding. The model is trained with univariate Jacobi diffusion with s = 1, time-dependent
weight-based scaling in the score model (Section B.4), minimum time of 0.001, and maximum time of 4.

C.2. Sudoku Generation and Solving

The Sudoku training samples are fully-filled Sudokus sampled from the Sudoku generation code (https://github.
com/Kyubyong/sudoku/blob/master/generate_sudoku.py, which is itself an adaptation of Sudoku genera-
tion code from https://www.ocf.berkeley.edu/˜arel/sudoku/main.html). Sudoku puzzles are randomly
generated puzzles by the ”pluck” method of this code. We also measured the success rate of this Sudoku generation algorithm,
which iteratively fills the Sudoku puzzle with numbers with no conflict, until it is no longer possible. As a baseline, the
heuristic algorithm only has 0.31% accuracy.

The Sudoku transformer is a 20-block transformer architecture with the attention-bias style relative positional embedding, as
described in the main text. The Sudoku transformer model is trained with the fast sampling strategy described in Section
A.4 with maximum time 1.

For generation and solving Sudoku puzzles, we used Euler Maruyama sampler with and without time-dilation technique
for reverse diffusion sampling. 100k steps where k is the time-dilation factor are used. To estimate the accuracy of easy
and hard Sudoku puzzles with a single sample and 128x time-dilation, we used 3200 steps. To solve Sudoku with multiple
samples, 8x time dilation with 200 steps was used, and we keep generating new samples until the generated sample solved
the Sudoku puzzle.

C.3. Sudoku performance comparison with baseline methods

Table 8. Sudoku generation and solving accuracies for single samples, in comparison with baseline diffusion methods. We trained all
models with the Sudoku transformer architecture.

Task Method Accuracy (%)

Generation DDSM (time dilation 8x) 100
DDSM (time dilation 4x) 99.88± 0.06
DDSM (time dilation 2x) 98.87± 0.16
DDSM (time dilation 1x) 95.08± 0.46
Bit Diffusion 99.60± 0.11
D3PM-uniform / Multinomial Diffusion 98.90± 0.18

Solving DDSM (time dilation 8x) 98.26± 0.18
DDSM (time dilation 4x) 97.54± 0.18
DDSM (time dilation 2x) 96.45± 0.32
DDSM (time dilation 1x) 93.85± 0.42
Bit Diffusion 7.48± 0.55
D3PM-uniform / Multinomial Diffusion 7.37± 0.58
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C.4. Human Promoter Sequence Design

You can refer to Appendix F.1 if you are looking for more background information on the promoter design problem.

For the preparation of the dataset, we first obtained human TSS position annotation from the FANTOM-CAT catalog using
the Level 3 (Robust) annotations. We obtained transcription initiation signal profiles measured by CAGE from the FANTOM
project (Consortium et al., 2014). FANTOM CAGE datasets were downloaded from https://fantom.gsc.riken.
jp/5/datafiles/latest/. We averaged all CAGE profiles after applying log(x + 1) transformation to obtain a
robust genome-wide transcription initiation signal profile.

The human genome sequences are retrieved from hg38, with each sequence 1024 bp centered at the annotated TSS position.
The sequences are retrieved on the same strand as the annotated direction of transcription of the promoter. In total, 100,000
promoters with the highest expression are retrieved. The promoters are further split into the training, validation, and test
sets based on chromosomes (chr8 and 9 for the test set, chr10 for the validation set, and all other chromosomes for the
training set). In the training set, we also introduce the same amount of random shift of up to +/−100bp to the sequence and
transcription initiation profile simultaneously. The sequences and transcription profile profiles at centered at a location within
+/−100bp distance to the annotated TSS in this case. Random shifts are only used during training as a data augmentation
and regularization technique.

The Promoter Designer model has a custom-designed 1D convolutional architecture. This conditional generation model
concatenates the 4-dimensional x input and the 1-dimensional transcription initiation signal (CAGE) profile. The training
uses s = 2

a+b Jacobi diffusion processes with maximum time 4. For sampling from the trained model, we used Euler
Maruyama sampler with 100 steps.

