
Robust Budget Pacing with a Single Sample

Santiago Balseiro 1 2 Rachitesh Kumar 3 Vahab Mirrokni 2 Balasubramanian Sivan 2 Di Wang 2

Abstract
Major Internet advertising platforms offer budget
pacing tools as a standard service for advertisers
to manage their ad campaigns. Given the inher-
ent non-stationarity in an advertiser’s value and
also competing advertisers’ values over time, a
commonly used approach is to learn a target ex-
penditure plan that specifies a target spend as a
function of time, and then run a controller that
tracks this plan. This raises the question: how
many historical samples are required to learn a
good expenditure plan? We study this question by
considering an advertiser repeatedly participating
in T second-price auctions, where the tuple of her
value and the highest competing bid is drawn from
an unknown time-varying distribution. The adver-
tiser seeks to maximize her total utility subject to
her budget constraint. Prior work has shown the
sufficiency of T log T samples per distribution
to achieve the optimal O(

√
T)-regret. We dra-

matically improve this state-of-the-art and show
that just one sample per distribution is enough
to achieve the near-optimal Õ(

√
T)-regret, while

still being robust to noise in the sampling distri-
butions.

1. Introduction
Online advertising is the economic engine of the internet. It
allows platforms like Google, Facebook, and TikTok to fund
services that are free at the point of delivery while providing
businesses the ability to target their ads to relevant users.
When a user logs onto these platforms, an auction is run
among the interested advertisers to determine which ad is
displayed to her. Given the scale of the internet, advertisers
are typically interested in thousands (if not millions) of auc-

Authors listed in alphabetical order. 1DRO, Columbia Business
School, New York, NY, USA 2Google Research, New York, NY,
USA 3IEOR, Columbia University, New York, NY, USA. Work
done as a Student Researcher at Google Research. Correspondence
to: Rachitesh Kumar <rk3068@columbia.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

tions every day. If they participate in all such auctions, they
will likely spend far beyond their budget. This necessitates
the need for budget management, which is our focus.

Target spend plans to address non-stationarities. Given
the inherent non-stationarities that exist over time, in the
volume of traffic, in the demographic of users that visit, the
rates of conversion etc., an advertiser’s own value and that of
the competing advertisers’ values are also non-stationary. To
deal with this non-stationarity, budget management systems
compute a target expenditure plan (Facebook-Guide; Kumar
et al., 2022). The latter is a function of time that specifies
the recommended amount of spend at each point of time.
I.e., such a plan distributes the cumulative daily/weekly
budget into smaller chunks of time, appropriately capturing
the non-stationarity. A pacing algorithm like a controller is
used to track the plan. This raises the question: how much
data is required to come up with a good target spend plan?

Our model. We study this question by considering a budget-
constrained advertiser participating in T second-price auc-
tions. The advertiser seeks to maximize her utility while re-
specting her budget (formal model in Section 2). We model
the tuple, of an advertiser’s value and that of her highest com-
peting bid, at time t, as being generated from unknown inde-
pendent time-varying distributions {Pt}Tt=1. This is a major
departure from the stochastic budget-management/resource-
allocation literature, which for the most part assumes sta-
tionary distributions—an assumption that rarely holds in
practice as daily traffic patterns are non-stationary (Zhou
et al., 2019). If nothing is known about the distributions
{Pt}t and they can be chosen adversarially, Balseiro & Gur
(2019) showed that every algorithm must incur linear regret
against the hindsight-optimal benchmark. Their impossi-
bility result also shows that budget management does not
fall under the purview of online convex optimization (OCO)
and is vastly different, given that one can achieve O(

√
T)

regret for adversarially-chosen input in OCO. Thankfully,
additional information is usually available in the form of
historical samples. For example, both intraday and inter-
day internet activity (and consequently the user traffic in
which an advertiser is interested) tends to be similar week-
on-week. However, this periodicity is never exact, i.e., it is
too stringent to assume these historical samples are drawn
from exactly the same distributions as {Pt}t. To reflect
this reality, in this work, we assume that we have samples

1

Robust Budget Pacing with a Single Sample

from distributions {P̃t}, which are potentially different from
{Pt}, and develop algorithms that are robust to differences
between them. We call an algorithm robust if its regret
degrades smoothly as a function of the total Wasserstein dis-
tance between the two sequences of distributions. Crucially,
classical training-based algorithms that learn a dual solution
from samples and use it for bidding (see Algorithm 1, in-
spired by Devanur & Hayes 2009; Agrawal et al. 2014) are
not robust (see Section 3).

Our result. Our main contribution is to show that
Dual Follow-The-Regularized-Leader (FTRL) is robust and
achieves the near optimal Õ(

√
T) regret even when it has

access to just one sample from each distribution P̃t, dramat-
ically improving over the prior T log T samples from each
distribution (Jiang et al., 2020) to achieve O(

√
T) regret.

Key insights. Our algorithm uses the samples to estimate
the ideal amount of expenditure to target in each auction and
then uses Dual FTRL to follow these targets by shading the
advertiser’s values appropriately. The key insight driving
the reduction in sample complexity from T log T to 1 per
distribution is the following. Prior work by Jiang et al.
(2020) first learns the sampling distributions {P̃t}t from the
samples, then computes the optimal duals on the learned
distributions, and finally uses those duals to compute the
target expenditures. Our insight is that it is not necessary
to learn the entire sampling distribution. Instead, it is far
more efficient to directly learn the duals from the samples
and construct target expenditure based on those duals (i.e.,
setting target expenditure at t to be what the dual-based
solution consumes at t). Beyond being very efficient with
samples, learning the duals from the samples also guarantees
robustness to shifts between {P̃t}t and {Pt}t.

Practical implications. Consider T representing a week’s
worth of auctions. While a total of T log T samples may be
possible to obtain by looking at the past few weeks (given
that each week has about T samples to offer), requiring
T log T samples per distribution calls for looking at many
months into the past. This is because getting a sample for
a distribution, where a distribution could correspond to say
a particular hour (e.g. Monday 10 AM), entails looking
at that same hour from the past week. Asking for T log T
samples for any given hour, when T samples is what we get
for the entire week, clearly requires looking at the numerous
months into the past. Apart from posing huge storage and
operational challenges, given that traffic pattern shifts over
time, even gradual shifts would significantly degrade quality
as one moves too much into the past. Our ask of one sample
per distribution requires looking at just the past week and
getting one sample for each hour.

Near optimality: O(
√
T) vs Õ(

√
T). Furthermore, our

regret guarantee is near-optimal in light of the Ω(
√
T) lower

bound established in Arlotto & Gurvich (2019), which holds

even in the much easier case when the distributions {Pt}
are identical (i.e., i.i.d. setting) and known ahead of time.
Why is our Õ(

√
T) regret separated from the O(

√
T) regret

in the lower bound (and the matching upper bound in Jiang
et al. (2020))? Indeed, we can also obtain O(

√
T) regret

when given log T samples per distribution, or in the other
direction, the Jiang et al. (2020) paper also gets only Õ(

√
T)

regret when given only T samples per distribution rather
than T log T samples. In other words, we get a factor T
reduction in samples: either from T to 1 sample while
maintaining the same regret of Õ(

√
T) or from T log T to

log T samples while maintaining the same regret of O(
√
T).

Primal vs dual approach. The recent works of Banerjee
et al. (2020) and Banerjee & Freund (2020) show how to
obtain a constant regret with a single historical trace by
repeatedly solving the primal. We note that they crucially
rely on the total number of types being small. When the
number of types is very large as in Internet advertising
where the type models user features, intent, time of day,
location etc., a primal based algorithm is not even well
defined because one would not have even seen all the types
in the samples. Thus, a primal approach is out of question
for us. More on this in Appendix A.

Technical contributions. We achieve our result by develop-
ing a novel dual-iterate coupling lemma (see Lemma 4.6)
and leveraging it to analyze a leave-one-out thought experi-
ment designed to break challenging correlations which arise
from working with one sample per distribution (see Subsec-
tion 4.3 for details). Additionally, we also prove a novel
regret decomposition for Dual FTRL (Theorem 4.1), which
may be of independent interest. Finally, our algorithm does
not require solving large linear programs and can be imple-
mented efficiently (see Subsection 4.4), which is critical for
online advertising since each auction runs in a few millisec-
onds. Due to space constraints, we directly move onto a
formal description of our model next, and refer the reader
to Appendix A for a discussion on other related work.

2. Model
Notation. We use R+ and R++ to denote the set of non-
negative real numbers and the set of positive real numbers
respectively. For n ∈ N, we use [n] = {1, . . . , n} to denote
the set of positive integers less than or equal to n. We
useW(·, ·) to denote the Wasserstein distance between two
distributions under the metric with which the sample space
is endowed.

Online Allocation with a Single Resource and Budget
Management. For ease of exposition, we will prove our re-
sults for the more general single-resource online allocation
problem with linear rewards/consumptions. It is well-known
that bidding in repeated second-price auctions with budgets

2

Robust Budget Pacing with a Single Sample

can be modelled as an instance of this online allocation prob-
lem (e.g., see Balseiro et al. 2022b, or our Appendix B). It
also captures the stochastic multi-secretary problem (Arlotto
& Gurvich, 2019) as a special case.

Consider a decision maker with an initial budget B ∈ R++

of a resource, whose goal is to optimally spend it on T
sequentially arriving requests. Each request γ = (f, b) is
comprised of a linear reward function f : X → R+ such
that f(x) = coeff(f) · x, and a linear resource consump-
tion function b : X → R+ such that b(x) = coeff(b) · x;
where X ⊆ R+ is a compact set which denotes the space
of possible actions of the decision maker. We will use S to
denote the set of all possible requests and ∆(S) to denote
the set of distributions over S . Moreover, we endow S with
the following metric d(·, ·): For any two requests γ = (f, b)
and γ̃ = (f̃ , b̃):

d(γ, γ̃) = sup
x∈X

∣∣∣f(x)− f̃(x)
∣∣∣+ sup

x∈X

∣∣∣b(x)− b̃(x)
∣∣∣ .

We will assume that 0 ∈ X . This allows the decision maker
to avoid spending the resource if she so chooses and ensures
feasibility. Moreover, let x̄ = maxx∈X x. We will make
standard regularity assumptions (Jiang et al., 2020; Balseiro
et al., 2022a;b): there exist f̄ , b̄ ∈ R+ such that f(x) ≤ f̄
and b(x) ≤ b̄ for all x ∈ X . Like Jiang et al. (2020),
we will also assume that there exists κ ∈ R+ such that
f(x) ≤ κ · b(x) for all x ∈ X , i.e., the maximum rate of
return from spending the resource is bounded above by κ.

At time t ∈ [T], the following sequence of events takes
place: (i) a request γt = (ft, bt) arrives; (ii) the decision
maker observes γt and chooses an action xt ∈ X based on
the information observed so far; (iii) the request consumes
bt(xt) amount of the resource and generates a reward of
ft(xt). The decision maker aims to maximize her rewards
subject to her budget constraint. A policy {xt(·)}t for the
decision maker maps requests to actions xt : S → X
based on the available information at each time step, i.e., the
action xt(γt) at time t ∈ [T] can depend on the historical
requests {γs}t−1

s=1 and the current request γt, but not the
future requests {γs}Ts=t+1. Moreover, a policy is said to
be budget-feasible if it respects the budget constraint by
ensuring

∑T
t=1 bt(xt(γt)) ≤ B for every sequence {γt}t.

The request γt at time t is drawn from a distribution
Pt ∈ ∆(S) unknown to the decision maker, independently
of the requests at other time steps. We only require the
requests {γt}t to be independent and allow the distributions
Pt to vary arbitrarily across time. We will measure the per-
formance of a policy against the fluid-optimal benchmark,
which is defined as:

FLUID({Pt}t) := max
T∑

t=1

E[ft(xt(γt))]

s.t.
T∑

t=1

E[bt(xt(γt))] ≤ B

xt : S → X ∀ t ∈ [T] .

Another benchmark common in the literature on online re-
source allocation is the expected hindsight optimal solution,
which is defined as E[OPT({γt}t)] for

OPT({γt}t) := max
x∈XT

T∑
t=1

ft(xt) s.t.
T∑

t=1

bt(xt) ≤ B .

It is well-known that FLUID({Pt}) ≥ E[OPT({γt}t)],
which makes our benchmark the stronger one (we provide a
proof in Appendix C for completeness). Hence, our perfor-
mance guarantees relative to the fluid-optimal benchmark
also imply the same guarantees for the expected hindsight-
optimal benchmark.

More concretely, we use R(A|{γt}t) to denote the total
reward of a policy A on the request sequence {γt}t, and the
performance of an algorithm is measured using its expected
regret against the fluid-optimal reward:

Regret(A) := FLUID({Pt}t)− E [R(A|{γt}t)] .

