
Human-Timescale Adaptation in an Open-Ended Task Space

Jakob Bauer † 1 Kate Baumli † 1 Feryal Behbahani † 1 Avishkar Bhoopchand † 1 Nathalie Bradley-Schmieg † 1

Michael Chang † 1 Natalie Clay † 1 Adrian Collister † 1 Vibhavari Dasagi † 1 Lucy Gonzalez † 1 Karol Gregor † 1

Edward Hughes † 1 Sheleem Kashem † 1 Maria Loks-Thompson † 1 Hannah Openshaw † 1 Jack Parker-Holder † 1

Shreya Pathak † 1 Nicolas Perez-Nieves † 1 Nemanja Rakicevic † 1 Tim Rocktäschel † 1 Yannick Schroecker † 1

Satinder Singh † 1 Jakub Sygnowski † 1 Karl Tuyls † 1 Sarah York † 1 Alexander Zacherl † 1 Lei Zhang † 1

Abstract
Foundation models have shown impressive adap-
tation and scalability in supervised and self-
supervised learning problems, but so far these
successes have not fully translated to rein-
forcement learning (RL). In this work, we
demonstrate that training an RL agent at scale
leads to a general in-context learning algorithm
that can adapt to open-ended novel embod-
ied 3D problems as quickly as humans. In
a vast space of held-out environment dynam-
ics, our adaptive agent (AdA) displays on-the-fly
hypothesis-driven exploration, efficient exploita-
tion of acquired knowledge, and can success-
fully be prompted with first-person demonstra-
tions. Adaptation emerges from three ingredi-
ents: (1) meta-reinforcement learning across a
vast, smooth and diverse task distribution, (2) a
policy parameterised as a large-scale attention-
based memory architecture, and (3) an effective
automated curriculum that prioritises tasks at the
frontier of an agent’s capabilities. We demon-
strate characteristic scaling laws with respect to
network size, memory length, and richness of the
training task distribution. We believe our results
lay the foundation for increasingly general and
adaptive RL agents that perform well across ever-
larger open-ended domains.

1. Introduction
Meta-RL has been shown to be effective for fast in-context
adaptation (e.g. Yu et al. (2020); Zintgraf (2022)). How-
ever, meta-RL has had limited success in settings where

†Alphabetical order, see Adaptive Agent Team for con-
tributions 1DeepMind. Correspondence to: Feryal Be-
hbahani <feryal@google.com>, Edward Hughes <edward-
hughes@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Trial 2
20 seconds of experience

Trial 1
No test-time experience 40 seconds of experience

Trial 3

DEAD
END

REWARD REWARD

Score: 0 Score: 13 Score: 16

SuccessExploration Refinement

Object caried

AdA’s trajectory

Object dropped

Figure 1: Adaptation in minutes. Example trajectories of our
agent (AdA) solving a held-out task in a complex 3D environ-
ment within minutes of test-time experience without any further
agent training. Initial trials (Exploration) show a policy that un-
covers hidden environment dynamics. After just seconds of test-
time experience (Success), AdA finds a valid solution to the task.
Later (Refinement), it improves this solution, gradually finding
a more rewarding behaviour. The solid white lines show agent
movement. The dashed coloured lines show the agent carrying an
object of the corresponding colour. For a full description of the
task, see Figure E.1. Videos of AdA’s behaviour are available on
our microsite and accompanying results reel.
the reward is sparse and the task space is vast and diverse
(Yang et al., 2019). Outside RL, foundation models in
semi-supervised learning have generated significant inter-
est (Bommasani et al., 2021) due to their ability to adapt
in few shots from demonstrations across a broad range
of tasks. These models are designed to provide a strong
foundation of general knowledge and skills that can be
built upon and adapted to new situations via fine-tuning or
prompting with demonstrations (Brown et al., 2020). Cru-
cial to this success has been attention-based memory ar-
chitectures like Transformers (Vaswani et al., 2017), which
show power-law scaling in performance with the number
of parameters (Tay et al., 2022).

In this work, we pave the way for training an RL foundation
model; that is, an agent that has been pre-trained on a vast
task distribution and that, at test time, can adapt few-shot
to a broad range of downstream tasks. We introduce Adap-
tive Agent (AdA), an agent capable of human-timescale
adaptation in a vast open-ended task space with sparse re-
wards. AdA does not require any prompts (Reed et al.,

1

http://sites.google.com/view/adaptive-agent/
https://youtu.be/U93bUQ1roiw

Human-Timescale Adaptation in an Open-Ended Task Space

XLand task pool Random sample Passed evaluation Training set

Uniform
sample

Select the tasks
above the

fitness threshold
Add them to

the training set

Evaluate the tasks
(compute the fitness)

Train the agent

Level Goal

Task

1 trial

1 episode = k trials

AdA

Agent

RL update

Distillation update
Transformer-XL

obst obsT

action tvalue
t actionTvalue

T

Figure 2: Training our Adaptive Agent (AdA). We train a large Transformer model with meta-RL in XLand. During training, tasks are
uniformly sampled, and subsequently filtered to produce an ever-changing training pool of tasks at the frontier of the agent’s capabilities.
After training on these tasks, the agent is capable of adapting to unseen hand-authored tasks as effectively and efficiently as humans.

2022), fine-tuning (Lee et al., 2022) or access to offline
datasets (Laskin et al., 2022; Reed et al., 2022). Instead,
AdA exhibits hypothesis-driven exploratory behaviour, us-
ing information gained on-the-fly to refine its policy and
to achieve close to optimal performance. AdA acquires
knowledge efficiently, adapting in minutes on challenging
held-out sparse-reward tasks in a partially-observable 3D
environment with a first-person pixel observation. A hu-
man study confirms that the timescale of AdA’s adapta-
tion is comparable to that of trained human players. AdA’s
adaptation behaviour in a representative held-out task can
be seen in Figure 1. AdA can also achieve improved per-
formance through zero-shot prompting with first-person
demonstrations, analogously to large language models.

We use Transformers as an architectural choice to scale in-
context fast adaptation via model-based RL2 (Duan et al.,
2017; Wang et al., 2016; Melo, 2022). Foundation mod-
els typically require large, diverse datasets to achieve their
generality (Sun et al., 2017; Mahajan et al., 2018; Brown
et al., 2020; Zhai et al., 2022; Schuhmann et al., 2022).
To make this possible in an RL setting, where agents col-
lect their own data, we extend the recent XLand environ-
ment (OEL Team et al., 2021), producing a vast open-
ended world with over 1040 possible tasks. These tasks
require a range of different online adaptation capabilities,
including experimentation, navigation, coordination, divi-
sion of labour and coping with irreversibility. Given the
wide range of possible tasks, we make use of adaptive auto-
curricula, which prioritise tasks at the frontier of an agent’s
capabilities (OEL Team et al., 2021; Jiang et al., 2021a).
Finally, we make use of distillation (Schmitt et al., 2018),
which enables scaling to models with over 500M parame-
ters, to the best of our knowledge the largest model trained
from scratch with RL at the time of publication (Ota et al.,
2021). See Figure 2 for an overview of our method.

2. Adaptive Agent (AdA)
To achieve human timescale adaptation across a vast and
diverse task space, we propose a general and scalable ap-
proach for memory-based meta-RL, producing an Adaptive
Agent (AdA). We train and test AdA in XLand 2.0, an en-
vironment supporting procedural generation of diverse 3D
worlds and multi-player games, with rich dynamics that ne-
cessitate adaptation. Our training method combines three
key components: a curriculum to guide the agent’s learn-
ing, a model-based RL algorithm to train agents with large-
scale attention-based memory, and distillation to enable
scaling. For a detailed discussion of related work see Ap-
pendix 4. An overview of our approach is shown in Figure
2. In the following sections, we describe each component
and its contribution to efficient few-shot adaptation.

2.1. Open-ended task space: XLand 2.0

In order to demonstrate fast adaptation across an open-
ended task space, we extend the procedurally-generated 3D
environment XLand (OEL Team et al., 2021). In XLand, a
task consists of a game, a world, and a list of co-player poli-
cies (if any). The game specifies a goal per player, defined
as a boolean function (predicate) on the environment state.
A player receives reward if and only if the goal is satisfied.
The world specifies a static floor topology, objects the play-
ers can interact with, and spawn locations for the players.
Each player observes the world, and any co-players therein,
via a first-person pixel observation.

XLand 2.0 extends XLand with a system called production
rules. Each production rule expresses an additional envi-
ronment dynamic, leading to a much richer and more di-
verse array of transition functions than in XLand. Produc-
tion rules support a wide variety of different dynamics, in-
cluding tasks inspired by chemistry experiments, the video
game Overcooked, the 2048 browser game, soccer prac-

2

Human-Timescale Adaptation in an Open-Ended Task Space

tice, antimatter, factory machines, tool use and the prover-
bial needle in the haystack. See Tables I.1 and I.2 for a full
description of 58 representative tasks in XLand 2.0. The
production rules system can be thought of as a domain-
specific language to express this diverse array of dynamics.
Each production rule consists of a condition, which is a
predicate, for example near(yellow sphere,black

cube), and a (possibly empty) list of spawns, which are
objects, like purple cube, black cube.

When condition is satisfied, the objects present in
condition get removed from the environment, and the
ones in spawns appear. Each task can have multiple pro-
duction rules, and each rule can be observable to players,
or partially or fully masked, depending on the task con-
figuration, as described in Appendix D.1. For a more de-
tailed understanding of how human-interpretable tasks can
be represented via production rules, see Figures E.1–E.4.
We visualise the XLand 2.0 task space in Figure D.1, in-
dicating the different cognitive challenges that clusters of
tasks pose for a player.

When training AdA, instead of procedurally generating
tasks on the fly, we pre-sample a large pool of tasks, for
efficiency and to reduce variance (see Appendix D.2).

2.2. Auto-curriculum learning

Given the vastness and diversity of our pre-sampled task
pool, it is challenging for an agent to learn effectively with
uniform sampling. Most randomly sampled tasks are likely
to be too hard (or too easy) to benefit an agent’s learning.
Instead, we use automatic approaches to select “interest-
ing” tasks at the frontier of the agent’s capabilities, anal-
ogous to the “zone of proximal development” in human
cognitive development (Vygotsky, 1978). We propose two
alternative approaches, which lead to an emergent curricu-
lum, selecting tasks with increasing complexity over time.

No-op filtering. We extend the dynamic task generation
method proposed in OEL Team et al. (2021). When a new
task is sampled from the pool, it is first evaluated to as fol-
lows. We run AdA’s policy and a “No-op” control policy
(which takes no action in the environment) on the task for a
number of episodes. The task is then used for training (for
30 trials) if and only if the scores of the two policies meet
a number of conditions. We expanded the list of condi-
tions from the original no-op filtering and used normalised
thresholds to account for different trial durations. See Ap-
pendix G.6 for further details.

Prioritised level replay (PLR). We modify robust PLR
(Jiang et al., 2021a) to fit our setup. By contrast to no-op
filtering, PLR uses a fitness score (Schmidhuber, 1991) that
approximates the agent’s regret for a given task. We con-
sider several potential estimates for agent regret, ranging

from TD-errors (Jiang et al., 2021b), to novel approaches
using dynamics-model errors from AdA. PLR operates by
maintaining a fixed-sized archive containing tasks with the
highest fitness. It can be seen as a form of filtering, using a
dynamic criterion (the lowest fitness value of the archive).
To apply PLR in our heterogeneous task space, we nor-
malise fitness at each trial index by using rolling means
and variances, and use the mean per-timestep fitness value
rather than the sum, to account for varying trial duration.
Since we are interested in tasks at the frontier of an agent’s
capabilities after adaptation, we use only the fitness from
the last trial. See Appendix G.6 for further details.

2.3. Meta-RL

We use a black-box meta-RL problem setting (Duan et al.,
2017; Wang et al., 2016). We define the task space to
be a set of partially-observable Markov decision processes
(POMDPs). In black-box meta-reinforcement learning, an
episode of experience for an agent consists of multiple con-
secutive interactions with the same task (called trials), with
the idea that the agent can learn to self-improve its policy
on later trials based on the memory of information gleaned
in earlier trials. For a given task, we define a trial to be any
sequence of transitions from an initial state s0 to a terminal
state sT . Tasks terminate if and only if a certain time period
T 2 [10s, 40s] has elapsed, specified per-task. The environ-
ment ticks at 30 frames-per-second and the agent observes
every 4th frame. An episode consists of a sequence of k
trials for a given task. At trial boundaries, the task is reset
to an initial state. In our domain, initial states are determin-
istic except for the rotation of the agent, which is sampled
uniformly at random. The memory of the agent is not reset
at trial boundaries, but is reset at episode boundaries. For
full details on AdA’s meta-RL method, see Appendix G.1.
We train AdA using the Muesli algorithm (Hessel et al.,
2021) with minor modifications to fit our meta-RL setting,
as described in Appendix F.1.

2.4. Memory architecture

Memory is a crucial component for adaptation as it allows
the agent to store and recall information learned and experi-
enced in the past. In order for agents to effectively adjust to
the changes in task requirements, memory should allow the
agent to recall information from both the very recent and
the more distant past. While slow gradient-based updates
are able to capture the latter, they are often not fast enough
to capture the former, i.e. fast adaptation. The majority
of work on memory-based meta-RL has relied on RNNs as
a mechanism for fast adaptation (Parisotto, 2021). In this
work, we show that RNNs are not capable of adaptation
in our challenging partially-observable embodied 3D task
space. We experiment with two memory architectures to
address this problem, as follows.

3

Human-Timescale Adaptation in an Open-Ended Task Space

Firstly, RNN with Attention stores a number of past activa-
tions (in our case 64) in an episodic memory and attends
over it, using the current hidden state as a query. The out-
put of the attention module is then concatenated with the
hidden state and fed into the RNN. We increase effective
memory length of the agent by storing only every 8th ac-
tivation in its episodic memory. Secondly, we consider
Transformer-XL (TXL) (Dai et al., 2019), a variant of the
Transformer architecture (Vaswani et al., 2017) which en-
ables the use of longer, variable-length context windows to
increase the model’s ability to capture long-term dependen-
cies. To stabilise the training of Transformers with RL, we
follow Parisotto et al. (2020) in performing normalisation
before each layer, and use gating on the feedforward layers
as in Shazeer (2020). Both memory modules operate on a
sequence of learned timestep embeddings, and produce a
sequence of output embeddings that are fed into the Muesli
architecture, as shown in Figure F.1 with a Transformer-XL
module. Transformer-XL is the default memory architec-
ture in all our experiments unless stated otherwise.

To go beyond few shots, we propose a simple modification
to our Transformer-XL architecture to increase the effec-
tive memory length without additional computational cost.
Since observations in visual RL environments tend to be
highly temporally correlated, we sub-sample the sequence
as described for RNN with Attention, allowing the agent to
attend over 4 times as many trials. To ensure that obser-
vations which fall between the sub-sampled points can still
be attended to, we first encode the entire trajectory using
an RNN with the intention of summarising recent history at
every step. The additional RNN encoding does not affect
the performance of our Transformer-XL variant but enables
longer range memory (see Appendix H.6).

2.5. Distillation

For the first four billion steps of training, we use an addi-
tional distillation loss (Schmidhuber, 1992; Schmitt et al.,
2018; Czarnecki et al., 2019) to guide AdA’s learning with
the policy of a pre-trained teacher, in a process known
as kickstarting; iterating this process leads to a genera-
tional training regime (OEL Team et al., 2021; Wang et al.,
2021). The teacher is pre-trained from scratch via RL, us-
ing an identical training procedure and hyperparameters as
AdA, apart from the lack of initial distillation and a smaller
model size (23M Transformer parameters for the teacher
and 265M for multi-agent AdA).

Unlike aforementioned prior work, we do not employ shap-
ing rewards or Population Based Training (Jaderberg et al.,
2017) in earlier generations. During distillation, AdA acts
according to its own policy and the teacher provides target
logits given the trajectories observed by AdA. Distillation
allows us to amortise an otherwise costly initial training

period, and it allows the agent to overcome harmful repre-
sentations acquired in the initial phases of training (Cetin
et al., 2022); see Section 3.6. For details of how we inte-
grate the distillation loss with Muesli, see Appendix G.2.

3. Experiments and Results
We evaluate our agents in two distinct regimes: on a set
of 1000 test tasks sampled from the same distribution as
the training tasks, and on a set of 30 single-agent and 28
multi-agent hand-authored probe tasks. A rejection sam-
pling procedure guarantees that the procedural test tasks
and probe tasks are outside the training set. Explicitly,
whenever we create a probe or test task, we check whether
its combination of goal and production rules is present in
the set of pre-sampled training tasks. If it is, the probe or
test task is rejected and we construct a new one. The probe
tasks represent situations that are particularly intuitive to
humans, and deliberately cover a wide range of quali-
tatively different adaptation behaviours. Example probe
tasks are depicted in Figures E.1–E.4 in the Appendix, and
a full description of every probe task is in Appendix I.

The total achievable reward on each task varies, so when-
ever we present aggregated results on the test or hand-
authored task set, we normalise the total per-trial reward for
each task against the reward obtained by fine-tuning AdA
on the respective task set (see Appendix G for details). We
refer to this normalised reward as a score. We stipulate
that an adaptive agent must have two capabilities: zero-shot
generalisation and few-shot adaptation. Zero-shot general-
isation is assessed by the score in the case of only being
given 1 trial of interaction with a held-out task. Few-shot
adaptation is assessed by the improvement in score as the
agent is given progressively more trials (k) of interaction
with the task. More precisely, for each k we report the
score in the last trial, showing whether or not an agent is
able to make use of additional experience on-the-fly to per-
form better, i.e. measuring adaptation. We aggregate scores
across a task set using (one or more) percentiles. When pre-
senting individual probe tasks we report unnormalised total
last trial rewards per task for agents and for human players
where applicable. For more details, see Appendix E.

The space of training configurations for AdA is large, com-
prising model size, auto-curriculum, memory architecture,
memory length, number of tasks in the XLand task pool,
single vs. multi-agent tasks, distillation teacher, and num-
ber of training steps. We use a consistent training config-
uration within each experimental comparison, but different
configurations across different experimental comparisons.
We therefore caution the reader against directly comparing
results between different sections. For convenience, all ex-
perimental configurations are tabulated in Appendix G.

