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Abstract

Optimization of atomic structures presents a chal-
lenging problem, due to their highly rough and
non-convex energy landscape, with wide applica-
tions in the fields of drug design, materials dis-
covery, and mechanics. Here, we present a graph
reinforcement learning approach, STRIDERNET,
that learns a policy to displace the atoms towards
low energy configurations. We evaluate the perfor-
mance of STRIDERNET on three complex atomic
systems, namely, binary Lennard-Jones particles,
calcium silicate hydrates gel, and disordered sil-
icon. We show that STRIDERNET outperforms
all classical optimization algorithms and enables
the discovery of a lower energy minimum. In
addition, STRIDERNET exhibits a higher rate
of reaching minima with energies, as confirmed
by the average over multiple realizations. Fi-
nally, we show that STRIDERNET exhibits in-
ductivity to unseen system sizes that are an or-
der of magnitude different from the training sys-
tem. All the codes and datasets are available at
https://github.com/M3RG-IITD/StriderNET.

1. Introduction and Related Work

Optimization of functions exhibiting non-convex landscapes
is a ubiquitous problem in several fields, such as the design
of mechanical structures (Mistakidis & Stavroulakis, 2013),
robotics and motion planning (Alonso-Mora et al., 2018;
Schwager et al., 2011), materials (Le & Winkler, 2016),
and biological systems (Yang et al., 2019), such as proteins.
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Initial structure (E= -526.01)

Optimized structure (E=-815.63)

Figure 1: Optimization of 100 atoms LJ system (Colorbar
shows node potential energy).

Specifically, materials discovery relies on finding stable
structures of atomic systems, such as new battery materials,
novel drugs, or ultralight super-hard materials, through effi-
cient optimization (Xiang et al., 1995). These materials pre-
dicted through optimization are then verified and validated
through experiments and tests for industrial applications.
However, even for a given material having a few hundred
atoms, a large number of possible structures can be obtained
by allowing various configurational arrangements of the
atoms. For instance, Fig. 1 shows the structure of a 100-
atom Lennard-Jones system (detailed later), where the poten-
tial energy and positions of the atoms before and after opti-
mization are shown. Extrapolation of previous work (Tsai &
Jordan, 1993) on simple atomic clusters suggests that a sys-
tem containing 147 atoms can have as many as 1050 — 10259
minima. These possible configurations of the atomic net-
work, represented by local minima in the energy landscape
separated by high energy barriers, make the optimization
problem extremely challenging (Wales et al., 2003).

Several classical approaches have been proposed for the
optimization of atomic structures. These include fast
inertial relaxation engine (FIRE) (Bitzek et al., 2006),
gradient-based approaches (Stillinger & LaViolette, 1986;
Leach, 2001), perturbation-based approaches (Wales &
Doye, 1997), Bayesian approaches (Gonzalez et al., 2015),
evolutionary algorithms (Daven et al., 1996), and learned
optimizers (Merchant et al.,, 2021). However, most of
these approaches present several drawbacks, namely, (i) a
significant number of iterations, (ii) carefully hand-crafted
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update rules that are sensitive to parameters, (iii) inability
to scale to larger system sizes, (iv) representation of
atomic structures, and, most importantly, (v) the inability to
overcome high-energy barriers (Wales et al., 2003). Another
approach toward finding minima is to combine classical
molecular simulation (MS) with machine learning. These
approaches focus on accelerated MS using machine-learned
force fields or coarse graining (Noé et al., 2020; Park et al.,
2021; Li et al., 2022).

An alternative approach is to allow the system learn policies
that discover better minimum energy structures through re-
inforcement learning (RL) (Christiansen et al., 2020; Simm
et al., 2020; Rumelhart et al., 1986; Meldgaard et al., 2020).
Most studies using RL for materials have focussed on small
atomic clusters or simple molecules having a limited num-
ber of atoms. For extending the work to realistic structures,
the first challenge is to develop a scalable representation
of atomic structures. To this extent, graph neural networks
(GNNs) is an excellent choice—thanks to their ability to
capture the local topology, while being inductive to unseen
system sizes. GNNs have been used extensively for mod-
eling atomic and physical structures (Batzner et al., 2022;
Bhattoo et al., 2023; Thangamuthu et al., 2022; Bhattoo
et al., 2022; Battaglia et al., 2018; Bishnoi et al., 2022).

Here, we propose a framework combining GNNs and RL,
namely STRIDERNET!, that allows optimization of atomic
structures exhibiting a rough energy landscape. Specifically,
we show that combining a graph representation of atomic
structures with a policy-gradient approach outperforms the
standard optimization algorithms. The main contributions
of the present work are as follows.

* STRIDERNET: A graph reinforcement learning frame-
work (Section 3) that outperforms state-of-the-art optimiz-
ers on atomic structures (Section 4.2).