Now, if the distributions {Pt}t are unknown and arbitrary,
and no other information about {Pt}t is available, then the
requests {γt}t can be adversarial. This case has been ad-
dressed in Balseiro et al. (2022b), where the authors showed
no policy can achieve sub-linear regret. In this work, we ad-
dress the setting in which the decision maker has additional
information in the form of historical samples. In particular,
we focus on the setting where the decision maker has ac-
cess to one independent sample γ̃t ∼ P̃t for each t ∈ [T].
We will assume that the {γ̃t} samples are independent of
the request sequence {γt}t and {P̃t} are not known to the
decision maker. We will show that when the sampling dis-
tributions {P̃t}t are not too far from the actual distributions
{Pt}t, which is a minimal relaxation over the adversarial
setting, it is possible to achieve sub-linear regret. We refer
to the collection of samples {γ̃t}t as a trace and allow the
actions of the decision-maker to depend on it. Throughout
this paper, we will use {γ̃t}t to denote the trace and {γt}t
to denote the (random) sequence of requests on which the
decision maker wishes to maximize reward.

3. Warmup: Learning the Dual and Earning
with It

First, let us focus on the simpler case when P̃t = Pt for
all t ∈ [T], i.e., the sampling distributions are the same
as the request distributions. At first glance, it may appear
that only having access to one sample from each of request

3

Robust Budget Pacing with a Single Sample

distributions Pt yields too little information to achieve near-
optimal rewards. If one were to attempt to directly learn the
optimal solution of FLUID({Pt}t), this initial impression
would be accurate because of the high-dimensional nature
of the space of all possible solutions {xt(·)}t. Fortunately,
we do not need to learn this high-dimensional information
and can instead leverage the structure of the problem: the
dual space is just one-dimensional and thereby amenable to
learning. More precisely, the dual function D(µ|{Pt}t) of
FLUID({Pt}t) at dual variable µ ≥ 0 is given by

max
{xt(·)}t

T∑
t=1

E[ft(xt(γt))] + µ

(
B −

T∑
t=1

E[bt(xt(γt))]

)

= µ ·B +

T∑
t=1

max
xt:S→X

E [ft(xt(γt))− µ · bt(xt(γt))]

= µ ·B +
T∑

t=1

E
[
max
xt∈X

{ft(xt)− µ · bt(xt)}
]
.

Throughout, we assume argmaxx∈X {f(x)− µ · b(x)} is
non-empty for all requests γ ∈ S and dual solutions µ ≥
0. If we treat the dual variable µ as the per-unit price of
the resource, maxxt∈X {ft(xt)− µ · bt(xt)} captures the
profit maximization problem. The following terminology
would be helpful in working with the dual.

Definition 3.1. For a request γ = (f, b) and dual vari-
able µ ≥ 0, let x∗(γ, µ) be the optimal solution of
maxx∈X {f(x)− µ · b(x)} with the largest value of f(x).
If there are multiple such solutions, pick one which min-
imizes b(x). Moreover, let f∗(µ) := f(x∗(γ, µ)) and
b∗(µ) := b(x∗(γ, µ)) be the corresponding reward and re-
source consumption respectively.

We denote D(µ|{Pt}t) = µ·B+
∑T

t=1 E[f∗
t (µ)−µ·b∗t (µ)].

Throughout this paper, we will repeatedly leverage weak
duality, which is a central property of duals. We state the
property here and refer the reader to any standard text on
convex optimization (e.g., Bertsekas 2009) for a proof.

Proposition 3.2 (Weak Duality). For all request distri-
butions {Pt}t and dual variables µ ≥ 0, we have
D(µ|{Pt}t) ≥ FLUID({Pt}t), i.e.,

T∑
t=1

E[f∗
t (µ)] ≥ FLUID({Pt}t)− µ ·

(
B −

T∑
t=1

E[b∗t (µ)]

)
.

Observe that
∑T

t=1 E[f∗
t (µ)] is exactly the expected re-

ward the decision maker would receive if she had an in-
finite budget and she took actions which maximized profit
with µ being the per-unit price of the resource. Moreover,
B −

∑T
t=1 E[b∗t (µ)] is the amount by which the decision

maker would underspend her budget in expectation if she
were to take actions using µ as the price. Suppose we can

find a dual variable µ ≥ 0 that satisfies approximate com-
plementary slackness, i.e., µ satisfies at least one of the
following statements: (1) µ = 0 and maximizing profit
with µ as the per-unit price results in total expenditure less
than the budget B with high probability; (2) µ > 0 and
maximizing profit with µ as the per-unit price results in
total expenditure close to the budget B with high proba-
bility. Then, if the decision maker were to use µ as the
price and make decisions to maximize profit, she will not
run out of budget too early and the complementary slack-
ness term µ ·

(
B −

∑T
t=1 E[b∗t (µ)]

)
would also be small.

Therefore, such a µ would yield rewards that are close to
FLUID({Pt}t), i.e., yield small regret, as required.

We next describe how such a µ can be learned from the
sample trace {γ̃t} when P̃t = Pt for all t ∈ [T]. We will
assume that the distributions satisfy the following mild and
standard assumption (Devanur & Hayes, 2009; Agrawal
et al., 2014) to exclude the degenerate case.
Assumption 3.3 (General Position). The request sequence
{γt}t ∼

∏
t Pt is in general position almost surely: For

any µ ≥ 0, there is at most one request with multiple profit
maximizers, i.e.,∣∣∣∣{t ∈ [T] : | argmax

x∈X
{ft(x)− µ · bt(x)} | > 1

}∣∣∣∣ ≤ 1 .

Moreover, the sample trace {γ̃t}t ∼
∏

t P̃t is also in general
position almost surely.

Assumption 3.3 is made without any loss of generality
because, as pointed out in Devanur & Hayes (2009) and
Agrawal et al. (2014), adding an infinitesimally-small per-
turbation to the reward functions always results in perturbed
distributions that satisfy Assumption 3.3 with only an in-
finitesimal change in the value of FLUID({Pt}t) (see Ap-
pendix D for a formal description). Assumption 3.3 ensures
that there exists a dual solution µ̃ ≥ 0 which spends close to
the budget B on the trace {γ̃t}t if it is possible to do so. In
fact, as the following lemma shows, the optimal empirical
dual solution satisfies this property.
Lemma 3.4. Suppose the trace {γ̃}t ∼

∏
t P̃t is in general

position, and consider

µ̃ ∈ argmin
µ≥0

{
µ ·B +

T∑
t=1

max
x∈X

{
f̃t(x)− µ · b̃t(x)

}}
.

Then, at least one of the following statements holds:

1. µ̃ = 0 and
∑T

t=1 b̃
∗
t (µ̃) ≤ B + b̄.

2.
∣∣∣B −∑T

t=1 b̃
∗
t (µ̃)

∣∣∣ ≤ b̄.

Recall that weak duality (Proposition 3.2) suggests that
finding a dual solution which satisfies approximate com-
plementary slackness with high probability would yield

4

Robust Budget Pacing with a Single Sample

Algorithm 1 Learning the Dual and Earning with It

Input: Trace {γ̃t} ∼
∏

t P̃t, initial budget B1 = B.
Compute an Optimal Empirical Dual Solution:

µ̃ ∈ argmin
µ≥0

{
µ ·B +

T∑
t=1

max
x∈X

{
f̃t(x)− µ · b̃t(x)

}}
(1)

for t = 1, . . . , T do
Receive request γt = (ft, bt) ∼ Pt.
Make the primal decision xt and update the remaining
resources Bt:

x′
t ∈ argmax

x∈X
{ft(x)− µ̃ · bt(x)} ,

xt =

{
x′
t if bt(x′

t) ≤ Bt

0 otherwise
,

Bt+1 = Bt − bt(xt).

end

reward close to FLUID({Pt}). Lemma 3.4 states that we
can compute a dual variable µ̃ which satisfies approximate
complementary slackness on the trace. To finish the argu-
ment, we require a uniform convergence bound which shows
that expenditure on the trace (or the sequence of requests) is
concentrated close to the expected expenditure for all dual
variables µ ≥ 0.

Theorem 3.5. For r(T) := 8b̄ ·
√
T log(T) and request dis-

tributions {P̃t}t, the following uniform convergence bound
holds

Pr

(
sup
µ≥0

∣∣∣∣∣
T∑

t=1

b̃∗t (µ)−
T∑

t=1

Eγ̂t∼P̃t

[
b̂∗t (µ)

]∣∣∣∣∣ ≥ r(T)

)
≤ 1

T 2
.

With Theorem 3.5 in hand, we are now ready to state and
prove the regret guarantee for Algorithm 1. It first learns
an empirical optimal dual variable µ̃ from the trace {γ̃t}t,
and then uses it as the per-unit price of the resource to take
profit-maximizing actions on the request sequence {γt}t.
Theorem 3.6. If Pt = P̃t for all t ∈ [T], then Algorithm 1
(denoted by A) satisfies Regret(A) ≤ 12κb̄+ 2κr(T).

Arlotto & Gurvich (2019) showed that every algorithm must
incur a regret of Ω(

√
T), even when the request distributions

are identical (i.e., Pt = P for all t ∈ [T]) and known to the
decision-maker ahead of time. Thus, Theorem 3.6 shows the
regret of Algorithm 1 achieves a near-optimal dependence
on T with just a single sample per distribution, despite
the request distributions being unknown and time-varying.
However, as the following example demonstrates, this regret
bound critically relies on the assumption that Pt = P̃t for
all t ∈ [T], and is fragile to even slight deviations from it.

This fact was also demonstrated in Jiang et al. (2020) in a
related context which inspired the following example.

Example. Fix a small ϵ > 0, an even horizon T and budget
B = T/2. Assume actions are accept/reject decisions, i.e.,
X = {0, 1}, and the reward/resource consumption functions
are linear with coeff(b) = 1 for all γ = (f, b) ∈ S. In this
setting, a request is completely determined by the coefficient
coeff(f) of its reward function. We will overload notation
and use γ to denote this coefficient. Set P̃t = Unif ([1 +
ϵ, 1 + 2ϵ]) for all t ≤ T/2 + 1 and P̃t = Unif ([1 − ϵ, 1])
for all t ≥ T/2 + 2. Moreover, set Pt = Unif ([1 − ϵ, 1])
for all t ∈ [T]. Then, it is easy to see thatW(Pt, P̃t) ≤ 3ϵ
for all t ∈ [T]. Also, observe that any trace {γ̃t}t ∼

∏
t P̃t

would satisfy γ̃t ≥ 1 + ϵ for all t ≤ T/2 + 1 and γ̃t ≤ 1
for all t ≥ T/2 + 2. Hence, we always have µ̃ ≥ 1 + ϵ. On
the other hand, we also always have γt ≤ 1 for all t ∈ [T].
Therefore, Algorithm 1 sets x′

t = 0 for all t ∈ [T], yielding
a reward of 0. Whereas, FLUID({Pt}t) ≥ (1− ϵ) · (T/2),
thereby making the regret linear in T .

Since ϵ > 0 was arbitrary in the above example, it shows
that even infinitesimally-small differences between the sam-
pling and request distributions can lead to linear regret for
Algorithm 1. This is antithetical to our goal of developing
robust online algorithms for pacing. Formally, we would
like to develop online algorithms that achieve regret which
is small and degrades smoothly as

∑T
t=1W(Pt, P̃t) grows

large. Nonetheless, although Algorithm 1 falls short of
this goal, it highlights the power of dual-based algorithms.
Building on the intuition developed in this section, we next
describe and analyze a Dual FTRL algorithm that achieves
near-optimal regret while being robust to discrepancies be-
tween the sampling distributions {P̃t}t and the request dis-
tributions {Pt}t.

4. Dual FTRL with Target Rate Estimation
In this section, we will develop an algorithm based on Dual
Follow-The-Regularized-Leader (FTRL) that achieves near-
optimal regret with a single trace, and is robust to discrepan-
cies between the sampling distributions and request distribu-
tions. Now, if one had complete knowledge of the sampling
distributions {P̃t}t, then one can solve FLUID({P̃t}t) to
find an optimal solution and run Dual Gradient Descent
with the goal of spending the same as the optimal solution at
each time step. It is known from Jiang et al. (2020) that this
approach achieves O(max{

√
T ,
∑T

t=1W(P̃t,Pt)}) regret,
thereby making it rate optimal and robust to discrepancies.
However, with just a single sample from each of distribu-
tions P̃t, we are far from having complete knowledge of
{P̃t}t. Despite this apparent lack of data, a careful anal-
ysis of Dual FTRL will allow us to show that it achieves
near-optimal regret rate in a robust manner.

