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Abstract

This paper proposes a unified diffusion framework
(dubbed UniDiffuser) to fit all distributions rel-
evant to a set of multi-modal data in one model.
Our key insight is – learning diffusion models for
marginal, conditional, and joint distributions can
be unified as predicting the noise in the perturbed
data, where the perturbation levels (i.e. timesteps)
can be different for different modalities. Inspired
by the unified view, UniDiffuser learns all distribu-
tions simultaneously with a minimal modification
to the original diffusion model – perturbs data in
all modalities instead of a single modality, inputs
individual timesteps in different modalities, and
predicts the noise of all modalities instead of a
single modality. UniDiffuser is parameterized by
a transformer for diffusion models to handle in-
put types of different modalities. Implemented on
large-scale paired image-text data, UniDiffuser is
able to perform image, text, text-to-image, image-
to-text, and image-text pair generation by setting
proper timesteps without additional overhead. In
particular, UniDiffuser is able to produce percep-
tually realistic samples in all tasks and its quantita-
tive results (e.g., the FID and CLIP score) are not
only superior to existing general-purpose models
but also comparable to the bespoken models (e.g.,
Stable Diffusion and DALL·E 2) in representa-
tive tasks (e.g., text-to-image generation). Our
code is available at https://github.com/
thu-ml/unidiffuser.
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1. Introduction
Recently, we are witnessing a content-creation revolution
driven by the rapid advances of generative modeling on
multi-modal data. In particular, diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021c)
have shown an incredible ability to create high-fidelity and
diverse data (Ramesh et al., 2022; Saharia et al., 2022; Rom-
bach et al., 2022; Ho et al., 2022a; Popov et al., 2021),
whose content aligns well with the input text condition.

However, these generative models are designed as bespoke
systems, which only allow a single task. Actually, humans
can generate various multi-modal content simultaneously,
with arbitrary conditioning types. For example, artists can
create paintings conditioned on texts, scenes, or just imagi-
nation and employ language ability to generate the caption
of a photo. Toward a general generative system on multi-
modal data, a unified training framework that can cover all
types of multi-modal generative tasks (see Figure 1) is one
of the fundamental components.

The task is solved by fitting a corresponding distribution
in the view of probabilistic modeling. For instance, text-
to-image generation can be formulated as learning the con-
ditional distribution p(Image|Text). A classical way to fit
all relevant distributions is implicit – it first learns the joint
distribution and then infers the marginal and conditional
distributions by additional procedures (e.g., Markov Chain
Monte Carlo (Srivastava & Salakhutdinov, 2012)), which is
unaffordable on large-scale multi-modal data (Schuhmann
et al., 2022).

In contrast, this paper presents a diffusion-based framework
(dubbed UniDiffuser) that explicitly fits all relevant distribu-
tions in one model without introducing additional training or
inference overhead. Our key insight is – learning diffusion
models for all distributions can be unified as predicting the
noise in the perturbed data, where the perturbation levels
(i.e. timesteps) can be different for different modalities. For
instance, a zero level indicates conditional generation given
the corresponding modality, and a maximum level indicates
unconditional generation of other modalities by ignoring
the corresponding modality. Inspired by the unified view,
UniDiffuser learns all distributions simultaneously with a
minimal modification to the original diffusion model (Ho
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Figure 1. UniDiffuser handles various tasks by fitting all distributions with one transformer. (a-e) UniDiffuser can directly perform
joint generation, conditional generation, and unconditional generation. (f-g) Image variation and text variation are direct applications by
leveraging two conditional distributions modeled by UniDiffuser. (h) Furthermore, UniDiffuser can perform blocked Gibbs sampling to
see how images and texts are translated to each other. (i) UniDiffuser can also perform interpolation between two images in the wild.

et al., 2020) (see Figure 2) – perturbs data in all modalities
instead of a single modality, inputs individual timesteps in
different modalities, and predicts the noise of all modalities
instead of a single modality. Naturally, UniDiffuser is able
to perform all kinds of generation (see Figure 1) in the same
way as bespoken diffusion models. Moreover, UniDiffuser
can perform the classifier-free guidance (Ho & Salimans,
2021) for free to improve the sample quality in both con-
ditional and joint generation because UniDiffuser already
models marginal distributions.

Besides the probabilistic modeling framework, a unified ar-
chitecture that can handle input types of different modalities
is another fundamental component in a general generative
system. Notably, the emergence of Transformer (Vaswani
et al., 2017; Dosovitskiy et al., 2021) and its applications on

generative modeling (Bao et al., 2023a) provide a promising
solution to capture interactions between modalities. Natu-
rally, UniDiffuser employs a transformer-based backbone.

We implement UniDiffuser in the latent space (Rombach
et al., 2022) with an additional CLIP encoder (Radford et al.,
2021) for images and GPT-2 (Radford et al., 2019) decoder
for texts on large-scale image-text data (Schuhmann et al.,
2022). UniDiffuser is able to perform image, text, text-
to-image, image-to-text, and image-text pair generation by
setting proper timesteps without additional overhead. In par-
ticular, UniDiffuser is able to produce perceptually realistic
samples in all tasks and its quantitative results (e.g., the FID
and CLIP score) are not only superior to existing general-
purpose models but also comparable to the corresponding
bespoken models (e.g., Stable Diffusion and DALL·E 2) in
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representative tasks (e.g., text-to-image generation).

2. Background
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) perturb the data by gradually injecting noise to data
x0 ∼ q(x0), which is formalized by a Markov chain:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) = N (xt|
√
αtxt−1, βtI),

where βt is the noise schedule and αt = 1− βt.

The data can be generated by reversing this process, where
the reverse transition q(xt−1|xt) is approximated by a
Gaussian model p(xt−1|xt) = N (xt−1|µt(xt), σ

2
t I). As

shown by Bao et al. (2022b), the optimal mean under maxi-
mal likelihood estimation is

µ∗
t (xt) =

1
√
αt

(
xt −

βt√
1− αt

E[ϵx|xt]

)
, (1)

where αt =
∏t

i=1 αi and ϵx is the standard Gaussian noise
injected to xt. To estimate the conditional expectation
E[ϵx|xt], a noise prediction network ϵθ(xt, t) is adopted to
minimize the regression loss as follows:

min
θ

Et,x0,ϵx∥ϵx − ϵθ(xt, t)∥22, (2)

where t is uniformly sampled from {1, 2, . . . , T} and xt =√
αtx0 +

√
1− αtϵ

x. According to the property of the
l2 regression loss, the optimal noise prediction network
satisfies ϵθ∗(xt, t) = E[ϵx|xt]. Since Eq. (2) is also
equivalent to the denoising score matching loss (Vincent,
2011), the optimal noise prediction network also satisfies

ϵθ∗(xt, t) = −
√
βt∇ log q(xt), where q(xt) is the distri-

bution of the perturbed data at timestep t.