* Graph matters: The neighborhood information of atomic
structure as captured by the graph architecture enables
efficient optimization (Section 4.4). More importantly, a
graph-based optimization framework for atomistic con-
figurations has hitherto been unexplored, and this work
initiates a new direction.

* Model adaptation: Adaptation of the model to a specific
atomic structure allows the discovery of low energy states
(Section 4.5).

* Inductivity: The graph architecture allows the adaptation
of a trained model to unseen system sizes in an inductive
fashion (Section 4.6).

'In our approach, RL trains the policy network to progressively
take small strides towards optimizing the graph representation of
the atomic structure.

2. Preliminaries and Problem Formulation

The configuration Q¢ (X1; X2;:::XN ) of an atomic system
is given by the positions of all the atoms in the system
position of the it atom in a d-dimensional space, where d
is typically 2 or 3. The potential energy U of an N-atom
structure is a function of €. Specifically, the energy of a
system can be written as the summation of one-body U (ri),
two-body U (rj; rj), three-body U (ri; rj; rc), up to N-body
interaction terms as:

N N P
U= U@+ U(ri;rj)+ U(risr; r)+--
i=1 i;j=1; i;j;k=1;
i6j i6j6k
)]

However, the exact computation of this energy is highly
challenging and involves expensive quantum mechanical
computations (Cohen et al., 2012). Alternatively, empirical
potential functions (Torrens, 2012) can approximately
capture this interaction while maintaining the minima asso-
ciated with these structures. These potentials are developed
relying only on two-, three- or four-body interactions and
ignoring higher-order terms for computational efficiency.
In this work, we rely on well-validated empirical potentials
to compute the energy of the different atomic structures.
Accordingly, the atomic structure optimization can now
be posed as a problem of identifying the configuration of
N -atoms in terms of their position vectors, such that the
system’s total energy is minimum.

The major challenge in such optimization is the rough land-
scape featuring an enormous number of stable structures
(local minima) and a large number of degrees of freedom as-
sociated with an atomic structure (N d for an N -atom struc-
ture in d dimensional space; typically d = 2 or 3). While
characterizing the number of minima in the energy land-
scape of actual material is challenging, several studies have
focused on simple model systems. One of the classical sys-
tems extensively characterized includes the Lennard-Jones
(LJ) system, which can be used to model noble gases (Tsai
& Jordan, 1993; Wales & Doye, 1997; Malek & Mousseau,
2000; Doye et al., 1999). The energy of a system of N-
atoms interacting through the LJ potential is give%by:

B K 12 6
U= S @)
i1 joo Xl [Xij
i>i
where |Xjj| = |X;j — Xj| is the distance is between the atoms

iand J,and and are constants depending on the atom
types. By extrapolating the studies on small LJ structures,
the scaling of minima with the number of atoms N can
be obtained as e(K1TkeN) o a(ki+keN+kaN?) whore ki ko
and K3 are constants obtained by fitting (Wales & Doye,
1997). Thus, it becomes incredibly challenging for a system
with thousands of atoms to get the global minima or even
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local minima with extremely low energy compared to thewe develop a message-pass®gN to embed graphs into

global minima. a feature space. The message-passing architecture of the
GNN ensures both permutation invariance and inductivity.

SThe graph, in turn, predicts the displacements of each of the

nd stable structures near the starting con guration Ieadingatoms based on which the rewards are computed. Finally,

L . tP%e policy is learned by maximizing the discounted re-
to local minima. Some of these approaches include steepes ;
wards. Note that we learn the parameters afsing a set

descent (Stilinger & LaViolette, 1986), conjugate grad|ent,of training graphs exhibiting diverse energies that are sam-

anq Newton-Raphson (Leach, 2001). Alternatively, FIRE\R)IIed from the energy landscaf® of an atomic system
relies ona momentum-ba;ed approach and has _been Showri}h N -atoms ind dimensions. Thus, the initial structure,
to outperform purely gradlent-based methods (Bitzek et al.'although arbitrary and possibly unstable, is realistic and
2006). These approaches am tp nd the most s_table atoml([:)hysically feasible. Then given a new structure, we adapt
structure, starting from an arbitrary con guration. Thus, .
once trapped in a local minimum, these approaches cann(t:)he parameters of our learned policy networto the new
ppedin ' P sEructure while optimizing the new graph structure. All nota-
escape the minima to move toward more stable structprgtsl(.)ns used in the present work are given in Tab. 4 in App. A.
Further, these approaches do not learn any new heqnsn%ﬁefore we de ne the parametrization of our policy, we rst
base_d on the“trajec_tor}’/ they follow_ed. Thus, thgre IS nOdiscuss how our atomic system is transformed into a graph.
possibility of “adapting” these algorithms to obtain more
stable structures closer to the global minimum. To addres8.1. Transforming Atomic System to Graph