5

Robust Budget Pacing with a Single Sample

Algorithm 2 Dual Follow-The-Regularized-Leader
Input: Initial resource endowment B1 = B, target con-
sumption sequence {λt}Tt=1, regularizer h : R → R and
step-size η.
Set initial dual solution µ1 = argminµ∈[0,κ] h(µ).
for t = 1, . . . , T do

Receive request γt = (ft, bt) ∼ Pt.
Make the primal decision xt and update the remaining
resources Bt:

x′
t ∈ argmax

x∈Xt

{ft(x)− µt · bt(x)} , (2)

xt =

{
x′
t if bt(x′

t) ≤ Bt

0 otherwise
,

Bt+1 = Bt − bt(xt).

Obtain a sample sub-gradient of the dual function
D(µ|Pt, λt): gt = λt − bt(x

′
t).

Update the dual iterate with FTRL:

µt+1 = argmin
µ∈[0,κ]

{
η

t∑
r=1

gr · µ+ h(µ)

}
, (3)

end

4.1. Dual Follow-The-Regularized-Leader

The non-stationarity of the request distributions necessitates
the need for Dual FTRL that can incorporate target resource
consumptions (Algorithm 2). It takes as input a target se-
quence {λt}Tt=1 which specifies λt ≥ 0 to be the amount of
resource Dual FTRL should attempt to consume at time t.
Moreover, like FTRL (Shalev-Shwartz et al., 2012; Hazan
et al., 2016), it also takes as input a regularizer h(·), an
initial dual variable µ1 and a step-size η. We will make
the standard assumption that the regularizer h(·) is differen-
tiable and is σ-strongly convex in the ∥ · ∥1 norm.

Before stating the performance bound of Algorithm 2, we
introduce some preliminaries. Given a budget of βt for
period t ∈ [T], the optimal expected reward which can
be collected in period t is captured by the following fluid
optimization problem:

FLUID(Pt, βt) := max E[ft(xt(γt)]

s.t. E[bt(xt(γt))] ≤ βt

xt : S → X .

The dual function of FLUID(Pt, βt) is given by

D(µ|Pt, βt) := µ · βt + E
[
max
x∈X
{ft(x)− µ · bt(x)}

]
,

for any µ ≥ 0. Then, by weak duality, we have

FLUID(Pt, βt) ≤ D(µ|Pt, βt) for all µ ≥ 0. Moreover,
since dual functions are always convex (they are the suprema
of linear functions), the dual function D(·|Pt, βt) is convex.

Theorem 4.1 states a general regret bound for Algorithm 2
with an arbitrary target sequence {λt}t and against a general
benchmark

∑T
t=1 D(µt|Pt, βt). Since FLUID(Pt, βt) ≤

D(µ|Pt, βt) by weak duality, Theorem 4.1 also charac-
terizes the performance against the weaker benchmark∑T

t=1 FLUID(Pt, βt), which is simply the optimal ex-
pected reward the decision maker would collect if she spent
βt at time t.

Theorem 4.1. Consider Algorithm 2 with target consump-
tion sequence {λt}t, regularizer h(·) and step-size η. Then,
for a benchmark sequence {βt}t, we have

E

[{
T∑

t=1

D(µt|Pt, βt)

}
−R(A|{γt}t)

]
≤ R1 +R2 +R3 ,

where

• R1 = κb̄ + 2(b̄+λ̄)2

σ
· ηT + dR

η
, for λ̄ = maxt λt and

dR = max{h(0)− h(µ1), h(κ)− h(µ1)}.

• R2 = κ ·
({∑T

t=1 λt

}
−B

)+
,

• R3 = E
[∑T

t=1 µt · (βt − λt)
]
.

Theorem 4.1 decomposes the regret of Algorithm 2 into
three terms, where (i) R1 is simply the regret associated
with the FTRL algorithm in the OCO setting (Hazan et al.,
2016); (ii) R2 captures the overspending error, which is
large whenever the total target consumption

∑T
t=1 λt is in

excess of the budget B; (iii) R3 captures the underestima-
tion error, which is a weighted sum over the amounts by
which the target sequence {λt}t underestimates the bench-
mark sequence {βt}t, with weights equal to the dual iterates
µt. Observe that there is an inherent tension between the
overspending error R2 and the underestimation error R3—
R2 can be made smaller by making the target consump-
tions {λt}t smaller, but this in turn makes R3 bigger, and
vice versa. To obtain the desired performance guarantees
for Algorithm 2 (see Theorem 4.8), we need to carefully
choose the benchmark sequence {βt}t and the target se-
quence {λt}t, which is what we do next (see (4)). We go
on to show that

• Our choice of target sequence does not overspend too
much. In particular, it satisfies R2 ≤ κ · b̄ (see (5)).

• Our choice of benchmark sequence {βt}t ensures

FLUID({Pt}t)−
T∑

t=1

D(µt|Pt, βt)

6

Robust Budget Pacing with a Single Sample

≤ Õ

(
max

{
√
T ,

T∑
t=1

W(Pt, P̃t)

})

i.e., the benchmark in Theorem 4.1 is at most
Õ
(
max

{√
T ,
∑T

t=1W(Pt, P̃t)
})

larger than our
desired benchmark FLUID({Pt}t) (see Lemma 4.2
and the discussion that follows).

• Moreover, our choice of the sequences in combination
with an intricate argument, consisting of a coupling
lemma and a leave-one-out thought experiment, allows
use to prove R3 = O(

√
T) (see Subsection 4.3).

Finally in Subsection 4.4, we combine everything to prove
the desired regret bound for Algorithm 2.

4.2. Choosing the Target and Benchmark Sequences

We define the target and benchmark sequences using the
empirical optimal dual solution computed from the trace
{γ̃t}t:

µ̃ ∈ argmin
µ≥0

{
µ ·B +

T∑
t=1

max
x∈X

{
f̃t(x)− µ · b̃t(x)

}}
.

If there are multiple minimizers, set µ̃ to be the smallest one.
Given the empirical optimal dual solution µ̃, the target and
benchmark sequences are defined as

βt = Eγ̂t∼P̃t

[
b̂∗t (µ̃)

]
and λt = b̃∗t (µ̃) , (4)

where γ̂t = (f̂t, b̂t). In other words, the benchmark se-
quence is the expected consumption and the target sequence
is the empirical consumption on the trace if we were to
make profit-maximizing decisions using the empirical opti-
mal dual solution µ̃ as the price of the resource. Instead of
learning the empirical optimal dual µ̃ and directly making
decisions with it like we did in Algorithm 1, we use µ̃ to
learn the empirical consumptions {λt}t and use Algorithm 2
to track this target. Unlike the former, we will show that
the latter approach is robust to discrepancies between the
sampling and request distributions, while maintaining the
same Õ(

√
T)-regret guarantee. Importantly, note that the

benchmark sequence {βt}t cannot be computed in practice
because it requires full knowledge of the request distribu-
tions. Algorithm 2 respects this limitation and does not
require knowledge of the benchmark sequence {βt}t; we
only use it for our analysis.

Our choice of {λt}t and Lemma 3.4 immediately imply

R2 = κ ·

({
T∑

t=1

λt

}
−B

)+

≤ κ · b̄ . (5)

Next, we show that, for our choice of the benchmark
sequence {βt}t, the benchmark

∑T
t=1 D(µt|Pt, βt) of

Theorem 4.1 is not too far from the desired benchmark
FLUID({Pt}).
Lemma 4.2. For any dual variable µ̃ ≥ 0, dual iterates
{µt}t ∈ [0, κ]T and benchmark sequence {β}t with βt =

Eγ̂∼P̃t
[b̂∗(µ̃)], we have

T∑
t=1

D(µt|Pt, βt) ≥FLUID({Pt}t)− µ̃ ·

(
B −

T∑
t=1

βt

)

− 2(1 + κ) ·
T∑

t=1

W(Pt, P̃t) .

Observe that Theorem 3.5 implies that, with probability
at least 1− 1/T 2, we have

∣∣∣∑T
t=1 βt −

∑T
t=1 λt

∣∣∣ ≤ r(T).
Combining this with Lemma 3.4 yields

µ̃ ·

(
B −

T∑
t=1

βt

)
≤ µ̃ ·

(
r(T) +B −

T∑
t=1

λt

)

= µ̃ · r(T) + µ̃ ·

(
B −

T∑
t=1

λt

)
≤ µ̃ ·

(
r(T) + b̄

)
≤ κ · r(T) + κb̄ , (6)

thereby showing that the benchmark
∑T

t=1 D(µt|Pt, βt) of
Theorem 4.1 is not too far from the desired benchmark
FLUID({Pt}). In order to establish the desired regret and
robustness guarantees for Algorithm 2, all that remains to
show is that R3 ≤ Õ(

√
T). However, as we demonstrate in

the next subsection, this step is rife with challenges.

4.3. Bounding R3

We begin with a brief discussion of the challenges involved
in bounding R3. It is illuminating to consider the slightly
more permissive setting in which the decision maker has
access to two sample traces: suppose in addition to trace
{γ̃t}t ∼

∏
t P̃t, we had access to an additional trace

{˜̃γt}t ∼
∏

t P̃t. Then, we could compute µ̃ using {˜̃γt}t
as follows

µ̃ ∈ argmin
µ≥0

{
µ ·B +

T∑
t=1

max
x∈X

{
˜̃ft(x)− µ · ˜̃bt(x)

}}
,

making it completely independent of {γ̃t}t. With this modi-
fied µ̃, we continue to define {βt}t, {γt}t as before (see (4)).
As a consequence, we get that µs is completely determined
by {γt}s−1

t=1 and {λt}s−1
t=1 , with the latter being completely

determined by µ̃ and {γ̃t}s−1
t=1 . This makes µs independent

of λs conditional on µ̃, and consequently yields

E
[
µs · (βs − λs)

∣∣ µ̃, {γ̃t, γt}s−1
t=1

]
= µs ·

(
βs − E

[
b̃∗s(µ̃)

∣∣ µ̃])
= 0 .

7

Robust Budget Pacing with a Single Sample

Thus, we can apply the Tower Rule of conditional expecta-
tions to get

R3 =

T∑
s=1

E [µs · (βs − λs)]

=

T∑
s=1

E
[
E
[
µs · (βs − λs)

∣∣ µ̃, {γ̃t, γt}s−1
t=1

]]
= 0 .

It is straightforward to see that the bounds on R1 and R2

established in the previous subsection continue to hold in
this two-trace setting. Therefore, two traces allow us to
achieve the near-optimal Õ(

√
T)-regret while being robust

to discrepancies between P̃t and Pt.

Although moving from two traces to one trace might appear
to be a minor change, it introduces correlations that make
the proof much more difficult. Observe that Algorithm 2
determines µs using {λt}s−1

t=1 , all of which depend on µ̃,
which in turn is computed using the request γ̃s. Furthermore,
λs directly depends on γ̃s. Thus, µs and λs are intricately
correlated with each other, which breaks the aforementioned
argument for the two-trace setting. Nonetheless, R3 can still
be shown to be small, as we note in the following lemma
and prove in the remainder of this subsection.

Lemma 4.3. For all s ∈ [T], we have

R3 =

T∑
s=1

E [µs · (βs − λs)] ≤
4ηb̄2

σ
· T .

We prove Lemma 4.3 in the remainder of this subsection.
The following lemma will find repeated use in the proof. In
keeping with economic intuition, it shows that increasing
the price (dual variable) leads to smaller consumption under
the profit-maximzing decision.

Lemma 4.4 (Monotonicity). For µ > µ′, request γ =
(f, b) ∈ S, x ∈ argmaxz∈X {f(z) − µ · b(z)} and x′ ∈
argmaxz∈X {f(z)− µ′ · b(z)}, we have b(x) ≤ b(x′).

Fix an s ∈ [T]. We will get around the correlation be-
tween µs and γ̃s by conducting the following leave-one-out
thought experiment: suppose we remove the s-th sample
γ̃s, compute µ̃ on the remaining trace {γ̃t}t ̸=s, and run
Algorithm 2 with the resulting target sequence. More pre-
cisely, in this thought experiment, we set P̃s to be the dis-
tribution which always serves the request γ = (f, b) with
f(x) = b(x) = 0 for all x ∈ X . Thus, f̃s(x) = b̃s(x) =
f̃∗(µ) = b̃∗(µ) = 0 for all x ∈ X and µ ≥ 0. We will use
the superscript (−s) to denote the various variables in this
thought experiment:

• µ̃(−s) ∈ argminµ≥0 µ ·B +
∑

t ̸=s maxx∈X {f̃t(x)−
µ · b̃t(x)}. If there are multiple minimizers, set µ̃(−s)

to be the smallest one amongst them.

• λ
(−s)
t = b̃∗t

(
µ̃(−s)

)
for all t ∈ [T].

• µ
(−s)
t is the t-th iterate of Algorithm 2 with the target

consumption sequence
{
λ
(−s)
t

}
t
.

We begin by characterizing the impact of this change on the
target consumption sequence.