Conditional generation with diffusion models. In the case
of conditional generation, we have paired data (x0,y0) ∼
q(x0,y0), and we want to model the conditional data
distribution q(x0|y0). The Gaussian model of the re-
verse process conditioned on y0 is p(xt−1|xt,y0) =
N (xt−1|µt(xt,y0), σ

2
t I). Similarly to Eq. (1), the opti-

mal mean under maximal likelihood estimation is

µ∗
t (xt,y0) =

1
√
αt

(
xt −

βt√
1− αt

E[ϵx|xt,y0]

)
. (3)

To estimate E[ϵx|xt,y0], a noise prediction network condi-
tioned on y0 is adopted to minimize the regression loss

min
θ

Et,x0,y0,ϵx∥ϵx − ϵθ(xt,y0, t)∥22.

Classifier-free guidance (CFG) (Ho & Salimans, 2021) is
proposed to improve the sample quality of a conditional dif-
fusion model. Specifically, it samples by linearly combining
a conditional model and an unconditional one:

ϵ̂θ(xt,y0, t) = (1 + s)ϵθ(xt,y0, t)− sϵθ(xt, t), (4)

where s is the guidance scale. The conditional and uncondi-
tional models share parameters by introducing a null token
∅, i.e., ϵθ(xt, t) = ϵθ(xt,y0 = ∅, t).

3. Method
Section 3.1 presents UniDiffuser, a single diffusion model
to capture the marginal, conditional, and joint distributions
determined by multi-modal data simultaneously. Section 3.2
demonstrates how to perform classifier-free guidance (CFG)
for free in conditional and joint sampling of UniDiffuser.
For simplicity, we focus on two-modal data in this paper but
UniDiffuser can be easily extended to more modalities.

3.1. UniDiffuser: One Diffusion Fits All Distributions

Formally, suppose we have two modalities of data sampled
from distribution q(x0,y0). We aim to design a diffusion-
based model that is able to capture all relevant distributions
determined by q(x0,y0), i.e., the marginal distributions
q(x0) and q(y0), the conditional distributions q(x0|y0) and
q(y0|x0), and the joint distribution q(x0,y0).

We notice that learning a distribution with diffusion models
is equivalent to estimating a conditional expectation over
the noise. In particular, modeling the marginal distribution
q(x0) is equivalent to estimating the conditional expecta-
tion of the noise injected to xt, i.e., E[ϵx|xt], according
to Eq. (1). Similarly, the key quantities to be estimated
in modeling the conditional distribution q(x0|y0) and the
joint distribution q(x0,y0) are E[ϵx|xt,y0] (see Eq. (3))
and E[ϵx, ϵy|xt,yt] respectively.

A key observation is that all above conditional expectations
can be unified in the general form of E[ϵx, ϵy|xtx ,yty ],
where tx and ty are two timesteps that can be different, and
xtx and yty are the corresponding perturbed data. In particu-
lar, a maximum timestep T means marginalizing it. Namely,
by setting ty = T , we have E[ϵx|xtx ,yT ] ≈ E[ϵx|xtx ]

1,
which corresponds to the marginal distribution q(x0). Sim-
ilarly, a zero timestep means conditioning on the corre-
sponding modality and a tied timestep means sampling two
modalities jointly. Formally, E[ϵx|xtx ,y0] corresponds to
the conditional distribution q(x0|y0) by setting ty = 0
and E[ϵx, ϵy|xt,yt] corresponds to the joint distribution
q(x0,y0) by setting tx = ty = t. Moreover, we can
characterize q(x0|yty ) and q(y0|xtx) for all ty and tx and

1There is a negligible gap between yT and the standard Gaus-
sian noise ϵy for a large T (e.g., 1000 by default (Ho et al., 2020)).
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Figure 2. Comparison with bespoken diffusers. UniDiffuser fits all distributions simultaneously with a minimal modification of Ho et al.
(2020). In particular, it degenerates to bespoken diffusion models by setting the timesteps (or noise levels) properly.

generate data conditioned on noisy input, by estimating
E[ϵx, ϵy|xtx ,yty ] in general.

Inspired by the unified view, we learn E[ϵx, ϵy|xtx ,yty ]
for all 0 ≤ tx, ty ≤ T to model all relevant distributions
determined by q(x0,y0). Specifically, we employ a joint
noise prediction network2 ϵθ(xtx ,yty , t

x, ty) to predict the
noise injected to xtx and yty together by minimizing the
following regression loss similarly to Ho et al. (2020):

Ex0,y0,ϵx,ϵy,tx,ty∥ϵθ(xtx ,yty , t
x, ty)− [ϵx, ϵy]∥22, (5)

where (x0,y0) is a random data point, [, ] denotes con-
catenation, ϵx and ϵy are sampled from standard Gaussian
distributions, and tx and ty are uniformly sampled from
{1, 2, . . . , T} independently. We call our method UniDif-
fuser because it captures multiple distributions in a unified
way. We present the training algorithm in Appendix B.

The objective in Eq. (5) is as simple as the original DDPM
in Eq. (2). Besides, for a single update of parameters, UniD-
iffuser only requires a single forward-backward calculation
for multiple tasks (i.e., distributions), which is as efficient
as the original DDPM. Although the gradient estimate of
UniDiffuser has a slightly higher variance than the original
DDPM due to two independent timesteps, we do not observe
that UniDiffuser suffers from slower convergence.

UniDiffuser attempts to fit all distributions by one joint
noise prediction network, requiring that the backbone can
handle the mutual interaction between modalities and is
scalable for large-scale data and multiple tasks. Inspired by
the excellent performance of transformers on multi-modal
representation learning at scale (Kim et al., 2021; Wang
et al., 2022), we employ a transformer-based network in
UniDiffuser, as detailed in Section 4.2.

