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Abstract
Recent advances in text-to-image generation with
diffusion models present transformative capabil-
ities in image synthesis. However, user control-
lability of the generated image, and fast adapta-
tion to new tasks still remains an open challenge,
currently mostly addressed by costly and long re-
training and fine-tuning or ad-hoc adaptations to
specific image generation tasks. In this work, we
present MultiDiffusion, a unified framework that
enables versatile and controllable image genera-
tion, using a pre-trained text-to-image diffusion
model, without any further training or finetuning.
At the center of our approach is a new generation
process, based on an optimization task that binds
together multiple diffusion generation processes
with a shared set of parameters or constraints. We
show that MultiDiffusion can be readily applied
to generate high quality and diverse images that
adhere to user-provided controls, such as desired
aspect ratio (e.g., panorama), and spatial guiding
signals, ranging from tight segmentation masks to
bounding boxes.

1. Introduction
Text-to-image generative models have emerged as a “disrup-
tive technology”, demonstrating unprecedented capabilities
in synthesizing high-quality and diverse images from text
prompts, where diffusion models are currently established as
state-of-the-art (Saharia et al., 2022b; Ramesh et al., 2022;
Rombach et al., 2022; Croitoru et al., 2022). While this
progress holds a great promise in changing the way we
can create digital content, deploying text-to-image models
to real-world applications remains challenging due to the
difficulty to provide users with intuitive control over the
generated content. Currently, controllability over diffusion
models is achieved in one of two ways: (i) training a model
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from scratch or finetuning a given diffusion model for the
task at hand (e.g., inpainting, layout-to-image training, etc.
(Wang et al., 2022a; Ramesh et al., 2022; Rombach et al.,
2022; Nichol et al., 2021; Avrahami et al., 2022b; Brooks
et al., 2022; Wang et al., 2022b)). With the ever-increasing
scale of models and training data, this approach often re-
quires extensive compute and long development period, even
in a finetuning setting. (ii) Reuse a pre-trained model and
add some controlled generation capability. Previously, these
methods have concentrated on specific tasks and designed a
tailored methodology (e.g., replacing objects in an image,
manipulating style, or controlling layout (Tumanyan et al.,
2022; Hertz et al., 2022; Avrahami et al., 2022a)).

The goal of this work is to design MultiDiffusion, a new
unified framework that significantly increases the flexibil-
ity in adapting a pre-trained (reference) diffusion model
to controlled image generation. The basic idea behind the
MultiDiffusion is to define a new generation process that
is composed of several reference diffusion generation pro-
cesses binded together with a set of shared parameters or
constraints. In more detail, the reference diffusion model
is applied to different regions in the generated image, pre-
dicting a denoising sampling step for each. In turn, the
MultiDiffusion takes a global denoising sampling step rec-
onciling all these different steps via least squares optimal
solution.

For example, consider the task of generating an image at ar-
bitrary aspect ratio given a reference diffusion model trained
on square images (Fig. 2). At each denoising step, the Mul-
tiDiffusion fuses the denoising directions, provided by the
reference model, from all the square crops, and strives to
follow them all as closely as possible, constrained by the
fact that nearby crops share common pixels. Intuitively,
we encourage each crop to be a real sample from the ref-
erence model. Note that while each crop might pull to a
different denoising direction, our framework yields a unified
denoising step, hence produces high-quality and seamless
images.

With MultiDiffusion, we are able to harness a reference
pre-trained text-to-image to different applications including
synthesizing images at desired resolution or aspect ratio, or

Project page is available at https://multidiffusion.
github.io.
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Figure 1. MultiDiffusion enables flexible text-to-image generation, unifying multiple controls over the generated content, including
desired aspect ratio, or simple spatial guiding signals such as rough region-based text-prompts.

synthesizing images using rough region-based text prompts,
as seen in Fig. 1. Notably, our framework allows to solve
these tasks simultaneously, using a common generation pro-
cess. Comparing to relevant baselines, we found that our
approach is able to produce state-of-the-art controlled gener-
ation quality even compared to methods that are specifically
trained for these tasks. Furthermore, our method works
efficiently, without introducing computational overhead.