4

Human-Timescale Adaptation in an Open-Ended Task Space

Generalisation: positive zero-shot return on 88% of test tasks

Adaptation: the agent achieves > 0.8 score
on 40% of tasks zero-shot but this

improves to 72% of tasks after 13 trials

Adaptation gap:
we measure the
20th percentile
normalized score,
here 0.04 on the
first trial and 0.61
on the 13th

Figure 3: Zero-shot generalisation and few-shot adaptation.
We plot the distribution of normalised task scores over the single-
agent test set when evaluated with various numbers of trials. On
the y-axis is the total last-trial reward relative to that of an agent
fine-tuned on the test tasks (approximating “infinite trials” per-
formance). Curves further towards the top right corner indicate
better performance. When given more trials, the agent achieves
higher scores in the last trial, showing test-time adaptation across
most of the task distribution (shaded regions). The dashed line in-
dicates the zero-shot performance of an agent trained in a regime
where every episode consists of only a single trial.

3.1. AdA shows human-timescale adaptation

Single-agent. In Figure 3 we show the performance of
AdA when trained in the single-agent setting described
in Table G.1. Examine first AdA’s zero-shot performance
(k = 1, red line). This matches the performance of a base-
line agent, which is trained identically to AdA, except that
each episode consists of exactly one trial (i.e., with multi-
task RL rather than meta-RL). In other words, AdA does
not suffer any degradation in zero-shot performance, de-
spite being trained on a distribution over number of trials
k 2 {1, 2, . . . 6}. Now turn your attention to AdA’s few-
shot performance (k 2 {2, 3, 5, 8, 13}, orange to purple
lines). Given more trials, AdA improves its performance
on over 80% of the task set, clearly adapting at test time.

We compare the performance of AdA to that of a set
of human players on 30 held-out hand-authored probe
tasks, seeking to assess whether AdA adapts on the same
timescale as humans. Figure 4a shows the median scores
for AdA and for human players as a function of number of
trials. Both AdA and human players were able to improve
their score as they experienced more trials of the tasks, in-
dicating that AdA exhibits human-timescale adaptation on
this set of probe tasks. We provide details of the scores
obtained on each task in Figure I.1. For full details of our
human experiment design and ethics, see Appendix E.4.

Figure 5 analyses the behaviour of AdA in more detail on
a specific held-out task. The increase in score with a larger
number of trials indicates that the task is solved more con-
sistently and more quickly when given a larger number of

(a) (b)

Figure 4: Human-timescale adaptation. We report median nor-
malised last-trial score across 30 hand-authored tasks as a func-
tion of number of trials for AdA and human players. (a) shows the
results using our standard per-task normalisation scheme. (b) re-
normalises the results by subtracting the minimum and dividing
by the maximum score per player-type, accounting for system-
atic differences between agents and humans. In particular, we see
that AdA’s re-normalised performance curve lies above that of hu-
mans, i.e, the timescale for improvement of AdA’s score is at least
as short as that for humans.

DEAD
END

REWARD REWARD

1 Trial 2 Trials 8 Trials

Figure 5: Experimentation, success and refinement. We report
average performance and representative behaviour of AdA on the
probe task Wrong Pair Disappears when evaluated with
various numbers of trials. AdA’s performance increases when
given more trials, showing test-time adaptation. The top-down
view images show representative last-trial trajectories when given
different numbers of total trials.

trials. We can explain this effect in terms of the behaviour
of AdA. When given 1 or 2 trials AdA shows structured
hypothesis-driven exploration: trying out different combi-
nations of objects and coming across the solution or a dead
end. Once the solution is found, AdA refines its strategy on
subsequent trials, gathering the correct objects with more
efficiency and combining them in the right way. Thus AdA
is able to generate a higher last-trial score when provided
with more trials for refinement. We observe this pattern of
behaviour consistently across many of our held-out probe
tasks; See the following agent video and representative hu-
man trajectory. More videos are available on our microsite.

Multi-agent. We train a separate agent on a mixture
of fully-cooperative multi-agent and single-agent tasks to
explore adaptation in the multi-agent setting. In fully-
cooperative multi-agent tasks, both players have the same
goal. This gives rise to a variety of interesting strategic nov-
elties that are absent in the purely single-agent setting, in-
cluding division-of-labour and physical coordination. Here
for the first time to our knowledge, we demonstrate that
these behaviours can emerge at test time in few-shot on
held-out tasks. Co-players for our training tasks are gen-
erated using fictitious self-play (Heinrich et al., 2015) and
then curated using PLR, as in Samvelyan et al. (2022). For
more details, see Table G.1 and Appendix G.4.

5

https://youtu.be/py1HQHB5y2s
https://youtu.be/FEtY_Hn7DW8
https://youtu.be/FEtY_Hn7DW8
http://sites.google.com/view/adaptive-agent/

Human-Timescale Adaptation in an Open-Ended Task Space

Figure 6: Two heads are better than one. Cooperative self-
play outperforms single-agent performance on the test set of two-
player cooperative held-out tasks. For this evaluation we restrict
ourselves to tasks whose goals and production rules do not refer to
players and which are solvable by a single player (216/1000 test
tasks). To produce the purple curve, we evaluate AdA twice per
task when playing with a random-action policy co-player, once
playing as the first and once as the second player, and take the
maximum score over both evaluations before cross-task aggrega-
tion. This accounts for possible advantages playing as one player
might have over playing as the other in a task.

GRAB

1

PASS
PASS

1

2

REWARD

1 Trial 8 Trials

Figure 7: Multi-agent coordination. We report average per-
formance and representative behaviour of AdA on the probe
task Pass Over the Wall Repeatedly when evaluated
in self-play with various numbers of trials. AdA’s performance
increases when given more trials, showing test-time adaptation.
The top-down view images show representative last-trial trajecto-
ries when given different numbers of total trials.

Analogously with the single-agent setting, we find strong
evidence of adaptation across almost 90% of the space of
held-out test tasks (Figure H.1). Futhermore, we evalu-
ate the resulting agent on a held-out test set of cooperative
multi-agent tasks in two ways: in self-play and in co-play
with a random-action policy. As shown in Figure 6, self-
play outperforms co-play with a random-action policy by
a large margin both in a zero-shot and in a few-shot set-
ting. This indicates that the agents are dividing the labour
required to solve the tasks, thereby solving the task more
quickly (or at all) and improving their shared performance.

Examples of emergent social behaviour in self-play are
shown in Figures 7 and H.2. Given only a few trials, the
agents explore the space of possible solutions, sometimes
operating independently and sometimes together. Given
more trials, once the agents find a solution, they optimise
their paths by coordinating physically and dividing labour
to solve the task efficiently. This behaviour emerges from
adaptation at test time and was not explicitly incentivised
during training, other than through the fully cooperative re-
ward function. We link a video of emergent multi-agent
cooperation. Further videos are available on our microsite.

Figure 8: Ablating architecture. Adaptation over increasing
numbers of trials for different choices of architectures. Incorpo-
rating attention modules is essential to achieve adaptation, with
Transformer-XL architectures performing best.

Figure 9: Ablating curriculum. Adaptation over increasing
numbers of trials for different choices of curricula. No-op fil-
tering and PLR greatly improve both zero-shot generalisation and
few-shot adaptation over the uniform sampling baseline.

3.2. Architecture influences performance

We now dive deeper into understanding which components
of our method are critical, via a series of ablation studies.
In these studies we use a single initialisation seed, because
we see low variance across seeds when training AdA (see
Appendix I.3). All ablations are in the single-agent setting,
unless stated otherwise.

First, we empirically contrast different choices of architec-
tures: Transformer-XL, RNN, and RNN with Attention. To
implement the RNN, we use a GRU (Cho et al., 2014). To
facilitate comparison, we match the total network size for
all architectures. Table G.4 shows details on the experi-
mental setup. Figure 8 shows that while the Transformer-
XL is the best performing architecture in this comparison,
incorporating a multi-head attention module into an RNN
recovers most of the performance of the Transformer, high-
lighting the effectiveness of attention modules.

3.3. Auto-curriculum learning improves performance

To establish the importance of automated curriculum learn-
ing, we compare adaptation when training with the curric-
ula methods outlined in Section 2.2: no-op filtering and
PLR. Figure 9 shows the median last-trial score of agents
trained with different curricula. Both no-op filtering and
PLR curricula strongly outperform a baseline trained with
uniformly sampled tasks. Moreover, PLR outperforms no-
op filtering, particularly at a higher number of trials, indi-

6

https://youtu.be/OlCPI-uB5Ag
http://sites.google.com/view/adaptive-agent/

Human-Timescale Adaptation in an Open-Ended Task Space

(a) (b)

Figure 10: Scaling the model. Plots show the 20th percentile
test score for (a) Transformer parameters and (b) Transformer-XL
memory length. Both axes are log-scaled, according to the func-
tions log(x) and � log(1 � y), respectively, and the relationship
between model size and performance appears roughly linear on
this scale. The slope is steeper when evaluating higher numbers
of trials, showing that scaling the model is particularly effective at
encouraging stronger adaptation, as opposed to stronger zero-shot
generalisation.

cating that a regret-based curriculum is especially helpful
for learning longer-term adaptation. In Appendix G.6 we
detail training configuration, and also compare the sample
efficiency of our methods, where we see that both auto-
curriculum approaches are more sample-efficient than uni-
form sampling, in terms of both learning steps and FLOPs.

3.4. Scaling the agent increases performance

Methods that scale well are critical for continued progress
in machine learning, and understanding how methods scale
is important for deciding where to spend time and compute
in the future. Scaling laws have been determined for many
foundation models, where performance is related to model
size and other factors as a power law, which can be seen
as a linear relationship on a log-log plot. Inspired by such
analyses, we investigate how adaptation scales with Trans-
former model size and memory length.

Scaling network size. We show how performance scales
with the size of AdA’s Transformer model, experiment-
ing with the model sizes shown in Table G.9. When in-
vestigating scaling laws for model size, we follow Kaplan
et al. (2020) in measuring only Transformer (i.e., non-
embedding) parameters, which range across 3 orders of
magnitude, from 6M to 265M Transformer parameters (i.e.,
from 41M to 533M total parameters). A complete list of
hyperparameters is shown in Table G.10. Figure 10a shows
that larger networks increase performance, especially when
given more test-time trials to adapt. Model scale has par-
ticular impact on the lower percentiles of the test set. This
indicates that larger models allow the agent to generalise its
adaptation to a broader range of tasks. The roughly linear
relationship between model size and performance on the
log-log plot is indicative of a power law scaling relation-
ship. That the curves are not exactly linear may be because
we haven’t trained to convergence, and because we use a
23M parameter distillation teacher in experiments for all
model sizes. Appendix H.4 shows FLOPs adjusted results.

Scaling memory length. Adaptation performance also
scales with the length of AdA’s memory. The experimen-
tal setting is shown in Table G.11, where we examine the
number of previous network activations we cache, investi-
gating values from 100 to 700, which, with 6 Transformer-
XL blocks, yields an effective timestep range of 600 to
4200 timesteps. Figure 10b shows that, as with model
size, scaling memory length helps performance, especially
in the lower test percentiles, pushing performance on the
tails of the distribution. For any of our tasks, the max-
imum trial duration is 300 timesteps, so it is interesting
that performance on, for example, 5 trials (1500 timesteps)
continues to increase for “effective memory lengths” be-
tween 1800 and 4200. This indicates that it is easier for the
Transformer-XL to make use of explicitly given memory
activations rather than relying on theoretically longer-range
information implicit in those activations.

3.5. Scaling the task pool increases performance

Another important factor to scale is the amount of data a
model is trained on. For example, Hoffmann et al. (2022)
showed that in order to get the most out of scaling a lan-
guage model, one must scale the amount of training data at
the same rate as the number of parameters. In our case, rel-
evant data come from interaction with different tasks, so we
examine the effect of scaling the number and complexity of
different tasks in the XLand pool.

Scaling size of task pool. Here we examine the effect of
varying the number of training tasks from which the auto-
curriculum can sample. Table G.12 shows the full exper-
imental setup for these comparisons. Figure H.4 shows
higher test score for identically sized models on the larger
task pool. As in the other scaling experiments, we espe-
cially see improved performance on the 20th percentile. We
show results for two different sizes of models, with the
larger Transformer yielding a larger gap when scaling the
size of the task pool. This suggests the large models are
especially prone to overfitting to a smaller task pool.

Scaling complexity of task pool. One final axis along
which it is possible to scale our method is the overall com-
plexity of the task distribution. For example, tasks with a
flat terrain will be, on average, less complex to solve than
tasks with terrain variation. In Figure H.5, we show that
low environment complexity can be a bottleneck to scaling,
by comparing the effectiveness of model scaling between
agents trained on two distributions of the same size but
different complexity and evaluated on their respective test
sets. Open-ended settings with unbounded environment
complexity, such as multi-agent systems, may therefore be
particularly important for scaling up adaptive agents.

7

Human-Timescale Adaptation in an Open-Ended Task Space

3.6. Distillation enables scaling agents

Now, we look at the role distillation plays in scaling. In
short, we find that kickstarting training with a distillation
period is crucial when scaling up model size. As shown in
Figure 11a, training a 265M parameter Transformer model
without distillation results in poor performance compared
to a much smaller 23M parameter Transformer trained in
the same way. However, when training with distillation
from a 23M parameter teacher for the first 4 billion train-
ing frames, the 265M model clearly outperforms the 23M
variant. For experiment details, see Appendix G.12.

Additionally, we find that even when the model size is the
same for both student and teacher, we observe large gains
from distillation, for a constant total frame budget (Figure
11). We speculate that this is due to bad representations
learned early on by the student agent (Nikishin et al., 2022;
Cetin et al., 2022), which can be avoided by using distil-
lation. This is also consistent with findings in offline RL,
where additional data is often required to effectively scale
the model (Reid et al., 2022). The effect is largest for the
first round of distillation, with diminishing returns in the
next round of distillation (Figure H.5).

3.7. AdA leverages first-person prompting

Next, we prompt AdA with a first-person demonstration by
a fine-tuned teacher. This process is analogous to prompt-
ing of large language models, where the agent’s memory is
primed with an example of desired behaviour from which it
continues. AdA has never experienced a trajectory from a
(human or agent) expert before during training. To prompt
AdA, the teacher takes control of the avatar in the first trial,
while AdA continues to receive observations as usual, con-
ditioning its Transformer memory. AdA then proceeds on
its own for the remaining trials and its scores are recorded
in the usual manner. Figure H.11b compares prompted
AdA with an unprompted baseline. Prompted AdA is un-
able to exactly mimic the teacher’s demonstration in the
second trial of a median task. It does, however, outperform
an unprompted baseline across all numbers of trials, indi-
cating that it is able to profitably incorporate information
from the demonstration into its policy. We note that AdA
was never trained with such off-policy first-person demon-
strations, yet its in-context learning algorithm is still able
to generalise to these. Thus meta-RL on a sufficiently vast
and diverse array of tasks leads to unexpected and powerful
emergent capabilities, a promising line for future research.

In Figure I.4 we provide prompting results for all single-
agent hand-authored tasks and discuss the circumstances
under which prompting is effective. In Appendix I.4 we
also provide early results investigating prompting with hu-
man demonstrations on a subset of tasks. These reveal re-
markable success in some cases, but also confirm that hu-

(a) (b)

Figure 11: Distillation improves performance. (a) 20th per-
centile performance for adaptation over increasing numbers of
trials when training from scratch or when kickstarting with dis-
tillation, for models with 23M and 265M Transformer parame-
ters. Circle markers show training from scratch while triangle
markers show training kickstarted with 4 billion frames of distil-
lation. For this ablation, agents were trained in the multi-agent
setup described in Section 3.1 and evaluated on the multi-agent
test set after 22 billion total training frames. (b) Normalised last-
trial score for k = 13 using the 23M parameter Transformer-XL.
The teacher is trained from scratch, while the otherwise identical
student is distilled from a snapshot of the teacher, taken after 25
billion steps of training.

man demonstrations cannot overcome inherent limitations
of AdA’s task distribution. Linked videos compare AdA
with and without without prompting.

4. Related Work
In this work, we leverage advances in attention-based mod-
els for meta-learning in an open-ended task space. Our
agent learns a form of in-context RL algorithm, while
also automatically curating the training task distribution;
thus we combine two pillars of an AI-generating algorithm
(Clune, 2019). The most similar work to ours is OEL Team
et al. (2021), which also trains in a vast multi-agent task
space with auto-curricula and generational learning. The
key differences in our work are that we focus on adaptation
(vs. zero-shot performance) and make use of large Trans-
former models.

Open-ended learning. Recent works have demonstrated
the effectiveness of agent-environment co-adaptation with
a distribution of tasks (Wang et al., 2019; Akkaya et al.,
2019; Wang et al., 2020a; Parker-Holder et al., 2022). Our
approach resembles the unsupervised environment design
(Dennis et al., 2020)) paradigm, since we seek to train a
generalist agent without knowledge of the test tasks. A pi-
oneering method in this space was PAIRED (Dennis et al.,
2020), which generates tasks using an RL-trained adver-
sary. We build on Prioritised Level Replay (Jiang et al.,
2021b;a), a later method which curates randomly sam-
pled environments with high regret. Our work also re-
lates to curriculum learning (Matiisen et al., 2020; Porte-
las et al., 2019; Sukhbaatar et al., 2018; OpenAI et al.,
2021; Campero et al., 2021; Fang et al., 2021; Mu et al.,
2022), with the key difference that these methods typi-
cally have a specific downstream goal or task in mind.

8

https://youtu.be/4W0xyEPfFNs
https://youtu.be/ETKNPB8mNbM

Human-Timescale Adaptation in an Open-Ended Task Space

There have also been works that use auto-curricula over
co-players, although these typically focus on singleton en-
vironments (Vinyals et al., 2019; Berner et al., 2019) or uni-
formly sampled tasks (Baker et al., 2020; Jaderberg et al.,
2019; Liu et al., 2019; Cultural General Intelligence Team
et al., 2022). Zhong et al. (2020) also train agents to gener-
alise to unobserved environment dynamics, but they inves-
tigate zero-shot generalisation from language descriptions,
whereas AdA discovers rules in few-shot at test time.