2UniDiffuser can be easily reparameterized to data prediction
or velocity prediction (Salimans & Ho, 2022) as well.

Given a single joint noise prediction network, UniDiffuser
can perform unconditional, conditional, and joint sampling
according to a certain sampler (see Appendix B for the
sampling algorithm). Notably, by setting the timesteps prop-
erly, the inference procedure of UniDiffuser is the same
as the bespoken models. In comparison, learning a single
joint distribution (Srivastava & Salakhutdinov, 2012; Hu
et al., 2022) over multi-modal data requires additional proce-
dures (e.g., Markov Chain Monte Carlo) to sample from the
marginal or conditional distributions, which is unaffordable
on large-scale multi-modal data (Schuhmann et al., 2022).

3.2. Classifier-Free Guidance for Free

Classifier-free guidance (CFG) (Ho & Salimans, 2021) com-
bines a conditional and an unconditional model linearly
during sampling (see Eq. (4)). It is simple yet effective to
improve the sample quality and image-text alignment in
diffusion models. Notably, CFG is directly applicable to
the conditional and joint sampling of UniDiffuser without
modifying the training process (see Figure 3 for results).

Formally, we denote the output of ϵθ as the concatenation
of ϵxθ and ϵyθ , i.e. ϵθ = [ϵxθ, ϵ

y
θ], where we omit the input for

simplicity. UniDiffuser can perform CFG for free in con-
ditional sampling because it captures both the conditional
and unconditional models. For example, we can generate
x0 conditioned on y0 similarly to Eq. (4) as follows:

ϵ̂xθ(xt,y0, t) = (1 + s)ϵxθ(xt,y0, t, 0)− sϵxθ(xt, ϵ
y, t, T ),

where ϵxθ(xt,y0, t, 0) and ϵxθ(xt, ϵ
y, t, T ) represent the con-

ditional and unconditional models respectively, and s is the
guidance scale. In contrast to the original CFG, UniDiffuser
does not need to specify a null token for parameter sharing.

CFG is also applicable to joint sampling. By setting tx =
ty = t, note that the joint score model can be equivalently
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Figure 3. Effects of CFG. UniDiffuser employs CFG for free in
joint and conditional sampling, improving the sample quality and
image-text alignment with a large scale of around 6.

expressed in the form of conditional models as follows:

ϵθ(xt,yt, t, t)≈−
√
βt[∇xt log q(xt,yt),∇yt log q(xt,yt)]

=−
√
βt[∇xt

log q(xt|yt),∇yt
log q(yt|xt)],

where q(xt,yt) is the joint distribution of perturbed data at
the same noisy level t. Inspired by the above relationship
between score functions, ϵθ(xt,yt, t, t) can be viewed as
approximating a pair conditional scores ∇xt

log q(xt|yt)
and ∇yt log q(yt|xt). In the same spirit of CFG, we can re-
place each conditional score by interpolating the joint model
with the corresponding unconditional model as follows:

ϵ̂θ(xt,yt, t)

=(1+s)ϵθ(xt,yt, t, t)−s[ϵxθ(xt, ϵ
y, t, T ),ϵyθ(ϵ

x,yt, T, t)]

≈−
√

βt[(1 + s)∇xt log q(xt|yt)− s∇xt log q(xt),

(1 + s)∇yt
log q(yt|xt)− s∇yt

log q(yt)],

where ϵxθ(xt, ϵ
y, t, T ) and ϵyθ(ϵ

x,yt, T, t) represent uncon-
ditional models. We summarize the formulation of CFG in
UniDiffuser for all tasks in Appendix C.

4. UniDiffuser on Images and Texts
Images and texts are two of the most common modalities in
daily life. Thus, it is representative to validate the effective-
ness of UniDiffuser on the two modalities.

Our implementation is two-staged following (Rombach
et al., 2022) (see Figure 4). First, we convert images and
texts to continuous latent embeddings x0 and y0 via image
and text encoders and introduce two decoders for recon-
struction, as presented in Section 4.1. Second, we train
UniDiffuser parameterized by a transformer on the latent
embeddings x0 and y0, as presented in Section 4.2.

4.1. Encoding Images and Texts into Latent Space

The image and text encoder-decoders are illustrated in Fig-
ure 4 (a). Below we provide their details.

Image encoder-decoder. The image encoder consists of
two parts. The first part is the image autoencoder employed
in Stable Diffusion (Rombach et al., 2022). We use its
encoder EAE to obtain an embedding for image reconstruc-
tion xAE

0 . The second part is the image CLIP (Radford
et al., 2021) (ViT-B/32). It extracts a semantic embedding
xCLIP
0 of dimension 512. The final latent embedding for

images is the concatenation of the outputs from two parts,
i.e., x0 = [xAE

0 ,xCLIP
0 ]. Empirically, we found that xAE

0

is sufficient for image reconstruction via the image decoder
DAE from Stable diffusion and the additional xCLIP

0 helps
understand the semantics of images in image-to-text gen-
eration. We hypothesize that the different roles of the two
embeddings are inherently caused by the original objectives,
i.e. reconstruction versus semantics alignment with text.

Text encoder-decoder. As for the text encoder, we employ
the same text CLIP as Stable Diffusion (Rombach et al.,
2022). The text CLIP outputs 77 vectors and each is 768-
dimensional. To facilitate training, we add an extra linear
layer, which reduces the dimension of each vector to 64 to
obtain the final text embedding y0. We construct the text de-
coder Dtext based on GPT-2 (Radford et al., 2019). Specifi-
cally, GPT-2 takes y0 as a prefix embedding (Mokady et al.,
2021) and reconstructs the text autoregressively. Freezing
the parameters in CLIP, we train the linear layer and fine-
tune GPT-2 to reconstruct the input texts, which performs
well on reconstruction. We present more training details and
the reconstruction results in Appendix E.