these challenges, we propose a framework that exploits thene total energy of an atomic system is closely related to
atomic structure and energy relationship to discover stablgye |ocal neighborhood of an atom. In order to leverage this
con gurations. neighborhood information, we transform the atomic struc-
Problem: (Discovering stable structures) Let ture into a graph, where the nodes and edges of the graph
«(X1:X2;::xn) be a conguration of anN-atom fepresent the atoms and the chemical bonds between the
system with energy © sampled from the energy landscape atoms, respectively. Thus, an atomic system is represented
UNd of the system. Starting from, our goal is to obtain Py & graphG = (V; E) where the nodeg 2 V denotes the
the con guration min exhibiting the minimum energy atoms and, 2 E represents edges corresponding to the
U mn by displacing the atoms. To this end, we aim tointeractions between atomsandu. Note that the edges can
learn a policy that displaces the atom so that the systemP€ dynamic in nature; new edges may form, or existing ones

moves toward lower energy con gurations while allowing it May break depending on the con guration. Thus, the
to overcome local energy barriers. edges are de ned for each; as a function of the distance

between two nodes & = fey,, = (u;v)jd(u;v) g
In addition to the ability to nd low-energy con gurations, \yhered (u;v) is a distance function over node positions
we also desire policy to satisfy the following properties:  anq s a distance threshold. This threshold can be selected
based on the rst neighbor cutoff of the atomic structures as
obtained from the pair-distribution function or based on the

whereP () is a permutation over the constituent atoms cutoff of the empirical potential. The cutoff thus de nes the

An atomistic con guration is a set of positions. Sets aren€ighborhood of a nodegiven byN, = fuj(u;v) 2 Eg.
permutation invariant by de nition. Hence, if the policy 3.2. Learning Policy as Markov Decision Process

is not pe_rmutation invariant, it will generate multiple 'eP- Given an atomic structure represented as a g@piith the
resentations for th_e same set (con_ guration) dependlr_1 otential energyg, our goal is to update the positions of
on.t.he index ordering of at_oms. This hampers generali he nodew 2 V for t steps, such that the graph structure
ability to unseen con gurations.. obtained after these updatés = (V;E'), has a lower

: Inducfuvny. P0I|cy_ IS inductive if th? number of param- potential energyJs:. We model this task of iteratively
eters in the model is independentf i.e., the number of ., ja4ing the node positions asvarkov decision process
atoms in the system. If the policy is not inductive, it will de ned by the tuple(S;A;P;R; ). Here,S is thestate
be restricted to inferenaanly on atoms of sizé&\ , which space A is the set of ,all’pc;ss{bla.ctions P:S s
limits generalizability to con gurations of unseen sizes. Al [0;1] denotes thetate transition probability functign

. R :S A! Rdenotes theeward functionand 2 (0;1)
3. STRIDER NET: Proposed Methodology thediscounting factorWe next detail each of these MDP

Fig. 2 describes the architecture 8fRIDERNET. To  components.
achieve the above-outlined objectives of permutation in-State: We denote the state of a graitat stept as a matrix

variance and inductivity, we represent an atomistic con gu-Sg, , where the™ row in the matrix corresponds to the
ration as a graph (more details in Section 3.1). Subsequently,

Traditional approaches for optimizing atomic structure
exploit the gradient of the energy with the positions to

» Permutation Invariance: Policy is permutation in-

3



STRIDER NET: Graph RL to Optimize Atomic Structures 4

Figure 2:STRIDERNET architecture: The atomic structure is transformed into a graph, which is passed to a policy network
that predicts node displacement, and reward is computed. Finally, the policy parameters are updated based on the discounted
reward.

input node representation for til8 node. Intuitively, the  Additionally, in order to capture the interactions of atoms,
state should contain information that would help our modele use edge features. Speci cally, we useltHedistance
make a decision regarding the magnitude and direction dfetween two nodes andv to characterize each edgg .
each node's displacement. In this context, we note that th&inally, the empirical potentials modeling atomic structures
overall potential energy of the system is a function of thepresent arequilibrium bond lengthjx3“ j between two
potential energy of individual atorAswhich in turn depends  atoms; the distance at which these two atoms exhibit a mini-
upon the local neighborhood around an atom. To capturenum energy con guration. Note tha 3" j for an atomic
these intricacies, we construct our state space using a set system can be directly obtained from the potential param-
semantic and topological node features. eters (Ex.27% for LJ; see Eq. 2). To represent this, we

include an additional featuf&Sd" j j Xy, j, wherejxyy j is

the bond length of the edgg, connecting two atomg and

- Node type: Each nodes 2 V is characterized by its type u. This feature quanti es how much stretched/compressed
' the edge is from its equilibrium con guration. Finally, the