For analysis of generated sequences and comparison with human genome sequences, we generated sequences conditioned on
the test set transcription initiation profiles among the top 40,000 promoters. 5 sequences are generated for each transcription
initiation profile. The human genome sequences for these test set promoters are used for comparison. For motif position
distribution analysis, we used the following motifs from JASPAR database (Castro-Mondragon et al., 2022): TATA-box,
AC0057:TBP/ZNF:TBP; GC-box, AC0524:KLF/SP:C2H2 ZF; CCAAT-box, AC0240:NFYA/NFYB:CBF/NF-Y. Sei model
(Chen et al., 2022a) is trained with the same validation and test holdout chromosomes as Promoter Designer, and is thus
ideal for evaluation of Promoter Designer. For Sei model prediction, we padded the input sequence to 4096bp with 0.25 and
averaged the prediction for all H3K4me3 targets to obtain the predicted sequence promoter activity score.

For comparison with baseline diffusion model methods, we trained all models with the same Promoter Designer architecture,
including retraining the DDSM model, using the same early stopping criterion (SP-MSE on the validation set).
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D. Binarized MNIST Generation Examples Including Time-Dilation Experiments
We show below samples from the Dirichlet diffusion score model, with and without applying time-dilation (Appendix B.3)
in sampling.

Consistent with our expectation that time-dilation produces samples biased toward high-density regions, we notice that
samples with time-dilation generated more stereotypical digits. Further increasing time dilation also causes the samples to
contain more “1”s, which is likely due to that “1” is slightly more common than other digits in the binarized MNIST dataset.
The second most common digit “7” is also over-represented in highly time-dilation samples, consistent with the hypothesis
that the non-uniform distribution among digits in the dataset is exaggerated by time dilation.

We get the best of both worlds i.e. increased digit quality while not biased toward overrepresented digits, but starting the
time-dilation only at a later stage of reverse diffusion.

Figure D.5. Binarized MNIST samples from Dirichlet diffusion score model. Euler Maruyama Sampler with 100 steps.
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Figure D.6. Binarized MNIST samples from Dirichlet diffusion score model (2x time-dilation). Euler Maruyama Sampler with 2x
time-dilation and 200 steps.

Figure D.7. Binarized MNIST samples from Dirichlet diffusion score model (4x time-dilation). Euler Maruyama Sampler with 4x
time-dilation and 400 steps.
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Figure D.8. Binarized MNIST samples from Dirichlet diffusion score model (8x time-dilation). Euler Maruyama Sampler with 8x
time-dilation and 800 steps.

Figure D.9. Binarized MNIST samples from Dirichlet diffusion score model (8x time-dilation, time-dilation start time 25%). Euler
Maruyama Sampler with 8x time-dilation started at 25% time point, with a total of 275 steps.
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E. Sudoku Transformer Model Performance on the Hard Sudoku Dataset
The Sudoku transformer model solved all puzzles in an easy Sudoku dataset with 36 clues on average (Wang et al., 2019)
and a hard Sudoku dataset with minimally 17 clues (Palm et al., 2018) when multiple samples are used. We also note
that the current state-of-the-art results for supervised models are Recurrent Relational Network (Palm et al., 2018), which
solves 96.7% of the 17-clue Sudoku puzzles within the hard dataset, and SATNET(Wang et al., 2019) which solved 98.3%
of the easy dataset. Our method solved 100% puzzles, and this requires usually only one or two samples (mean = 1.19
samples) on the easy dataset and a high number of samples (mean = 753 samples) on the hard dataset. A single sample from
our model solves 99.4% of the easy dataset and 42.4% of the hard dataset with 128x time-dilation. Recurrent Relational
Network still have better accuracy when only a single sample is allowed for our model. However, our model is never trained
on the Sudoku dataset or even in a supervised manner, as it was only trained on generating fully-filled Sudoku from a
random Sudoku generator. Thus, these results are not directly comparable. Our result is the first in generating modeling of
Sudoku to our knowledge, which already showed very strong performance and even surpass state-of-the-art approaches with
supervised training with multiple samples are allowed.

On the hard dataset, we demonstrated the scaling of the number of samples required with the number of clues given (17 is
the minimally possible number for Sudoku) (Figure E). We note that we are not optimizing this experiment to minimize
the number of samples drawn but the overall time spent solving the puzzle, as we can significantly increase single-sample
accuracy by applying more time dilation, at the cost of more computation per sample.