Lemma 4.5. For every sample trace {γ̃t}t, we have
µ̃ ≥ µ̃(−s) and λt ≤ λ

(−s)
t for all t ̸= s. Moreover,∑s−1

t=1

∣∣∣λ(−s)
t − λt

∣∣∣ ≤ 3b̄ .

Lemma 4.5 shows that the target sequences {λt}t and
{λ(−s)

t }t are close to each other. Next, we couple the dual
iterates µt and µ

(−s)
t generated by Algorithm 2 to show that

they never stray too far from each other whenever the target
sequences are close.

Lemma 4.6 (Dual Iterate Coupling). Let {µt}t and {µ′
t}t

denote the iterates generated by Algorithm 2 on the request
sequence {γt}t for the target sequences {λt}t and {λ′

t}t
respectively. Assume that the initial iterates are the same,
i.e., µ1 = µ′

1. Then, for all s ∈ [T], we have

|µs − µ′
s| ≤

η

σ
·

{
s−1∑
t=1

|λt − λ′
t|

}
+

η

σ
· b̄ .

Applying Lemma 4.6 with λ′
t = λ

(−s)
t and using Lemma 4.5

yields |µs − µ′
s| ≤

η
σ ·
{
3b̄
}
+ η

σ · b̄ =
4ηb̄
σ .

Combining this with the fact that |βs − λs| ≤ b̄, we get

E [µs · (βs − λs)] = E
[(

µs − µ
(−s)
s

)
· (βs − λs)

]
+ E

[
µ
(−s)
s · (βs − λs)

]
≤

4ηb̄

σ
· b̄ + E

[
µ
(−s)
s · (βs − λs)

]
. (7)

The next lemma shows that the second term is non-positive.
Its proof critically leverages the fact that the iterate µ

(−s)
s

is independent of the s-th sample in the trace γ̃s (which
is used to determine λs). This is in stark contrast to µs

which depends on γ̃s, and demonstrates the merit of our
leave-one-out thought experiment.

Lemma 4.7. E
[
µ
(−s)
s · (βs − λs)

]
≤ 0 for all s ∈ [T].

Lemma 4.7 in combination with (7) yields
E [µs · (βs − λs)] ≤ 4ηb̄2/σ. Summing over all
s ∈ [T] finishes the proof of Lemma 4.3.

4.4. Putting It All Together

In the previous subsections, we bounded R1, R2 and R3,
and related the benchmark

∑T
t=1 D(µt|Pt, βt) from Theo-

rem 4.1 to our desired benchmark FLUID({Pt}t). Combin-
ing everything yields the following performance gaurantee
for Algorithm 2.

8

Robust Budget Pacing with a Single Sample

Theorem 4.8. Let A be Algorithm 2 with target sequence
{λt}t, where λt = b̃∗t (µ̃) (as defined in (4)), regularizer
h(·) and step-size η =

√
dR/T , where dR = max{h(0)−

h(µ1), h(κ)− h(µ1)}. Then,

Regret(A) ≤ C1

√
T log(T) + C2

T∑
t=1

W(Pt, P̃t) .

where C1 = 12b̄2
√
dR

σ +
√
dR + 12κb̄ and C2 = 2(1 + κ).

Observe that the regret of Dual FTRL satisfies Regret(A) =

Õ(
√
T) whenever

∑T
t=1W(Pt, P̃t) = Õ(

√
T). In other

words, Dual FTRL achieves near-optimal regret with a sin-
gle trace as long as the total discrepancy

∑T
t=1W(Pt, P̃t)

is not too large. Finally, we would also like to note that our
algorithm is extremely efficient computationally. In partic-
ular, due to the equivalence of FTRL and “Lazy” Online
Mirror Descent (OMD) (see Hazan et al. 2016), each dual
update in (3) can be computed in constant time by running
Lazy OMD. Moreover, given a trace {γ̃t} which is sorted in
increasing order of bang-per-buck coeff(f̃t)/ coeff(b̃t), the
target sequence {λt}t can be computed in O(T) steps (see
Appendix E for details).

References
Agrawal, S. and Devanur, N. R. Fast algorithms for online

stochastic convex programming. In Proceedings of the
twenty-sixth annual ACM-SIAM symposium on Discrete
algorithms, pp. 1405–1424. SIAM, 2014.

Agrawal, S., Wang, Z., and Ye, Y. A dynamic near-optimal
algorithm for online linear programming. Operations
Research, 62(4):876–890, 2014.

Arlotto, A. and Gurvich, I. Uniformly bounded regret in
the multisecretary problem. Stochastic Systems, 9(3):
231–260, 2019.

Azar, P. D., Kleinberg, R., and Weinberg, S. M. Prophet in-
equalities with limited information. In Proceedings of the
twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pp. 1358–1377. SIAM, 2014.

Balseiro, S., Kroer, C., and Kumar, R. Online resource
allocation under horizon uncertainty. arXiv preprint
arXiv:2206.13606, 2022a.

Balseiro, S. R. and Gur, Y. Learning in repeated auctions
with budgets: Regret minimization and equilibrium. Man-
agement Science, 65(9):3952–3968, 2019.

Balseiro, S. R., Lu, H., and Mirrokni, V. The best of many
worlds: Dual mirror descent for online allocation prob-
lems. Operations Research, 2022b.

Banerjee, S. and Freund, D. Uniform loss algorithms
for online stochastic decision-making with applications
to bin packing. In Abstracts of the 2020 SIGMET-
RICS/Performance Joint International Conference on
Measurement and Modeling of Computer Systems, pp.
1–2, 2020.

Banerjee, S., Gurvich, I., and Vera, A. Constant
regret in online allocation: On the sufficiency
of a single historical trace, 2020. URL https:
//people.orie.cornell.edu/ig264/
Online_Optimization_with_Samples.pdf.

Bertsekas, D. Convex optimization theory, volume 1. Athena
Scientific, 2009.

Caramanis, C., Dütting, P., Faw, M., Fusco, F., Lazos, P.,
Leonardi, S., Papadigenopoulos, O., Pountourakis, E.,
and Reiffenhäuser, R. Single-sample prophet inequalities
via greedy-ordered selection. In Proceedings of the 2022
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1298–1325. SIAM, 2022.

Chen, X., Kroer, C., and Kumar, R. The complexity of
pacing for second-price auctions. In EC, 2021. URL
https://arxiv.org/abs/2103.13969.

Correa, J., Dütting, P., Fischer, F., and Schewior, K. Prophet
inequalities for iid random variables from an unknown
distribution. In Proceedings of the 2019 ACM Conference
on Economics and Computation, pp. 3–17, 2019.

Devanur, N. R. and Hayes, T. P. The adwords problem:
online keyword matching with budgeted bidders under
random permutations. In Proceedings of the 10th ACM
conference on Electronic commerce, pp. 71–78, 2009.

Devanur, N. R., Jain, K., Sivan, B., and Wilkens, C. A. Near
optimal online algorithms and fast approximation algo-
rithms for resource allocation problems. In Proceedings
of the 12th ACM conference on Electronic commerce, pp.
29–38, 2011.

Facebook-Guide. Your guide to facebook bid strat-
egy. https://www.facebook.com/gms_hub/
share/biddingstrategyguide_final.pdf.
Accessed: 2023-01-19.

Feldman, J., Henzinger, M., Korula, N., Mirrokni, V. S., and
Stein, C. Online stochastic packing applied to display ad
allocation. In European Symposium on Algorithms, pp.
182–194. Springer, 2010.

Gaitonde, J., Li, Y., Light, B., Lucier, B., and Slivkins, A.
Budget pacing in repeated auctions: Regret and efficiency
without convergence. arXiv preprint arXiv:2205.08674,
2022.

9

https://people.orie.cornell.edu/ig264/Online_Optimization_with_Samples.pdf
https://people.orie.cornell.edu/ig264/Online_Optimization_with_Samples.pdf
https://people.orie.cornell.edu/ig264/Online_Optimization_with_Samples.pdf
https://arxiv.org/abs/2103.13969
https://www.facebook.com/gms_hub/share/biddingstrategyguide_final.pdf
https://www.facebook.com/gms_hub/share/biddingstrategyguide_final.pdf

Robust Budget Pacing with a Single Sample

Gupta, A. and Molinaro, M. How the experts algorithm
can help solve lps online. Mathematics of Operations
Research, 41(4):1404–1431, 2016.

Hazan, E. et al. Introduction to online convex optimization.
Foundations and Trends® in Optimization, 2(3-4):157–
325, 2016.

Jiang, J., Li, X., and Zhang, J. Online stochastic opti-
mization with wasserstein based non-stationarity. arXiv
preprint arXiv:2012.06961, 2020.

Kesselheim, T., Tönnis, A., Radke, K., and Vöcking, B.
Primal beats dual on online packing lps in the random-
order model. In Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, pp. 303–312,
2014.

Kumar, B., Morgenstern, J., and Schrijvers, O. Optimal
spend rate estimation and pacing for ad campaigns with
budgets. arXiv preprint arXiv:2202.05881, 2022.

Rubinstein, A., Wang, J. Z., and Weinberg, S. M. Optimal
single-choice prophet inequalities from samples. In ITCS,
2020.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Shalev-Shwartz, S. et al. Online learning and online con-
vex optimization. Foundations and Trends® in Machine
Learning, 4(2):107–194, 2012.

Zhou, Y., Chakrabarty, D., and Lukose, R. Budget con-
strained bidding in keyword auctions and online knap-
sack problems. In International Workshop on Internet
and Network Economics, pp. 566–576. Springer, 2008.

Zhou, Y.-H., Liang, C., Li, N., Yang, C., Zhu, S., and Jin,
R. Robust online matching with user arrival distribution
drift. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 459–466, 2019.

10

Robust Budget Pacing with a Single Sample

A. Related Work
Balseiro & Gur (2019) study budget pacing in repeated second-price auctions when the values and competing bids are either
i.i.d. according to some unknown distribution or adversarially selected. They show that Dual Gradient Descent with the
constant target λt = B/T for all t ∈ [T] attains the optimal regret of O(

√
T) in the i.i.d. stochastic setting, and the optimal

parameter-dependent asymptotic competitive ratio (equal to ratio of the per-period budget to the maximum value) in the
adversarial setting. Zhou et al. (2008) also study the adversarial setting and provide a pacing-based algorithm that achieves a
differently-parameterized competitive ratio which scales as the logarithm of the ratio of the highest-to-lowest return-on-
investment, and show that it is optimal. Kumar et al. (2022) study an episodic setting and provide a density-estimation-based
algorithm for learning the target expenditures for each episode. Gaitonde et al. (2022) study the performance of the algorithm
of Balseiro & Gur (2019) for the different objective of value maximization, and against the different benchmark comprised
of pacing multipliers which spend the same amount B/T at each time period. Under the no-overbidding assumption, they
show that the algorithm of Balseiro & Gur (2019) achieves O(T 3/4) regret. Recent years have also seen significant attention
being given to pacing in multi-buyer settings, but we focus on the single-agent setting here and refer the reader to the recent
works of Chen et al. (2021) and Gaitonde et al. (2022) for an overview.

More generally, budget pacing in second-price auctions is a special case of online linear packing, which in turn is a special
case of the online resource allocation problem. Both these problems allow for multiple resources and have been studied
extensively; we only provide a broad overview here. For the most part, these problems have also been studied in the i.i.d.
stochastic model, or the slightly more general random arrival model (requests are selected by an adversary but arrive in
a uniformly random order). Devanur & Hayes (2009) and Feldman et al. (2010) study online linear packing under the
random arrival model, and show that learning the dual from the initial requests and then using it to make decisions yields
O(T 2/3) regret. Agrawal et al. (2014) extended these results to show that repeatedly solving for the dual at geometrically
increasing intervals yields the optimal O(

√
T) regret. Devanur et al. (2011) and Kesselheim et al. (2014) also achieve

O(
√
T) regret but with a better dependence on the constants and the number of resources. Gupta & Molinaro (2016) give a

dual-descent-based algorithm that also achieves O(
√
T) regret.

Agrawal & Devanur (2014) study online resource allocation with concave rewards and convex constraints, and give a
dual-descent-based algorithm that achieves O(

√
T) regret. Balseiro et al. (2022b) give a Dual Mirror Descent algorithm

which attempts to spend λt = B/T at each time step and show that it achieves O(
√
T) regret for the general online

allocation problem. Their results also hold for stochastic models that are close to i.i.d. like periodic, ergodic etc. Balseiro
et al. (2022a) present and analyze a generalization of Dual Mirror Descent that can incorporate arbitrary target expenditures
{λt}t. When the horizon T is not known exactly and only assumed to lie in some known uncertainty window, they provide
a procedure for computing target expenditures which yield a near-optimal asymptotic competitive ratio. Our Dual FTRL
algorithm (Algorithm 2) is equivalent to the Lazy-update version of the algorithm of Balseiro et al. (2022a). Importantly,
with the exception of Devanur et al. (2011), none of the aforementioned works provide algorithms which can achieve
vanishing regret for the setting with time-varying distributions. Devanur et al. (2011) achieve O(

√
T) regret when the

optimal expected reward for each distribution is known in advance. However, this quantity cannot be computed with a single
sample for non-trivial distributions, and they do not provide guarantees for our sample-access setting.