2. Related Work
Diffusion Models Diffusion models (Sohl-Dickstein et al.,
2015; Croitoru et al., 2022; Dhariwal & Nichol, 2021; Ho
et al., 2020; Nichol & Dhariwal, 2021) are a class of gen-
erative probabilistic models that aim to approximate a data
distribution q, and are easy to sample from. Specifically,
these models take a Gaussian noise input IT ∼ N (0, I),
and through a series of gradual denoising steps, transform
it into a sample I0, that should be distributed according
to q. The number of denoising steps, and the parameteri-
zation of the transformation varies among different works
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020; Lu et al., 2022a;b; Liu et al., 2022). Recently, Dif-
fusion Models have emerged as state-of-the-art generators
due to their success in learning complex distributions and
generating diverse high quality samples. These models have
been successfully used in various domains, including im-
ages (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021;

Saharia et al., 2022b; Ramesh et al., 2022; Rombach et al.,
2022), video (Ho et al., 2022; Singer et al., 2022), 3D scenes
(Múller et al., 2022), and motion sequences (Yuan et al.,
2022; Tevet et al., 2022).

Controllable generation with diffusion models Diffu-
sion models can be trained with guiding input channels
(e.g., semantic layout, category label) and successfully per-
form conditional image generation (Ramesh et al., 2021;
Saharia et al., 2022c;a; Wang et al., 2022a; Preechakul et al.,
2022; Ho & Salimans, 2022). The most prominent example
of conditional diffusion models is recent text-to-image dif-
fusion models, which have demonstrated groundbreaking
synthesis capabilities (Nichol et al., 2021; Saharia et al.,
2022b; Ramesh et al., 2022; Nichol et al., 2021; Rombach
et al., 2022; Sheynin et al., 2022). However, these mod-
els provide only little control over the generated content,
which is mainly achieved through the input text. Recently,
a surge of methods have been proposed to gain wider and
better user controllability. Existing methods can be roughly
divided into two main approaches: (i) methods that incorpo-
rate explicit control by using additional guiding signals to
the model (Avrahami et al., 2022b; Rombach et al., 2022;
Brooks et al., 2022). However, these works require costly
extensive training on curated datasets. (ii) On the other side
of the spectrum, numerous methods proposed to implicitly
control the generated content by manipulating the gener-
ation process of a pre-trained model (Kwon & Ye, 2022;
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Figure 2. MultiDiffusion: a new generation process, Ψ, is defined over a pre-trained reference model Φ. Starting from a noise image
JT , at each generation step, we solve an optimization task whose objective is that each crop Fi(Jt) will follow as closely as possible its
denoised version Φ(Fi(Jt)). Note that while each denoising step Φ(Fi(Jt)) may pull to a different direction, our process fuses these
inconsistent directions into a global denoising step Φ(Jt), resulting in a high-quality seamless image.

Meng et al., 2021; Tumanyan et al., 2022; Hertz et al., 2022;
Avrahami et al., 2022c; Choi et al., 2021; Mokady et al.,
2022; Couairon et al., 2022; Kong et al., 2023; Kwon et al.,
2022) or by performing lightweight model finetuning (Ruiz
et al., 2022; Kawar et al., 2022; Kim et al., 2022; Valevski
et al., 2022). Avarahami et al. designed image inpainting
methods (Avrahami et al., 2022a;c) that do not require fine-
tuning. Recent works (Tumanyan et al., 2022; Hertz et al.,
2022) rely on architectural properties and insights about the
internal features of the pretrained model, and tailor image
editing techniques accordingly. Our work also manipulates
the generation process of a pretrained diffusion model, and
does not require any training or finetuning. However, in
contrast to existing works that target a specific application,
without a well defined objective, we propose a more general
approach that allows us to unify different user control inputs
in a more principled manner.