Adaptation. This work focuses on few-shot adaptation in
control problems, commonly framed as meta-RL. We fo-
cus on memory-based meta-RL, building upon Duan et al.
(2017) and Wang et al. (2016), who showed that if an
agent observes rewards and terminations, and the mem-
ory does not reset, a memory-based policy can implement
a learning algorithm. This has proven to be an effective
approach that can learn Bayes-optimal strategies (Ortega
et al., 2019; Mikulik et al., 2020) and may have neurologi-
cal analogues (Wang et al., 2018). Our agents learn concep-
tual exploration strategies, something that would require
the outer learner of a meta-gradient approach to estimate
the return of the inner learner (Stadie et al., 2018). Our
work is related to Alchemy (Wang et al., 2021), a meta-
RL benchmark domain whose mechanics have inspired our
production rules. The authors use memory-based meta-RL
with a small Transformer, but find that the agent’s per-
formance is only marginally better than that of a random
heuristic. Transformers have been shown to be effective
for meta-RL on simple domains (Melo, 2022) and for learn-
ing RL algorithms (Laskin et al., 2022) from offline data.
Adaptation also plays a critical role in robotics, with agents
trained to adapt to varying terrain (Clavera et al., 2019; Ku-
mar et al., 2021) or damaged joints (Cully et al., 2015).

Multi-agent. Fully cooperative multi-agent tasks typically
have multiple Nash equilibria (Dafoe et al., 2020). When
faced with a new problem, agents must adapt on-the-fly to
agree on a single equilibrium of mutual benefit (Stone et al.,
2010; Hu et al., 2020; Christianos et al., 2022). Division of
labour and physical coordination have received extensive
study in the multi-agent RL literature, but prior approaches
have tended to focus on specific domains rather than train-
ing generalists, e.g. (Wang et al., 2020b; Yang et al., 2020;
Strouse et al., 2021; Gronauer and Diepold, 2022).

Transformers in RL. Transformer architectures have re-
cently shown to be highly effective for offline RL (Chen
et al., 2021; Janner et al., 2021; Reed et al., 2022), yet suc-
cesses in the online setting remain limited. One of the few
works to successfully train Transformer-based policies was
Parisotto et al. (2020), who introduced several heuristics to
stabilise training in a simpler, smaller-scale setting. Indeed,
while we make use of a similar Transformer-XL architec-
ture (Vaswani et al., 2017; Dai et al., 2019), we demonstrate

scaling laws for online meta-RL that resemble those seen in
other communities, such as language (Devlin et al., 2019;
Kaplan et al., 2020; Brown et al., 2020; Rae et al., 2021).
Similarly, Melo (2022) use Transformers for fast adaptation
in a smaller-scale meta-RL setting, interpreting the self-
attention mechanism as a means of building an episodic
memory from timestep embeddings.

5. Conclusion
The ability to adapt in minutes is a defining characteris-
tic of human intelligence and an important milestone on
the path towards general intelligence. Given any level of
bounded rationality, there will be a space of tasks in which
it is impossible for agents to succeed by just generalising
their policy zero-shot, but where progress is possible if the
agent is capable of very fast in-context learning from feed-
back. To be useful in the real world, and in interaction
with humans, our artificial agents should be capable of fast
and flexible adaptation given only a few interactions, and
should continue to adapt as more data becomes available.
Operationalising this notion of adaptation, we seek to train
an agent that, given few episodes in an unseen environment
at test time, can accomplish a task that requires trial-and-
error exploration and can subsequently refine its solution
towards optimal behaviour.

In this paper, we demonstrate, for the first time to our
knowledge, an agent trained with RL that is capable of
rapid in-context adaptation across a vast, open-ended task
space, at a timescale that is similar to that of human play-
ers. This Adaptive Agent (AdA) explores held-out tasks
in a structured way, refining its policy towards optimal be-
haviour given only a few interactions with the task. Fur-
ther, AdA is amenable to contextual first-person prompt-
ing, strengthening its few-shot performance, analogous to
prompting in large language models. AdA shows scaleable
performance as a function of number of parameters, con-
text length and richness of the training task distribution.

Our work highlights several crucial research directions for
future progress towards increasingly general agents. No-
tably, we show it is possible to scale black-box meta-RL.
We show that state-of-the-art auto-curriculum techniques
can shape the data distribution to provide sufficient signal
for learning to learn in an open-ended task space. More-
over, we demonstrate that attention-based architectures can
take advantage of this signal much more effectively than
purely recurrent networks, illustrating the importance of
co-adapting data distribution and agent architecture for fa-
cilitating rapid adaptation. Finally, distillation enables us
to realise the potential of large-scale Transformer architec-
tures. We hope that our work will inspire progress in each
of these areas, leading to increasingly capable and accessi-
ble foundation RL agents in the future.

9

Human-Timescale Adaptation in an Open-Ended Task Space

References
R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville,

and M. G. Bellemare. Deep reinforcement learning at the
edge of the statistical precipice. CoRR, abs/2108.13264,
2021.

I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,
B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell,
R. Ribas, et al. Solving rubik’s cube with a robot hand.
arXiv preprint arXiv:1910.07113, 2019.

J. Albrecht, A. J. Fetterman, B. Fogelman, E. Kitanidis,
B. Wróblewski, N. Seo, M. Rosenthal, M. Knutins,
Z. Polizzi, J. B. Simon, and K. Qiu. Avalon: A bench-
mark for RL generalization using procedurally gener-
ated worlds. In Thirty-sixth Conference on Neural In-
formation Processing Systems Datasets and Benchmarks
Track, 2022.

B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell,
B. McGrew, and I. Mordatch. Emergent tool use from
multi-agent autocurricula. In International Conference
on Learning Representations, 2020.

D. Balduzzi, K. Tuyls, J. Perolat, and T. Graepel. Re-
evaluating evaluation. Advances in Neural Information
Processing Systems, 31, 2018.

C. Berner, G. Brockman, B. Chan, V. Cheung, P. De-
biak, C. Dennison, D. Farhi, Q. Fischer, S. Hashme,
C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki,
M. Petrov, H. P. de Oliveira Pinto, J. Raiman, T. Sali-
mans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever,
J. Tang, F. Wolski, and S. Zhang. Dota 2 with large scale
deep reinforcement learning. CoRR, abs/1912.06680,
2019.

V. Bhatt, B. Tjanaka, M. C. Fontaine, and S. Nikolaidis.
Deep surrogate assisted generation of environments. In
Advances in Neural Information Processing Systems,
2022.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman,
S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosse-
lut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card,
R. Castellon, N. S. Chatterji, A. S. Chen, K. Creel,
J. Q. Davis, D. Demszky, C. Donahue, M. Doumbouya,
E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh,
L. Fei-Fei, C. Finn, T. Gale, L. Gillespie, K. Goel, N. D.
Goodman, S. Grossman, N. Guha, T. Hashimoto, P. Hen-
derson, J. Hewitt, D. E. Ho, J. Hong, K. Hsu, J. Huang,
T. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti,
G. Keeling, F. Khani, O. Khattab, P. W. Koh, M. S.
Krass, R. Krishna, R. Kuditipudi, and et al. On the
opportunities and risks of foundation models. CoRR,
abs/2108.07258, 2021.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Vander-
Plas, S. Wanderman-Milne, and Q. Zhang. JAX: com-
posable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei. Lan-
guage models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, ed-
itors, Advances in Neural Information Processing Sys-
tems, volume 33, pages 1877–1901. Curran Associates,
Inc., 2020.

A. Campero, R. Raileanu, H. Kuttler, J. B. Tenenbaum,
T. Rocktäschel, and E. Grefenstette. Learning with
AMIGo: Adversarially motivated intrinsic goals. In
International Conference on Learning Representations,
2021.

M. Carroll, R. Shah, M. K. Ho, T. L. Griffiths, S. A. Se-
shia, P. Abbeel, and A. Dragan. On the utility of learning
about humans for human-ai coordination, 2019.

E. Cetin, P. J. Ball, S. Roberts, and O. Celiktutan. Stabi-
lizing off-policy deep reinforcement learning from pix-
els. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepes-
vari, G. Niu, and S. Sabato, editors, Proceedings of
the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learning
Research, pages 2784–2810. PMLR, 17–23 Jul 2022.

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover,
M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch. De-
cision transformer: Reinforcement learning via sequence
modeling. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, 2021.

M. Chevalier-Boisvert, L. Willems, and S. Pal. Minimalis-
tic gridworld environment for OpenAI Gym. https:

//github.com/maximecb/gym-minigrid,
2018.

K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Ben-
gio. On the properties of neural machine transla-
tion: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

F. Christianos, G. Papoudakis, and S. V. Albrecht. Pareto
actor-critic for equilibrium selection in multi-agent rein-
forcement learning. arXiv, 2022. doi: 10.48550/ARXIV.
2209.14344.

10

http://github.com/google/jax
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

Human-Timescale Adaptation in an Open-Ended Task Space

I. Clavera, A. Nagabandi, S. Liu, R. S. Fearing, P. Abbeel,
S. Levine, and C. Finn. Learning to adapt in dynamic,
real-world environments through meta-reinforcement
learning. In International Conference on Learning Rep-
resentations, 2019.

J. Clune. AI-GAs: AI-generating algorithms, an alternate
paradigm for producing general artificial intelligence.
CoRR, abs/1905.10985, 2019.

K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schul-
man. Quantifying generalization in reinforcement learn-
ing. CoRR, abs/1812.02341, 2018.

K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leverag-
ing procedural generation to benchmark reinforcement
learning. In Proceedings of the 37th International Con-
ference on Machine Learning, pages 2048–2056, 2020.

A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots
that can adapt like animals. Nature, 521:503–507, 2015.

Cultural General Intelligence Team, A. Bhoopchand,
B. Brownfield, A. Collister, A. D. Lago, A. Edwards,
R. Everett, A. Frechette, Y. G. Oliveira, E. Hughes,
K. W. Mathewson, P. Mendolicchio, J. Pawar, M. Pislar,
A. Platonov, E. Senter, S. Singh, A. Zacherl, and L. M.
Zhang. Learning robust real-time cultural transmission
without human data, 2022.

W. M. Czarnecki, R. Pascanu, S. Osindero, S. Jayaku-
mar, G. Swirszcz, and M. Jaderberg. Distilling policy
distillation. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 1331–1340.
PMLR, 2019.

A. Dafoe, E. Hughes, Y. Bachrach, T. Collins, K. R. Mc-
Kee, J. Z. Leibo, K. Larson, and T. Graepel. Open prob-
lems in cooperative AI. CoRR, abs/2012.08630, 2020.

Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and
R. Salakhutdinov. Transformer-XL: Attentive language
models beyond a fixed-length context. In Proceedings of
the 57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2978–2988, Florence, Italy,
July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1285.

M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, J. Sal-
vador, K. Ehsani, W. Han, E. Kolve, A. Farhadi, A. Kem-
bhavi, and R. Mottaghi. ProcTHOR: Large-scale em-
bodied AI using procedural generation. In Advances
in Neural Information Processing Systems, 2022. doi:
10.48550/ARXIV.2206.06994.

M. Dennis, N. Jaques, E. Vinitsky, A. Bayen, S. Russell,
A. Critch, and S. Levine. Emergent complexity and
zero-shot transfer via unsupervised environment design.

In Advances in Neural Information Processing Systems,
volume 33, 2020.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-
training of deep bidirectional transformers for language
understanding. In J. Burstein, C. Doran, and T. Solorio,
editors, Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Vol-
ume 1 (Long and Short Papers). Association for Compu-
tational Linguistics, 2019.

Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever,
and P. Abbeel. RL2: Fast reinforcement learning via
slow reinforcement learning, 2017.

L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu,
A. Tang, D.-A. Huang, Y. Zhu, and A. Anandkumar.
Minedojo: Building open-ended embodied agents with
internet-scale knowledge. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022.

K. Fang, Y. Zhu, S. Savarese, and F.-F. Li. Adaptive proce-
dural task generation for hard-exploration problems. In
International Conference on Learning Representations,
2021.

G. Farquhar, K. Baumli, Z. Marinho, A. Filos, M. Hessel,
H. P. van Hasselt, and D. Silver. Self-consistent models
and values. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, editors, Advances in Neu-
ral Information Processing Systems, volume 34, pages
1111–1125, 2021.

A. Filos, E. Vértes, Z. Marinho, G. Farquhar, D. Borsa,
A. L. Friesen, F. M. P. Behbahani, T. Schaul, A. Barreto,
and S. Osindero. Model-value inconsistency as a signal
for epistemic uncertainty. In K. Chaudhuri, S. Jegelka,
L. Song, C. Szepesvári, G. Niu, and S. Sabato, editors,
International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA, vol-
ume 162 of Proceedings of Machine Learning Research,
pages 6474–6498. PMLR, 2022.

M. Fontaine, Y.-C. Hsu, Y. Zhang, B. Tjanaka, and S. Niko-
laidis. On the importance of environments in human-
robot coordination. 07 2021.

D. Grbic, R. Palm, E. Najarro, C. Glanois, and S. Risi.
EvoCraft: A New Challenge for Open-Endedness, pages
325–340. 04 2021.

S. Gronauer and K. Diepold. Multi-agent deep reinforce-
ment learning: a survey. Artificial Intelligence Review,
55(2):895–943, 2022.

11

Human-Timescale Adaptation in an Open-Ended Task Space

D. Hafner. Benchmarking the spectrum of agent capabili-
ties. In International Conference on Learning Represen-
tations, 2022.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

J. Heinrich, M. Lanctot, and D. Silver. Fictitious self-play
in extensive-form games. In International conference on
machine learning, pages 805–813. PMLR, 2015.

D. Hendrycks and K. Gimpel. Gaussian error linear units
(gelus). arXiv: Learning, 2016.

M. Hessel, I. Danihelka, F. Viola, A. Guez, S. Schmitt,
L. Sifre, T. Weber, D. Silver, and H. Van Hasselt. Muesli:
Combining improvements in policy optimization. In In-
ternational Conference on Machine Learning. PMLR,
2021.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya,
T. Cai, E. Rutherford, D. d. L. Casas, L. A. Hendricks,
J. Welbl, A. Clark, et al. Training compute-optimal large
language models. arXiv preprint arXiv:2203.15556,
2022.

H. Hu, A. Peysakhovich, A. Lerer, and J. Foerster. “other-
play”for zero-shot coordination. In Proceedings of Ma-
chine Learning and Systems 2020, pages 9396–9407,
2020.

M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki,
J. Donahue, A. Razavi, O. Vinyals, T. Green, I. Dunning,
K. Simonyan, et al. Population based training of neural
networks. arXiv preprint arXiv:1711.09846, 2017.

M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Mar-
ris, G. Lever, A. G. Castañeda, C. Beattie, N. C. Ra-
binowitz, A. S. Morcos, A. Ruderman, N. Sonnerat,
T. Green, L. Deason, J. Z. Leibo, D. Silver, D. Has-
sabis, K. Kavukcuoglu, and T. Graepel. Human-level
performance in 3d multiplayer games with population-
based reinforcement learning. Science, 364(6443):859–
865, 2019.

M. Janner, Q. Li, and S. Levine. Offline reinforcement
learning as one big sequence modeling problem. In Ad-
vances in Neural Information Processing Systems, 2021.

M. Jiang, M. Dennis, J. Parker-Holder, J. Foerster,
E. Grefenstette, and T. Rocktäschel. Replay-guided ad-
versarial environment design. In Advances in Neural In-
formation Processing Systems, 2021a.

M. Jiang, E. Grefenstette, and T. Rocktäschel. Prioritized
level replay. In The International Conference on Ma-
chine Learning, 2021b.

M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The
Malmo platform for artificial intelligence experimenta-
tion. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence. AAAI Press,
2016.

A. Juliani, A. Khalifa, V. Berges, J. Harper, E. Teng,
H. Henry, A. Crespi, J. Togelius, and D. Lange. Obstacle
Tower: A Generalization Challenge in Vision, Control,
and Planning. In IJCAI, 2019.

N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. To-
gelius, and S. Risi. Procedural level generation im-
proves generality of deep reinforcement learning. CoRR,
abs/1806.10729, 2018.

A. Kanervisto, S. Milani, K. Ramanauskas, N. Topin,
Z. Lin, J. Li, J. Shi, D. Ye, Q. Fu, W. Yang, W. Hong,
Z. Huang, H. Chen, G. Zeng, Y. Lin, V. Micheli,
E. Alonso, F. Fleuret, A. Nikulin, Y. Belousov, O. Svid-
chenko, and A. Shpilman. Minerl diamond 2021 compe-
tition: Overview, results, and lessons learned, 2022.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown,
B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and
D. Amodei. Scaling laws for neural language models.
CoRR, abs/2001.08361, 2020.

R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel. A
survey of generalisation in deep reinforcement learning.
CoRR, abs/2111.09794, 2021.

A. Kumar, Z. Fu, D. Pathak, and J. Malik. RMA: Rapid
motor adaptation for legged robots. In Robotics: Science
and Systems, 2021.

H. Küttler, N. Nardelli, A. H. Miller, R. Raileanu, M. Sel-
vatici, E. Grefenstette, and T. Rocktäschel. The
NetHack Learning Environment. In Proceedings of the
Conference on Neural Information Processing Systems
(NeurIPS), 2020.

M. Laskin, L. Wang, J. Oh, E. Parisotto, S. Spencer,
R. Steigerwald, D. Strouse, S. Hansen, A. Filos,
E. Brooks, M. Gazeau, H. Sahni, S. Singh, and V. Mnih.
In-context reinforcement learning with algorithm distil-
lation, 2022.

K.-H. Lee, O. Nachum, S. Yang, L. Lee, C. D. Free-
man, S. Guadarrama, I. Fischer, W. Xu, E. Jang,
H. Michalewski, and I. Mordatch. Multi-game decision
transformers. In A. H. Oh, A. Agarwal, D. Belgrave, and
K. Cho, editors, Advances in Neural Information Pro-
cessing Systems, 2022.

S. Liu, G. Lever, N. Heess, J. Merel, S. Tunyasuvunakool,
and T. Graepel. Emergent coordination through compe-
tition. In International Conference on Learning Repre-
sentations, 2019.

12

Human-Timescale Adaptation in an Open-Ended Task Space

D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri,
Y. Li, A. Bharambe, and L. van der Maaten. Exploring
the limits of weakly supervised pretraining. In Com-
puter Vision – ECCV 2018: 15th European Confer-
ence, Munich, Germany, September 8-14, 2018, Pro-
ceedings, Part II, page 185–201, Berlin, Heidelberg,
2018. Springer-Verlag. ISBN 978-3-030-01215-1.