Another line of work develops algorithms that beat O(
√
T) regret when the problem instance is well-structured. With

the exception of Banerjee et al. (2020) and Banerjee & Freund (2020), all of these works assume complete knowledge of
the distributions and/or assume that the distributions are identical. When the number of requests of each type satisfies a
concentration property between the trace and the actual requests, Banerjee et al. (2020) and Banerjee & Freund (2020) show
that a constant regret can be achieved for online resource allocation using one sample per distribution. For the budget pacing
problem, a type corresponds to a value and competing bid pair. Since complex machine-learning models are typically used
to estimate advertiser values to a high precision, this translates to an extremely large number of possible types. Far from
concentrating, these large number of types imply that one is unlikely to even observe a type more than once, making their
primal-based method ineffective for budget pacing. Moreover, neither Banerjee et al. (2020) nor Banerjee & Freund (2020)
do not provide any robustness guarantees for possible discrepancies between the sampling and true distributions, and their
algorithm requires knowledge of the competing bid. Finally, our results are meaningful when the budget is much larger than
the maximum amount one can spend on an auction/request, as is the case for budget pacing. In contrast, the literature on
prophet inequalities considers a unit-cost variable-reward online allocation problem where the budget is only large enough
to accept one request. See Azar et al. (2014); Correa et al. (2019); Rubinstein et al. (2020); Caramanis et al. (2022) for a
sample-driven treatment of prophet inequalities.

11

Robust Budget Pacing with a Single Sample

B. Application to Budget Pacing
Here we discuss how the budget pacing problem fits as a special case of the online resource allocation problem that we
study in this paper. Consider the setting in which a budget-constrained advertiser repeatedly participates in T second-price
auctions. For simplicity, assume that all ties are broken in favor of this advertiser. Let vt and dt denote her value and the
highest competing bid in the t-th auction respectively. Moreover, let B denote her budget, which represents the maximum
amount she is willing to spend over all T auctions.

We will assume that the tuple (vt, dt) is drawn from some distribution Pt, independently of all other auctions. Now, observe
that every bid of the advertiser results in one of two possible outcomes: (i) she bids greater than or equal to dt, wins the
auction, gains utility vt − dt and pays dt; (ii) she bids strictly less than dt, loses the auction, gains zero value and pays
zero. Thus, corresponding to the tuple (vt, dt), we can define a corresponding request γt with linear reward function
ft(x) = (vt − dt) · x and linear consumption function bt(x) = dt · x, for the action space x ∈ {0, 1} = {lose,win}.
Similarly, corresponding to the sample trace of tuples {(ṽt, d̃t)}t, we can define a trace {γ̃t}t for the online allocation
problem. This defines a corresponding instance of the online allocation problem. Since every bid either results in either a
win or loss, the maximum expected utility (value - payment) that the advertiser can earn subject to her budget constraint
is bounded above by FLUID({Pt}t) for this instance. Finally, consider step t of Algorithm 2 on this instance. The
decision xt is calculated as xt ∈ argmaxx∈Xt

{ft(x)− µt · bt(x)}. Therefore, xt = 1 if vt − dt ≥ µdt, or equivalently
vt/(1 + µt) ≥ dt, and xt = 0 otherwise. Observe that, in a second price auction, if the advertiser bids vt/(1 + µt), she
will win (xt = 1) if vt/(1 + µt) ≥ dt and lose (xt = 0) otherwise. Thus, by bidding vt/(1 + µt), she can simulate the
actions of Algorithm 2 for the online allocation instance. Moreover, she does not require knowledge of the competing
bid dt to compute her bid, which is crucial because dt is not known in practice. Once the auction is over, the expenditure
bt(xt) = dt · xt is revealed to the advertiser. She can then use it to update the dual iterate according to (3).

C. Fluid Benchmark is Stronger
Proposition C.1. For any collection of request distributions {Pt}t, we have E{γt}t

[OPT({γt}t)] ≤ FLUID({Pt}t).

Proof. Fix any request sequence {γt}t and let {x∗
t }t be an optimal solution to the corresponding hindsight optimization

problem OPT({γt}t). Then, xt(γ) = x∗
t for all γ ∈ S is a feasible solution of FLUID({Pt}) and consequently, we

have OPT({γt}t) ≤ FLUID({Pt}t). Since the request sequence {γt}t was arbitrary, we have E{γt}t
[OPT({γt}t)] ≤

FLUID({Pt}t), as required.

D. General Position
Given any collection of request distributions {Pt}t (which may or may not satisfy Assumption 3.3), we can define perturbed
distributions {P̂t}t to capture the distribution of perturbed requests γ̂t = (f̂t, b̂t) generated using the following two step
procedure: (i) Draw a request γt = (ft, bt) according to the unperturbed distributions Pt; (ii) Add a perturbation by setting
f̂t(x) = ft(x) + ϵt · x for all x ∈ X , where ϵt ∼ Unif([0, a]), and leave the consumption function unchanged b̂t(·) = bt(·).
Then, {P̂t}t satisfy Assumption 3.3 and

∣∣∣FLUID({Pt}t)− FLUID({P̂t}t)
∣∣∣ ≤ a · T , where a > 0 can be made arbitrarily

small.

E. Efficiently Computing the Target Sequence
In this section, we describe an efficient procedure for computing the empirical optimal dual solution µ̃ and the target
sequence {λt}t. Consider a trace {γ̃t}t and set γ̃0 = (f0, b0) such that f0(x) = b0(x) = 0 for all x ∈ X . Without loss of
generality, we will assume that {γ̃t}t is sorted in increasing order of coeff(f̃t)/ coeff(b̃t) (assume 0/0 = 0), i.e.,

coeff(f̃s)

coeff(b̃s)
≤ coeff(f̃t)

coeff(b̃t)
∀ s ≤ t .

This can be easily achieved by maintaining a sorted array with O(log(T)) insertion time or sorting the array with O(T log(T))
processing time. Moreover, since the trace {γ̃t}t is in general position by Assumption 3.3, all the coeff(f̃t)/ coeff(b̃t) are
distinct for t ∈ [T].

12

Robust Budget Pacing with a Single Sample

Algorithm 3 Learning the Dual from the Trace

Input: Trace {γ̃t}t in general position and sorted in increasing order of coeff(f̃t)/ coeff(b̃t).
Initialize: Total payment P = 0 and target sequence λt = 0 for all t ∈ [T].
for t = T, . . . , 0 do

if P + b̃t(x̄) > B then
Set λt ← b̃t(x̄), and set µ̃ = coeff(f̃t)/ coeff(b̃t). Break.

end
else

Update total payment P ← P + b̃t(x̄) and set λt ← b̃t(x̄).
end

end
return Dual variable µ̃, target sequence {λt}t

Theorem E.1. µ̃ returned by Algorithm 3 is the smallest element in argminµ≥0 µ ·B+
∑T

t=1 maxx∈X

{
f̃t(x)− µ · b̃t(x)

}
.

Moreover, λt = b∗t (µ̃) for all t ∈ [T].

Proof. Set q(µ) = µ ·B +
∑T

t=1 maxx∈X

{
f̃t(x)− µ · b̃t(x)

}
. First, we show that the dual variable µ̃ is smallest element

in argminµ≥0 q(µ). To do so, we consider the following two cases:

• µ̃ = 0. In this case, the ‘If’ condition implies that there exists s ∈ [T] such that
∑T

t=s b̃t(x̄) ≤ B and

coeff(f̃t) = 0 for all t < s. Moreover, we have 0 ∈ argmaxx∈X

{
f̃t(x)− µ · b̃t(x)

}
for all t < s and

x̄ ∈ argmaxx∈X

{
f̃t(x)− µ · b̃t(x)

}
for all t ≥ s. Now, note that the set of sub-gradients of the maximum of

a collection of linear functions is equal to convex hull of gradients of all the linear functions which are binding (for
example, see Chapter 5 of Bertsekas 2009). Therefore, B −

∑T
t=s b̃(x̄) ∈ ∂q(0). Since B −

∑T
t=s b̃(x̄) ≥ 0, the

definition of a subgradient implies that q(0) ≤ q(µ) for all µ ≥ 0. Hence, we have shown that µ̃ is the smallest
minimizer of q(·), as required.

• µ̃ > 0. In this case, the ‘If’ condition implies that there exists s ∈ [T] such that
∑T

t=s+1 b̃t(x̄) < B,
∑T

t=s b̃t(x̄) > B

and f̃s(x) − µ̃ · b̃s(x) = 0 for all x ∈ X . Moreover, we have 0 ∈ argmaxx∈X

{
f̃t(x)− µ · b̃t(x)

}
for all t < s,

x̄ ∈ argmaxx∈X

{
f̃t(x)− µ · b̃t(x)

}
for all t > s and {0, x̄} ⊆ argmaxx∈X

{
f̃s(x)− µ · b̃s(x)

}
. Now, select a

λ ∈ [0, 1] such that

B − λ · b̃s(0) + (1− λ) · b̃s(x̄) +
T∑

t=s+1

b̃t(x̄) = 0 .

Now, note that the set of sub-gradients of the maximum of a collection of linear functions is equal to convex
hull of gradients of all the linear functions which are binding (for example, see Chapter 5 of Bertsekas 2009).
Therefore, 0 = B − λ · b̃s(0) + (1 − λ) · b̃s(x̄) +

∑T
t=s+1 b̃t(x̄) ∈ ∂q(µ̃). Consequently, the definition of a

subgradient implies that q(0) ≤ q(µ) for all µ ≥ 0. Finally, consider any µ < µ̃. Then, f̃s(x) − µ · b̃s(x) > 0,
which further implies {x̄} = argmaxx∈X

{
f̃t(x)− µ · b̃t(x)

}
for all t ≥ s. Therefore, for any {xt}t such that

xt ∈ argmaxx∈X

{
f̃t(x)− µ · b̃t(x)

}
, we have B −

∑T
t=1 b̃t(xt) > 0. Hence, v > 0 for all v ∈ ∂q(µ) and

consequently µ is a minimizer of q(·). Hence, we have shown that µ̃ is the smallest minimizer of q(·), as required.

Finally, we show that λt = b̃∗t (µ̃) for all t ∈ [T]. Let s be the value of t at which the ‘For’ loop terminates. From the
definition of µ̃, we have {x̄} = argmaxx∈X

{
f̃t(x)− µ̃ · b̃t(x)

}
for all t > s, X = argmaxx∈X

{
f̃s(x)− µ̃ · b̃s(x)

}
and

{0} = argmaxx∈X

{
f̃t(x)− µ̃ · b̃t(x)

}
for all t < s. Therefore, b̃∗t (µ̃) = b̃t(x̄) = λt for all t ≥ s and b̃∗t (µ̃) = b̃t(0) = λt

for all t < s.

13

Robust Budget Pacing with a Single Sample

F. Missing Proofs from Section 3
F.1. Proof of Lemma 3.4

Proof of Lemma 3.4. Define q(µ) = µ · B +
∑T

t=1 maxx∈X

{
f̃t(x)− µ · b̃t(x)

}
. Then, q(·) is a convex function of µ

because the maximum of a collection of linear function is convex and the sum of convex function is also convex (Bertsekas,
2009). Since µ̃ ∈ argminµ≥0 q(µ), first-order condition of optimality (Proposition 5.4.7 of Bertsekas 2009) implies that
one of the following statements holds:

(i) µ̃ = 0 and there exists v ∈ ∂q(0) such that v ≥ 0.

(ii) Zero is a sub-differential of q at µ̃, i.e., 0 ∈ ∂q(µ̃).

Recall that the trace {γ̃t}t is assumed to be in general position with probability one. Therefore, there is at most one time
step for which argmaxx∈X ft(x)− µ̃ · bt(x) is not unique. Let s be that time step. Now, note that the set of sub-gradients
of the maximum of a collection of linear functions is equal to convex hull of gradients of all the linear functions which are
binding (for example, see Chapter 5 of Bertsekas 2009). Hence, v ∈ ∂q(µ̃) implies the existence of Ds ∈ ∆(X) such that

Support(Ds) ⊆ argmax
x∈X

f̃s(x)− µ̃ · b̃s(x) and v = B − Ex∼Ds
[b̃s(x)]−

T∑
t ̸=s

b̃∗t (µ̃) .

where x∗
t (γt, µ̃) is the optimal solution to maxx∈X f̃t(x)− µ̃ · b̃t(x) as described in Definition 3.1. Since 0 ≤ bs(x) ≤ b̄

for all x ∈ X , we get ∣∣∣∣∣B − v −
T∑

t=1

b̃∗t (µ̃)

∣∣∣∣∣ ≤ b̄ ,

where we have used 0 ≤ bt(x) ≤ b̄ for all x ∈ X and t ∈ [T]. Therefore, statements (i) and (ii) imply that either µ̃ = 0 and
b̄+B −

∑T
t=1 b̃

∗
t (µ̃) ≥ v ≥ 0, or

∣∣∣B −∑T
t=1 b̃

∗
t (µ̃)

∣∣∣ ≤ b̄, as required.