3. Method
We consider a pre-trained diffusion model, which serves as
a reference model:

Φ : I × Y → I

working in image space I = RH×W×C and condition space
Y , e.g., y ∈ Y is a text prompt. Initializing IT ∼ PI , where
PI represents the distribution of Gaussian i.i.d. pixel values,
and setting a condition y ∈ Y , the diffusion model builds a
sequence of images,

IT , IT−1, . . . , I0 s.t. It−1 = Φ(It|y) (1)

gradually transforming the noisy image IT into a clean
image I0.

MultiDiffusion. Our goal is to leverage Φ to generate im-
ages in a potentially different image space J = RH′×W ′×C

and condition space Z , without any training or finetuning.
To do so, we define a MultiDiffusion process, defined by a
function, called MultiDiffuser,

Ψ : J × Z → J

The MultiDiffusion, similarly to a diffusion process, starts
with some initial noisy input JT ∼ PJ , where PJ is a noise
distribution over J , and produces a series of images

JT , JT−1, . . . , J0 s.t. Jt−1 = Ψ(Jt|z) (2)

Our key idea is to define Ψ to be as-consistent-as-possible
with Φ. More specifically, we define a set of mappings
between the target and reference image spaces Fi : J → I ,
and a corresponding set of mappings between the condition
spaces: λi : Z → Y where i ∈ [n] = {1, . . . , n}. These
mappings are application depended, as will be described
later in Sec. 4. Our goal is to make every MultiDiffuser
step Jt−1 = Ψ(Jt|z) follow as closely as possible Φ(Iit |yi),
i ∈ [n], i.e., the denoising steps of Φ when applied to the
images and conditions:

Iit = Fi(Jt), yi = λi(z)

Formally, our new process is given by solving the following
optimization problem:
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Ψ(Jt|z) = argmin
J∈J

LFTD(J |Jt, z) (3)

LFTD(J |Jt, z) =
n∑

i=1

∥∥∥Wi ⊗
[
Fi(J)− Φ(Iit |yi)

]∥∥∥2 (4)

where Wi ∈ RH×W
≥0 are per pixel weights and ⊗ is the

Hadamard product. Intuitively, the FTD loss reconciles, in
the least-squares sense, the different denoising sampling
steps, Φ(Iit |yi), suggested on different regions, Fi(Jt), of
the generated image Jt. Fig. 2 illustrates one step of the
MultiDiffuser; Algorithm 2 recaps the MultiDiffusion sam-
pling process.

Closed-form formula. In the applications demonstrated
in this paper Fi consist of direct pixel samples (e.g., taking
a crop out of image Jt). In this case, Eq. 4 is a quadratic
Least-Squares (LS) where each pixel of the minimizer J is
a weighted average of all its diffusion sample updates, i.e.,

Ψ(Jt|z) =
n∑

i=1

F−1
i (Wi)∑n

j=1 F
−1
j (Wj)

⊗ F−1
i (Φ(Iit |yi)) (5)

Properties of MultiDiffusion. The main motivation for
the definition of Ψ in Eq. 3 comes from the following ob-
servation: If we choose a probability distribution PJ such
that

Fi(JT ) ∼ PI , ∀i ∈ [n] (6)

and compute Jt−1 = Ψ(Jt|z), as defined in Eq. 3, where
we reach a zero FTD loss, LFTD(Jt−1|Jt, z) = 0, then:

Iit−1 = Fi(Jt−1) = Φ(Iit |yi)

That is, Iit , for all i ∈ [n], is a diffusion sequence and thus
It0 is distributed according to the distribution defined by Φ
over the image space I. We summarize

Proposition 3.1. If PJ is a distribution over J satis-
fying Eq. 6, and the FTD cost (Eq. 4) is defined with
Wi ∈ RH×W

>0 and minimized to zero in Eq. 3 for all steps
T, T − 1, . . . , 0, then the images Iit = Fi(Jt) reproduce
a Φ diffusion path. In particular Fi(J0), i ∈ [n] are dis-
tributed identically to samples from the reference diffusion
model Φ.