T. Matiisen, A. Oliver, T. Cohen, and J. Schulman. Teacher-
student curriculum learning. IEEE Trans. Neural Net-
works Learn. Syst., 31(9):3732–3740, 2020.

L. C. Melo. Transformers are meta-reinforcement learn-
ers. In International Conference on Machine Learning,
pages 15340–15359. PMLR, 2022.

V. Mikulik, G. Delétang, T. McGrath, T. Genewein,
M. Martic, S. Legg, and P. Ortega. Meta-trained agents
implement bayes-optimal agents. In H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, edi-
tors, Advances in Neural Information Processing Sys-
tems, volume 33, pages 18691–18703. Curran Asso-
ciates, Inc., 2020.

J. Mu, V. Zhong, R. Raileanu, M. Jiang, N. Goodman,
T. Rocktäschel, and E. Grefenstette. Improving intrin-
sic exploration with language abstractions. In Advances
in Neural Information Processing Systems, 2022.

R. Munos, T. Stepleton, A. Harutyunyan, and M. Belle-
mare. Safe and efficient off-policy reinforcement learn-
ing. Advances in neural information processing systems,
29, 2016.

E. Nikishin, M. Schwarzer, P. D’Oro, P.-L. Bacon, and
A. Courville. The primacy bias in deep reinforce-
ment learning. In International Conference on Machine
Learning, pages 16828–16847. PMLR, 2022.

OEL Team, A. Stooke, A. Mahajan, C. Barros, C. Deck,
J. Bauer, J. Sygnowski, M. Trebacz, M. Jader-
berg, M. Mathieu, N. McAleese, N. Bradley-Schmieg,
N. Wong, N. Porcel, R. Raileanu, S. Hughes-Fitt, V. Dal-
ibard, and W. M. Czarnecki. Open-ended learning leads
to generally capable agents. CoRR, abs/2107.12808,
2021.

OpenAI, M. Plappert, R. Sampedro, T. Xu, I. Akkaya,
V. Kosaraju, P. Welinder, R. D’Sa, A. Petron, H. P.
de Oliveira Pinto, A. Paino, H. Noh, L. Weng, Q. Yuan,
C. Chu, and W. Zaremba. Asymmetric self-play for au-
tomatic goal discovery in robotic manipulation, 2021.

P. A. Ortega, J. X. Wang, M. Rowland, T. Genewein,
Z. Kurth-Nelson, R. Pascanu, N. Heess, J. Veness,
A. Pritzel, P. Sprechmann, et al. Meta-learning of se-
quential strategies. arXiv preprint arXiv:1905.03030,
2019.

K. Ota, D. K. Jha, and A. Kanezaki. Training larger net-
works for deep reinforcement learning, 2021.

E. Parisotto. Meta Reinforcement Learning through Mem-
ory. PhD thesis, Carnegie Mellon University Pittsburgh,
PA, 2021.

E. Parisotto, F. Song, J. Rae, R. Pascanu, C. Gulcehre,
S. Jayakumar, M. Jaderberg, R. L. Kaufman, A. Clark,
S. Noury, et al. Stabilizing transformers for reinforce-
ment learning. In International conference on machine
learning, pages 7487–7498. PMLR, 2020.

J. Parker-Holder, M. Jiang, M. Dennis, M. Samvelyan,
J. Foerster, E. Grefenstette, and T. Rocktäschel. Evolv-
ing curricula with regret-based environment design. In
The International Conference on Machine Learning,
2022.

M. Pislar, D. Szepesvari, G. Ostrovski, D. L. Borsa, and
T. Schaul. When should agents explore? In International
Conference on Learning Representations, 2022.

R. Portelas, C. Colas, K. Hofmann, and P. Oudeyer.
Teacher algorithms for curriculum learning of deep RL
in continuously parameterized environments. In L. P.
Kaelbling, D. Kragic, and K. Sugiura, editors, 3rd An-
nual Conference on Robot Learning, CoRL 2019, Os-
aka, Japan, October 30 - November 1, 2019, Proceed-
ings, volume 100 of Proceedings of Machine Learning
Research, pages 835–853. PMLR, 2019.

J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoff-
mann, F. Song, J. Aslanides, S. Henderson, R. Ring,
S. Young, et al. Scaling language models: Methods,
analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446, 2021.

R. Raileanu and T. Rocktäschel. Ride: Rewarding impact-
driven exploration for procedurally-generated environ-
ments. In International Conference on Learning Rep-
resentations, 2020.

S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo,
A. Novikov, G. Barth-maron, M. Giménez, Y. Sulsky,
J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi,
A. Edwards, N. Heess, Y. Chen, R. Hadsell, O. Vinyals,
M. Bordbar, and N. de Freitas. A generalist agent. Trans-
actions on Machine Learning Research, 2022.

M. Reid, Y. Yamada, and S. S. Gu. Can wikipedia help
offline reinforcement learning? CoRR, 2022.

S. Risi and J. Togelius. Increasing generality in machine
learning through procedural content generation. Na-
ture Machine Intelligence, 2, 08 2020. doi: 10.1038/
s42256-020-0208-z.

13

Human-Timescale Adaptation in an Open-Ended Task Space

M. Samvelyan, R. Kirk, V. Kurin, J. Parker-Holder,
M. Jiang, E. Hambro, F. Petroni, H. Kuttler, E. Grefen-
stette, and T. Rocktäschel. Minihack the planet: A sand-
box for open-ended reinforcement learning research. In
Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track, 2021.

M. Samvelyan, A. Khan, M. D. Dennis, M. Jiang, J. Parker-
Holder, J. N. Foerster, R. Raileanu, and T. Rocktäschel.
MAESTRO: Open-ended environment design for multi-
agent reinforcement learning. In Deep Reinforcement
Learning Workshop NeurIPS 2022, 2022.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized
experience replay. In The International Conference on
Learning Representations, 2015.

J. Schmidhuber. Curious model-building control systems.
In [Proceedings] 1991 IEEE International Joint Confer-
ence on Neural Networks, pages 1458–1463 vol.2, 1991.
doi: 10.1109/IJCNN.1991.170605.

J. Schmidhuber. Learning complex, extended sequences
using the principle of history compression. Neural Com-
putation, 4(2):234–242, 1992. doi: 10.1162/neco.1992.
4.2.234.

S. Schmitt, J. J. Hudson, A. Zidek, S. Osindero, C. Doer-
sch, W. M. Czarnecki, J. Z. Leibo, H. Kuttler, A. Zisser-
man, K. Simonyan, et al. Kickstarting deep reinforce-
ment learning. arXiv preprint arXiv:1803.03835, 2018.

C. Schuhmann, R. Beaumont, R. Vencu, C. W. Gor-
don, R. Wightman, M. Cherti, T. Coombes, A. Katta,
C. Mullis, M. Wortsman, P. Schramowski, S. R. Kun-
durthy, K. Crowson, L. Schmidt, R. Kaczmarczyk, and
J. Jitsev. LAION-5b: An open large-scale dataset for
training next generation image-text models. In Thirty-
sixth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track, 2022.

N. Shazeer. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

B. C. Stadie, G. Yang, R. Houthooft, X. Chen, Y. Duan,
Y. Wu, P. Abbeel, and I. Sutskever. Some considerations
on learning to explore via meta-reinforcement learning.
arXiv preprint arXiv:1803.01118, 2018.

P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein.
Ad hoc autonomous agent teams: Collaboration without
pre-coordination. In M. Fox and D. Poole, editors, Pro-
ceedings of the Twenty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2010, Atlanta, Georgia, USA,
July 11-15, 2010. AAAI Press, 2010.

D. Strouse, K. McKee, M. Botvinick, E. Hughes, and
R. Everett. Collaborating with humans without human
data. Advances in Neural Information Processing Sys-
tems, 34:14502–14515, 2021.

S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam,
and R. Fergus. Intrinsic motivation and automatic cur-
ricula via asymmetric self-play. In International Confer-
ence on Learning Representations, 2018.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting
unreasonable effectiveness of data in deep learning era.
In 2017 IEEE International Conference on Computer Vi-
sion (ICCV), pages 843–852, 2017.

Y. Tay, M. Dehghani, S. Abnar, H. W. Chung, W. Fedus,
J. Rao, S. Narang, V. Q. Tran, D. Yogatama, and D. Met-
zler. Scaling laws vs model architectures: How does
inductive bias influence scaling?, 2022.

J. Togelius and J. Schmidhuber. An experiment in au-
tomatic game design. In 2008 IEEE Symposium On
Computational Intelligence and Games, pages 111–118,
2008. doi: 10.1109/CIG.2008.5035629.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is
all you need. Advances in neural information processing
systems, 30, 2017.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu,
A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds,
P. Georgiev, J. Oh, . D. Horgan, M. Kroiss, I. Danihelka,
A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jader-
berg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dal-
ibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine,
Ç. Gülçehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yo-
gatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul,
T. P. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps,
and D. Silver. Grandmaster level in starcraft II using
multi-agent reinforcement learning. Nat., 575(7782):
350–354, 2019. doi: 10.1038/s41586-019-1724-z.

L. Vygotsky. Interaction between learning and develop-
ment. Readings on the Development of Children, pages
34–40, 1978.

J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer,
J. Z. Leibo, R. Munos, C. Blundell, D. Kumaran, and
M. Botvinick. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

J. X. Wang, Z. Kurth-Nelson, D. Kumaran, D. Tirumala,
H. Soyer, J. Z. Leibo, D. Hassabis, and M. Botvinick.
Prefrontal cortex as a meta-reinforcement learning sys-
tem. Nature neuroscience, 21(6):860–868, 2018.

14

Human-Timescale Adaptation in an Open-Ended Task Space

J. X. Wang, M. King, N. Porcel, Z. Kurth-Nelson, T. Zhu,
C. Deck, P. Choy, M. Cassin, M. Reynolds, F. Song,
et al. Alchemy: A structured task distribution for meta-
reinforcement learning. arxiv, 2021.

R. Wang, J. Lehman, J. Clune, and K. O. Stanley. Paired
open-ended trailblazer (POET): endlessly generating in-
creasingly complex and diverse learning environments
and their solutions. CoRR, abs/1901.01753, 2019.

R. Wang, J. Lehman, A. Rawal, J. Zhi, Y. Li, J. Clune, and
K. Stanley. Enhanced POET: Open-ended reinforcement
learning through unbounded invention of learning chal-
lenges and their solutions. In H. D. III and A. Singh, ed-
itors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 9940–9951. PMLR,
13–18 Jul 2020a.

T. Wang, H. Dong, V. Lesser, and C. Zhang. Roma: Multi-
agent reinforcement learning with emergent roles. arXiv
preprint arXiv:2003.08039, 2020b.

Z. Xu, J. Modayil, H. P. van Hasselt, A. Barreto, D. Sil-
ver, and T. Schaul. Natural value approximators: Learn-
ing when to trust past estimates. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017.

J. Yang, B. Petersen, H. Zha, and D. Faissol. Single episode
policy transfer in reinforcement learning. In Interna-
tional Conference on Learning Representations, 2019.

J. Yang, A. Li, M. Farajtabar, P. Sunehag, E. Hughes, and
H. Zha. Learning to incentivize other learning agents.
In Advances in Neural Information Processing Systems.
arXiv, 2020. doi: 10.48550/ARXIV.2006.06051.

W. Yu, J. Tan, Y. Bai, E. Coumans, and S. Ha. Learn-
ing fast adaptation with meta strategy optimization.
IEEE Robotics and Automation Letters, 5(2):2950–2957,
2020.

X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer. Scaling
vision transformers. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Los
Alamitos, CA, USA, jun 2022. IEEE Computer Society.

V. Zhong, T. Rocktäschel, and E. Grefenstette. RTFM: gen-
eralising to new environment dynamics via reading. In
8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020, 2020.

L. Zintgraf. Fast adaptation via meta reinforcement learn-
ing. PhD thesis, University of Oxford, 2022.

15

Human-Timescale Adaptation in an Open-Ended Task Space

Appendix

A. Authors and Contributions
We list authors alphabetically by last name. Please direct all correspondence to Feryal Behbahani (feryal@google.com)
and Edward Hughes (edwardhughes@google.com).

A.1. Full-time contributors

• Jakob Bauer: technical leadership, curriculum research, infrastructure engineering, task authoring, paper writing

• Kate Baumli: agent research, scaling, agent analysis, task authoring, paper writing

• Feryal Behbahani: research vision, team leadership, agent research, paper writing

• Avishkar Bhoopchand: technical leadership, evaluation research, infrastructure engineering, task authoring, paper
writing

• Michael Chang: visualisation, agent analysis, human experiments

• Adrian Collister: XLand development, human experiments

• Edward Hughes: research vision, team leadership, evaluation research, paper writing

• Sheleem Kashem: infrastructure engineering, curriculum research, human experiments

• Jack Parker-Holder: curriculum research, paper writing

• Yannick Schroecker: agent research, scaling, task authoring, agent analysis, paper writing

• Jakub Sygnowski: infrastructure engineering, curriculum research, agent analysis, paper writing

• Alexander Zacherl: design leadership, agent analysis, task authoring, visualisation, human experiments

• Lei Zhang: curriculum research, agent analysis, paper writing

A.2. Part-time contributors

• Nathalie Bradley-Schmieg: project management

• Natalie Clay: QA testing, human experiments

• Vibhavari Dasagi: evaluation research

• Lucy Gonzalez: project management

• Karol Gregor: agent research

• Maria Loks-Thompson: XLand development, human experiments

• Hannah Openshaw: project management

• Shreya Pathak: agent analysis

• Nicolas Perez-Nieves: agent analysis, task authoring

• Nemanja Rakicevic: curriculum research, agent analysis

• Tim Rocktäschel: strategic advice, paper writing

• Sarah York: QA testing, human experiments

16

mailto:feryal@google.com
mailto:edwardhughes@deepmind.com

Human-Timescale Adaptation in an Open-Ended Task Space

A.3. Advisers

• Satinder Singh: strategic advice

• Karl Tuyls: strategic advice

B. Acknowledgements
We thank Max Jaderberg for early guidance on the project vision. We are grateful to Wojciech Marian Czarnecki for an
early version of the production rules formalism and Catarina Barros for a prototype implementation. We thank Dawid
Górny for support on implementing visualisation tools. We are grateful to Alex Platonov for artistic rendering of the
figures and accompanying videos. We thank Nathaniel Wong, Tom Hudson and the Worlds Team for their engineering
support. Further, we thank Andrew Bolt, Max Cant, Valentin Dalibard, Richard Everett, Nik Hemmings, Shaobo Hou,
Jony Hudson, Errol King, George-Cristian Muraru, Alexander Neitz, Valeria Oliveira, Doina Precup, Drew Purves, Daniel
Tanis, Roma Patel, and Marcus Wainwright for useful discussions and support. We are grateful to Sebastian Flennerhag
and Raia Hadsell for reviewing a draft of the paper.

C. Additional Related Work
Here we include additional related work related to procedural environment generation, which is a key component of our
work.

Procedural environment generation. We make use of procedural content generation (PCG) to generate a vast, diverse
task distribution. PCG has been studied for many years in the games community (Togelius and Schmidhuber, 2008; Risi
and Togelius, 2020) and more recently has been used to create testbeds for RL agents (Justesen et al., 2018; Cobbe et al.,
2018; Raileanu and Rocktäschel, 2020). Indeed, in the past few years a series of challenging PCG environments have
been proposed (Juliani et al., 2019; Cobbe et al., 2020; Küttler et al., 2020; Samvelyan et al., 2021; Chevalier-Boisvert
et al., 2018; Hafner, 2022; Deitke et al., 2022), mostly focusing on testing and improving generalisation in RL (Kirk et al.,
2021; Bhatt et al., 2022; Fontaine et al., 2021). More recently there has been increased emphasis on open-ended worlds:
Albrecht et al. (2022) proposed Avalon, a 3D world supporting complex tasks, while Minecraft (Johnson et al., 2016) has
been proposed as a challenge for Open-Endedness and RL (Kanervisto et al., 2022; Fan et al., 2022; Grbic et al., 2021),
but unlike XLand it does not admit control of the full simulation stack, thereby limiting the smoothness of the task space.

D. Environment Details
D.1. XLand 2.0

In this section we describe the differences between XLand 2.0 and the original XLand environment of (OEL Team et al.,
2021). We modify the configuration space as follows:

• We introduce a new relation touching(a,b). It is satisfied if objects a and b are in contact, as determined by
Unity’s collision detection with a distance threshold of 1 millimeter.

• We exclude all relations that refer to floors. As a more flexible alternative we introduce the option of spawning
objects in a permanently frozen state, rendering them immobile. Frozen objects can be used as anchor points in the
environment which require players to navigate to them by including them in goals or production rules.

• We only use predicates consisting of a single relation or its negation, excluding conjunctions or disjunctions of multi-
ple relations. Note that production rules (Section 2.1) allow us to specify tasks which require the player to sequentially
satisfy predicates, or to give them multiple ways to reach a desired state.

In addition we introduce the production rules system described in Section 2.1. There are three distinct mechanisms for
hiding production rule information from the players:

1. Hiding a full production rule, where the player only gets information that a rule exists, but neither knows the condition
nor what spawns.

17

Human-Timescale Adaptation in an Open-Ended Task Space

Figure D.1: XLand 2.0: a vast, smooth and diverse task space of adaptation problems. Different tasks have different adaptation
requirements, such as experimentation, tool use or division of labour. For instance, in a task requiring experimentation, a player might be
required to identify which objects can usefully combine, avoiding dead-ends, and then optimise the way in which they combine objects,
like a toy version of experimental chemistry. Each task can be run for one or more trials, where the environment is reset between trials,
but agent memory is not. Highlighted are two example tasks, Wrong Pair Disappears and Pass Over Wall Repeatedly,
showing the goal, initial objects, production rules (“rules” in the figure) and how agents need to interact with them to solve the task. For
full task descriptions see Appendix I.1.

2. Hiding an object, where a particular object is hidden from all production rules. The hidden objects are numbered such
that if multiple objects are hidden, the agent can distinguish them.

3. Hiding a condition’s predicate, where the agent gets to know the objects that need to satisfy some predicate, but it
does not know which one. The hidden predicates are also numbered.