Remark. We observe that the latent embeddings of both im-
age and text already have similar and reasonable numerical
ranges. Specifically, they are concentrated within the range
of [−2, 2] and exhibit approximately normal distributions
with comparable mean and variance values (image modality:
mean = 0.0269, standard deviation = 0.7919; text modality:
mean = 0.0127, standard deviation = 0.5957). As a result,
we did not apply additional normalization to them. For more
modalities, we can similarly convert them to continuous la-
tent features through encoders that have regularization on
the latent space. This makes it easy for all modalities to
have similar ranges after normalization. Besides, obtaining
high-quality encoders and decoders is relatively straightfor-
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Figure 4. Implementation of UniDiffuser on image-text data. (a) First, we encode images and texts into latent space. (b) Second, we
train UniDiffuser parameterized by a transformer (Bao et al., 2023a) in the way illustrated in Figure 2 on the latent embeddings.

ward and can be achieved with a smaller amount of data. For
example, the dataset size of the image encoder and decoder
is less than 1% of UniDiffuser’s. Therefore, in practice, we
can efficiently train high-quality encoders and decoders for
each modality at a modest cost if needed.

4.2. Transformer as Joint Noise Prediction Network

We train a joint noise prediction network on the embeddings
obtained in Section 4.1 according to Eq. (5). It is natural
to employ a transformer-based backbone in UniDiffuser
to handle inputs from different modalities. In particular,
we adopt U-ViT (Bao et al., 2023a), a recently proposed
transformer for conditional diffusion models. The original
U-ViT is characterized by treating all inputs including the
data, the condition, and the timestep as tokens, and employ-
ing long skip connections between shallow and deep layers.
In UniDiffuser, we slightly modify U-ViT by treating the
two modalities of data and their corresponding timesteps as
tokens. Besides, we empirically find that the pre-layer nor-
malization (Xiong et al., 2020) in the original U-ViT causes
overflow easily when trained with mixed precision. A sim-
ple solution is to use the post-layer normalization (Vaswani
et al., 2017) and add a layer normalization after concatenat-
ing a long skip connection, which stabilizes the training of
UniDiffuser. We illustrate the backbone in Figure 4 (b) and
present more details in Appendix D.

5. Related Work
Multi-modal generative modeling. Many prior work on
multi-modal generative modeling can be formalized as learn-
ing a conditional distribution. Representative applications
include text-to-image generation (Ramesh et al., 2021; Ding
et al., 2021; Ramesh et al., 2022; Nichol et al., 2022; Sa-
haria et al., 2022; Yu et al., 2022; Gu et al., 2022; Xu et al.,
2018; Rombach et al., 2022), text-to-video generation (Ho
et al., 2022a), text-to-speech generation (Chen et al., 2021;
Popov et al., 2021) and image captioning (i.e., image-to-text
generation) (Mokady et al., 2021; Chen et al., 2022). Such
models are specially designed for a single task. In addition
to learning a conditional distribution, Hu et al. (2022) aims
to learn the joint distribution of image and text data via a
discrete diffusion model (Gu et al., 2022). However, its
scalability is unexplored.

The most related prior work is Versatile Diffusion (VD) (Xu
et al., 2022), which employs a multi-flow architecture and is
trained for multiple generation tasks in the traditional multi-
task framework, which requires multiple feed-forward to
compute losses for all tasks and carefully tuned gradient
multipliers for different layers during training. In contrast,
UniDiffuser provides an elegant solution based on the in-
sightful unified view of training diffusion models. As a
result, UniDiffuser is simpler (with a single training loss),
more efficient to train (with a single forward-backward per
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update), and can handle more tasks (able to perform joint
sampling) without the need for complex tricks. Besides,
UniDiffuser outperforms VD in both image-to-text and text-
to-image generation tasks in terms of the FID and CLIP
scores in our experiments (see Section 6), suggesting that
the time-condition strategy in UniDiffuser is statistically
more efficient than the multi-task one in VD.

Multi-modal representation learning aims to learn fea-
tures for different modalities that can be transferred to down-
stream tasks. Vision-and-language pretraining (VLP) is at
the front. VLP can employ different strategies, such as
contrastive learning (Radford et al., 2021), masked data
modeling (Wang et al., 2022), and a combination of mul-
tiple losses (Kim et al., 2021; Li et al., 2022; Bao et al.,
2022c). A transformer is often employed to fuse the two
modalities. This work implies that a transformer is also
effective for multi-modal generative modeling.

Diffusion models are initially proposed by Sohl-Dickstein
et al. (2015). Recently, Ho et al. (2020) introduce a noise
prediction formulation, and Song et al. (2021c) introduce a
stochastic differential equation formulation for learning dif-
fusion models. Diffusion models are able to generate high-
quality images (Dhariwal & Nichol, 2021),audios (Chen
et al., 2021; Kong et al., 2021), videos (Ho et al., 2022b),
point clouds (Luo & Hu, 2021) and molecular conforma-
tions (Hoogeboom et al., 2022; Bao et al., 2023b). Other im-
provements in diffusion models include fast sampling (Song
et al., 2021a; Bao et al., 2022b; Salimans & Ho, 2022;
Lu et al., 2022b;c) and improved training and sampling
techniques (Nichol & Dhariwal, 2021; Song et al., 2021b;
Kingma et al., 2021; Vahdat et al., 2021; Zhao et al., 2022;
Bao et al., 2022a; Lu et al., 2022a; Karras et al., 2022).

6. Experiments
We present the experimental setup in Section 6.1. We show
the ability of UniDiffuser to perform multiple generation
tasks and directly compare it with existing large models
in Section 6.2. We further demonstrate that UniDiffuser
naturally supports applications like data variation, blocked
Gibbs sampling between modalities (see Section 6.3), and
interpolation between images in the wild (see Section 6.4).

6.1. Setup

Dataset. We use three subsets of LAION-5B (Schuhmann
et al., 2022) following Stable Diffusion (Rombach et al.,
2022). The first one is laion2B-en, which contains around
2B image-text pairs with English captions. The second
one is laion-high-resolution, which contains around 170M
image-text pairs with image resolution ≥1024 and multi-
lingual captions. The third one is laion-aesthetics v2 5+,
which is a subset of laion2b-en containing around 600M
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Figure 5. Comparing UniDiffuser and VD in text-to-image gen-
eration. We connect the results with the same scale in CFG.
UniDiffuser consistently outperforms VD in all settings w.r.t. both
the CLIP score ↑ (horizontal axis) and FID ↓ (vertical axis).

image-text pairs with high visual quality. Following Stable
Diffusion, we additionally filter laion-aesthetics v2 5+ to
images with resolution ≥512 and an estimated watermark
probability <0.5, leading to around 193M preserved pairs.
For image normalization, we follow the standard practice in
diffusion models by normalizing the image values from the
range of [0, 255] to [−1, 1]. Since the texts in LAION-5B
are quite noisy, we further clean texts in the laion-aesthetics
v2 5+ subset by removing URLs, HTML tags, emails, con-
tents in brackets, quotes except ’s, and symbols except ,
. ? !. Before inputting the text into CLIP, we tokenize
the preprocessed text using CLIP’s built-in tokenizer, which
is based on byte-level Byte-Pair-Encoding (Radford et al.,
2021).