This task can serve well as a benchmark for strongly constrained discrete data generation or efficient reverse diffusion
sampling methods. With our current setup, each sample is generated with 8x time-dilation and 200 steps, which is certainly
not optimized given our use of a simple Euler Maruyama sampler modified to support time-dilation.
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Figure E.1. Number of samples required to solve hard Sudoku puzzles by the number of clues.
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F. Supplementary Information for Promoter Sequence Design
F.1. An introduction of the promoter sequence design problem and our study design without assuming prior

knowledge of biology

DNA sequence is composed of 4 bases, or 4 nucleotides: A, C, G, T. The length unit of DNA sequence is basepair (bp)
because DNA is usually double-stranded, and each base is paired with its complementary base on the other strand. The
DNA base pairing rules are that 1) A and T are complementary to each other, 2) G and C are complementary, 3)the two
strands go in opposite directions. Therefore, if a 10bp sequence reads CCAATTTAAG, and the other strand (its reverse
complement) will read CTTAAATTGG following the base-pairing rule.

An important function of DNA sequence is to encode genes. For genes to function they have to be first transcribed to RNA
(the DNA information is copied basepair-by-basepair to RNA molecules; while a cell has only two copies of the genome
DNA, DNA can be transcribed to many RNA molecules). Promoters are sequences that determine where the transcription
happens and partially determine how much transcription happens. The amount of transcription from a promoter can be
called the “expression level” of a promoter. The starting point of transcription, or where DNA starts to be transcribed to
RNA, is called the transcription initiation site or the transcription start site. Transcription can happen in many different
positions within a promoter, but there is a single basepair that is annotated as the transcription start site (TSS) for every
promoter in previously published annotations, which is usually but not always near where most of the transcription starts at.

Where and how much transcription happens can be measured by experimental methods such as CAGE (Cap analysis gene
expression). From experimentally generated data we can obtain a transcriptional initiation signal profile, or more specifically
how much transcription happens at every single basepair position, for every human gene promoter. A transcriptional
initiation signal profile characterizes the transcriptional function of a promoter, including its expression level which can be
obtained from the total amount of transcription over the entire promoter region.

If we have the ability to design promoter sequences that can produce any desired transcription initiation profile, we will also
be able to finely control the expression level of any synthetic gene, such as genes producing bioengineering products like
antibodies. We can also control very finely where the transcription starts, which may enable potential future applications.
On the other hand, it can be a tool for improving our understanding of the mechanism of transcription initiation, or precisely
how sequence drives transcription, which is not fully understood.

Therefore, the goal of the promoter sequence design task is to conditionally generate sequences that will produce the same
transcription initiation signal profile as the conditional input. To our knowledge, no prior method exists for this task.

To evaluate how well the model works, we first compared the model-designed sequences with real human genome sequences
behind transcription initiation signal profiles from the test set. We showed that they indeed have very similar properties,
including the base (or nucleotide) composition at every position relative to the transcription start site, as well as the
location-specific distribution of known promoter motifs. Known promoter motifs are sequences that are known to frequently
appear at promoters and likely play a role in transcription initiation. The examples of the most common promoter motifs are
TATA-box (TATAAAA), GC-box (GGGCGGG or CCCGCCC), CCAAT-box (CCAAT or ATTGG). Therefore, we showed
that they also show up in our designed sequences and at similar locations with similar frequencies compared to the real
genome sequences. We note these are not the only important sequences and our knowledge of sequence rules that drive
transcription is still far from complete.

Finally, we used a deep learning model, Sei, that can predict promoter activity to evaluate whether our design sequences will
produce the desired activity levels as given in the conditional input: the transcription initiation signal profile. We grouped
the transcription initiation signal profiles into 10 groups based on the percentile of expression levels, from the lowest group
(0-10%) to the highest group (90%-100%). Encouragingly, the predicted promoter activities of model-designed sequences
closely resemble those of the human genome sequence corresponding to each expression group. This suggests that the
model can generate both low-activity promoters and high-activity promoters by controlling the input transcription initiation
signal profile.
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Figure F.1. Time-dilation (2x) slightly improves promoter activity predicted from sequence by Sei. Generated sequences are grouped by
the targeted promoter activity level (x-axis). Y-axis shows predicted H3K4me4 probability (average across cell types), divided by baseline
prediction for average genomic sequences.
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Figure F.2. Position-specific motif distribution of designed and generated sequences. The time-dilation increased the known motif
frequencies.
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Figure F.3. Position-specific nucleotide composition of designed and generated sequences. The time-dilation leads to slightly more biased
nucleotide composition.
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