I'v. The type! , is a discrete variable and is useful in .~ 't ¢ p ;
distinguishing particles of different characteristics within Initia eztatLire's 0 atno © at St?p: are. )
a system (Ex. two different types of atoms). We use s = 'vkUy kSum(Uy ) kMEAN(UY, )  (3)

one-hot encodingp represent the node type. where,s!, 2 R% andjj denotes theoncatenatioroperation.
» Node potential energy:Potential energy, being a scalar Further, for an edge,, with terminal nodes andu, its
and an extensive quantity, is additive in nature; that is, thqnitial representation at stefis:

potential energy of a systebl is the sum of the potential

energy of individual atoms. Consequently, the potential s}, = x, xy kyy Yukz, 2y KGXEMj | xwij) (4)
energy of a node can be a useful feature to identify the )

nodes that need to be displaced to reduce the overall eHSing the above-designed node features, the state of a graph
ergy. We denote the potential energy of nadaftert G at stept is denoted by a matri$s: 2 RV % where

steps ad)! (Ex. see Fig. 1 for the distribution of potential €ach rowSe [i] = ;. . _
energy per atom in an LJ system). Action: The action is to displace all the graph nodeslin

« Neighborhood potential energy of a nodeAs detailed dimensiqnal space at each st_evp. 'ghe action space is continu-
earlier, the potential energy of an atom depends on it§us and is representeda® R™ ©, whered = 3. _
neighborhood (see Eq. 2). Thus, the energy of the neigrﬁeward: Our objective is to rgdu_ce the overall potential
borhood represents whether the atom is located in a relgnergy of the system. One option is to de ne the rewdd
tively stable or unstable region. To this extent, we use thét Stept 0 as the reduction in potential energy of the sys-
mean and the sum of the potential energy of atoms in thé€M at steft, i.e., Ut~ Ugi . However, this de nition of
locality of the central atom as a node feature. We denotéeward focuses on short-term improvements instead of long-
the sum of the potential energy of a nadeneighborhood term. In rough energy landscapes, the path to the global

at stept as SM(UY, ), and the mean as BAN(UY, ). minima may involve.crossing over several Iqw-energy barri-
! ! ers. Hence, we usdiscounted rewardB'! to increase the
AWe use the terms atoms and nodes interchangeably. probability of actions that lead to higher rewards in the long
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term. The discounted rewards are computed as the sum aftention network (GAT) (Vetikovic et al., 2017), full graph
the rewards over tiajectoryof actions with varying degrees network (FGN) (Battaglia et al., 2018) later in Sec. 4.4.
of importance (short-term and long-term). Mathematically,
t
D'[: Rt+ Rt+1 + 2Rt+2 + = th+k (5)
k=0
whereT is the length of the trajectory and2 (0; 1] is adis-
counting factor(hyper-parameter) describing how much we
favor immediate rewards over the long-term future rewards. 2 Rland 2 R 9, Gaussian distribution is commonly

State transition: At each steg, all the nodes in the graph used for continuous control in reinforcement learning (Duan

G are displaced based on the translation determined by th ) : . o
policy function . The graph state thus transits frcg: &t al., 2016; Mnih et al., 2016) since it is easy to sample

to Sgi+1 . Since it is hard to model the transition dynamics gto ;T a;gllg gﬁg;elrr:;srtc:tnaﬁlsloggg)eaﬂIy computed (Duan
P(Sgi# jSat) (Hu et al., 2020), we learn the policy in a b ' b |

As discussed, at each stgphe nodes ifG' are displaced
based upon the action determined by policy function
Since our actions are continuous values, we must de ne the
probability distribution over real-valued vectors. To this end,
we employmultivariate Gaussian distributiorNg( ; )

for modeling the probability distribution over nodes. Here,

model-freeapproach. Sec. 3.3 discusses the details. For an actiona; 2 RY on nodei, we de ne the policy
(aijSqt) constructed from the distribution parameters

3.3. Neural Method for Policy Representation i 2R%and 2 R? ?as follows:

The atoms in a system interact with other atoms in their _ _ = 122

neighborhood. In order to capture these interactions and in- (@jSet) = 2 1) (®)

fuse topological information, we parameterize our policy by #

aGNN. At each step, we rst generate the representation exp %(ai DY ta )

of nodes using our proposé&NN. These embeddings are
next passed to aMLP to generate /]  d-dimensional n the above equation, we parameterize meafor nodei
vector that represents the mean displacement for each noé@: o (h})

in each direction. The entire network is then trained end-to- ) b !

end. We now discuss each of these components in detail. _Recallh{- is the embedding of nodegenerated byNN
Graph neural network: Leth® = s denote the initial " EQ. 6 and is a function of the state of the graph We
node representation of nogeandh®, denote the initial 90 NOt parameterize and instead use a xed value, i.e.,
edge representation of edgg,. We performL layers of = | where is a hyper-parameter (see App. M) and
message passing to generate representations of nodes drél R d_'S identity matrix. This is done in order to simplify
edges. To generate the embedding for nodélayerl + 1 the learning process (Turner et al., 2022). Nonetheless, our

we perform the following transformation: design can be extended to outpuias well.
X I For a trajectory of lengtit, we sample actions for all nodes
hi+l = MLp h' k wl ! kh!)) (6) of the graph at each stepising policy . Consequently, for
\ \ u vu