Training and Sampling. The training is multiple-staged
following Stable Diffusion (Rombach et al., 2022). In the
first stage, we train 250K steps at 256×256 resolution on
laion2B-en with a batch size of 11264 and 5K warm-up
steps. In the second stage, we fine-tune the model with 200K
steps at 512×512 resolution on laion-high-resolution with a
batch size of 2112 and 5K warm-up steps. In the last stage,
we resume from the last checkpoint of the second stage
(including both weights of the model and states of the opti-
mizer), and train 220K steps at 512×512 resolution on laion-
aesthetics v2 5+ with a batch size of 2112. Following Bao
et al. (2023a), we use the AdamW optimizer (Loshchilov &
Hutter, 2019) with a learning rate of 2e-4, a weight decay
of 0.03 and running coefficients of (β1, β2) = (0.9, 0.9) in
all stages. We reduce the learning rate by a factor of 10 and
continue training whenever the validation loss does not de-
crease. We train with mixed precision for efficiency. When
U-ViT is trained at 256×256 resolution, we interpolate the
positional embeddings related to images via bilinear inter-
polation. The training takes around 28 days on 88 A100
(80GB) GPUs. We use DPM-Solver (Lu et al., 2022b;c)
with 50 steps in all experiments.
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Figure 6. Comparing UniDiffuser and VD in image-to-text gen-
eration. UniDiffuser consistently outperforms VD with the same
CFG scale (horizontal axis) w.r.t. the CLIP score ↑ (vertical axis).

Table 1. Zero-shot FID ↓ on the MS-COCO validation set. †

marks results produced by us upon official implementation and
other results are taken from the corresponding references. We
report the results of UniDiffuser and VD with a scale of 3 in CFG,
which is the best choice for both models according to Figure 5.

Model FID ↓
Bespoken models

GLIDE (Nichol et al., 2022) 12.24
Make-A-Scene (Gafni et al., 2022) 11.84
DALL·E 2 (Ramesh et al., 2022) 10.39
Stable Diffusion† (Rombach et al., 2022) 8.59
Imagen (Saharia et al., 2022) 7.27
Parti (Yu et al., 2022) 7.23

General-purpose models
Versatile Diffusion† (Xu et al., 2022) 10.09
UniDiffuser (ours) 9.71

Baseline. To our knowledge, Versatile Diffusion (VD) (Xu
et al., 2022) is the most direct competitor for general-
purpose multi-modal generation (see details in Section 5).
We directly compare to VD in all experiments if possible.
The results of VD are reproduced by us upon official code
because there is no quantitative result in the original paper.

Evaluation. For text-to-image generation, we report the
FID (Heusel et al., 2017) and CLIP score (Radford et al.,
2021) on the MS-COCO validation set (Lin et al., 2014) to
measure the image fidelity and image-text alignment respec-
tively. Following the literature, we randomly draw 10K and
30K prompts from the MS-COCO validation set to calculate
FID and the CLIP score on generated images. For image-
to-text generation, we report the CLIP score to measure the
image-text alignment. Specifically, we randomly draw 10K
images to calculate the score on generated texts.

UniDiffuser (ours)Versatile Diffusion (VD)

A dog wearing a beret. 

A rabbit in a space suit.

Figure 7. Random samples of UniDiffuser and VD on text-to-
image generation. UniDiffuser produces semantically correct
images given representative prompts while VD does not.

6.2. Main Results

We first systematically compare with the most direct base-
line Versatile Diffusion (VD), which is a general-purpose
generative model, in both text-to-image and image-to-text
generation. Quantitatively, UniDiffuser outperforms VD
consistently in both tasks under all metrics and guidance
CFG scales, as presented in Figure 5 and Figure 6. The
empirical results demonstrate the effectiveness (in addition
to the simplicity, efficiency, and generality) of UniDiffuser
compared to VD (see details in Section 5). Qualitatively,
Figure 7 presents samples in text-to-image generation, and
UniDiffuser aligns image and text better than VD. See more
results including image-to-text generation in Appendix G.

We also compare with bespoken systems designed for text-
to-image generation w.r.t. zero-shot FID on MS-COCO
in Table 1. Although UniDiffuser is designed to handle
multiple generation tasks, its performance on the single
text-to-image generation task is comparable to bespoken
diffusion models such as Stable Diffusion and outperforms
famous diffusion models like DALL·E 2.

Finally, we present examples of joint, conditional, and un-
conditional generation in Figure 1 (a-e) to show the general-
ity of UniDiffuser. See more examples in Appendix A.
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6.3. Data Variation and Gibbs Sampling

UniDiffuser naturally supports applications such as image
variation and text variation. For example, given a source
image, we can firstly perform image-to-text generation to
obtain a description of the image, and then perform text-to-
image generation with this description as input to obtain a
new image with similar semantics but different contents. In
Figure 1 (f-g), we present examples on image and text varia-
tion. Furthermore, we can perform blocked Gibbs sampling
to see how images and texts are translated to each other by
chaining conditional distributions modeled by UniDiffuser.
We present examples in Figure 1 (h). More samples on data
variation and blocked Gibbs can be found in Appendix A.

6.4. Interpolation between Two Images in the Wild

UniDiffuser can also perform interpolation between two
images in the wild. Specifically, we firstly perform image-
to-text generation to obtain the latent text embeddings of the
two images via the deterministic DPM-Solver with the same
Gaussian noise as the initial state for both images. Then we
perform a noise injection process via DPM-Solver to get
a noisy version of the latent image embeddings given the
two latent text embeddings. We perform spherical linear
interpolation between the latent text embeddings and the
noisy version of the latent image embeddings to obtain inter-
mediate states. Finally, with the text intermediate states as
the condition and the image intermediate states as the initial
state, we generate the final images by DPM-solver. See
Appendix F for a formalized algorithm of the interpolation
procedure. We present examples in Figure 1 (i) and more
examples can be found in Appendix A.