For example, consider the “Wrong pair disppears” probe task depicted in Figure E.1. Our probe task set (Table I.1)
also contains an easier variant of this task “Wrong pair disppears, partial hiding”. In this variant, only the input objects
for each rule are hidden. In other words, the player is aware that one rule produces the desired black cube when
two (unknown) objects touch, and that the other rule destroys the two input objects when two (unknown) objects touch.
Moreover, they know that one object appears on the left-hand-side of both rules, because of the labelling. So the player
can infer immediately that there exists a useful rule and a dead-end rule in this variant. In synthetic language, the rules are:

touch(?1, ?2) ! black cube

touch(?3, ?2) !

Tables I.1 and I.2 contain further examples of partial hiding, including cases where information is hidden from one player
but not the other, creating tasks with information asymmetry and thereby opportunities for social learning.

For the reader’s convenience, Tables D.1 and D.2 respectively list all shapes and colours we used for objects in XLand.
Table D.3 lists all predicates we used for goals and production rules.

18

Human-Timescale Adaptation in an Open-Ended Task Space

Table D.1: Shapes used for objects.

Shape name
Wall
Cube
Sphere
Pyramid

Table D.2: Colours used for objects.

Colour name
Black
Purple
Yellow

Table D.3: Predicates used for goals and production rules.

Predicate name Meaning
touching(a,b) Whether a and b are in contact.
near(a,b) Whether a and b are at most 1m apart.
hold(a,b) Whether player a holds b.
see(a,b) If a is a player, whether it can see b. If not, whether the line connecting the

centres of mass of a and b is not obstructed by another object.
not(p) Whether predicate p is not satisfied.

D.2. Pre-sampling tasks for training

The space of goals and production rules can generate at least 1040 distinct tasks, even given quite restrictive bounds on the
number of objects and rules.1 For efficiency and to reduce variance, we pre-sample a subset of this space using the method
described below. In Section 3.5 we evaluate the effect of the size of the sampled set. For each task we sample a world
using the procedure outlined in OEL Team et al. (2021) and combine it with a game and production rules as follows.

Single-player tasks. We start by uniformly sampling a player’s goal, consisting of a predicate with optional negation
and two objects. Then, for a fixed number of steps (which we sample uniformly between 1 and 4), we add new production
rules, such that they need to be triggered in sequence to get the objects present in the goal. We initialise the world to contain
the objects present in the condition of the first production rule, together with up to 10 distractor objects, not present in any
production rule from this chain (nor in the goal).

Next, we introduce dead-end production rules. We sample them such that their condition contains either distractor objects
or ones that are ultimately necessary for satisfaction of the goal, yet the spawns are always distractors. As such, triggering
a dead end may put the game in an unsolvable state. Including them in the training games creates pressure on the agent
to avoid indiscriminately triggering all production rules. Finally, we sample a hiding mask, specifying which part of the
production rules will be visible or hidden from the player. The sampling of both the mechanism for hiding (described in
Section 2.1) and the actual parts to hide is uniform random.

Multi-player tasks. For this work we restrict our multi-player games to fully cooperative two-player games. Such games
are known to be particularly challenging, as they have multiple equilibria, and thus feature an equilibrium selection problem
(Dafoe et al., 2020). To sample such a game, we start by sampling a single-player game as outlined above and randomly
replace references to the first player in the goal or production rules with references to player two. We copy the goal and
sample a new production rule hiding mask for player two, resulting in a fully cooperative two-player game with potentially
asymmetric information provided about the task’s production rules.

1This is an order of magnitude lower-bound estimate, assuming 4 shapes, 3, colours, 7 predicates, a maximum of 5 production rules
with a maximum of 3 objects on the right-hand side, 7 blanking options, and a maximum of 20 objects in the scene.

19

Human-Timescale Adaptation in an Open-Ended Task Space

E. Evaluation
E.1. Test scores

We evaluate our agents on a suite of 1000 held out test tasks sampled from the same distribution as the training games, using
held-out world topologies. The procedure for pre-generating the XLand task pool is detailed in Appendix D.2. Rejection
sampling ensures that no game (goal and production rules) in the test set is contained in the training set.

In XLand, rewards are obtained on every frame in which a goal is satisfied, making total rewards incomparable between
tasks. To account for this, we fine-tune AdA on the test-task set. We compute the fine-tuned agent’s maximum total last-
trial reward (over any number of trials up to 13) and use this as an estimate of the maximum possible reward obtainable
in a single trial of each test task. We call this quantity the normaliser. We define the test score Si

m of an agent i on task
m with k trials to be the total reward obtained in trial k divided by the normaliser. This normalises rewards roughly to the
interval [0, 1]. Note that it is possible for an agent under evaluation to obtain a score greater than 1, both due to noise in the
evaluation process and the fact that the agent under evaluation may be better than the one used for creating the normaliser.

When reporting the scores of our agents on a game with k trials, we always use the total reward of the last trial. This is a
good measure of whether the agent has successfully navigated the exploration-exploitation tradeoff in a novel MDP, given
knowledge of the number of trials k. If an agent is capable of adaptation, we expect to see the performance in the last (kth)
trial increase as a function of k: that is to say, the agent is able to make use of additional experience on-the-fly to perform
better. We evaluate on k 2 {1, 2, 3, 5, 8, 13}, where 8 and 13 are held out values of k that were not seen during training.

To aggregate the scores of an agent across games, we use a fixed (usually 20th) percentile score (Agarwal et al., 2021).
This gives us a lower bound guarantee on the performance of the agent across most of the tasks: for example, if the 20th

percentile score of an agent is 0.5, then the agent gets the score of at least 0.5 on 80% of the games. Using an aggregation
method like this (as opposed to an average) allows us to concentrate on the coverage of many tasks, as opposed to focusing
the effort on improving the performance on outlier tasks. Empirically, we find that our results are robust across a range of
different percentiles.

E.2. Hand-authored probe tasks

Evaluation using test tasks can only give us information with respect to the pre-sampled distribution in Appendix D.2.
While this is certainly vast and diverse, an arbitrary task sampled from the test set is not necessarily easily understandable
for humans. So in addition to quantitative evaluation on 1000 test tasks we also investigate specific human-level capabilities
of our agent on two sets of 30 single-agent and 28 multi-agent probe tasks. These are based on situations that are intuitive
to humans and which require qualitatively different behaviours, which we can inspect in more detail “with the naked eye”.
A full description of all 58 probe tasks can be found in Appendix I. Representative single-agent and multi-agent probe
tasks are described in detail in Figures E.1–E.4.

E.3. Adaptation metric

We introduce an adaptation metric to rank our agents based on their few-shot adaptation capability across the hand-authored
probe task set. We collect last-trial total reward for all (m, k) pairs where m is a probe task and k 2 {1, 2, 3, 5, 8, 13}. We
normalise the per-task scores just as for the test set above. We then aggregate over tasks using the 50th percentile (median).
Finally, we aggregate over k by saying that agent A ranks higher than agent B if and only if A’s task-aggregated scores
are a Pareto improvement over B’s. That is to say, we would like agents that are both capable of high-quality zero-shot
generalisation where possible (k = 1), and also that can use additional trial information to efficiently improve their policy
in few-shots k > 1; we don’t “trade-off” between these.

A convenient way of using the Pareto improvement criterion to compute a scalar metric is the Nash average method of
Balduzzi et al. (2018). We construct a competitive meta-game of “agents vs. k”, and compute the maximum entropy
Nash equilibrium for the game. The Nash payoff is then used as the adaptation metric, and agents are ranked by this
metric. As desired, this metric has the property that if neither agent A nor agent B Pareto-dominate the other, the A and B
receive the same Nash payoff and are therefore ranked equally. This adaptation metric was used as the means of selecting
hyperparameters for training our best performing agent in Section 3.1.

20

Human-Timescale Adaptation in an Open-Ended Task Space

Figure E.1: Wrong Pair Disappears:
The player’s goal is to hold a black cube,
which does not exist among the initial
objects. But there are two (hidden) pro-
duction rules. The player needs to iden-
tify the correct world state which trig-
gers the rule that creates the cube and not
the one which destroys the necessary in-
puts. All this is embedded in a challeng-
ing world layout with one-way drops and
limited visibility.

Figure E.2: Pyramid in a Haystack: To
create the necessary yellow pyramid, the
player needs to find and hold the purple
cube. There are several distractor ob-
jects and distractor rules in this world,
requiring the player to deal not just with
a hard exploration challenge but also a
very noisy environment.

Figure E.3: Push, don’t lift: The vast
majority of training and evaluation tasks
require lifting objects. Here two hidden
rules destroy any object when lifted. In
order to create the goal state, some “lat-
eral thinking” is necessary: the player
needs to identify that pushing the cubes
with their body is possible.

21

Human-Timescale Adaptation in an Open-Ended Task Space

Figure E.4: Irreversible production for
two: Both players score when the first
player holds a yellow sphere. There is
no yellow sphere initially, but it can be
produced from executing the first, sec-
ond and fourth production rules in or-
der. The other two rules are dead ends,
destroying key input objects. Note that
some input objects exist multiple times
in the initial state, so there are multiple
solution paths.

(a) (b)

Figure E.5: The human player interface. (a) Prior to each trial players are told how many trials they have remaining on the current
task, and are given unlimited time to read the goal and production rules (subject to any hiding). (b) During the trial players observe the
same first-person camera view as agents, but at a higher 800⇥ 600 pixel resolution. The goal, production rules, current score, and time
remaining in the trial are displayed via UI elements.

E.4. Human data collection

To provide a benchmark for human-timescale adaptation, we collected score data from a pool of 100 human players on the
30 single-agent probe tasks. Before attempting the probe tasks, each player completed a graded training curriculum of 23
tasks to acquire familiarity with the mouse-and-keyboard control scheme and user interface (Figure E.5), and the particular
game mechanics of XLand. Since humans cannot undergo a short-term memory “reset” on episode boundaries, individual
players attempted each of the probe tasks for a single k only, with k 2 {1, 2, 3, 5, 8}. All players experienced a variety
of k across the task set. We assigned each player a unique ordering of the 30 probe tasks to average out any knowledge
transfer from earlier tasks to later, and, within those orderings, we imposed separation between tasks with known similarity.
Technical problems (e.g. internet dropout) prevented completion of 3.4% of the 3000 episodes, leaving an average of 19.3
samples per (task, k) pair, and a minimum of 17 samples for any individual (task, k).

Participants were recruited through an internal crowdsourcing pool. All participants provided informed consent prior to
completing tasks and were reimbursed for their time. The consent form made participants aware that anonymous data on
scores and gameplay would be made available as part of a future publication. The consent form also identified a potential
risk, that playing the tasks might induce motion sickness. To mitigate this risk, participants were provided with regular
opportunities to take breaks, and were free to withdraw from the study at any time. No PII was collected during the study.
The full details of our study design, including compensation rates, were reviewed by our internal advisory group for human
data before collection began.

22

Human-Timescale Adaptation in an Open-Ended Task Space

XLand 2.0 is implemented in Unity, a state-of-the-art game engine that supports seamless real-time human play on a local
PC. Due to technical requirements for our crowdsourcing pool, our participants interacted with XLand 2.0 not on a local
PC but rather across a network connection to servers running the environment. Inevitably, interacting with the environment
across a network has the potential to introduce some latency, due to uncontrollable factors in the network quality. While
we did our best to mitigate any factors under our control (such as locating the servers physically close to the crowdsourcing
pool), some participants still reported occasional lag.

F. Agent Details
In this work we relied in part on hyperparameter values that were tuned in previous literature, for example for some
hyperparameters in the Muesli agent. For the remaining hyperparameters we performed either grid-search tuning (e.g.
for the auto-curriculum) or tuned the parameters by hand over the course of several experiments (e.g. for the learning
algorithm).

F.1. Learning algorithm

We use Muesli (Hessel et al., 2021) as our RL algorithm. We briefly describe the algorithm here, but refer the reader to
the original publication for details. Taking a history-dependent encoding as input, in our case the output of an RNN or
Transformer, AdA learns a sequence model (an LSTM) to predict the values v̂i, action-distributions ⇡̂i and rewards r̂i for
the next I steps. Here, i = 0, . . . , I denotes the prediction i steps ahead. I is typically small and in our case I = 4. For
each observed step t, the model is unrolled for I steps and updated towards respective targets:

Lt
r =

IX

i=0

�
r̂ti � rt+i

�2
, (1)

Lt
v =

IX

i=0

�
v̂ti �Gt+i

�2
, (2)

Lt
⇡ =

IX

i=0

KL
�
⇡t+i

CMPO

���� ⇡̂t
i

�
. (3)

Here, rt+i refers to the observed rewards. Gt+i refers to value-targets which are obtained using Retrace (Munos et al.,
2016) based on Q-values obtained from one-step predictions of the model.

The action-targets ⇡t
CMPO are obtained by re-weighting the current policy2 using clipped, normalised, exponentially trans-

formed advantages. Muesli furthermore incorporates an additional auxiliary policy-gradient loss based on these advantages
to help optimise immediate predictions of action-probabilities. Finally, Muesli maintains a target network which trails the
sequence model and is used for acting and to compute Retrace targets and advantages. Table F.1 details the full learning
algorithm hyperparameters. We refer the reader to the Muesli paper for detailed explanations about what each parameter
value is for.

F.2. Agent Architecture

Here we provide an overview of the agent architecture, and provide important hyperparameters for the network architecture.

Observation encoder. The first-person view RGB observation (Table F.2) is passed through a ResNet (He et al., 2016)
with [16, 32, 32] convolutional channels, each consisting of 2 ⇥ 2 blocks and a final output size of 256. Max-pooling is
used, in addition to scalar residual multipliers. relu activations are used throughout.

The goal observation is passed through a goal embedder, which is the same in OEL Team et al. (2021). This maps each of
the 6 goal elements (negation, predicate, shape of object 1, colour of object 1, shape of object 2, colour of object 2) in the
goal representation to a dense embedding vector of size 8. These are concatenated together and passed through a 3-layer
MLP of size [8, 8, 8], resulting in a final goal embedding of size 8.

2The prior distribution is actually a mixture of the current estimate of the policy, the (outdated) policy used to produce the sample
and the uniform distribution where the latter two are mixed in as regularisers.

23

Human-Timescale Adaptation in an Open-Ended Task Space

Table F.1: Learning algorithm hyperparameters.

Hyperparameter Value
Model rollout steps 4

Search params update rate 0.001
Value loss weight 1.0
Policy loss weight 3.0

Reward loss weight 1.0
CMPO Policy loss weight 1.0

Retrace � 0.95
Optimizer Adam

Adam - max absolute update 1.0
Adam - epsilon 1e-8

Adam - learning rate 1e-4 (fixed schedule)
Discount 0.99

Batch size 144 sequences
Sequence length 80 frames

Actors per learner 12,000
CMPO loss p(uniform prior) 0.003

CMPO loss p(actor prior) 0.03

Production rules are encoded in the same manner as the goal, but mapped through a larger final MLP of shape [512, 256]
resulting in a final production rule embedding vector of size 256.

The encoded RGB, goal, and production rules observations are concatenated together with all remaining scalar and vector
observations (including previous reward, previous action, proprioception observations, and trial timing information) and
passed though a final MLP. This results in an encoded observation vector of a size matching the hidden dimension of the
Transformer memory.

Transformer memory. We use a Transformer-XL with causal masking (Dai et al., 2019). For the actor step we use a
context window of 1, and in the learner step we use a rollout context window of 80. The Transformer-XL memory uses
300 previous cached activations (1800 effective timesteps) of memory in all experiments unless otherwise stated. We apply
layer normalisation before attention operations as in Parisotto et al. (2020), use gating in the feedforward component as in
Shazeer (2020), and apply relative positional embeddings as in Dai et al. (2019). As is common with Transformers, we use
the gelu activation function throughout (Hendrycks and Gimpel, 2016).

Transformer-XL enables the use of longer, variable-length context windows by concatenating a cached memory of previous
attention layer inputs to the keys and values during each forward pass. Since inputs to intermediate layers are activations
from the previous layer, which in themselves contain information about the past, caching M activations theoretically allows
for an effective memory horizon of M ⇥ L, where L is the number of attention layers in the network.

Muesli sequence model and prediction heads. Next, we take the Transformer-XL output embedding, and use two
MLPs of width 1000 to produce the hidden and cell values for the initial state of the Muesli model LSTM. On top of the
hidden value, we apply MLP heads of width 1000 for the policy and value respectively. The policy MLP is followed by 6
linear softmaxed outputs corresponding to 6 action groups in a decomposed action space for the policy (as in OEL Team
et al. (2021)). The value MLP is followed by a 601-unit binned logit prediction as in Hessel et al. (2021). Finally, the
Muesli sequence model is unrolled for a further 4 steps, starting from the LSTM state embedding and producing a 1000-
dimensional output vector on each LSTM step. This feeds into a further 1000-dimensional MLP followed by a 601-unit
binned reward prediction.

F.3. Observations

We summarise all the observations received by the agent when running inference in Table F.2. In the descriptions, “legacy
reasons” refers to an observation format that was inherited from OEL Team et al. (2021).

24

Human-Timescale Adaptation in an Open-Ended Task Space

Observations
Embedding

Value
Head

Policy
Head

Value
Head

Policy
Head

Observations
Embedding

Transformer-XL

t Tvt vT

RGB Goals Hand Sensor

Rules

Trial Info t-1 r
t-1

RGB Goals Hand Sensor

Rules

Trial Info r
T-1T-1

Figure F.1: Agent architecture. For each timestep, we embed and combine the pixel observation, goal, hand, trial and time information,
production rules, previous action, and previous reward into a single vector. These observations embeddings pass in sequence to the
Transformer-XL, whose output embeddings feed into an MLP value head, MLP policy head, and the Muesli LSTM model step (omitted
in the diagram for brevity). See Appendix F.2 for more details about our agent architecture.

Table F.2: Agent observations.

Observation name Shape Meaning
RGB 72⇥ 96⇥ 3 RGB values of the first-person view of the agent.
IS HOLDING 1 Integer in {0, 1} indicating whether the agent is holding an ob-

ject.
HAND DISTANCE 1 Distance to the held object as a fraction of the agent’s maximum

reach (0 while no object is held).
HAND FORCE 1 The force exerted by the agent on the held object as a fraction

of its maximum grip force (0 while no object is held).
LAST ACTION 10 Last action performed by the agent.
GOAL ATOMS 6⇥ 6 Agent-readable description of the goal. For legacy reasons, only

the first row is non-zero. The first row (6 numbers) describes the
goal with elements:
1: whether the goal is negated or not,
2: index of the binary predicate,
3-4: shape and colour of the first objects,
5-6: shape and colour of the second object.