F.2. Proof of Theorem 3.5

Proof of Theorem 3.5. Define the hypothesis class

F := {(f, b) 7→ b∗(µ) | µ ≥ 0} .

Let Rad(·) denote Radmacher complexity. Then, we know from PAC learning theory (for example see Chapter 26 of
Shalev-Shwartz & Ben-David 2014) that

Pr
{γ̃}t∼

∏
t P̃t

(
sup
µ≥0

∣∣∣∣∣
T∑

t=1

b̃∗t (µ)−
T∑

t=1

Eγ̂t∼P̃t

[
b̂∗t (µ)

]∣∣∣∣∣ ≥ r(T)

)
≤ 1

T 2
. (8)

for

r(T) ≥ 2T · E{γ̂t}t∼
∏

t P̃t
[Rad(F ◦ {γ̂t}t)] + 2b̄ ·

√
T log(2T) .

Let H({γ̂t}t) =
{
{b̂∗t (µ)}t | µ ≥ 0

}
denote the set of all possible resource expenditure vectors that can be generated from

a trace {γ̂t}t, then

E{γ̂t}t∼
∏

t P̃t
[Rad(F ◦ {γ̂t}t)] = E{γ̂t}t∼

∏
t P̃t

[Rad(H({γ̂t}t))] =
1

T
· E{γ̂t}t∼

∏
t P̃t

Eσ⃗

[
sup
µ≥0

T∑
t=1

σt · b̂∗t (µ)

]
, (9)

where {σt}t are independent Radmacher random variables.

14

Robust Budget Pacing with a Single Sample

For a linear function f : R→ R, let coeff(f) denote its coefficient. Moreover, let x̄ = maxx∈X x. Then, observe that for a
request γ = (f, b) and dual variable µ ≥ 0, we have

x∗(γ, µ) =

{
x̄ if coeff(f)− µ · coeff(b) ≥ 0 and coeff(f) ̸= 0

0 otherwise
.

Therefore, for any request γ = (f, b) with coeff(f) ̸= 0 and coeff(b) ̸= 0, there exists a critical µ∗ = coeff(f)/ coeff(b)
such that

b∗(µ) =

{
b(x̄) if µ ≤ µ∗

0 if µ > µ∗ .

For γ = (f, b) with coeff(f) = 0 or coeff(b) ̸= 0, we have b∗(µ) = 0 for all µ ≥ 0. Consider the trace {γ̂t}t, and let
µ∗
t be the critical dual solution for request γ̂t as defined above. Then, the assumption that the trace is in general position

(Assumption 3.3) implies that the critical points {µ∗
t }t are distinct. Consequently, we get that {b̂∗t (µ)}t remains constant

whenever µ lies between any two critical points. Since the total number of critical points is T , we get that |H({γ̂t}t)| ≤ T .
Therefore, Massart Lemma applies and we get

Rad(H({γ̂t}t)) ≤ b̄ ·
√

2 log(T)

T
.

Combining this with (8) and (9) yields the theorem.

F.3. Proof of Theorem 3.6

Proof of Theorem 3.6. By Assumption 3.3, the request sequence {γt} is in general position almost surely. Therefore,
there is at most 1 time step such that ft(x′

t) ̸= f∗
t (µ̃), call it s. Let ζA be the first time step t in which Bt+1 ≤ b̄, i.e.,∑ζA

t=1 b
∗
t (µ̃) ≥ B − b̄. Then,

E [R(A|{γt}t)] = E

[
ζA∑
t=1

ft(x
′
t)

]

≥ E

[
ζA∑
t=1

f∗
t (µ̃)

]
− |f∗

s (µ̃)− fs(x
′
s)|

≥ E

[
T∑

t=1

f∗
t (µ̃)

]
− E

 T∑
t=ζA+1

f∗
t (µ̃)

− f̄

≥ E

[
T∑

t=1

f∗
t (µ̃)

]
− E

κ · T∑
t=ζA+1

b∗t (µ̃)

− f̄

≥ D(µ̃|{Pt}t)− E

[
µ̃ ·

(
B −

T∑
t=1

b∗t (µ̃)

)]
− E

κ · T∑
t=ζA+1

b∗t (µ̃)

− f̄

≥ FLUID({Pt}t)− E

[
µ̃ ·

(
B −

T∑
t=1

b∗t (µ̃)

)]
− E

κ · T∑
t=ζA+1

b∗t (µ̃)

− f̄ .

Therefore,

Regret(A) ≤ E

κ · T∑
t=ζA+1

b∗t (µ̃)

+ E

[
µ̃ ·

(
B −

T∑
t=1

b∗t (µ̃)

)]
+ f̄ .

In the remainder of the proof, we bound the first two terms on the RHS.

15

Robust Budget Pacing with a Single Sample

For the first term, observe that

T∑
t=ζA+1

b∗t (µ̃) ≤

(
T∑

t=1

b∗t (µ̃)

)
− (B − b̄)

=

(
T∑

t=1

b∗t (µ̃)−
T∑

t=1

b̃∗t (µ̃)

)
−

(
B −

T∑
t=1

b̃∗t (µ̃)

)
+ b̄

≤

∣∣∣∣∣
T∑

t=1

b∗t (µ̃)−
T∑

t=1

b̃∗t (µ̃)

∣∣∣∣∣+ 2 · b̄ , (10)

where the first inequality follows from the definition of ζA and the last inequality follows from Lemma 3.4.

For the second term, observe that Lemma 3.4 implies

µ̃ ·

(
B −

T∑
t=1

b∗t (µ̃)

)
= µ̃ ·

(
B −

T∑
t=1

b̃∗t (µ̃)

)
+ µ̃ ·

(
T∑

t=1

b̃∗t (µ̃)−
T∑

t=1

b∗t (µ̃)

)

≤ µ̃ · b̄+ µ̃ ·

∣∣∣∣∣
T∑

t=1

b̃∗t (µ̃)−
T∑

t=1

b∗t (µ̃)

∣∣∣∣∣ .
Note that µ̃ ≤ κ. This is because the definition of κ implies that maxx∈X f(x)− µ · b(x) = 0 for all γ = (f, b) ∈ S and
µ ≥ κ. Hence,

µ ·B +

T∑
t=1

max
x∈X

{
f̃t(x)− µ · b̃t(x)

}
= µ ·B < κ ·B = κ ·B +

T∑
t=1

max
x∈X

{
f̃t(x)− κ · b̃t(x)

}
for all µ > κ. Therefore, we get

µ̃ ·

(
B −

T∑
t=1

b∗t (µ̃)

)
≤ κ · b̄+ κ ·

∣∣∣∣∣
T∑

t=1

b̃∗t (µ̃)−
T∑

t=1

b∗t (µ̃)

∣∣∣∣∣ . (11)

Define G to be the good event to be one in which the total expenditures under the trace and the requests sequence are close:

sup
µ≥0

∣∣∣∣∣
T∑

t=1

b̃∗t (µ)−
T∑

t=1

b∗t (µ)

∣∣∣∣∣ ≤ r(T) .

Then, Theorem 3.5 and Union Bound imply that Pr(Gc) ≤ 2/T 2 and Pr(G) ≥ 1/2/T 2. Finally, we can put it all together
to get the required bound:

Regret(A) ≤ E

κ · T∑
t=ζA+1

b∗t (µ̃)

+ E

[
µ̃ ·

(
B −

T∑
t=1

b∗t (µ̃)

)]
+ f̄

≤ E

[
κ ·

∣∣∣∣∣
T∑

t=1

b̃∗t (µ̃)−
T∑

t=1

b∗t (µ̃)

∣∣∣∣∣
]
+ 2κb̄+ E

[
κ ·

∣∣∣∣∣
T∑

t=1

b̃∗t (µ̃)−
T∑

t=1

b∗t (µ̃)

∣∣∣∣∣
]
+ κb̄+ κb̄

= 2κ · E

[∣∣∣∣∣
T∑

t=1

b̃∗t (µ̃)−
T∑

t=1

b∗t (µ̃)

∣∣∣∣∣
∣∣∣∣ G
]
Pr(G) + 2κ · E

[∣∣∣∣∣
T∑

t=1

b̃∗t (µ̃)−
T∑

t=1

b∗t (µ̃)

∣∣∣∣∣
∣∣∣∣ Gc

]
Pr(Gc) + 4κb̄

≤ 2κ · r(T) + 2κ · 2T b̄ · 2

T 2
+ 4κb̄

≤ 12κb̄+ 2κr(T) .

16

Robust Budget Pacing with a Single Sample

G. Missing Proofs from Section 4
G.1. Proof of Theorem 4.1

Proof of Theorem 4.1. Let ζA be the first time less than T for which
∑ζA

t=1 bt(xt) + b̄ ≥ B. Set ζA = T if this inequality is
never satisfied. Then, xt = x′

t for all t ≤ ζA and
∑ζA

t=1 bt(x
′
t) ≥ B − b̄.

First, observe that

R(A|{γt}t) ≥
ζA∑
t=1

ft(x
′
t) =

T∑
t=1

ft(x
′
t)−

T∑
t=ζA+1

ft(x
′
t) ≥

T∑
t=1

ft(x
′
t)− κ ·

T∑
t=ζA+1

bt(x
′
t) . (12)

Next observe that, for all t ∈ [T], µt is independent of γt because µt is completely determined by {γ1, . . . , γt−1}. Hence,

Eγt
[ft(x

′
t) | µt] = Eγt

[ft(x
′
t) + µt · (βt − bt(x

′
t)) | µt]− Eγt

[µt · (λt − bt(x
′
t)) | µt]− Eγt

[µt · (βt − λt) | µt]

= Eγt
[D(µt|Pt, βt)|µt]− Eγt

[µt · (λt − bt(x
′
t)) | µt]− Eγt

[µt · (βt − λt) | µt] .

Taking unconditional expectations on both sides and applying the tower rule yields

E [ft(x
′
t)] = E [D(µt|Pt, βt)]− E [µt · (λt − bt(x

′
t))]− E [µt · (βt − λt)] .

Summing over t ∈ [T], we get

T∑
t=1

E[ft(x′
t)] =

T∑
t=1

E [D(µt|Pt, βt)]−
T∑

t=1

E [µt · (λt − bt(x
′
t))]−

T∑
t=1

E [µt · (βt − λt)] . (13)

Therefore, (12) and (13) together imply

E

[{
T∑

t=1

D(µt|Pt, βt)

}
−R(A|{γt}t)

]
≤ E

 T∑
t=1

µt · (λt − bt(x
′
t)) + κ ·

T∑
t=ζA+1

bt(x
′
t)

+

T∑
t=1

E[µt · (βt − λt)] .

(14)

FTRL Regret Bound. Define wt(µ) := µ · (λt − bt(x
′
t)). Then, Algorithm 2 can be seen as running FTRL with linear

losses {wt(·)}t. The gradients of these loss functions are given by ∇wt(µ) = λt − bt(x
′
t), which satisfy ∥∇wt(µ)∥∞ ≤

∥bt(x′
t)∥∞ + ∥λt∥∞ ≤ b̄+ λ̄. Therefore, the regret bound for FTRL implies that for all µ ≥ 0:

T∑
t=1

wt(µt)− wt(µ) ≤ E(T, µ) , (15)

where E(T, µ) = 2(b̄+λ̄)2

σ η ·T + h(µ)−h(µ1)
η is the regret bound of FTRL after T iterations (Hazan et al., 2016). Equivalently,

we can write

T∑
t=1

µt · (λt − bt(x
′
t)) ≤ E(T, µ) +

T∑
t=1

µ · (λt − bt(x
′
t)) ∀ µ ≥ 0.

Now, consider the following two cases:

• Case 1: ζA = T . Here, setting µ = 0 yields

T∑
t=1

µt · (λt − bt(x
′
t)) + κ ·

T∑
t=ζA+1

bt(x
′
t) ≤ E(T, 0) .