7. Conclusion
We propose UniDiffuser, a general-purpose multi-modal
probabilistic framework based on insights of unifying train-
ing of diffusion models for different distributions. UniD-
iffuser is able to perform various generation tasks via one
model with minimal modification of the original diffusion
models. Empirical results on image-text data show the ef-
fectiveness of UniDiffuser compared to large existing mod-
els. UniDiffuser also enables semi-supervised learning and
learning on more modalities, which are left as future work.
Currently, the text generated by our implementation is not
that smooth, mainly because the text data is noisy.

UniDiffuser has high potential to improve multiple tasks: by
fitting multiple tasks with one single transformer network,
UniDiffuser can be much easier to further improve all tasks
simultaneously (e.g., by increasing parameter scale and
data scale) and maintain under the large-scale pre-training
regime. Any further improvement/optimization of the un-
derlying single network can seamlessly benefit all tasks.

Social Impact: We believe UniDiffuser can advance real-
world applications with generated content due to its gen-
erality. However, it is worth noting that large-scale multi-
modal generative models may have consequences like “deep-
fakes”. We watermark all images sampled from the model
and will provide a systematical protocol to relieve the prob-
lem before releasing the code and model.
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A. More Examples
Below we present more samples of UniDiffuser on joint generation (Figure 8), text-to-image generation (Figure 9), image-
to-text generation (Figure 10), unconditional image generation (Figure 11), unconditional text generation (Figure 13), image
variation (Figure 12), text variation (Figure 14), blocked Gibbs sampling (Figure 15) and interpolation (Figure 16).

A dramatic sunset over rural fields
with Icelandic hills Iceland

An old red electric rail train
in Durango, Colorado Colourful Rainbow Triangle Shoes

Elephant Tapestry English Country Garden Design
black and white photography

of big tree

Turquoise Vintage Style
Handmade Statement Ring new balance 997 sneakers Teal Chenille Bedspread Sets

Figure 8. Selected samples of UniDiffuser on joint generation of image and text.
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A painting of a squirrel
eating a burger A cute cat made of sugar

A sailboat is sailing
the Atlantic Ocean

Beautiful view of the Himalayas
A colorful train

passes through the flowers A boy is looking at the Milky Way

A couple of glasses
are sitting on a table A fire-breathing monster

The beautiful scenery of
the Eiffel Tower in Paris

Figure 9. Selected samples of UniDiffuser on text-to-image generation.
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A herd of cows standing
inside a shed

A woman sits on a kayak of
Patagonia Argentina sea

with a sunset clouds
in the air after the rain.

Blue and orange boat
at the port, Swansea.

Blue and yellow macaws sitting
in a tree precariously Cat resting on the rug

Man sleeping on bed
with his laptop

Red London Bus Two Grizzly
Train tracks with

palm trees at night

Figure 10. Selected samples of UniDiffuser on image-to-text generation.

14



One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale

Figure 11. Selected samples of UniDiffuser on unconditional image generation.
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Input Output Input Output

Figure 12. Selected samples of UniDiffuser on image variation.
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• Shoppers Crossing Bison Street

• Bend Butte Festival

• crapped slices on a bookshelf

• Waterfall over Montrose, Alabama Carnegie 

Trail, Adirondacks

• Espacefoil Water Mill for Commercial

• Liquid Watercolour

• Pizza Republic's Earth Day event

• Upgrade Vintage Office Décor

• Fire On The Coast Original Fine Art by Jenny 

Clinn

• French coast aerial view taken from Palermo

• brown farmhouse table

• What Color Is That Tree

• soldiers sits on tree after a breakfast break

• 3 bedroom Condo for sale at 289 Cajundale Dr Lake 

Solitude Cay, FL, 346015

• women riding horses

• Kevin Durant Asks More Summer Terms With Xfinity

• Bicycle on the Wood Fence

• Rose Etched Blooms Petticoat

• Fishing Boats in Paintings

Figure 13. Selected samples of UniDiffuser on unconditional text generation.

• A woman walking while holding up a red umbrella

• woman in red outfit holding umbrella walking on road

• A man with a colored umbrella sits on a monument.

• Man with an umbrella on the steps in the rain 

• A young child stands in the kitchen with an adult.

• Mother and daughter cooking together in kitchen

• A woman kisses a man as they sit on a motorcycle.

• couple kissing on motorcycle

• Children's toy animals are strewn across a floor.

• Collection of children's toys

• A woman is walking a dog in the city.

• Woman with dog walking on city street

• A cat at attention between two parked cars.

• Cat sitting on pavement between car

• A man is sitting on a bench next to a bicycle.

• handsome hipster guy on a city bench riding a bike

• Three road signs posted in a parking garage.

• red signs showing warning and road safety signs

• A couple of birds fly through a blue cloudy sky.

• Flock of pigeons over a blue sky

• A group of men standing in front of a bar having a 

conversation.

• A group of happy business people sitting at a table looking on, 

and having a drink in a bar.

• A small wooden table covered with delicious vegetables.

• Fresh vegetables with tomatoes, parsley and cilantro on 

wooden board

• A woman in a yellow bathroom is holding a camera.

• Woman in yellow dress holding a camera in her bathroom

Figure 14. Selected samples of UniDiffuser on text variation.
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A painting 

of summer 

dream.

Pruning Flower 

Painting A 

Original 

Sunflower by 

Pam Hall.

Sunflowers 

with birds 

painting.

Birds and 

Sunflowers 

by Kathy 

Riche

Painting 

Hummingbird 

Flight Sunflowers 

by Susanne 

Dreeschler.

Sunflowers Poster 

featuring the painting 

Sunflowers In 

Summer by Sandy 

Brodie.

A colorful 

cloud floats 

in the sky.

Pink Heart 

Clouds 

Wallpaper

Pink Heart 

Cloud 

Wallpaper

Pink cloud 

symbol coming 

through the 

heart

Pink Plastic 

Heart Shaped 

Art Cloud

Pink Resin 

Heart Shape

Figure 15. Selected samples of UniDiffuser on Blocked Gibbs sampling.
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Figure 16. Selected samples of UniDiffuser on interpolation of two images in the wild.