GOAL SOP MATRIX 6⇥ 6 Always the same, kept for legacy reasons.
ATOM REWARDS 6 The reward of the agent in the previous frame (1 number),

padded with zeros for legacy reasons.
OPTION REWARDS 6 Same as ATOM REWARDS, kept for legacy reasons.
PRODUCTION RULES 16⇥ 26 A description of up to 16 production rules. A single produc-

tion rule is described as: 3 ⇥ 6 = 18 numbers describing up to
three object-predicate-object triggers and 4 ⇥ 2 = 8 numbers
describing up to 4 spawn objects. We only ever use a single
object-predicate-object trigger for all tasks in this paper. Hid-
ing (Section 2.1) is implemented by adding extra predicate and
shape indices meaning hidden production rule, first hidden ob-
ject, etc.

REWARD 1 The environment reward obtained in the previous step.
TRIALS REMAINING 5 One-hot encoding of the number of trials remaining in the

episode, up to a maximum of 5 trials remaining.
MORE THAN 5 TRIALS 1 Integer in {0, 1} indicating whether there are more than 5 trials

remaining in the episode.

25

Human-Timescale Adaptation in an Open-Ended Task Space

TIME UNTIL LAST TRIAL 1 Time remaining (in seconds) until the final trial in the current
episode.

TIME LEFT IN CURRENT
TRIAL

1 Time remaining (in seconds) until the end of the current trial.

DURATION OF LAST
TRIAL

1 The duration (in seconds) of the final trial in this episode. In our
setting, all trials for the same task have the same duration.

DURATION OF NEXT
TRIAL

1 The duration (in seconds) of the next trial in the current episode.
In our setting, all trials for the same task have the same duration.

G. Training Details
G.1. Meta-RL

AdA is trained with a meta-RL setup, in which episodes of experience for the agent comprise multiple trials of interaction
with the task environment, where the task is reset on trial boundaries. In this setting, it is known that the agent’s policy can
converge to Bayes-optimal behaviour, experimenting on-the-fly to reduce its epistemic uncertainty, and reusing discovered
information to achieve goals increasingly efficiently. It is important that the agent’s memory is not reset at trial boundaries,
but only at episode boundaries. Similarly, the agent trains with a fixed discount factor � 6= 0 throughout the episode,
including on trial boundaries. For training, we sample (m, k) pairs according to a factorised distribution (⇢M, ⇢K), the
parameters of which are controlled by an automatic curriculum (Section 2.2). The MDPs m are all drawn from a procedu-
rally generated domain M, called XLand (Section 2.1). We choose as our space of trials K = {1, 2, . . . 6}, and provide
our agent with k as a conditioning input. After training, our agent is capable of few-shot adaptation across a wide-range of
MDPs, including in held-out m 2 M on which ⇢M puts no probability mass, and when k > 6.

G.2. Distillation

To integrate the distillation loss with Muesli, we unroll the model from every transition observed by the student. We
minimise the KL-divergence between all of the action-probabilities predicted by the model and the action-probabilities
predicted by the teacher’s policy at the corresponding timestep. Analogously to Muesli’s policy-loss L⇡ defined in (3), we
define

Ldist =
IX

i=0

KL
�
⇡̃t+i
0

���� ⇡̂t
i

�
, (4)

where ⇡̃ corresponds to the predicted action-logits provided by the teacher given the same observed history. We weight the
distillation loss with 4.0 and unless otherwise stated use this loss for only the first 4B frames of training. Furthermore, we
found it useful to add additional L2 regularisation during distillation with a loss weight of 1e-6.

G.3. Single-agent training

Our single-agent training setup uses a task pool generated as described in Section 2.1. The experimental setup for the
single-agent distillation teacher is summarised in Table G.2. Single-agent training used an earlier version of XLand 2.0
than multi-agent experiments, without the frozen objects described in Section D.1. Frozen objects were also therefore
excluded from the test and hand-authored probe task sets. AdA was implemented using JAX (Bradbury et al., 2018) and
trained on 64 TPU devices. The wall-clock time for training this version of AdA from scratch was approximately 5 weeks:
1 week to train the teacher, and 4 weeks to train AdA. Even after this amount of training, AdA had not reached convergence,
illustrating the benefits of open-ended learning methods.

Table G.1: Experimental setup for experiments in Section 3.1.

players Model parameters Memory Task pool Curriculum Teacher Steps
1 169M TXL / 353M total 1800 25B PLR G.6 G.2 100B
2 265M TXL / 533M total 1800 see G.4 PLR G.6 G.3 70B

In Section 3 we report normalised scores for AdA. The normalisation factor is the total per-trial reward achieved by a
reference agent, which has been fine-tuned to approximate “infinite trials” performance. Here we describe the fine-tuning

26

Human-Timescale Adaptation in an Open-Ended Task Space

procedure used to create this reference agent. We start with an AdA agent (an earlier checkpoint of our final agent at
40G steps) and load it into a new training experiment. We replace the usual training tasks and curriculum with the test
or hand-authored tasks. We remove the auto-curriculum and just do uniform sampling over the tasks and k. The memory
reset scheme is the same as described in Section 2.3. We train this agent until it converges on the given task set. It took
less than 0.5G steps to converge. Now the agent should have something approximating an optimal policy on each task. We
took the maximum score over all k (usually k = 13) as the normaliser for that task.

Table G.2: Distillation teacher for the single-agent experiments in Section 3.1.

Model Parameters Memory Task pool Curriculum Teacher Steps
23M TXL / 76M total 1800 25B PLR G.6 None 25B

G.4. Multi-agent training

Starting from the 25B-sized task pool used for single-agent training, we generate a two-player task pool of the same size by
the procedure described in Appendix D.2. For all our multi-agent experiments, we use a half-half mixture of single-player
and two-player tasks, as described in Section 2.1. For each task we decide whether to spawn some of the initial objects
permanently frozen (see Appendix D.1) with 50% probability. For tasks with frozen objects, we iterate over the initially
spawned object types and freeze all spawned instances of this type with a probability of 20%, while ensuring that the task
remains solvable.

During training we uniformly sample a co-player policy from a pool generated using fictitious self-play. The co-player
pool is initialised with a random-action policy. Every 500M training frames we add a snapshot of the learning agent to the
pool, thereby adding more and more capable co-players over time. Finally we apply the PLR auto-curriculum method (see
Section 2.2) to curate the tasks (worlds, games and co-players) using the agent’s TD-error based fitness. The experimental
setup for the multi-agent distillation teacher is summarised in Table G.3.

Table G.3: Distillation teacher for the multi-agent experiments in Section 3.1.

Model Parameters Memory Task pool Curriculum Teacher Steps
23M TXL / 76M total 1800 see Sec G.4 PLR G.6 None 22B

G.5. Architecture experiments

Table G.4 shows the experimental setup for the experiments comparing different memory architectures in Section 3.2.

Table G.4: Experimental setup for comparing different memory architectures.

Architecture Parameters Memory Task pool Curriculum Teacher Steps
Transformer-XL

76M total
1800

25B No-op None 50BGRU with Attention -
GRU -

G.6. Auto-curriculum learning

No-op filtering details. Here we provide additional details of No-op filtering. For each task from the XLand training
pool, we evaluate the learning agent (without sending any experience to the learner) and no-op policy on the task for 10
independent episodes, each of length 1 trial, producing scores {R0, . . . , R9}, {R0

0, . . . , R
0
9}, respectively. We admit the

proposal task for training if it satisfies the following criteria:

1. maxR0
i  ✏1 (No-op is not too good.)

2. |{i : Ri � ✏2}|  ✏3 (Agent is not too good.)

27

Human-Timescale Adaptation in an Open-Ended Task Space

3. |{i : Ri � maxR0
i + ✏0}| � ✏4 or |{i : Ri  minR0

i � ✏0}| � ✏5 (Agent is sufficiently different from no-op.)

4. maxRi �minRi � ✏6 (Agent scores have sufficient variance.)

The ✏i’s are thresholds and become hyperparameters in our training setup. Since different tasks have different durations in
general, we use relative thresholds defined as a fraction of trial duration for ✏0, ✏1, ✏2, ✏6 and absolute thresholds for the
rest. Once a task is admitted for training, it is run using the full number of trials specified by the task and for 30 episodes.
All experience from these runs are sent to the learner. See Table G.5 for the hyperparameters used.

Table G.5: No-op filtering hyperparameters.

Parameter Value Relative to trial duration
✏0 0.01 Y
✏1 1.1 Y
✏2 0.4 Y
✏3 5 N
✏4 1 N
✏5 3 N
✏6 0.01 Y

PLR details. Here we provide additional details for Prioritised Level Replay (PLR), used in training AdA. PLR uses a
fitness score that approximates the agent regret for a given task (Jiang et al., 2021a;b). PLR maintains an archive P of
tasks to replay with fixed maximum size. With probability p (referred to as the replay probability) a task is sampled from
P while taking into account the fitness score and staleness of each task (see Jiang et al. (2021b), Section 3) to train the
learning agent. The staleness represents how much time has passed since the task was last sampled, and ensures that all
tasks in P have accurate scores. The final probabilities are computed by combining the fitness and staleness scores, with
staleness weighted using the parameter s 2 [0, 1].

Tasks are added to P by first sampling with probability 1 � p a proposal task from the training task set and evaluating its
fitness score. If the fitness score is greater than the minimum fitness score of all tasks in P , the proposal task is added to
P . If the new size of P exceeds the fixed maximum size, the lowest fitness task is dropped. Note that in PLR, unlike in
No-op filtering, a task can potentially be trained on indefinitely, if it never leaves P .

We found that using last-trial fitness led to better empirical performance and sample efficiency than first or average trial
fitness. This is likely because in earlier trials, error-based fitness is higher as the agent is pursuing exploratory behavior,
which should not be taken as a sign that the policy is sub-optimal. However, high error-based fitness in the last trial likely
indicates a sub-optimal policy when solving the task after time for adaptation, analogous to the regret approximation in the
original single-trial PLR.

In order to use the last-trial fitness as our objective we need to make a number of changes to the original PLR framework,
which was designed for single trials in a more homogeneous domain. We denote the per-step fitness score at the ith step
of trial k by fi,k. First, to avoid adding a bias towards longer trial durations we use the average per-trial fitness score
f̃k

P
i f̃i,k/Nk where Nk is the number of steps per trial. Next, to ensure we do not prioritise lower values of k, which

tend to have a higher average last-trial fitness score, we then normalise f̃k by fk(f̃k � µk)/�k where µk and �k are rolling
per-trial means and variances for each trial index, calculated from all evaluated tasks. Finally, we can define the fitness for
PLR to be fk, the normalised last-trial fitness score.

As described in Jiang et al. (2021a;b), PLR contains the following hyper-parameters: replay probability p, maximum replay
size Nmax, minimum replay size Nmin (we set p = 0 if |P| < Nmin), Ntrain the total number of trials for which to run a
training task before re-sampling, and s the staleness coefficient. See Table G.6 for the hyper-parameters used. We con-
ducted a grid search over the replay probability p 2 {0.1, 0.2, 0.5}, size of the replay pool Nmax 2 {1000, 10000, 50000}
and staleness coefficient s 2 {0.1, 0.2}, and in all cases set Nmin to be 90% of Nmax.

PLR fitness metric. It remains for us to define the per-step fitness score fi,k. For this, we use the simplest regret-like
metric, the 1-step TD-error (Jiang et al., 2021b; Schaul et al., 2015). Concretely, we estimate the TD-error fitness based on
the immediate value-predictions of the model: |rt + �v̂t+1

0 � v̂t0|. In some settings this may be undesirable, for example,

28

Human-Timescale Adaptation in an Open-Ended Task Space

Table G.6: PLR hyperparameters.

Parameter Value
p 0.2

Nmax 1000
Nmin 900
Ntrain 30
s 0.2

TD-errors typically increase as the agent achieves higher rewards. Therefore, we also propose to compute fitness metrics
based on the Muesli dynamics model. Rather than simply using the accuracy of the model prediction, we look at the
impact of the prediction on the value function and action predictions. We define the value-model fitness as |v̂t+1

0 � v̂t1|, the
difference between the value estimate at the predicted next state and the true next state. We also define a value-agnostic
metric, the action-model fitness as follows: JS(⇡̂t+1

0 , ⇡̂t
1), i.e. the difference between the action predictions at the predicted

next state and the actual next state, where difference is measured with the Jensen-Shannon divergence (Xu et al., 2017;
Farquhar et al., 2021; Filos et al., 2022; Pislar et al., 2022).

In Figure G.1 we show training curves for TD-error fitness, value-model fitness, and action-model fitness. Table G.7 shows
the experimental setup for these experiments. We see that both TD-error and action-model fitness metrics outperform the
value-model fitness. We chose TD-error for our PLR training runs because it has better asymptotic performance in both
the zero-shot and the few-shot setting, and because it was shown to perform well in previous work (Jiang et al., 2021a).

Table G.7: Experimental setup for comparing different PLR fitness functions.

Model parameters Memory Task pool Curriculum Teacher Steps Fitness function

23M TXL / 76M total 1800 25B PLR None 25B
TD error

Value model
Action model

Curriculum efficiency. Next, we compare training sample efficiency for baseline uniform sampling and the different
curriculum methods, in units of both learner steps and FLOPS. Figure G.2 shows the median last-trial scores for few-shot
(k = 13) and zero-shot evaluation tasks as a function of learner steps. We see that both No-op filtering and PLR curricula

Figure G.1: PLR fitness metric comparison for zero-shot generalisation (k = 1) and few-shot adaptation (k = 13). We compare the
TD-error fitness used in our main agents against two approaches using the Muesli dynamics model. We see that action-model fitness
matches TD-error fitness in few-shot performance, with weaker zero-shot performance.

29

Human-Timescale Adaptation in an Open-Ended Task Space

(a) (b)

Figure G.2: (a) Sample efficiency in steps for different choices of curricula. Both No-op and PLR significantly improves sample
efficiency over uniform sampling of tasks. Few-shot denotes k = 13 score and zero-shot denotes k = 1 score. (b) Sample efficiency in
FLOPs for different choices of curricula. No-op has an initial advantage over PLR, but PLR outperforms No-op later in training.

strongly improve training sample efficiency over uniform sampling, with PLR being more efficient early in the training
process. When we plot the same few-shot median performance as a function of FLOPS, we see that No-op has a slight
early advantage, but PLR outperforms No-op later in training. The initial advantage for No-op may be because No-op
expends more FLOPS (10 evaluations per task vs. 1 in PLR) for task evaluation, which finds higher quality training tasks
at the start of training.

Emergent curricula. In Figure G.3 we show task metrics analysing the tasks selected by PLR and No-op filtering.
Neither method optimises for these metrics, hence their apparently curriculum (from low values to higher ones over time)
is “emergent”.

G.7. Distillation teacher for scaling experiments

In all of our scaling experiments (Sections 3.4 and 3.5), we distill the policy from an identical teacher snapshot to ensure
our experiments are comparable. Training details for the teacher are detailed in Table G.8. This teacher is used to kickstart
our agents for their first 4B frames of training.

Table G.8: Distillation teacher for scaling experiments.

Model parameters Memory Task pool Curriculum Teacher Steps
23M TXL / 76M total 1800 200M No-op None 23B

G.8. Scaling the network

Table G.9 shows the experimental setup for the model size scaling experiments in Section 3.4. More details about the
number of parameters for the various model sizes can be found in Table G.10.

Transformer-XL memory is a cached memory of previous attention layer inputs, concatenated to the keys and values
during each forward pass. Inputs to intermediate layer are activations from the previous layer, which in themselves contain
information about the past. Caching M activations this way theoretically allows for an effective memory horizon of M x
L, where L is the number of attention layers in the network. Therefore, to avoid implicitly scaling effective Transformer-
XL memory length, in our model size scaling experiments, we fix the number of layers in the Transformer, and scale
parameters only by altering the Transformer embedding size (dmodel), with the feed-forward size fixed at 4dmodel, as is
standard in Transformer architectures (Vaswani et al., 2017).

30

Human-Timescale Adaptation in an Open-Ended Task Space

Figure G.3: Emergent curricula for No-op filtering and PLR. Plots show the full set of task metrics for the dynamic training set, averaged
over all tasks in the set, with standard error shaded. In all plots, a higher metric value corresponds to greater task difficulty. Horizontal
lines show the same metric values averaged over the test (dashed) and hand-authored (dotted) evaluation task sets.

Table G.9: Experimental setup for model size scaling.

Model parameters Memory Task pool Curriculum Teacher Steps
6M TXL / 41M total

1800 25B No-op Table G.8 75B

23M TXL / 76M total
42M TXL / 112M total
57M TXL / 141M total
75M TXL / 175M total
169M TXL / 353M total
265M TXL / 533M total

Table G.10: Transformer hyperparameters for different model sizes.

Model parameters Embedding size Blocks Key size Value size Heads FFW size
6M TXL / 41M total 288 6 48 48 6 1152
23M TXL / 76M total 576 6 48 48 12 2304

42M TXL / 112M total 768 6 32 32 24 3072
57M TXL / 141M total 896 6 32 32 28 3584
75M TXL / 175M total 1024 6 32 32 32 4096
169M TXL / 353M total 1536 6 48 48 32 6144
265M TXL / 533M total 1920 6 48 48 40 7680

31

Human-Timescale Adaptation in an Open-Ended Task Space

G.9. Scaling the memory length

Table G.11 shows the details of the experimental setup for the memory length scaling experiments in Section 3.4. We
show the effective memory timesteps for each experiment, computed as the number of cached network activations times
the number of transformer blocks (6).

Table G.11: Experimental setup for scaling the memory length.

Model Parameters Memory Training task pool Curriculum Teacher Training steps

23M TXL / 76M total

600

200M No-op Table G.8 25B1800
3000
4200

G.10. Scaling the size of the task pool

Recall that in XLand, a task is the combination of a world (the physical layout of terrain and objects) and a game (specifying
the goal and production rules). We investigate the effects of training on tasks sampled from a small pool of 200M distinct
tasks (4,000 worlds ⇥ 50,000 games) compared with a large pool of 25B distinct tasks (50,000 worlds ⇥ 500,000 games).
Table G.12 shows the details of the experimental setup for scaling the size of the task pool in Section 3.5.