The implications of this proposition are far reaching: using
a single reference diffusion process we can flexibly adapt
to different image generation scenarios without the need to
retrain the model, while still being consistent with the refer-
ence diffusion model. Next, we instantiate this framework
outlining several application of the Follow-the-Diffusion-
Paths approach.

(a) Generation with per-crop independent diffusion paths.

(b) Generation with fused diffusion paths using MultiDiffusion.

Figure 3. Independent diffusion paths vs. MultiDiffusion. (a)
Panoramic image generated by applying the reference model on
four crops independently; as expected, there is no coherency be-
tween the crops. (b) Starting from the same noise, our generation
process steers these initial diffusion paths into a consistent and
high quality image.

Algorithm 1 MultiDiffusion sampling.
Input : Φ ▷ pre-trained Diffusion Model

{Fi}ni=1 ▷ image space mappings
{yi}ni=1 ▷ text-prompts conditioning
{Wi}ni=1 ▷ per-pixel weights

JT ∼ PJ ▷ noise initialization
for t = T, ..., 1 do

Iit−1 ← Φ(Fi(Jt), yi) ∀i ∈ [n] ▷ diffusion updates
Jt−1 ← MultiDiffuser(

{
Iit−1

}n

i=1
) ▷ Eq. 5

Output : J0

4. Applications
4.1. Panorama

As a first instantiation we use our framework to define a
diffusion model in an image space J with H ′ ≥ H , W ′ ≥
H directly from a trained model Φ working in image space
I . Let Z = Y (namely, generating a panoramic image for a
given text-prompt), Fi(J) ∈ I is an H ×W crop of image
J , and z = λi(z). We consider n such crops that cover the
original images J . Setting Wi = 1, we get

Ψ(Jt, z) = argmin
J∈J

n∑
i=1

∥Fi(J)− Φ(Fi(J), z)∥2 (7)

that is a least-squares problem, the solution of which is
calculated analytically according to Eq. 5. See the Appendix
C.1 for implementation details.

As discussed in Sec. 3, MultiDiffusion reconciles multiple
diffusion paths provided by the reference model Φ. We illus-
trate this property in Fig. 3, where we consider a panorama
of H × 4W . Fig. 3(a) shows the generation result when in-

4



MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation

dependently applying Φ on four non-overlapping crops. As
expected, there is no coherency between the crops since this
amounts to four random samples from the model. Start-
ing from the same initial noise, our generation process
(Eq. 4.1), allows us to fuse these initially-unrelated diffusion
paths, and steer the generation into a high-quality, coherent
panorama (b).

4.2. Region-based text-to-image-generation

Given a set of region-masks {Mi}ni=1 ⊂ {0, 1}H×W and a
corresponding set of text-prompts {yi}ni=1 ⊂ Yn, our goal
is to generate a high-quality image I ∈ I that depicts the
desired content in each region. That is, the image segment
I ⊗Mi should manifest yi. Going back to our formulation
(Eq. 2), the MultiDiffusion process is defined over the con-
dition space Z = Yn, i.e., z = (y1, . . . , yn), and the target
image space J = I is identical to the reference one:

Ψ : I × Yn → I

Furthermore, the region selection maps are defined as
Fi(I) = I , the pixel weights are set according to the masks,
Wi = Mi, and the Ψ step is defined as the solution to the
least-squares problem:

Ψ(Jt, z) = argmin
J∈I

n∑
i=1

∥∥∥Mi ⊗
[
J − Φ(Jt|yi)

]∥∥∥2 (8)

The solution to this LS problem is calculated analytically.
At each step we apply the pretrained diffusion w.r.t. each of
the given prompts, resulting in multiple diffusion directions
Φ(Jt|yi). We encourage each pixel in Jt to follow the (aver-
aged) directions associated with the regions Mi containing
it.