B. The Training and Sampling Algorithms
In Algorithm 1, we present the training algorithm of UniDiffuser. In Algorithm 2,3,4, we present all sampling procedure
of UniDiffuser by taking the DDPM sampler (Ho et al., 2020) as an example. Note that any other learning-free efficient
sampler, such as DDIM (Song et al., 2021a), Analytic-DPM (Bao et al., 2022b) and DPM-Solver (Lu et al., 2022b;c), is
directly applicable.
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Algorithm 1 Training
1: repeat
2: x0,y0 ∼ q(x0,y0)
3: tx, ty ∼ Uniform({1, 2, . . . , T})
4: ϵx, ϵy ∼ N (0, I)
5: Let xtx =

√
αtxx0 +

√
1− αtxϵ

x

6: Let yty =
√
αtyy0 +

√
1− αtyϵ

y

7: Take gradient step on
∇θ∥ϵθ(xtx ,yty , t

x, ty)− [ϵx, ϵy]∥22
8: until converged

Algorithm 2 Unconditional sampling of x0

(similar for unconditional sampling of y0)
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: zx ∼ N (0, I) if t > 1, else zx = 0
4: ϵ ∼ N (0, I)

5: xt−1 = 1√
αt

(
xt − βt√

1−αt
ϵxθ(xt, ϵ, t, T )

)
+ σtz

x

6: end for
7: return x0

Algorithm 3 Sampling of x0 conditioned on y0

(similar for sampling of y0 conditioned on x0)
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: zx ∼ N (0, I) if t > 1, else zx = 0

4: xt−1 = 1√
αt

(
xt − βt√

1−αt
ϵxθ(xt,y0, t, 0)

)
+ σtz

x

5: end for
6: return x0

Algorithm 4 Joint sampling of x0,y0

1: xT ,yT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: zx, zy ∼ N (0, I) if t > 1, else zx, zy = 0

4: xt−1 = 1√
αt

(
xt − βt√

1−αt
ϵxθ(xt,yt, t, t)

)
+ σtz

x

5: yt−1 = 1√
αt

(
yt − βt√

1−αt
ϵyθ(xt,yt, t, t)

)
+ σtz

y

6: end for
7: return x0,y0

C. Summary of Classifier-Free Guidance Models
As mentioned in Section 3.2, UniDiffuser can perform classifier-free guidance for free for conditional and joint generation.
We summarize models for classifier-free guidance in Table 2. We also include the models for unconditional sampling.

Table 2. Models for different sampling tasks. ϵx and ϵy are sampled from the standard Gaussian noise. s is the classifier-free guidance
scale.

Task Model

Joint sampling ϵ̂θ(xt,yt, t) = (1 + s)ϵθ(xt,yt, t, t)− s[ϵxθ(xt, ϵ
y, t, T ), ϵyθ(ϵ

x,yt, T, t)]

Sample x0 conditioned on y0 ϵ̂xθ(xt,y0, t) = (1 + s)ϵxθ(xt,y0, t, 0)− sϵxθ(xt, ϵ
y, t, T )

Sample y0 conditioned on x0 ϵ̂yθ(yt,x0, t) = (1 + s)ϵyθ(x0,yt, 0, t)− sϵyθ(ϵ
x,yt, T, t)

Unconditional sampling of x0 ϵ̂xθ(xt, t) = ϵxθ(xt, ϵ
y, t, T )

Unconditional sampling of y ϵ̂yθ(yt, t) = ϵyθ(ϵ
x,yt, T, t)

D. Details of the U-ViT
We train a U-ViT for the joint noise prediction network, whose detailed configuration is presented in Table 3.

Table 3. The configuration of U-ViT.

Patch size #Layers Hidden size MLP size #Heads #Params

2 31 1536 6144 24 952M
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E. Details of the GPT-2 Text Decoders

GPT-2

0y0y

......

......

An astronaut riding a horse.An astronaut riding a horse.An astronaut riding a horse.

Prefix embedding

Caption tokens

( )Linear 64 768→( )Linear 64 768→

Figure 17. GPT-2 Text Decoder. y0 is fed into GPT-2 as a prefix embedding (Mokady et al., 2021), and reconstructs the text autoregres-
sively based on the information of y0

As mentioned in Section 4.1, we firstly encode the text T into a low-dimensional embedding y0 through a CLIP and a
linear layer, i.e., y0 = Linear(CLIP(T)), and then reconstruct the original text using the GPT-2 by feeding y0 as a prefix
embedding. The reconstruction pipeline of the GPT-2 decoder is illustrated in Figure 17. We finetune the GPT-2 and the
linear layer with the following autoregressive loss:

min
ϕ

ET[log p(T|y0)] = ET[

N∑
i=1

log p(Ti|T1:i−1,y0)],

where ϕ denotes the parameters of the linear layer and the GPT-2.

We finetune the 124M parameter GPT-2 text decoder on texts of LAION-2B-en dataset (Schuhmann et al., 2022), which
contains 2.3B image-text pairs. Following ClipCap (Mokady et al., 2021), we use the AdamW optimizer (Loshchilov &
Hutter, 2019) with a learning rate of 2e-5 and 5K warm-up steps. We train the decoder with 235K steps using a batch size of
768. When generating texts, we use the beam search strategy with a beam size of 5 and a maximum length of 67.

In our experiments, the embedding dimension of y0 is set to 64, and it still reconstructs the text well. Indeed, we get a
BLEU-1 (Papineni et al., 2002) score of 0.969 and a BLEU-4 score of 0.894 between reference texts and reconstructed texts
on MS-COCO test set (Karpathy split (Karpathy & Fei-Fei, 2015)). We present some examples in Figure 18, where the
input texts are reconstructed very well.

Caption ID Text Reconstruction

71764 A bathroom has swinging saloon style stall doors A Bathroom Is Swing Springs Style Stall Doors

640876 A picture of a street sign with various posts on it. A picture of a street sign with various posts on it.

542566 Two microwaves and a very old fashioned printer Two microwaves and a very old fashioned printer

35539 A large truck parked across the street from another truck. A large truck parked across the street from another trunk.

802267 A large group photo taken at a wedding. A large group photo taken at a wedding.

184192 The street sign shows the names of two intersecting roads. The street sign shows the names of two intersecting roads.