Table G.12: Experimental setup for scaling the task pool size.

Model parameters Memory Training task pool Curriculum Teacher Training steps

23M TXL / 76M total
1800

200M

No-op Table G.8 25B25B

75M TXL / 175M total 200M
25B

G.11. Scaling the complexity of the task pool

Table G.13 shows the details of the experimental setup for scaling the complexity of the task pool in Appendix H.3. In
this experiment, the distillation teachers are different for the two agents we compare. Therefore we cannot disentangle the
effects of distillation and task complexity. Nevertheless, the results remain indicative of the importance of task complexity.
The teacher for the task distribution across multiple world topologies is trained as in Table G.8. The teacher for the task
distribution in a single room comes from a long lineage (¿ 6 generations) of distillation teachers starting with agents trained
on XLand 1.0 (OEL Team et al., 2021).

Table G.13: Experimental setup for scaling the complexity of the task distribution.

Model parameters Memory Task pool Curriculum Steps
6M TXL / 41M total

1800 4k worlds ⇥ 50k games No-op 23B
23M TXL / 76M total
42M TXL / 112M total
57M TXL / 141M total
75M TXL / 175M total

6M TXL / 41M total

1800 1 world ⇥ 5k inits ⇥ 50k games No-op 23B23M TXL / 76M total
42M TXL / 112M total
57M TXL / 141M total

G.12. Distillation enables scaling agents

Table G.14 shows the experimental setup for the distillation experiments in Section 3.6.

32

Human-Timescale Adaptation in an Open-Ended Task Space

Table G.14: Experimental setup for distillation experiments.

Model Parameters Memory Training task pool Curriculum Teacher Steps

TXL 23M TXL / 76M total
1800 See Sec G.4 PLR (G.6)

Table G.3

22BNone

TXL 265M TXL / 533M total Table G.3
None

G.13. Training on more trials with skip memory

Table G.15 shows the details of the experimental setup for the memory scaling experiments in Section H.6. This is the
same setup as in Table G.15, except for the number of training steps and the variation of memory architecture and training
trials discussed in the main text.

Table G.15: Experimental setup for experiments training on more trials with skip memory.

Model Parameters Memory Training task pool Curriculum Teacher Steps

23M TXL / 76M total 1800 200M No-op Table G.8 50B
1800⇥ 4 = 7200

33

Human-Timescale Adaptation in an Open-Ended Task Space

H. Additional Experiments
H.1. Multi-agent adaptation

Figure H.1: We report the distribution of normalised task scores over the multi-agent task test set when evaluated with various numbers
of trials. All tasks are evaluated in cooperative self-play. On the y-axis is the total last-trial reward relative to that of an agent fine-
tuned on the test tasks (approximating “infinite trials” performance). Curves moving further towards the top right corner indicate better
performance. When given more trials, the agent achieves higher scores in the last trial, showing test-time adaptation across most of the
task distribution (shaded regions).

2

1

3

REWARD

1

1 Trial 8 Trials

Figure H.2: Average performance and representative behaviour of AdA on the probe task Irreversible Production for Two

when evaluated in self-play with various numbers of trials. AdA’s performance increases when given more trials, showing test-time
adaptation. The top-down view images show representative last-trial trajectories when given different numbers of total trials.

Figure H.1 demonstrates adaptation across a wide range of percentiles on a test-task set of multi-agent tasks. Figure H.2
demonstrates last-trial performance of AdA in one particular probe task. To generate these plots, AdA was trained as
described in Section 3.1 (Multi-agent).

H.2. Conditioning on number of shots doesn’t affect agents’ performance

Figure H.3 shows the score obtained by AdA for each percentile, in trial 1 of episodes with only 1 trial (k = 1) and in
trial 1 of episodes with 8 trials (k = 8) in our held-out test set. The overlap of these lines indicates that AdA does not use
the trial conditioning information it observes to adjust its behaviour in any way that affects its score. If the agent were to
follow a more exploratory policy when it has more trials, we might expect the scores of trial 1 with k = 8 to be lower than
the score of trial 1 with k = 1.

This may be the optimal policy for our XLand 2.0 tasks, or it may reveal a limitation of our training procedure. One

34

Human-Timescale Adaptation in an Open-Ended Task Space

Figure H.3: A comparison of the first-trial score in episodes with 1 trial and episodes with 8 trials. The lines are almost perfectly
overlapping, which indicates that our agent does not leverage number-of-trials conditioning information to adjust its policy to a more
exploratory one in early trials when more trials are available.

can imagine a scenario in which, knowing that there are 8 trials in total, a Bayes-optimal policy chooses to display a
less rewarding and more exploratory behaviour in trial 1, compared to how it would behave if told that there was only a
single trial in which to collect reward. For instance, an agent may be able to guarantee a deterministic reward later, having
discovered some key information, at the cost of foregoing an stochastic reward early on. We did not directly incentivise
this behaviour in our training process. In fact, we may have discouraged it, since AdA learns from all rewards in an episode
(not just in the last trial), and with a discount factor smaller than 1, which could lead to myopic behaviour.

H.3. Scaling complexity of the task pool

(a) (b)

Figure H.4: Median (a) and 20th percentile (b) adaptation scales with the size of the task pool. The effect is especially prominent for
larger models. We show the y-axis on a logarithmic scale as in the other scaling experiments. Here, we plot number of trials on the
x-axis and examine the gaps between the curves for the two task distributions (triangle markers vs. circular markers).

One final axis along which it is possible to scale our method is the overall complexity of the task distribution. We compare
our main task distribution, as described in Section 2.1 and Appendix D.2 to a subset which maintains the use of the same
goals, production rules, and objects, but eliminates any navigational complexity by having a single world topology: an
empty room. Recall that we count the number of tasks as the product of number of worlds and the number of games.
To disentangle the effects of scaling complexity versus scaling the sheer number of tasks, we add 5,000 unique object
initialisation points for the empty room. These serve as the proxy “4,000 worlds” and are, by design, much less diverse

35

Human-Timescale Adaptation in an Open-Ended Task Space

(a) Task distribution with only empty room inhibits scaling
(median).

(b) Task distribution with only empty room inhibits scaling (20th
percentile).

(c) Task distribution with many world topologies facilitates
scaling (median).

(d) Task distribution with many world topologies facilitates
scaling (20th percentile).

Figure H.5: The benefit of scaling model size is bottlenecked if the distribution is not complex enough, even if the total number of tasks
is accounted for.

and complex than the 4,000 worlds in the main training pool.3 For more details of the experimental setup, see Appendix
G.11 and Table G.13.

In Figure H.5, we show that low environment complexity can be a bottleneck to scaling, by comparing the effectiveness
of model scaling between agents trained on the two distributions, and each evaluated on their respective test sets. On
both the median (Figure H.5a) and 20th (Figure H.5b) percentiles in the empty room, we see that past a certain point
(42M Transformer parameters), scaling model size begins to reduce performance. By contrast, in the distribution with
many world topologies (Figures H.5c and H.5d), increased model size continues to improve performance far beyond this,
showing improvements through at least 75M Transformer parameters. Open-ended settings with unbounded environment
complexity, such as multi-agent systems, may therefore be particularly important for scaling up adaptive agents.

H.4. Computational cost

In the scaling experiments (Sections 3.4 and 3.5), we compare agents after they have been trained for an equivalent number
of steps. While this controls for sample efficiency of models, here we provide an analysis of the computational cost in
FLOPs for a given experiment, and reproduce some of our scaling results, controlling for for compute cost. We see that
bigger is not always better from this perspective. For each model size and memory length we use JAX (Bradbury et al.,

3Note that the distribution over world topologies we use here is smaller than the distribution used in the model scaling experiments
in Section 3.4, and results are therefore not comparable across these sections.

36

Human-Timescale Adaptation in an Open-Ended Task Space

(a) (b)

Figure H.6: Scaling Transformer model size controlling for the total number of FLOPs for the learner and actors, including auto-
curriculum evaluation actors.

(a) (b)

Figure H.7: Scaling Transformer-XL memory controlling for the total number of FLOPs for the learner and actors, including auto-
curriculum evaluation actors.

Table H.1: FLOPs per frame for different model sizes and memory lengths.

Model parameters Memory Learner FLOPs per frame Actor FLOPs per frame
6M TXL / 41M total

1800

1,138,005,632 736,987,392
23M TXL / 76M total 1,380,255,078 2,580,445,440

42M TXL / 112M total 1,623,461,663 4,489,239,552
57M TXL / 141M total 1,821,422,230 6,063,742,976
75M TXL / 175M total 2,048,253,663 7,879,863,808
169M TXL / 353M total 3,243,189,525 17,560,326,144
265M TXL / 533M total 4,443,008,234 27,358,181,376

23M TXL / 76M total
600 1,278,491,404 963,739,136

3000 1,481,009,258 4,181,042,688
4200 1,582,270,213 5,789,702,144

2018) cost analysis to estimate the number of FLOPs per frame of the learner step and actor step (Table H.1).

We multiply the values in Table H.1 by the number of learner/actor steps for each experiment, then, for a given comparison,
we take the largest such value common to all experiments (usually associated with the smallest model) as the total FLOPs,

37

Human-Timescale Adaptation in an Open-Ended Task Space

and make the comparison of each model at this number of FLOPs. The results for the FLOPs-matched model scaling
experiments are shown in Figure H.6. We see a reduction in performance as the model size grows beyond a “sweet
spot” around 57M Transformer parameters (141M total parameters). Results for the FLOPs-matched memory scaling
experiments in Figure H.7 show that there is still benefit to increasing context lengths given a fixed computational budget.
Details of the compute used for these experiments can be found in Tables H.2 (model size) and H.3 (memory).

We note that Table H.1 indicates poor scaling of actor step FLOPs with model size, and suspect this could be due to poor
optimisation of a single-step query of the Transformer on TPU, compared to the operation batching achieved with a rollout
length of 80 on the learner. In order to account for this and for potential discrepancies in number of actor steps due to
differences in curriculum evaluation based on model quality, we also provide plots which only account for the learner step
FLOPs for each model: Figures H.8 (model size), and H.9 (memory length). These might be more informative, and show
that performance still increases as a function of model size and memory length, albeit not as steeply as when controlling
for sample efficiency directly. Details of the compute used for these experiments is shown in Tables H.4 (model size) and
H.5 (memory length).

H.5. Repeated distillation

In Section 3.6, we show that distilling an agent into an identical student can lead to large increases in the agent’s per-
formance. Here, we investigate the potential benefits of applying the procedure repeatedly. To this end, we continue the
experiment shown in Figure 11 and add a third generation, using a snapshot taken from the previous student after 25 billion

(a) (b)

Figure H.8: Scaling Transformer-XL model size controlling for the number of learner FLOPs.

(a) (b)

Figure H.9: Scaling Transformer-XL memory length controlling for the number of learner FLOPs.

38

Human-Timescale Adaptation in an Open-Ended Task Space

Table H.2: Corresponding learner steps given total FLOPs for each model size.

Model parameters Memory Total FLOPs Learner steps
6M TXL / 41M total

1800 2.0⇥ 1020

97B
23M TXL / 76M total 44B

42M TXL / 112M total 27B
57M TXL / 141M total 23B
75M TXL / 175M total 18B
169M TXL / 353M total 9B
265M TXL / 533M total 5B

Table H.3: Corresponding learner steps given total FLOPs for each memory length.

Model parameters Memory Total FLOPs Learner steps

23M TXL / 76M total

600

7.9⇥ 1019

31B
1800 17B
3000 11B
4200 8B

Table H.4: Corresponding learner steps given learner-step-only FLOPs for each model size.

Model parameters Memory Learner step FLOPs Learner steps
6M TXL / 41M total

1800 1.0⇥ 1020

92B
23M TXL / 76M total 76B

42M TXL / 112M total 65B
57M TXL / 141M total 58B
75M TXL / 175M total 51B
169M TXL / 353M total 32B
265M TXL / 533M total 23B

Table H.5: Corresponding learner steps given learner-step-only FLOPs for each memory length.

Model parameters Memory Learner step FLOPs Learner steps

23M TXL / 76M total

600

3.9⇥ 1019

39B
1800 36B
3000 29B
4200 25B

frames, equivalent to 50 billion frames of total experience when taking the teacher’s experience into account. Figure H.10
shows that applying this procedure repeatedly can indeed lead to additional benefits; however, we observe diminishing
returns with successive generations.

H.6. Training on more trials with skip memory enables many-shot adaptation

So far, we have considered the few-shot regime in which we train on 1 to 6 trials and evaluate up to 13 trials. In this section,
we evaluate AdA’s ability to adapt over longer time horizons. We find that when trained with k 2 {1, 2, . . . 6}, agents do
not continue to adapt past 13 trials; however, this long-term adaptation capability is greatly improved by increasing the
maximum number of trials during training to 24 and increasing the effective length of the memory accordingly. These
results show that our method naturally extends to many-shot timescales, with episodes lasting in excess of 30 minutes.4 In
this section, we ablate both factors separately, and show that both are important for long-range adaptation. The training
configuration (which is identical to that of the memory scaling experiments) is detailed in Table G.15.

448 trials of a 40s task lasts for 32 minutes. By contrast, the average length of a Starcraft 2 game is between 10 and 15 minutes, and
AlphaStar acted less frequently per-second than AdA does (Vinyals et al., 2019).

39

Human-Timescale Adaptation in an Open-Ended Task Space

(a) (b)

Figure H.10: Normalised few-shot score over three generations using the 23M parameter Transformer-XL. The first and second gen-
erations correspond to the agents shown in Figure ??. The third generation is distilled from the second after it has been trained for 25
billion steps. The x-axis counts the combined amount of experience, starting from the experience collected by the original teacher. The
third generation shows additional gains over the second, but to a lesser degree than the gap between the first and second generations.

As we noted in Section 3.4, increasing the memory length leads to increased capacity that benefits the agent even when
the entire episode fits in memory, but also comes at the cost of increased computation. To disentangle these factors, we
propose a simple change to the memory architecture described in Section 2.4 which increases effective memory length
without increasing computational cost. We use a GRU to encode trajectories before feeding them to the Transformer-XL.
This allows us to sub-sample timesteps from the encoded trajectories, enabling the agent to attend over 4 times as many
trials without additional computation. We show that the additional GRU on its own does not affect the performance of the
agent greatly.

As can be seen in Figure H.11a, increasing the number of trials in the training distribution significantly boosts performance
in later trials, especially when the memory length is scaled accordingly. In other words, the adaptation strategy learned
by AdA benefits from experiencing a large number of trials, rather than just very recent ones. Therefore we can conclude
that AdA is capable of adaptation based on long-term knowledge integrated into memory across many trials, as opposed to
merely encoding a simple meta-strategy that only depends on the trajectory from the previous trial.

Increasing the number of trials in training leads to better adaptation even in the absence of increased memory. This indicates
that the agent is able to learn better exploration and refinement strategies when afforded longer training episodes consisting
of more trials. Note that increasing effective memory without increasing the number of training trials does not improve
performance, as the agent has not been trained to make use of the additional memory capacity.

I. Human-Timescale Adaptation
In this section we provide more details regarding our claim of human-timescale adaptation.

I.1. Probe tasks

Tables I.1 and I.2 describe the single-agent and multi-agent probe tasks respectively. Unless noted otherwise, all probe
tasks are set in complex worlds with many objects, and use multiple production rules fully hidden from the players.

Table I.1: Single-agent probe tasks

Name Description

40

Human-Timescale Adaptation in an Open-Ended Task Space

Wrong pair disappears The player’s goal is to hold a black cube, which does not exist among the initial
objects. There are two (hidden) rules. The player needs to identify the correct world
state which triggers the rule that creates the cube and not the one which destroys the
necessary inputs. All this is embedded in a challenging world layout with one-way
drops and limited visibility.

Wrong pair disappears,
partial hiding

‘Wrong pair disappears’, but instead of hiding all rules completely we only hide the
input objects for both rules (outputs and conditions are fully visible).

Irreversible production Similar to ‘Wrong pair disappears’, but this task has multiple dead ends (rules which
create unsolvable states).

Irreversible production,
all rules visible

‘Irreversible production’, but with all rules fully visible to the player.

Push, don’t lift The vast majority of training and evaluation tasks require lifting objects. Here two
hidden rules destroy any object when lifted. In order to create the goal state, some
“lateral thinking” is necessary: the player needs to identify that pushing the cubes
with their body is possible.

Push, don’t lift, with
distractors

Similar to ‘Push, don’t lift’, but here a large number of distractor objects in the world
make this a much more challenging exploration task for any player ignoring the ob-
jects mentioned in the goal.

Spacer tool Two objects need to be brought close together, but lifting them or touching them (with
the avatar’s body) destroy them. The solution is to use another object in the world as
a tool to push them together.

Transform to transport Again, two objects need to be brought close to each other, but lifting and touching
them destroys them. The solution here is to exploit a set of rules that can turn one
of the objects into something that can be carried safely, and then turn it back into the
original object once it is in the right place.

Small workstation A very hard object handling task. 8 objects near the player’s spawn position need to
be combined in different ways and 5 rules need to be triggered (some multiple times)
to create the goal object. This task is set on top of a tall plateau and it is very easy to
fail by touching an object too hard and throwing it off the edge of the plateau.

Small workstation, all
rules visible

The same as ‘Small workstation’, but all rules are visible to the player.

Crafting pyramid Eight objects need to be recursively combined first into four, then two and then ulti-
mately one final object. This requires triggering a chain of 7 rules. This seems easy
for humans. But the lack of intermediate reward makes this a hard hierarchical credit
assignment task for agents.

Crafting tree, all rules
visible

Similar to the crafting trees in video games like Minecraft, this multi-step task requires
triggering different rules in a chain to create the goal object. All objects exist in the
world multiple times, making many different solutions viable.

Crafting tree, hidden
shortcut

Identical to ‘Crafting tree, all rules visible’, but one additional (hidden) rule exists.
This allows the player to take a shortcut that lets them finish the task faster than exe-
cuting only the visible rules.

Antimatter In a world full of yellow and black spheres, the goal is for no pair of black and yellow
spheres to “see each other” (no direct line of sight). Beyond moving the objects and
blocking line of sight with the avatar there exists a production rule which destroys
any yellow sphere and black sphere pair which touch (similar in spirit to matter and
antimatter particles). This is all embedded in a world requiring advanced navigation
skills.