17

Robust Budget Pacing with a Single Sample

• Case 2: ζA < T . Then,
∑ζA

t=1 bt(x
′
t) ≥ B − b̄. Hence, setting µ = κ yields

T∑
t=1

µt · (λt − bt(x
′
t)) + κ ·

T∑
t=ζA+1

bt(x
′
t) ≤ E(T, κ) +

T∑
t=1

κ · (λt − bt(x
′
t)) + κ ·

T∑
t=ζA+1

bt(x
′
t)

= E(T, κ) + κ ·

(
T∑

t=1

λt −
ζA∑
t=1

bt(x
′
t)

)

≤ E(T, κ) + κ ·

({
T∑

t=1

λt

}
− (B − b̄)

)

= E(T, κ) + κb̄+ κ ·

({
T∑

t=1

λt

}
−B

)
.

Combining the two cases implies that for all values of ζA we have

T∑
t=1

µt · (λt − bt(x
′
t)) + κ ·

T∑
t=ζA+1

bt(x
′
t) ≤ max{E(T, 0), E(T, κ)}+ κb̄+ κ ·

({
T∑

t=1

λt

}
−B

)+

. (16)

Finally, combining (14) and (16) yields

E

[{
T∑

t=1

D(µt|Pt, βt)

}
−R(A|{γt}t)

]
≤max{E(T, 0), E(T, κ)}+ κb̄+ κ ·

({
T∑

t=1

λt

}
−B

)+

+

T∑
t=1

E[µt · (βt − λt)] .

Plugging in the definition of E(T, µ) finishes the proof.

G.2. Proof of Lemma 4.2

Proof of Lemma 4.2. Consider any two request distributions P, P̃ ∈ ∆(S). Then, by the definition of the Wasserstein
metric, there exists a joint probability distribution Q, with marginals P and P̃ on the first and second factors respectively,
such that

W(P, P̃) = E(γ,γ̃)∼Q

[
sup
x
|f(x)− f̃(x)|+ sup

x
|b(x)− b̃(x)|

]
.

Let x∗(γ, µ) be the optimal solution of maxx∈X f(x)− µ · b(x) for request γ = (f, b) as described in Definition 3.1. Then,
for any µ ∈ [0, κ] and x : S → X , we have

E(γ,γ̃)∼Q

[∣∣∣f(x(γ))− µ · b(x(γ))−
{
f̃(x(γ))− µ · b̃(x(γ))

}∣∣∣]
≤E(γ,γ̃)∼Q

[∣∣∣f(x(γ))− f̃(x(γ))
∣∣∣+ µ ·

∣∣∣b(x(γ))− b̃(x(γ))
∣∣∣]

≤W(P, P̃) + κ · W(P, P̃)
=(1 + κ) · W(P, P̃) . (17)

Now, for t ∈ [T], we can use (17) to write

D(µt|P̃, βt)−D(µt|P, βt)

=Eγ̃∼P̃ [f̃(x
∗(γ̃, µt))− µt · b̃(x∗(γ̃, µt)) + µt · βt]− Eγ∼P [f(x

∗(γ, µt))− µt · b(x∗(γ, µt)) + µt · βt]

≤Eγ̃∼P̃,γ∼P [f̃(x
∗(γ̃, µt))− µt · b̃(x∗(γ̃, µt)) + µt · βt − {f(x∗(γ̃, µt))− µt · b(x∗(γ̃, µt)) + µt · βt}]

18

Robust Budget Pacing with a Single Sample

≤E(γ,γ̃)∼Q

[∣∣∣f(x∗(γ̃, µt))− µt · b(x∗(γ̃, µt))−
{
f̃(x∗(γ̃, µt))− µt · b̃(x∗(γ̃, µt))

}∣∣∣]
≤(1 + κ) · W(P, P̃) ,

where the first inequality follows from the definition of x∗(γ, µt) and the second inequality follows from the fact that (P, P̃)
are the marginals of Q. As a consequence, we get

T∑
t=1

D(µt|Pt, βt) =

T∑
t=1

D(µt|P̃t, βt)−
T∑

t=1

{
D(µt|P̃t, βt)−D(µt|Pt, βt)

}
≥

T∑
t=1

D(µt|P̃t, βt)− (1 + κ) ·
T∑

t=1

W(Pt, P̃t)

≥
T∑

t=1

FLUID(P̃t, βt)− (1 + κ) ·
T∑

t=1

W(Pt, P̃t) , (18)

where the second inequality follows from weak duality.

Next, observe that the definition of βt = Eγ̂∼P̃t
[b̂∗(µ̃)] implies that x∗(γ̃t, µ̃) is a feasible to solution to the optimization

problem which defines FLUID(P̃t, βt). Hence,

T∑
t=1

FLUID(P̃t, βt) ≥
T∑

t=1

Eγ̃t∼P̃t

[
f̃t(x

∗(γ̃t, µ̃))
]

=

T∑
t=1

Eγ̃t∼P̃t

[
f̃t(x

∗(γ̃t, µ̃))− µ̃ · b̃t(x∗(γ̃t, µ̃))
]
+ µ̃ ·

T∑
t=1

Eγ̃t∼P̃t

[
b̃t(x

∗(γ̃t, µ̃))
]
.

Let {xt(·)}t be an optimal solution for FLUID({Pt}). Then, for all t ∈ [T], we have

Eγ̃t∼P̃t

[
f̃t(x

∗(γ̃t, µ̃))− µ̃ · b̃t(x∗(γ̃t, µ̃))
]
= E(γt,γ̃t)∼Q

[
f̃t(x

∗(γ̃t, µ̃))− µ̃ · b̃t(x∗(γ̃t, µ̃))
]

≥ E(γt,γ̃t)∼Q

[
f̃t(xt(γt))− µ̃ · b̃t(x(γt))

]
≥ E(γt,γ̃t)∼Q [ft(xt(γt))− µ̃ · bt(x(γt))]− (1 + κ) · W(Pt, P̃t)

= Eγt∼Pt
[ft(xt(γt))− µ̃ · bt(x(γt))]− (1 + κ) · W(Pt, P̃t) ,

where the first inequality follows from the definition of x∗(γ̃t, µ̃) and the second inequality follows from (17). Therefore,

T∑
t=1

FLUID(P̃t, βt)

≥
T∑

t=1

Eγt [ft(xt(γt))− µ̃ · bt(x(γt))]− (1 + κ) ·
T∑

t=1

W(Pt, P̃t) + µ̃ ·
T∑

t=1

Eγ̃t

[
b̃t(x

∗(γ̃t, µ̃))
]

=

t∑
t=1

Eγt∼Pt
[ft(x(γt))]− µ̃ ·

(
T∑

t=1

Eγt
[bt(x(γt))]−

T∑
t=1

Eγ̃t
[b̃∗t (µ̃)]

)
− (1 + κ) ·

T∑
t=1

W(Pt, P̃t)

≥FLUID({Pt}t)− µ̃ ·

(
B −

T∑
t=1

βt

)
− (1 + κ) ·

T∑
t=1

W(Pt, P̃t) ,

where the second inequality follows from the feasibility of the optimal solution {xt(·)}t, i.e.,
∑T

t=1 Eγt [bt(x(γt))] ≤ B.
Combining this with (18) yields

T∑
t=1

D(µt|Pt, βt) ≥ FLUID({Pt}t)− µ̃ ·

(
B −

T∑
t=1

βt

)
− 2(1 + κ) ·

T∑
t=1

W(Pt, P̃t) ,

as required.

19

Robust Budget Pacing with a Single Sample

G.3. Proof of Lemma 4.4

Proof of Lemma 4.4. The definition of x and x′ implies

f(x)− µ · b(x) ≥ f(x′)− µ · b(x′) and f(x′)− µ′ · b(x′) ≥ f(x)− µ′ · b(x) .

Combining the two inequalities, we get

f(x)− µ · b(x)− {f(x)− µ′ · b(x)} ≥ f(x′)− µ · b(x′)− {f(x′)− µ′ · b(x′)}
=⇒ (µ− µ′) · (b(x′)− b(x)) ≥ 0 .

The lemma follows from the last inequality because µ− µ′ > 0.

G.4. Proof of Lemma 4.5

Proof of Lemma 4.5. Define

q(µ) := µ ·B +

T∑
t=1

max
x∈X

{
f̃t(x)− µ · b̃t(x)

}
and q(−s)(µ) := µ ·B +

∑
t̸=s

max
x∈X

{
f̃t(x)− µ · b̃t(x)

}
.

We start by proving µ̃ ≥ µ̃(−s). For contradiction, suppose µ̃ < µ̃(−s). Consider the following two cases:

• Case I: 0 ∈ argmaxx∈X f̃s(x) − µ̃ · b̃s(x). Then, we must have 0 ∈ argmaxx∈X f̃s(x) − µ · b̃s(x) for all µ ≥ µ̃.
This is because, for µ ≥ µ̃, Lemma 4.4 implies that b̃s(x′) ≤ b̃s(0) = 0 for all x′ ∈ argmaxx∈X f̃s(x) − µ · b̃s(x),
and f̃s(x) ≤ κ · b̃s(x) for all x ∈ X . Therefore, q(µ) = q(−s)(µ) for all µ ≥ µ̃. Since µ̃ is a minimizer of q(·) and
µ̃(−s) > µ̃, we get that

q(−s)(µ̃) = q(µ̃) ≤ q(µ̃(−s)) = q(−s)
(
µ̃(−s)

)
.

On the other hand, µ̃(−s) is a minimizer of q(−s)(·), which implies q(−s)
(
µ̃(−s)

)
≤ q(−s)(µ̃). Therefore,

q(−s)
(
µ̃(−s)

)
≤ q(−s)(µ̃), which contradicts the fact that µ̃(−s) is the smallest minimizer of q(−s)(·).

• Case II: 0 /∈ argmaxx∈X f̃s(x) − µ̃ · b̃s(x). Since fs(x) ≤ κ · bs(x) for all x ∈ X , we get that b̃s(x′) > 0 for all
x′ ∈ argmaxx∈X f̃s(x) − µ̃ · b̃s(x). Consider any sequences of optimal action sequences {xt}t and {x(−s)

t }t such
that for all t ∈ [T], we have

xt ∈ argmax
x∈X

f̃t(x)− µ̃ · b̃t(x) and x
(−s)
t ∈ argmax

x∈X
f̃t(x)− µ̃(−s) · b̃t(x) .

Then, Lemma 4.4 implies that b̃t(xt) ≥ b̃t(x
(−s)
t) for all t ̸= s. Therefore,

B −
T∑

t=1

b̃t(xt) =

B −
∑
t ̸=s

b̃t(xt)

− bt(xt) < B −
∑
t̸=s

b̃t(xt) ≤ B −
∑
t ̸=s

b̃t(x
(−s)
t) . (19)

Now observe that, since q(·) (and q(−s)(·)) are the maxima of a collection of linear functions, its sub-gradient is
given by the convex hull of gradients of all the linear functions which are binding (for example, see Chapter 5 of
Bertsekas 2009). Therefore, ∂q(µ̃) (and ∂q(−s)

(
µ̃(−s)

)
) is a convex hull of terms of the form B −

∑T
t=1 b̃t(xt) for

some optimal action sequence {xt}t (and {x(−s)
t }t). Since µ̃(−s) > µ̃ ≥ 0, first-order optimality conditions imply that

0 ∈ ∂q(−s)
(
µ̃(−s)

)
. Therefore, (19) implies that v < 0 for all v ∈ ∂q(µ̃). This contradicts the optimality of µ̃ for q(·).

As we have obtained a contradiction in both cases, we get that µ̃ ≥ µ̃(−s), as required. Moreover, λt ≤ λ
(−s)
t for all t ̸= s

follows immediately from Lemma 4.4. Hence, to finish the proof, it suffices to show the final inequality in the following
chain:

s−1∑
t=1

∣∣∣λ(−s)
t − λt

∣∣∣ ≤∑
t ̸=s

∣∣∣λ(−s)
t − λt

∣∣∣ =∑
t ̸=s

λ
(−s)
t −

∑
t ̸=s

λt ≤ 3b̄ . (20)

Note that, Lemma 3.4 implies that at least one of the following conditions hold

20

Robust Budget Pacing with a Single Sample

1. µ̃ = 0 and
∑T

t=1 λt ≤ B + b̄.

2.
∣∣∣B −∑T

t=1 λ̃t

∣∣∣ ≤ b̄.

If µ̃ = 0, then µ̃(−s) = 0 because m̃u(−s) ≤ µ̃. Therefore, in that case λ
(−s)
t = λt = b̃∗t (0) for all t ̸= s and (20) follows.

Suppose
∣∣∣B −∑T

t=1 λ̃t

∣∣∣ ≤ b̄. Observe that Lemma 3.4 applied to the trace {γ̂t}t, where γ̂t = γ̃t for all t ̸= s and
γ̂s = (0, 0), implies that at least one of the following conditions hold:

1. µ̃(−s) = 0 and
∑

t̸=s λ
(−s)
t ≤ B + b̄.