Fidelity to tight masks We further support obtaining high-
fidelity to tight masks if provided by the user (see Fig. 5).
We noticed that the layout is being determined early on
in the diffusion process, and thus we strive to encourage
Φ(Jt|yi) to focus on the region Mi early on in the process
in order to match the desired layout, and to consider the full
context in the image next, to achieve an harmonized result.
We integrate time dependency in the maps Fi, introducing a
bootstrapping phase. That is,

Fi(Jt, t) =

{
Jt, if t ≤ Tinit

Mi ⊗ Jt + (1−Mi)⊗ St, otherwise
(9)

Where Tinit is the bootstrapping stopping step parameter,
and St is a random image with a constant color, which
serves as background (see Appendix C.2 for implementation
details).

We demonstrate the efficacy of our bootstrapping approach
in Sec. 5.2. We set Tinit to be 20% of the generation process
(i.e., Tinit = 800).

5. Results
We thoroughly evaluate our method when applied to each
task as discussed in Sec. 4. In all experiments, we used
Stable Diffusion (Rombach et al., 2022), where the diffusion
process is defined over a latent space I = R64×64×4, and
a decoder is trained to reconstruct natural images in higher
resolution [0, 1]512×512×3. Similarly, the MultiDiffusion
process, Ψ is defined in the latent space J = RH‘×W ‘×4

and using the decoder we produce the results in the target
image space [0, 1]8H

′×8W ′×3.

5.1. Panorama Generation

To evaluate our method on the task of text-to-panorama gen-
eration (Sec. 4.1), we generated a diverse set of 512× 4608
panoramas, ×9 wider than the original training resolution.
Since there is no direct method for generating images at arbi-
trary aspect ratio from text, we compare to the following two
baselines: (i) Blended Latent Diffusion (BLD) (Avrahami
et al., 2022a) (combined with Stable Diffusion (Rombach
et al., 2022)), and Stable Inpainting (SI) (Rombach et al.,
2022), which has been finetuned on large-scale data for
inpainting. For both baselines, the panoramic image is gen-
erated gradually, starting from a central image (sampled by
Φ given the input text), and extrapolated progressively to
the right and left.

Fig. 4 shows sample generation results by our method com-
pared to the above baselines. As seen, both baselines often
exhibit visible seams and discontinuities between overlap-
ping crops, as well as degradation in visual quality as mov-
ing away from the center pivotal image; this is expected
due to the iterative generation process. BLD often generates
repetitive content (e.g., skiers example), where SI results in
noticeable visual difference between the left and right parts
of the image. In contrast, our framework simultaneously
“samples” the panoramic image by combining the diffusion
paths of all crops, resulting in seamless and high quality
images. Additional comparisons are in the Appendix 11.

FID ↓ CLIP-score↑CLIP-aesthetic↑
Stable Diffusion 6.05± 3.1 0.27 6.36
SI 45.5± 14.5 0.26 5.76
BLD 18.4± 7.4 0.27 6.02
Ours 10.3± 4.8 0.27 6.36

Table 1. Panorama generation evaluation. We report FID, CLIP
text-image score, and CLIP aesthetic scores for of our method
compared to the baselines. See more details in Section. 5.1.

To quantify these observations, we use the Frechet Inception
Distance (FID) (Parmar et al., 2022) to measure the dis-
tance between the distribution of 512× 512 crops from the
panoramic images to the distribution of images generated by
the reference model Φ. That is, for a given text prompt, we
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Figure 4. Text-to-Panorama comparison to Blended Latent Diffusion (BLD) (Avrahami et al., 2022a) and Stable Inpainting (SI) (Rombach
et al., 2022). Our framework produces seamless and diverse content whereas the baselines either contain repetitive content, visible seams
or artifacts.

sample N different 512× 512 images from Φ, and consider
them as our reference dataset. For the baselines and our
method, we generated N panoramic images, and randomly
sampled a 512 × 512 crop from each sample to serves as
the generated dataset and computed the FID accordingly.