41

Human-Timescale Adaptation in an Open-Ended Task Space

Antimatter with creation Similar to ‘Antimatter’, only here a third object (purple pyramids) exists which dupli-
cates any sphere touching it. In addition, this task is set on two plateaus, making it
easier to break line of sight and reducing the navigation challenge.

Pyramid in a haystack To create the necessary yellow pyramid, the player needs to find and hold the purple
cube. There are several distractor objects and distractor rules in this world, requiring
the player to deal not just with a hard exploration challenge but also a very noisy
environment.

Protect the egg The player is tasked to hold the single yellow sphere in the world. A large number
of other spheres exist in the world. These destroy the yellow sphere on collision. As
these touch each other or get near the player they get duplicated. This can lead to a
constantly growing number of objects, filling up the world.

3 spheres jumbled 3 spheres exist in the world. Holding one of them creates the goal object. Only one
sphere can be reached within the 10-second time limit, meaning that the optimal policy
on the first trial is to choose uniformly at random.

Two doors The goal object is hidden behind one of the two large objects (the “doors”) positioned
at opposite ends of the world. Only one of them can be reached in time, so the player
needs to decide between exploring one of them per trial.

Same signature: match
colours

All ‘Same signature’ tasks have the exact same world layout, goal and number of
fully-hidden rules. This means they look exactly the same to a player starting out.
This one only requires two objects of matching colour to be brought close together to
create the goal object, using only one production rule out of three.

Same signature: three
steps

This ‘Same signature’ task variant requires the player to trigger all three (hidden)
production rules to create the goal object.

Same signature: two dead
ends

In this ‘Same signature’ task variant, two of the tree rules are dead ends, leading to
an unsolvable world state. Only one rule is helpful (and in fact required) to solve the
task.

Same signature: destroy
to protect

To solve this ‘Same signature’ task variant the player first needs to destroy a black
sphere (by getting near it) before creating the goal object (a yellow cube). Otherwise
when the black sphere “sees” the yellow cube, both get destroyed. This is a very hard
credit assignment challenge even for human players (it is hard to notice what is going
on).

Don’t act This task is pre-solved: the player is getting reward from the very beginning. If they
lift or touch one of the two objects in the world, the object gets destroyed and reward
is now impossible.

Don’t peek This task is ‘pre-solved’: the player is getting reward from the very beginning. How-
ever, the player will destroy any object they look at, at which point reward is impossi-
ble. So the optimal strategy is to not look at anything but the sky.

Navigation: find the cube This memory task is not using production rules. It uses a large world with the goal
object (a cube) hidden after a very winding path.

Navigation: find the cube
with teaser

This memory task is not using production rules. It is set in a large world with the goal
object (a cube) hidden after a very winding path. The object is visible from the spawn
point but out of sight after starting to traverse the terrain.

Navigation: hold up high This memory task is not using production rules. The goal object (a pyramid) is hidden
on top of a plateau and can only be seen when nearly there.

42

Human-Timescale Adaptation in an Open-Ended Task Space

Object permanence:
yellow cube

This memory task is not using production rules. The goal object (a yellow cube) is
visible from the spawn point. After moving for a bit, a decision between two paths
has to be made, with the correct path being to the right. At this point the cube is no
longer visible.

Object permanence: black
cube

This memory task is not using production rules. This has same world layout as the
task above, only here the player is asked to find the black cube, which requires going
to the left.

Table I.2: Multi-agent probe tasks

Name Description

Pass over the wall The players are separated by an opaque wall. They cannot see each other, only their
half of the world. The solution requires “passing” the accessible objects on either
player’s side to other player to combine them into the goal object. Then the players
must make sure the correct player holds this object.

Pass over the wall
repeatedly

Similar to ‘Pass over the wall’ but here 2 out of 3 initial objects are ‘frozen’ (cannot
be moved). This prescribes a very specific solution strategy that requires the players
to pass 3 objects over the wall in a specific order.

Coordinated production This task requires each player to be near a sphere to turn this sphere into a pyramid,
and then for both pyramids to be touching each other to create the goal object. The
spheres are slightly hidden in a complex world, requiring some exploration.

Coordinated production
with deadends

Like ‘Coordinated production’ but here each player will destroy one of the initial
objects if they get near it. These dead-end rules make this a much harder exploration
problem.

Coordinated exchange This requires each player to create a new object by holding an existing object, then to
hold the object created by the other player to turn it into another intermediate object
and finally for both objects to be combined into the goal object. While the world
is fully accessible to both players, this can only be solved if both players actively
participate.

Overcooked: coordination
ring

Inspired by the video game Overcooked (Carroll et al., 2019; Strouse et al., 2021), in
this task both players need to “serve tomato soup to a hungry patron”. This is imple-
mented as a repeatable four-step production rule chain which requires both players to
traverse their shared space (a circular layout) carefully in order to not block the other
player.

Overcooked: coordination
ring, all rules visible

While in ‘Overcooked: Coordination ring’ all production rules are hidden from both
players, here they are fully visible (to match the dynamics of the original Overcooked
game).

Overcooked: cramped
room

Similar to ‘Overcooked: coordination ring’ but with a different layout for the shared
space and a different number of initial objects, using different shapes and colours.

Overcooked: cramped
room, all rules visible

While in ‘Overcooked: cramped room’ all production rules are hidden from both play-
ers, here they are fully visible (to match the dynamics of the original Overcooked
game).

Overcooked: forced
coordination

Similar to the other ‘Overcooked’ task variants, but here both players are restricted to
only a certain part of the world and so are forced to coordinate to solve this task. No
player can solve this alone since they cannot reach all initial objects.

43

Human-Timescale Adaptation in an Open-Ended Task Space

Overcooked: forced
coordination, all rules
visible

While in ‘Overcooked: forced coordination’ all production rules are hidden from both
players, here they are fully visible (to match the dynamics of the original Overcooked
game).

Kickball This task is set in large world with two frozen pyramids on opposite sides of the world.
Both players want to bring all of the plentiful purple spheres to the yellow pyramid.
But lifting them destroys the pyramids so they need to “kick” them by bouncing them
off the avatar. Think “soccer practice”.

Lemon eater The first player destroys all yellow spheres (of which there are many) when bumping
into them. This is also the goal for both players. So they need to cooperate to bring
all yellow spheres to the first player as quickly as possible.

Careful lemon eater Like ‘Lemon eater’ but any collision between two spheres turns them from yellow to
purple. Purple spheres are “not edible” and so the players need to be careful to not
create those, otherwise they will lose out on reward.

Lemon eater and maker Like ‘Lemon eater’ but we start out with only purple spheres. Only the second player
can turn purple into yellow spheres by lifting them, effectively having to “create food”
for the first player.

Antimatter for two Identical in nature to the single-player ‘Antimatter’ task but set in a different world
layout and with two players who share the same goal.

Antimatter with creation
for two

Identical in nature to the single-player ‘Antimatter with creation’ task but set in a
different world layout and with two players who share the same goal.

Antimatter with copies for
two

Identical to ‘Antimatter for two’ but here any two spheres of the same colour colliding
leads to the creation of another sphere of that colour. This can set in motion runaway
growth in the number of spheres, making it very hard to solve the task.

Irreversible production
for two

Identical in nature to the single-player ‘Irreversible production’ task but set in a dif-
ferent world layout and with two players who share the same goal.

Irreversible production
for two, all rules visible

Like ‘Irreversible production for two’ but with all production rules visible to both
players.

Wrong pair disappears for
two

Identical in nature to the single-player ‘Wrong pair disappears’ task but set in a differ-
ent world layout and with two players who share the same goal.

Wrong pair disappears for
two, partial hiding

Like ‘Wrong pair disappears for two’ but with only the input objects of the productions
rules being hidden, the outputs and condition being visible.

Crafting pyramid for two Identical in nature to the single-player ‘Crafting pyramid’ task but set in a different
world layout and with two players who share the same goal.

Information asymmetry A simple world in which the players are asked to execute a two-step production rule in
the presence of multiple dead ends. While the first player knows all the rules, they are
completely hidden from the second player. This task is intended to measure a specific
flavor of third-person imitation.

Information asymmetry
with repetition

While ‘Information asymmetry’ only allows for up to four completions, this task vari-
ant is (given unlimited time) infinitely repeatable, providing more opportunities for
imitation.

Combine outputs Similar in nature to ‘Coordinated production’ but set in a larger world and (through
the use of frozen objects) requiring both players to repeatedly navigate quite far to
create input objects for shared creation.

44

Human-Timescale Adaptation in an Open-Ended Task Space

Two machines Many objects of different colours and shapes litter this world. The frozen yellow
pyramid on one end of the world transforms these objects into an intermediary object.
The players then need to bring the intermediary object to the frozen black pyramid
on the other end of the world to “cash it in” for instantaneous reward, at which point
the intermediary object is destroyed. Therefore to get more reward, the players must
repeat this process.

Two machines with
information asymmetry

Like ‘Two machines’, but all rules are visible to one player, and all rules are hidden
from the other player. This creates an information asymmetry and thus an opportunity
for third-person imitation.

I.2. Comparing human and agent scores on every probe task

In Figure I.1 we show the raw last-trial total reward for humans and our agent as a function of number of trials across every
one of the 30 evaluation probe tasks.

I.3. Quantifying stochasticity

Task variation. Figure I.2a shows that there is fairly high variance in the score obtained by a single agent over 50
repetitions of a single task. This is due to random spawn rotations of the avatar following every environment reset and
stochasticity in the agent’s policy. To address this we run 50 repetitions of every (task, k) combination and average the
score over these repetitions. This reduces the standard deviation to that shown in Figure I.2b. Here, the standard deviation
of the mean task score reduced from a maximum of 0.43 with 1 repetition, to a maximum of 0.06 with 50 repetitions.

Agent initialisation variation. After accounting for task variation, Figure I.3 shows the variance due to agent initialisa-
tion seed during training. We plot the score as a function of k on our test set for the 76M total parameter version of AdA
with 5 different initialisation seeds. The maximum standard deviation observed for any number of trials in the median
was 0.04 and for the 20th percentile was 0.02. This low initialisation seed variance led us to run our ablations with one
initialisation seed to save on compute. We note that the results shown in our ablation section have significantly larger than
one standard deviation differences.

I.4. Prompting through first-person demonstrations

Figure I.4 shows the performance of AdA prompted with a fine-tuned agent compared to an unprompted baseline on each
of the 30 single agent hand-authored probe tasks. The figure reveals a set of tasks on which AdA is able to leverage
information in the prompt, resulting in perfect or near perfect scores. There are also tasks where AdA does not seem to be
able to do this. In all but one case, prompting does not hurt performance. Two videos in the supplementary files compare
the behaviour when prompted and when not prompted on the task Object permanence: yellow cube.

Analysing the tasks in Figure I.4 suggests that prompting is useful for short navigational tasks such as Navigation:
hold up high in which the agent follows a short and simple path to reach the goal object. Prompting does not, however,
improve performance for longer and more complex navigation tasks like Navigation: find the cube, likely due
to the full demonstration being too long to fit in the agent’s memory context.

We observe a similar pattern in tasks involving production rules. For tasks with up to 2 production rules in the solution
path, such as Same signature: match colors, we observe the unprompted agent exploring different objects
to determine the correct rule to trigger. When prompted with a demonstration it subsequently triggers the correct rule
immediately and achieves a perfect score. An exception to this is Same signature: destroy to protect

where one of the production rules involves destroying an object, which the agent does not appear to remember from the
demonstration. For tasks using 3 or more production rules like Same signature: three steps (3 production
rules in the solution path) and Small workstation (5 production rules), the agent tends to only remember a subset
of the rules to trigger and continues engaging in exploratory behaviour following the demonstration. The performance on
these tasks tend to match the unprompted baseline.

Another factor appearing to influence the effectiveness of prompting is the topology and configuration of objects in the
world, as seen in the Small workstation tasks. While the teacher demonstrations for these tasks present a clean

45

Human-Timescale Adaptation in an Open-Ended Task Space

(a) (b)

Figure H.11: (a) Ablation showing the 20th percentile of test scores as we vary the maximum number of training trials (from a k = 6
baseline to k = 24) and increase the effective memory size via sub-sampling (from 1800 steps to 7200 steps). Together, these factors
enable the agent to adapt over a larger number of trials (lasting over 30 minutes). Increasing the number of training trials has the biggest
effect and is a prerequisite for sub-sampling to be effective. This figure furthermore shows that adding an RNN encoder to facilitate
sub-sampling does not by itself greatly affect performance. (b) Median hand-authored task score of AdA prompted with a first-person
demonstration in the first trial of each episode, compared with an unprompted baseline. The prompted score lies strictly above the
baseline which indicates that AdA is able to use information from a demonstration prompt to improve its performance. However, the
score lies below that of the demonstration which suggests that it is not able to make perfect use of the demonstration.

trajectory, the agent subsequently knocks into and displaces distractor objects, leading to environment states not observed
during the demonstration (and thus not recallable from memory). On the other hand, a favourable configuration of objects
appears to make the demonstration easier to learn from, as observed in Irreversible production. Here the objects
required to trigger the last production rule are positioned close together. The agent shows optimal behaviour here despite
the task requiring 3 production rules on the solution path. The agent also appears unable to infer from prompting certain
more subtle requirements like relative positioning of objects or tool use. This is observed in tasks like Antimatter in
which prompted AdA is able to trigger the destruction rule but we did not observe it immediately hiding objects from each
other.

Prompting may also help eliminate biases that the agent may have acquired during training. This is reflected in the
lower score obtained by the unprompted agent for small k in Object permanence: yellow cube compared
to Object permanence: black cube. These tasks are identical except for the goal being to navigate to a yellow
cube on the right, or a black cube on the left respectively. This suggests that the agent may have acquired a bias during
training to either prefer black cubes or to navigate towards objects on its left. The significantly higher prompted scores
on Object permanence: yellow cube for small k suggest that a prompt may help the agent overcome these
biases.

Prompting with human demonstrations. We prompted AdA with expert human demonstrations in a small selection
of 6 hand-authored tasks, depicted in Figure I.5. These tasks were chosen to be a mixture of tasks where AdA excelled
with fine-tuned teacher prompting, where it failed with fine-tuned teacher prompting and where even the fine-tuned teacher
failed.

The results show the same pattern as those obtained when prompting with a fine-tuned teacher. In both Navigation:
hold up high and Object permanence: yellow cube, prompted AdA achieved close to optimal perfor-
mance, exceeding both the baseline and the human demonstration. Figure I.6 depicts the latter behaviour in detail. AdA
continues to fail to learn from a demonstration in Navigation: find the cube with teaser and in both
Spacer tool and Transform to transport, which our fine-tuned teacher also failed at. A successful human
demonstration did not unlock any capabilities AdA was previously not capable of demonstrating, suggesting that these
tasks are perhaps too far out-of-distribution with respect to AdA’s training tasks. The fact that prompting with off-policy
human demonstrations is partially successful is worthy of note, and opens an exciting area of future research.

46

Human-Timescale Adaptation in an Open-Ended Task Space

Figure I.1: Comparison of AdA against 19 human players on each of the 30 held-out single-agent hand-authored tasks. The performance
of a baseline agent trained to optimise zero-shot performance is shown as a black dashed line and indicates that AdA does not sacrifice
its zero-shot generalisation to achieve adaptation. The reward of an agent fine-tuned on the hand-authored tasks is also shown as a red
dashed line to provide some indication of the maximum reward achievable in a trial of each task.

(a) (b)

Figure I.2: (a) Mean single-repetition score and 95% confidence intervals over 50 samples. (b) Mean of the aggregated 50-repetition
score and 95% confidence intervals over 50 samples.

47

Human-Timescale Adaptation in an Open-Ended Task Space

Figure I.3: 95% bootstrap confidence intervals around the median and 20th percentile over our test set of 5 agents trained with different
initialisation seeds. The maximum observed standard deviation was 0.04 around the median and 0.02 around the 20th percentile.

Figure I.4: A comparison of a prompted agent and unprompted baseline for our full set of 30 hand-authored single-agent tasks. The
dashed red lines indicate the score obtained by the teacher providing the first-person demonstration to the prompted agent in the first
trial.

48

Human-Timescale Adaptation in an Open-Ended Task Space

Figure I.5: Performance of AdA on 6 hand-authored tasks when prompted with an expert first-person human demonstration, compared
with an unprompted baseline.

Figure I.6: Top-down views depicting the behaviour of AdA with and without a human expert prompt on the task Object

permanence: yellow cube. On its own, AdA appears to have a bias of navigating to the black cube which is a dead end
in this task. When prompted with a human (or fine-tuned) expert trajectory, AdA is able to overcome this bias and navigate to the yellow
cube in the second trial.

49

	Introduction
	Adaptive Agent (AdA)
	Open-ended task space: XLand 2.0
	Auto-curriculum learning
	Meta-RL
	Memory architecture
	Distillation

	Experiments and Results
	AdA shows human-timescale adaptation
	Architecture influences performance
	Auto-curriculum learning improves performance
	Scaling the agent increases performance
	Scaling the task pool increases performance
	Distillation enables scaling agents
	AdA leverages first-person prompting

	Related Work
	Conclusion
	Authors and Contributions
	Full-time contributors
	Part-time contributors
	Advisers

	Acknowledgements
	Additional Related Work
	Environment Details
	XLand 2.0
	Pre-sampling tasks for training

	Evaluation
	Test scores
	Hand-authored probe tasks
	Adaptation metric
	Human data collection

	Agent Details
	Learning algorithm
	Agent Architecture
	Observations

	Training Details
	Meta-RL
	Distillation
	Single-agent training
	Multi-agent training
	Architecture experiments
	Auto-curriculum learning
	Distillation teacher for scaling experiments
	Scaling the network
	Scaling the memory length
	Scaling the size of the task pool
	Scaling the complexity of the task pool
	Distillation enables scaling agents
	Training on more trials with skip memory

	Additional Experiments
	Multi-agent adaptation
	Conditioning on number of shots doesn't affect agents' performance
	Scaling complexity of the task pool
	Computational cost
	Repeated distillation
	Training on more trials with skip memory enables many-shot adaptation

	Human-Timescale Adaptation
	Probe tasks
	Comparing human and agent scores on every probe task
	Quantifying stochasticity
	Prompting through first-person demonstrations