341901 A salad in a plastic bowl sitting on a table next to an apple. A salad in a plastic bowl sitting on a table next to an apple.

680092 a couple of people are rowing in a boat A couple of people are rowing in a boat

395089 a vase on a table with flowers inside a vase on a table with flowers inside

202966 A Red Sox player preparing to throw a baseball. A red Sox player preparing to throw a baseball.

Figure 18. Text reconstruction examples. The GPT-2 text decoder reconstructs the text well.

F. The Interpolation Algorithm
We present the formalized procedure of interpolating two images using UniDiffuser in Algorithm 5.
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Algorithm 5 Interpolate two images Ia and Ib

1: Input: the spherical interpolation parameter θ ∈ [0, 1] (θ = 0 leads to Ia and θ = 1 leads to Ib)
2: Let ϵ̂yθ(yt,x0, t) = (1 + s)ϵyθ(x0,yt, 0, t)− sϵyθ(ϵ

x,yt, T, t) be the image-to-text model
3: Let ϵ̂xθ(xt,y0, t) = (1 + s)ϵxθ(xt,y0, t, 0)− sϵxθ(xt, ϵ

y, t, T ) be the text-to-image model
4: Encode Ia and Ib to get their latent embeddings xa

0 and xb
0

5: yT ∼ N (0, I)
6: ya

0 = DPM-Solver(initial state = yT , start time = T, end time = 0,model = ϵ̂yθ(yt,x
a
0 , t))

7: yb
0 = DPM-Solver(initial state = yT , start time = T, end time = 0,model = ϵ̂yθ(yt,x

b
0, t))

8: xa
T = DPM-Solver(initial state = xa

0 , start time = 0, end time = T,model = ϵ̂xθ(xt,y
a
0 , t))

9: xb
T = DPM-Solver(initial state = xb

0, start time = 0, end time = T,model = ϵ̂xθ(xt,y
b
0, t))

10: yθ
0 = slerp(ya

0 ,y
b
0, θ)

11: xθ
T = slerp(xa

T ,x
b
T , θ)

12: xθ
0 = DPM-Solver(initial state = xθ

T , start time = T, end time = 0,model = ϵ̂xθ(xt,y
θ
0 , t))

13: Decode xθ
0 to get the image Iθ

14: Return Iθ
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G. Comparison of Examples
In Figure 19 and Figure 20, we present more examples on text-to-image generation of UniDiffuser and Versatile Diffusion.
Samples generated by UniDiffuser align better with the texts than VD. In Figure 21, we present examples on image-to-text
generation of UniDiffuser and Versatile Diffusion. Samples generated by UniDiffuser align better with the images than VD.

UniDiffuser (ours)Versatile Diffusion (VD)

An astronaut holds a bouquet of roses.

A penguin is standing on the grass.

Figure 19. Comparison of examples between UniDiffuser and VD on text-to-image generation. Samples generated by UniDiffuser align
the texts better than VD.
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UniDiffuser (ours)Versatile Diffusion (VD)

An elephant under the sea.

A rabbit floating in the galaxy

Figure 20. Comparison of examples between UniDiffuser and VD on text-to-image generation. Samples generated by UniDiffuser align
the texts better than VD.
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• person looking at white light with 

stars and the trees in the sky

• man standing by a lighted high 

trees in front of night sky

UniDiffuser

(ours)

Versatile 

Diffusion 

• The night sky, with some milkys.

• A person walking across a 

wooden bridge at night

• Traffic signs stop

• Traffic stop warning signs

• signs standing signs in a street

• signs, stop signs on 

construction ground, at work.

• Astronaut diving in space.

• Earth in space

• astronaut has space on earth 

in order to travel

• a man soldier flying inside 

space

UniDiffuser

(ours)

Versatile 

Diffusion 

• Girl with the Pearl Earring

• Lady in Blue, by Johannes 

Vermeer, Prestigious Studio.

• young woman with a young 

girl wearing a hat, in a old 

library window

• woman with a hat with cradle

• King Penguin in Long Island, 

Antarctica

• King Penguin, New Zealand

• a penguaur is standing on a 

board on the ocean.

• penguin on pengu island, king 

on board, boat on lake island 

mountain

• Bengal Tiger

• Big Bengal Tiger

• Tiger

• tiger at circus

Figure 21. Comparison of examples between UniDiffuser and VD on image-to-text generation. Samples generated by UniDiffuser align
the images better than VD.

H. Efficiency Comparison
In Table 4, we compare the model size, inference time and memory (for generating 10 samples with 25 denoising steps on
one A100 80GB GPU), and the training cost of UniDiffuser with other bespoke and general-purpose models. Results of
other methods are obtained according to the official code or paper when they are available.

UniDiffuser is more efficient than both Stable Diffusion and Versatile Diffusion in terms of inference time and memory.
Besides, compared to Stable Diffusion, UniDiffuser introduces only 10% extra parameters to support five tasks (i.e.,
image, text, text-to-image, image-to-text, and image-text pair generation) with comparable training cost. Compared to the
general-purpose model Versatile Diffusion, UniDiffuser has fewer parameters, while achieving superior results (as presented
in the main paper).
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Table 4. Comparison of model size and computational cost.

Model size Inference time Inference memory Training cost

Bespoken models
DALL·E 2 (Ramesh et al., 2022) 4.5B – – –
Imagen (Saharia et al., 2022) 2B – – –
Parti (Yu et al., 2022) 20B – – –
Stable Diffusion† (Rombach et al., 2022) 860M 25.43s 67.83GB 150K (A100 40GB GPU hours)

General-purpose models
Versatile Diffusion† (Xu et al., 2022) 2566M 23.89s 76.53GB –
UniDiffuser (ours) 952M 19.77s 48.30GB 59K (A100 80GB GPU hours)

I. Licences
Datasets:

• LAION-5B (Schuhmann et al., 2022): Creative Common CC-BY 4.0 license

• MS-COCO (Lin et al., 2014): Creative Commons Attribution 4.0 License

Pretrained models:

• GPT-2 (Radford et al., 2019): MIT License

• CLIP (Radford et al., 2021): MIT License

• Image autoencoder from Stable Diffusion (Rombach et al., 2022): CreativeML Open RAIL-M License

26