To further assess the quality of our results, we evaluated
two CLIP-based scores: (i) text-image CLIP score (Radford
et al., 2021) measured by the cosine similarity between
the text prompt and the image embeddings, and (ii) CLIP
aesthetic (Schuhmann et al., 2022) measured by a linear
estimator on top of CLIP predicting the aesthetic quality of
the images.

We used N = 2000 samples and repeated this evaluation for
8 different text-conditioning. Table 1 reports the mean and
standard-deviation of FID and CLIP scores for our method
and the baselines. We additionally report the scores for an
independent set of samples images from Φ, which serves as
a baseline. As seen, our method outperforms the existing
baselines in all metrics.

5.2. Region-based Text-to-Image Generation

Our region-based formulation (Sec. 4.2) allows novice users
greater flexibility in their content creation, by lifting the
burden of creating accurate tight masks. As can be seen in
Fig. 1, Fig. 7 and Fig. 8, our method generates diverse high-
quality samples that comply with text description, given
only bounding boxes region guidance. As seen in Fig. 7,
by starting our generation from a different input noise, we
can generate diverse samples, depicting objects in differ-
ent scales and appearances, all following the same spatial
controls. Notably, since we integrate the controls from all
regions into a unified generation process, our method can
generate complex scene effects (e.g., background blur, shad-
ows or reflections) which are coherently immerse in the
scene. More results are included in the Appendix.

We compare our region-based framework with Make-A-
Scene (Gafni et al., 2022) and the concurrent work SpaText
(Avrahami et al., 2022b). Both baselines perform large-scale
training specifically for this task. Note that these models
are not publicly available, thus we qualitatively compare to
their provided examples.
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Figure 5. Region-based text-to-image generation. The input seg-
mentation maps with the corresponding region text descriptions
are shown above each example. Below: Make-A-Scene (Gafni
et al., 2022)and SpaText (Avrahami et al., 2022b) – trained specifi-
cally for this task on a large-scale segmentation-text-image dataset;
Blended Latent Diffusion (BLD) (Avrahami et al., 2022a), and our
results.

Additionally, we consider an adaptation of BLD (Avrahami
et al., 2022a) as a baseline. Similarly to Sec. 5.1, this is done
by applying their method in an auto-regressive manner by
first generating the background, and sequentially generating
each of the foreground objects.

As seen in Fig. 5, our framework produces consistent images
that adhere to the spatial constraints, and are qualitatively
on par with (Avrahami et al., 2022b). The auto-regressive
approach based on BLD (Avrahami et al., 2022a) often re-
sults in incoherent images and an unnatural scene. (e.g.,
misplaced sink in “bathroom” example). Additional com-
parisons to the baselines are in the Appendix.

IoU ↑
COCO dataset 0.43± 0.09
SI 0.16± 0.10
BLD 0.17± 0.11
Ours w/o bootstrapping 0.18± 0.10
Ours 0.26± 0.12

Table 2. Region-based generation evaluation of the COCO dataset.
We evaluate Intersection over Union (IoU), see Sec. 5.2 for details.

To quantitatively evaluate our performance, we use the
COCO dataset (Lin et al., 2014), which contains images
with global text caption and instance masks for each object
in the image. We apply our method on a subset from the
validation set, obtained by filtering examples which consists
of 2 to 4 foreground objects, excluding people, and masks
that occupy less than 5% of the image. This results in 1K
diverse samples. Following (Avrahami et al., 2022b), we
use the ground truth labels to provide a text prompt for each
foreground region, i.e., “a {label}”, and use the full image
caption as the prompt describing the background.

We evaluate the results with an off-the-shelf segmentation
model (Cheng et al., 2022) on the generated images, and
measure the Intersection over Union (IoU) w.r.t. to the
ground-truth segmentation. Table 2 reports the performance
for our method and the baselines described above. As an up-
per bound, we also report the IoU w.r.t. the original images
in the set. Note that our method outperforms the existing
baselines SI (Rombach et al., 2022) and BLD (Avrahami
et al., 2022a). We additional provide qualitative examples
are included in the Appendix.