2.
∣∣∣B −∑t̸=s λ̃

(−s)
t

∣∣∣ ≤ b̄.

Therefore,
∑

t ̸=s λ
(−s)
t −

∑
t̸=s λt ≤ B + b̄−

∑
t̸=s λt ≤ b̄+ b̄+ λs ≤ 3b̄, as required to establish (20).

G.5. Proof of Lemma 4.6

Proof of Lemma 4.6. It is known that FTRL is equivalent to Lazy Online Mirror Descent (for example, see Hazan et al.
2016). In particular, if we let Vh(x, y) = h(x)− h(y)−∇h(y)⊤(x− y) denote the Bregman divergence w.r.t. h(·), then
the FTRL update (3) of Algorithm 2 can be equivalently written as:

θs = ∇h(µs)

θs+1 = θt − η · gs = θt − η · (λs − bs(x
′
t))

µt+1 = argmin
µ∈[0,κ]

Vh(µ, (∇h)−1(θs+1)) .

where x′
t ∈ argmaxx∈X fs(x) − µs · bs(x). We will use {µ′

t}t and {θ′t}t to represent the dual and mirror iterates of
Algorithm 2 with target sequence {λ′

t}t:

θ′s = ∇h(µ′
s)

θ′s+1 = θ′t − η · gs = θ′t − η · (λ′
s − bs(y

′
t))

µ′
t+1 = argmin

µ∈[0,κ]

Vh(µ, (∇h)−1(θ′s+1)) .

where y′t ∈ argmaxx∈X fs(x)− µ′
s · bs(x).

We will first use induction on s to prove the following statement,

|θs − θ′s| ≤ η ·

{
s−1∑
t=1

|λt − λ′
t|

}
+ η · b̄ . (21)

The base case s = 1 follows directly from our assumption that the initial iterates θ1 = ∇h(µ1) = ∇h(µ′
1) = θ2 are the

same.

Suppose (21) holds for s ∈ [T − 1] (Induction Hypothesis). Define θs+1/2 = θs + η · bs(x′
t) and θ′s+1/2 = θ′s + η · bs(y′t).

W.l.o.g. assume that θs ≥ θ′s. Due to the invertibility of ∇h, we get that µs ≥ µ′
s, and consequently Lemma 4.4 implies

b(x′
t) ≤ b(y′t). Consider the following cases:

• Case I: θ′s+1/2 ≤ θs+1/2. Then, θs+1/2 − θ′s+1/2 = θs − θ′s + η · (b(x′
t)− b(y′t)) ≤ θs − θ′s because b(x′

t) ≤ b(y′t).

• Case II: θ′s+1/2 ≥ θs+1/2. Then, θ′s+1/2 − θs+1/2 = θ′s − θs + η · (b(x′
t) − b(y′t)) ≤ η · b̄ because θ′s ≤ θs and

b(y′t)− b(x′
t) ≤ b̄.

21

Robust Budget Pacing with a Single Sample

Therefore, in both cases we have

|θs+1/2 − θ′s+1/2| ≤ max{θs − θ′s, η · b̄} ≤ η ·

{
s−1∑
t=1

|λt − λ′
t|

}
+ η · b̄ .

where we used the induction hypothesis in the second inequality. Consequently, we can write

|θs+1 − θ′s+1| =
∣∣∣θs+1/2 − η · λs + (θ′s+1/2 − η · λ′

s)
∣∣∣

≤ |θs+1/2 − θ′s+1/2|+ η · |λs − λ′
s|

≤ η ·

{
s∑

t=1

|λt − λ′
t|

}
+ η · b̄ .

Hence, we have established (21) for all s ∈ [T]. Now, since h is σ-strongly convex and differentiable, we have

∇h(x)−∇h(y) ≥ σ · (x− y) ∀ x ≥ y .

Therefore, we have ∣∣(∇h)−1(θs)− (∇h)−1(θ′s)
∣∣ ≤ 1

σ
· |θs − θ′s| . (22)

To finish the proof, we will use the fact that Bregman projections are contractions in one dimensions, which we prove next.
Consider any x < 0, then for any µ ∈ [0, κ], we have

Vh(µ, x)− Vh(0, x) = h(µ)− h(0)−∇h(x)⊤(µ− 0) ≥ h(µ)− h(0)−∇h(0)⊤(µ− 0) ≥ 0 ,

where the inequality follows from ∇h(0) ≥ ∇h(x) (convexity of h(·)). Therefore, argminµ∈[0,κ] Vh(µ, x) = 0 =
argminµ∈[0,κ] |µ− x|. Similarly, for x > κ and µ ∈ [0, κ], we have

Vh(µ, x)− Vh(κ, x) = h(µ)− h(κ)−∇h(x)⊤(µ− κ) ≥ h(µ)− h(κ)−∇h(κ)⊤(µ− κ) ≥ 0 ,

where the inequality follows from ∇h(x) ≥ ∇h(κ) (convexity of h(·)). Therefore, argminµ∈[0,κ] Vh(µ, x) = κ =
argminµ∈[0,κ] |µ − x|. Consequently, we have shown that argminµ∈[0,κ] Vh(µ, x) = argminµ∈[0,κ] |µ − x|, i.e., the
Bregman project is identical to the Euclidean projection in one dimension. Since Euclidean projection is a contraction, we
get

|µs − µ′
s| =

∣∣∣∣∣argmin
µ∈[0,κ]

Vh(µ, (∇h)−1(θs+1))− argmin
µ∈[0,κ]

Vh(µ, (∇h)−1(θ′s+1))

∣∣∣∣∣
=

∣∣∣∣∣argmin
µ∈[0,κ]

|µ− (∇h)−1(θs+1))| − argmin
µ∈[0,κ]

|µ− (∇h)−1(θ′s+1))|

∣∣∣∣∣
≤
∣∣(∇h)−1(θs)− (∇h)−1(θ′s)

∣∣ .
Finally, combining this with (21) and (22), we get

|µs − µ′
s| ≤

η

σ
·

{
s−1∑
t=1

|λt − λ′
t|

}
+

η

σ
· b̄ ,

as required.

G.6. Proof of Lemma 4.7

Proof of Lemma 4.7. Using the definitions of λs and βs, we can write

E
[
λs

∣∣µ̃(−s)
]
= E

[
b̃∗s(µ̃)

∣∣∣∣ µ̃(−s)

]
and E

[
βs

∣∣ µ̃(−s)
]
= E

[
Eγ̂∼P̃t

[
b̂∗s(µ̃)

]∣∣∣∣ µ̃(−s)

]
.

22

Robust Budget Pacing with a Single Sample

Fix a trace {γ̃t}t. Observe that for any request

x∗(γ̃s, µ̃) =

{
x̄ if coeff(f̃s)− µ̃ · coeff(b̃s) ≥ 0 and coeff(f̃s) ̸= 0

0 otherwise
,

and

x∗(γ̃s, µ̃
(−s)) =

{
x̄ if coeff(f̃s)− µ̃(−s) · coeff(b̃s) ≥ 0 and coeff(f̃s) ̸= 0

0 otherwise
.

From Lemma 4.5, we know that µ̃(−s) ≤ µ̃. Now, if coeff(f̃s) = 0, then x∗(γ̃s, µ̃) = x∗(γ̃s, µ̃
(−s)) = 0. Assume that

coeff(f̃s) > 0 (and thus coeff(b̃s) > 0 because fs(x) ≤ κ · b(x)), let A := {µ ≥ 0 | coeff(f̃s)− µ · coeff(b̃s) < 0} be the
set of all dual variables that lead to x∗(γ̃s, µ) = 0.

Define the dual functions:

q(µ) := µ ·B +

T∑
t=1

max
x∈X

{
f̃t(x)− µ · b̃t(x)

}
and q(−s)(µ) := µ ·B +

∑
t̸=s

max
x∈X

{
f̃t(x)− µ · b̃t(x)

}
.

For contradiction, suppose µ̃ ∈ A and µ̃(−s) /∈ A. Since A is open, there exists a point µ ∈ A such that µ = α · µ̃+ (1−
α) · µ̃(−s) for some α ∈ (0, 1). Moreover, observe that the minimality of µ̃(−s) implies q(−s)

(
µ̃(−s)

)
≤ q(−s)(µ) and

q(−s)
(
µ̃(−s)

)
≤ q(−s)(µ̃). Therefore, as q(−s) is convex, we get

q(−s)(µ) ≤ α · q(−s)(µ̃) + (1− α) · q(−s)
(
µ̃(−s)

)
≤ α · q(−s)(µ̃) + (1− α) · q(−s)(µ̃) = q(−s)(µ̃) .

Now, observe that q(µ) = q(−s)(µ) for all µ ∈ A. Therefore, q(µ) ≤ q(µ̃), which contradicts the fact that µ̃ is the smallest
minimizer of q(·). Hence, either µ̃, µ̃(−s) ∈ A or µ̃, µ̃(−s) ∈ Ac, and as a consequence, we get b̃∗s(µ̃) = b̃∗s

(
µ̃(−s)

)
.

Furthermore, combining µ̃ ≥ µ̃(−s) (from Lemma 4.5) and Lemma 4.4, we also get b̂∗s
(
µ̃(−s)

)
≥ b̂∗s(µ̃) for every γ̂s ∈ S.

Therefore,

E
[
λs

∣∣µ̃(−s)
]
= E

[
b̃∗s(µ̃)

∣∣∣∣ µ̃(−s)

]
= E

[
b̃∗s

(
µ̃(−s)

)∣∣∣∣ µ̃(−s)

]
= Eγ̂s∼P̃s

[
b̂∗s

(
µ̃(−s)

)∣∣∣∣ µ̃(−s)

]
≥ E

[
Eγ̂s∼P̃s

[
b̂∗s(µ̃)

∣∣∣∣ µ̃(−s)

]]
= E

[
βs

∣∣ µ̃(−s)
]
,

where the third equality follows from the fact that γ̃s and µ̃(−s) are independent of each other, which allows us to rename the
variable from γ̃s ∼ P̃s to γ̂s ∼ P̃s. We combine this with the Tower Property of conditional expectations to finish the proof:

E
[
µ(−s)
s · (βs − λs)

]
= E

[
µ(−s)
s · E

[
(βs − λs)

∣∣∣∣ µ(−s)
s

]]
= E

[
µ(−s)
s ·

(
E
[
βs

∣∣∣∣ µ(−s)
s

]
− E

[
λs

∣∣∣∣ µ(−s)
s

])]
≤ 0 .

G.7. Proof of Theorem 4.8

Proof of Theorem 4.8. Theorem 4.1 and (6) together imply that, with probability at least 1− 1/T 2, we have

Regret(A) = FLUID({Pt}t)− E{γt}t∼
∏

t Pt
[R(A|{γt}t)] ≤ R1 +R2 +R3 + κ · r(T) + κb̄+ 2(1 + κ) ·

T∑
t=1

W(Pt, P̃t) .

23

Robust Budget Pacing with a Single Sample

From our choice of step size η =
√
dR/T and the observation that λ̄ = maxt λt ≤ b̄, we get that

R1 = κb̄+
2(b̄+ λ̄)2

σ
· ηT +

dR
η
≤ κb̄+

(
8b̄2

σ
+ 1

)
·
√
drT .

From (10), we know that

R2 = κ ·

({
T∑

t=1

λt

}
−B

)+

≤ κb̄ .

Moreover, from Lemma 4.7 and η =
√

dR/T , we know that

R3 =

T∑
s=1

E [µs · (βs − λs)] ≤
4ηb̄2

σ
· T =

4b̄2

σ
·
√
drT .

Combining the above inequalities and plugging in r(T) = 8b̄
√

T log(T), we get that

Regret(A) ≤ 3κb̄+

(
12b̄2

σ
+ 1

)
·
√

drT + 8κb̄
√

T log(T) + 2(1 + κ) ·
T∑

t=1

W(Pt, P̃t)

≤

with probability at least 1− 1/T 2. On the other than, we always have Regret(T) ≤ f̄T ≤ κb̄T . Hence, we get

Regret(A) ≤
(
1− 1

T 2

)
·

[
3κb̄+

(
12b̄2

σ
+ 1

)
·
√
drT + 8κb̄

√
T log(T) + 2(1 + κ) ·

T∑
t=1

W(Pt, P̃t)

]
+

1

T 2
· κb̄T

≤ 4κb̄
√
T log(T) +

(
12b̄2

σ
+ 1

)
·
√

dr ·
√

T log(T) + 8κb̄
√

T log(T) + 2(1 + κ) ·
T∑

t=1

W(Pt, P̃t)

= C1 ·
√
T log(T) + C2 ·

T∑
t=1

W(Pt, P̃t)

where C1 = 12b̄2
√
dR

σ +
√
dR + 12κb̄ and C2 = 2(1 + κ).

24