LN G', we obtain an action vectat 2 RV 9,

3.4. Policy Loss Computation with Baseline
Our goal is to learn parameters such that actions that lead to
an overall reduction in energy are favored more over others.
Towards this, we usBREINFORCE gradient estimatavith
baseline (Williams, 1992) to optimize the parameters of our
41 _ [ L (p! [ policy network. Speci cally, we wish to maximize the re-
w' = MLP hy, KWe(hy khy) Q) ward obtained for the trajectory of lengthwith discounted
rewardsD!. To this end, we de ne a reward functiagh{ )

whereh{" is the node embedding in Iaybandh\(,'J is the
embedding of the edge between nedendu andu 2 N .
W is a trainable weight matrix and is an activation
function. The edge embedding is computed as follows:

whereh{)) is edge embedding in layéfor edgee,, . W ¢

) . as: X

is a trainable parameter. i )=E Dt )
Following L layers of message passing, the nal node repre- =0

sentation of node in theL™ layer is denoted b, 2 R%. e, then, optimize () with abaselinebas: #
Intuitively hy characterizes using a combination of its

own features and features aggregated from its neighborhood. r J( ) = D' bSg) r log (a'=Sa)
Note that the equations presented here correspond to t=0 (10)

the speci c GNN implementation used iSTRIDERNET.
Indeed, we evaluate the effect of graph architecture by 3since we deal witil dimensional action space, we use multi-
replacing outGNN with other architectures such as graph variate Gaussian.

5
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The role of a baseling(Sg: ) is to estimate the dif culty are characterized by rough energy landscape, namely, (i)
of a stateSg: (that is, how dif cult it is to perform the binary LJ mixture, (ii) Stillinger-Weber (SW) silicon, and
task onSg: for the baseline) and better contextualize the(iii) calcium-silicate-hydrate (C-S-H) gel. The systems are
rewards obtained by the actions generated lfi{ool et al.,  discussed brie y below. The detailed equations of energy
2018). Empirically, it often reduces variance and speeds ufunctions for these systems can be found in App. B.
learning. In our case, we use FIRE (Bitzek et al., 2006) aBinary LJ: We select a well-known binary mixture of two
the baseline since empirical performance obtained by FIREtom types with the atom& andB in the ratio 80 and 20,
was found to be better than other optimization techniquesespectively (Kob & Andersen, 1995). The interactions in
for rough landscapes (see Sec. D). this system are pair-wise LJ (Eq. 2). However, this system
is a good glass former and hence exhibits a large number of
o ) o stable local minima. Further, the presence of two types of
Training phase: For a given set of training graphs, we atoms makes optimization challenging for this system.
optimize the parameters of the policy network for T SW Silicon (SW Si): The empirical potential of SW Si
steps using Eq. 10. is more complex, owing to the three-body angular term,
Adaptation Phase:Once we obtain the trained model, thereby making the energy landscape more challenging to
we adapt it to a target grapBarger , Which was unseen  gptimize (Stillinger & Weber, 1985). Similar to the LJ sys-
during training. Toward this, we optimize the parametersem, SW Si also exhibits a large number of stable amorphous
as well as the target grafBarger USiNg Eq. 10. The (gisordered) states, although exhibiting a stable ordered crys-
central idea is to keep optimizing the graph structuregjline state as well.
for an extremely long trajectory (much larger than thecaicium silicate hydrate (C-S-H): C-S-H is a coarse-
training trajectory). However, training policy gradient grained model colloidal gel with interactions similar to LJ
with large values of can be dif cult due to long-horizon (Masoero et al., 2012), but of a higher degree polynomial.
problem (Wang et al., 2020). To overcome this challengerpjs structure is rarely found in an ordered state and, thus,
we sample a lower energy con guration (graph) obtainedsimilar to other systems, exhibits a rough landscape.
from the last three steps of the optimization trajectory (ofpataset generation:The atomic structures corresponding
lengthT) of the target grapl&arge: - This sampled graph g each of the systems are generated through molecular dy-
(con guration) now becomes the target graph, and wenamics or Monte Carlo simulations at high temperatures.
optimize this graph structure and the policy parametershis ensures that the initial disordered structures are realistic
This process continues for a large number of step3().  and sampled from the high-energy regions of the landscape.
It enables the policy to adapt to a low-energy environmentzqr each system,00 atomic structures are selected ran-

completely unseen during the training, and successivelgomly from the simulation. The detailed data generation
get more stable con gurations after each iteration withoutprocedure is given in App. B.