Finally, we present an ablation of our bootstrapping stage (
Eq. 9): qualitatively in Fig. 6, and quantitatively in Table 2.
Note that without bootstrapping, our framework still gener-
ates the desired object within the mask region, however, the
bootstrapping stage makes it tighter to the given mask.

Figure 6. Bootstrapping ablation. Without bootstrapping (middle),
our method successfully generates the glass in some location inside
the mask (left). With our bootstrapping mechanism (right), we
achieve high-fidelity to the provided tight mask. See Sec 4.2 for
details.
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Figure 7. Diverse samples generated by our framework, given rough scene layout guidance (left). All images depict sensible composition,
scene effects and relative size of objects.

Figure 8. Rough masks. Sample results of our region-based generation approach (see Sec. 4.2). Our method can work with rough masks,
the can intuitively be obtained by novice users.

6. Discussion and Conclusions
Controllable generation is one of the major pending chal-
lenges with text-to-image diffusion models. We proposed
to tackle this challenge from a fundamentally new direction
– defining a new generation process on top of a pre-trained
and fixed diffusion model. This approach has several key
advantages over previous works: (i) it does not require any
further training or finetuning, (ii) it can be applied to various
different generation tasks, and (iii) our generation process
yields an optimization task which can be solved in closed
form for many tasks, hence can be computed efficiently,
while ensuring convergence to the global optimum of our
objective. As for limitations, our method heavily relies on
the generative prior of the reference diffusion model, i.e.,
the quality of our results depends on the diffusion paths pro-
vided by the model. Thus, when a “bad” path is chosen by
the reference model (e.g., bad seed, or biased text-prompt),
our results will be affected as well. In some cases, we can
mitigate it by introducing more constraints into our frame-
work (bootstrapping in Sec. 4.2), or prompt-engineering
(Fig. 9). We thoroughly evaluated our framework, demon-
strating state-of-the-art results even compared to methods
that are tailored-trained for specific tasks.

We believe that our work can trigger further future research
in harnessing the power of a pre-trained diffusion model in

Figure 9. Our method heav-
ily relies on the prior
of the reference diffusion
model. Left: our method
when applied to a vertical
panorama. The reference
diffusion model is biased
towards adding a waterfall
in each viewing crop, re-
sulting with an unnatural
scene. Right: we can try
to overcome this by adding
a region-based constraint.

more principled manner. One way forward, for example,
is to generalize the MultiDiffusion with a more general
optimization problem,

Ψ(Jt|z) = argmin
J∈J

LFTD(J |Jt, z) + L0(J, Jt, z)

s.t. J ∈ C(Jt, z)
(10)

where L0 is a cost function and C is a set of (hard) con-
strains that control the MultiDiffusion process by incorpo-
rating other priors and/or design constraints. This approach
provides a further of freedom in designing MultiDiffusion
processes.
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A. Proof to Proposition 3
Let PJ be a distribution over J satisfying Eq. 6, and assume that the FTD cost (Eq. 4) is minimized to zero in Eq. 3 for all
steps T, T − 1, . . . , 1. Notice that Eq. 4 is a sum of squares, hence

Wi ⊗
[
Fi(Jt−1)− Φ(Iit |yi)

]
= 0 ∀t = T, . . . , 1

Under the assumption that Wi ∈ RH×W
>0 , for each t ∈ [T ], Jt−1 satisfies

Fi(Jt−1) = Φ(Iit |yi)

Implying that Fi(J0) is an image sample from the trajectory {Φ(Iit |yi)}Tt=1 with a starting condition IiT ∼ PI , in particular
Fi(J0) is distributed according to the reference diffusion model Φ.

B. Additional Results
In the following section we provide additional results and comparisons for the applications shown in the main paper.

B.1. Panorama Generation
We provide additional results and qualitative comparisons for the task of text-to-panorama (Sec. 5.1). Fig. 11 depicts
additional comparisons of our method vs Stable Inpainting (SI) (Rombach et al., 2022) and Blended Latent Diffusion (BLD)
(Avrahami et al., 2022a). We also show vertical panorama result in Fig. 13 left.