3.5. Training and Adaptation

suffering from the long-horizon problem. Baselines:We compare the performance $fRIDER-
NET with the following three classical optimizers, namely,
4. Experiments (i) gradient descent (Stillinger & LaViolette, 1986), (ii)

In this section, we evaluate the performanc&oRiDEr-  Adam (Kingma & Ba, 2014), and (iii) FIRE (Bitzek et al.,
NET to optimize atomic structures and compare it with 2006). It is worth noting that while gradient descent and
classical optimizers. We also analyze the effect of modFIRE are widely used for atomic structures, Adam is rarely
ifying the reward function, including additional features, used. Nevertheless, due to the wide use of Adam for other
and graph architectures. Further, we show how the grapfptimization tasks, we include it in the present work. The
architecture enables generalization to unseen system size§yper-parameters of the baseline have been chosen for each
system to reach the lowest energy possible.
4.1. Experimental Setup Evaluation metric: Since the goal of the present work
Simulation environment: All the training and forward is to nd the most stable structure starting from a random
simulations are carried out in the JAX environment (Schoeninitial structure, we use the potential energy of the structure
holz & Cubuk, 2020). The graph architecture is imple-as the metric to evaluate the performance of the algorithms.
mented using the jraph package (Godwin* et al., 2020)A more stable structure corresponds to lower energies, with
All the codes and datasets are available at https://githukhe global minima exhibiting the lowest energy structure.
com/M3RG-1ITD/StriderNET. The software packages andNote that the energy for each of the systems considered is
the hardware details can be found in App. E. Training anccomputed using the respective empirical potential. Addi-
inference time details are given in App. F and App. Gtionally, to evaluate the performance of the model during the
respectively. training phase, we compute the change in energy during a
Atomic systems and datasetsTo evaluate the perfor- given trajectory of lengtii on the validation graphs. Specif-
mance ofSTRIDERNET, we consider three systems that ically, at different training epochs, we calculate the average
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| Atomic system | Metric | Gradient Descent| FIRE | Adam | STRIDERNET |
LI (" units) Min -799.53 -813.66 -808.62 -815.63
Mean -795.38 -806.29 -801.96 -811.99
C-S-H (kcal/mol)| Min -1583539.3 -1637194.1| -1622905.9| -1671916.8
Mean -1548798.6 -1588792.4| -1596680.4| -1648965.9
SW Silicon (eV) Min -249.22 -256.98 -258.86 -259.94
Mean -247.56 -256.37 -256.93 -257.35

Table 1: Comparison dBTRIDERNET with classical optimization algorithms for LJ, C-S-H, and SW Silicon systems. For
each system, the minimum and mean energies are evaluated on 10 random initial structures.

reduction in energy of the system20 optimization steps and both the mean minimum energy and lowest minimum
(5 steps longer than the training trajectory)i 20 Eo >,  energy obtained are reported.

whereE ,q is the energy at the0" step andE is the energy
of the initial con guration from the validation set.

Model architecture and training setup: All the hyper- ~ First, we analyze the performance 8fRIDERNET on
parameters of the model and baselines are given in Tabs.the three systems, namely, LJ, C-S-H, and SW Silicon, to
and 7 in App. D respectively. A study on effect of learning OPtimize the structures. Figs. 4, 5, in Appendix C show
rate is given in App. H and App. L. For tf@nn, the node the reward and validation curves, respectively, for these
and edge embeddings are chosen to be of size 48 with ®odels during the training. Table 1 shows the minimum
single message passing layer. All MLPs, except the initiaRnd mean energies obtained $yRIDERNET compared
node embedding generation MLP and the nal displacement® the baselines for the three systems on 10 initial structures.
prediction MLP, have two hidden layers, each haviigy We note thaSTRIDERNET achieves better minima than the
hidden layer units. The initial node embedding generatiorPaselines for LJ, C-S-H, and SW Silicon systems, both in

MLP has an additional batch-normalization layer, while thet€rms of the minimum energy achieved and the mean over
nal MLP has four hidden layers. Leaky-ReLU is used for 10 structures. We also note that both FIRE and Adam con-

all the MLPs as the activation function. sistently outperform gradient descent. Interestingly, Adam
o _outperforms FIRE on SW Silicon. For the C-S-H system,
For each system, a datasetl®0initial states of the envi- - Aqam and FIRE exhibit comparable performance, while for
ronment sampled from the simulation randomly split into e | 3 system, FIRE outperforms Adam. Nevertheless, we
75 : 25training and validation sets, respectively, are usethpserve thaSTRIDERNET exhibits notably better perfor-
to train the model. During training, at each epoch, a tramance than all the other classical optimization algorithms
jectory length ofT = 15 is used to compute the reward i, gptaining a stable low-energy structure. A comparison at
functionJ (), and the batch-average loss is used to comyg running time is also given in App. K We also observe
pute the policy gradient. Validation is performed for the that as the structure gets optimized, the distribution of
trained model on a trajectory 8f = 20 steps by selecting  energy and stress gets narrower (see App. I). The superior
graphs randomly from the validation set. Note that validaperformance oSTRIDERNET could be attributed to several
tion is performed everg0 epoch. For the adaptation of components, such as discounted rewards and graph topology.
the trained model to obtain minimum ener@gnewtar-  while discounted reward allows it to overcome local bar-

get structures(graphs}hat were not part of the training riers, graph-based modeling enables richer characterization
or validation sets and randomly sampled from the simulagt atomistic con gurations through topology.

tion, were used as starting structures. Adaptations of these

graPhS were carried out fd000epochs, with each epoch 4 3 Efrect of Different Components in SRIDERNET

having a trajectory length of 15 steps. Further, for each ) ]

structure, the adaptation 8FTRIDERNET was performed oW We analyze the role of various componentSimip-

on 10random seeds, and the model that gave the minimurkr RN E T such as the use of FIRE as baseline in eq. 10 and

energy structure was selected. For each system, the meanfditional features towards its performance.

the minimum energy obtained on the 10 structures and thgnpact of baseline and radial features: STRIDERNET

lowest minima among the 10 structures are reported. uses FIRE as baseline during training and adaptation. To

For the baselines, the minimization was carried out for2nalyze the effect of baseline, the rst variation, termed RL,

1000steps in the case of LJ and SW Si, and2000steps ~ discards the FIRE baseline and is trained viitB:)=0..

in the case of C-S-H. In all the cases, the steps were Ioné;%he second variation, termed RL+FIRE, equivalent to
e STRIDERNET, uses FIRE as a baseline during the

enough to ensure that the energy of the structures obtained™ = X -2 .
by baselines was saturated. SimilaSTRIDERNET, the tralr_nng. The_thlrd varlat_lon, termed RL+Ra_d|aI, employs
vanilla RL with the radial symmetry functions (Behler,

minimization was performed on the sah@con gurations,

4.2. STRIDERNET: Comparison with Baselines
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Figure 3: (a) Validation curve during training for different models. (b) Performanc&rafDERNET with different

features (c) Comparison of different graph architectures for RL algorithm, namely, GAT, EGNHERNET, and MLP. (d)

Evolution of energy during adaptation 8fRIDERNET for: (i) LJ, (i) SW Silicon, and (iii) C-S-H system, respectively.

The curve represents the mean over 10 structures, and the shaded regions represent the standard deviation. Note that the
STRIDERNET for C-S-H is run only for 1000 epochs and the dotted line represents the valuel@0@ie step.

2011) as an additional node input feature for GeNs, note thatSTRIDERNET with all the features exhibits the
which has been shown to provide excellent neighborhoodest performance among all the models. Thus, although the
representation for atomic structures. Another variationredge features play a major role in the model performance,
termed RL+Radial+FIRE, uses both FIRE as the baselinéhe node features enhance the performance when used in
and the radial functions as additional input features for theconjunction with the edge features.

npdes in theGNNs for bgtter' neighborhood rep'resentatlon.4_4_ GNN Architectures: MLP, GAT, FGN,

Fig. 3(a) shows the validation curve of the trained models

with the above-mentioned variations. We observe that th@v STRIDERNET
best performance is achieved by RL+FIRE and RL+Radial e evaluate the role of theNNs architecture on the perfor-

Note that including radial features (RL+Radial) makes themance OfSTRIDERNET. To this extent, we compare three

. . ; models with different graph architectures, namely, GAT,
computation more expensive for this model (Behler, 2011)FGN andSTRIDERNE'Ig'] WFI)’liCh has our own architeycture
We also observe that RL performs similarly to RL+FIRE, see ,Sec 3.3). In orde,r to evaluate the rol s we
ot or e cpcts. Hoveer e e i ind a ol i comeced e o
whereas the RL+FIRE exhibits highly stable inference. Wemululayer perceptron (MLP). Details of the hyperparame-

) ters for all the models are in App. J. In Fig. 3(c) we observe
observe that RL+Radial+FIRE shows poorer performanc?hat the propose@NN architecture irSTRIDERNET pro-