B.2. Region-based Text-to-Image Generation
We provide additional qualitative results and comparisons for the task of region-based generation (Sec.4.2) in Fig. 13 and
Fig. 10.

B.3. Region-based Text-to-Image Generation on COCO
We include sample results and comparison on the subset from the validation set of COCO in Fig. 14. See more details about
this experiment in Sec. 5.2.

C. Additional Implementation Details.
C.1. Panorama (Sec. 4.1)
In the case of panorama generation, our maps Fi are defined as fixed-size crops from the full panorama. Specifically, for a
panorama with spatial resolution H ′ ×W ′, we consider overlapping crops of size H ×W where H = W = 64 defined in
the Stable Diffusion latent space (which translates to size 512× 512 in RGB space). Our maps Fi, ..., Fn provide crops
with a sliding window of size step = 8 in the latent space (64 pixels in RGB space). In particular, n = H′−64

step ·
W ′−64
step .

We summarize,

Algorithm 2 MultiDiffusion sampling - Panorama.
Input : Φ ▷ pre-trained Diffusion Model

H ′,W ′ ▷ resolution of the desired panorama
{Fi}ni=1 ▷ mappings defining crops from the panorama
y ▷ conditioned text-prompt

JT ∼ N (0, I) JT ∈ RH′×W ′×C ▷ noise initialization
for t = T, ..., 1 do

Iit ← Fi(Jt) ∀i ∈ [n] ▷ take crops from the panorama
Iit−1 ← Φ(Iit , y) ∀i ∈ [n] ▷ per-crop diffusion updates
Jt−1 ← MultiDiffuser(

{
Iit−1

}n

i=1
) ▷ Eq. 5

Panorama← D(J0) ▷ Decode the panorama to RGB space
Output : Panorama

Note that we can compute the per-crop diffusion updates in parallel (i.e., in a batch), resulting in total of T ·n
b calls to the

reference diffusion Φ, where b denotes the batch size.
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Figure 10. Additional qualitatively comparison to Make-A-Scene (Gafni et al., 2022), Blended-Latent-Diffusion (Avrahami et al., 2022a),
Spa-Text (Avrahami et al., 2022b), and ours. See Sec. 4.2, and Sec. 5.2

C.2. Bootstrapping (Sec. 4.2)

In case the user desires to maintain high fidelity to tight masks (see Fig. 4), we introduce a bootstrapping phase to our maps
Fi (see Eq. 9). Specifically, we pre-compute each St as follows: we randomize an image I ∈ [0, 1]512x512x3 with a constant
RGB value, and encode it to Stable Diffusion latent space S = E(I), where E is the pre-trained encoder provided by the
Stable Diffusion framework. Finally, we obtain St by noising S to the noise level of time-step t. That is, St ∼ N where
(µt · S, σ2

t ), µt and σt are the diffusion noise schedulers (Ho et al., 2020).

D. Societal Impact
Our primary goal in this work is to enable novice users to generate visual content in a more intuitive and flexible way.
However, it is prone to societal biases the underlying text-based generative model inherits from its training data (Birhane
et al., 2021). There is a risk of misuse for creating fake or harmful content with our technology, and we believe that it is
crucial to conduct further research on identifying synthetic content and to develop tools for detecting and addressing biases
and malicious use cases.
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Figure 11. Text-to-Panorama additional results and comparisons to Sec. 5.1.
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Figure 12. Additional results of our method on generation from rough scene layouts ( Sec. 5.2). For each spatial layout, we and for each
text prompt, we show different samples from our method.
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Figure 13. Left: vertical panoramic image (1024×512) generated by our method. Right: additional generation results using a combination
of rough and tight regions; for each layout, we present diverse generated samples.

Figure 14. Sample results from COCO validation set by BLD, SI and our method. See more details in Sec. 5.2.
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