:EZ”STF;TDFFEE ;_T_d rZL-'r-é?saedrll?é dAgogstrlﬁ:riévé orbserve thtaR/ides superior performance, although GAT also leads to
. , fep y R : TEPIEsENtS o ijar performance for larger epochs. We note that the
_the optimal model in terms of computational ef ciency and FGN architecture is unable to achieve comparable perfor-
inference. mance. Interestingly, the MLP-based model fails to train
Ablation study w.r.t different input features: To under- and shows no reduction in energy, even at large epochs. This
stand the contribution of each of the node and edge featuresuggests that the topology and neighborhood information,
toward the performance @TRIDERNET, we performed as captured by th&NN through message passing plays a
the ablation studies by removing the node and edge fearucial role in the performance off®IDERNET.
tures one by one iST.RIDERl\.lET.. Thg validation.score of 4.5. Model Adaptation
each of the models is studied in Fig. ?’.(b) - First, we ob, ow, we analyze the evolution of the energy of a structure
serve that the edge features play a crucial role as the modgI fing adaptation. Fig. 3(d) shows the performance of
without edge features exhibits poor performance. We aIS%TRmERNET along with the baselines a0 structures.
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Number ofatoms | Metric | Gradient descent| Adam | PIRE | STRIOERTET the model performance improves when trained on larger
25 Mean .79 591 | 681 6.97 number of atoms. This result suggests BaRIDERNET
Min. -7.67 -7.70 | -7.67 -7.77 H H
50 Vo er e R can mt_jeed be used for more larger complex systems with
100 Min. -8.00 8.09 | 8.14 -8.16 potentially better performance.
Mean -7.92 -8.03 | -8.06 -8.12
250 Min. -8.02 -8.15 | -8.15 -8.15
Mean -7.98 -8.10 | -8.11 -8.13 System Size| Metric | Training Training | Gradient Descent| Adam | FIRE
500 Min. -8.02 -8.14 | -8.14 -8.16 on N=100 | on N=250
Mean -7.99 -8.12 | -8.12 -8.14 250 Min -8.148 -8.154 -8.025 -8.152 | -8.153
1000 Min. -8.00 -8.13 | -8.14 -8.13 Mean | -8.133 -8.143 -7.978 -8.103 | -8.109
Mean -8.12 -8.12 | -8.12 -8.12 500 Min -8.161 -8.172 -8.016 -8.144 | -8.136
Mean | -8.139 -8.142 -7.990 -8.118 | -8.120
. e . . 1000 Min -8.126 -8.139 -8.003 -8.135| -8.139
Table 2: Minimum energy obtained by adaptatiorSoRID- Mean | -8.121 i3 7984 B119 8124

ERNET trained on al00-atom LJ system to varying system .
sizes. For comparison among multiple sizes, total energyable 3: Performance &TRIDERNET when trained on

normalized by the number of atoms in the system is shown!00 and 250 atom systems for the LJ-system. The table
shows minimum energy obtained(normalized by number of

atoms) for different system sizes.
It should be noted that faBTRIDERNET, the adaptation
of the trained model involves back-propagation; hence, th%_ Conclusion
evolution of energy is plotted with the number of epochs

in this case. In the case of both LJ and C-S-H system%em learning approach that enables the optimization of

we observe thaTRIDERNET consistently eXh'p'tS lower atomic structures on a rough landscape. We evaluate the
energy than other models. In the case of SW Si, we observg -1 o1 three systems, namely, LJ, C-S-H, and SW Silicon
that STRIDERNET, although initially exhibiting higher ' L ' '

I ; h dels. Th and show thatSTRIDERNET outperforms the classical
energy, eventually outperforms other models. uS, W& ntimization algorithms such as gradient descent, FIRE,

observe that the model adaptation on an unseen targ_et 9"aBRd Adam. We also show that the model exhibits inductivity
strgct_ure_ aIIowsS_TRlDERNET to outperform classical to completely unseen system siz8SRIDERNET trained
optimization algornithms. on 100 atom yields superior performance for a 500 atom
4.6. Inductivity to Varying System Sizes system. AltogetherSTRIDERNET presents a promising
Finally, we evaluate the ability oBTRIDERNET trained framework to optimize atomic structures.

on a given graph size to adapt to unseen graph sizes. Tdmitations and future work:  Although promising,
this extent, we consider tHeTRIDERNET trained for the  STRIDERNET is limited to a relatively small number of
LJ system having 100 atoms and adapt it to different systematoms. Scaling it to a larger number of atoms presents a
sizes withN = 25;50; 250,500,1000 Table 4.6 shows major computational challenge. Further, altho®jtRID-

the performance dBTRIDERNET on all the system sizes. ERNET outperformed classical local optimizers, the energy
Interestingly, for all structures fror5 to 500 atoms, we reached bySTRIDERNET is not the global minimum. Thus,
observe thaBTRIDERNET gives the best performance in there is further scope for improvement that enables one
terms of both the overall minimum and the mean of theto discover the global minimum in these structures. The
minimum energies of 10 structures. For the 1000 atonGNN employed inSTRIDERNETis not SE(3) equivariant.
system, we observe th&TRIDERNET gives the same While it is known that SE(3) equivaria@NNs have better
performance as Adam and FIRE for mean energy, whileexpressibility, they are computationally expensive. It
FIRE outperforms Adam an8TRIDERNET in terms of would be interesting to explore the application of such
the minimum energy achieved. However, it is worth notingarchitectures on the performan8erIDERNET. In many
that STRIDERNET gives comparable performance for the cases, energy might not be the sole criterion for optimizing
mean energy even fdr000 atom structures; that is one atomic structure. For such problems, the reward function

In this work, we presenBTRIDERNET, a graph reinforce-

order larger than the trained graph. in STRIDERNET can be modi ed to be multi-objective.
o Finally, an iteration ofSTRIDERNET is computationally
4.7. Training on Larger Systems more expensive compared to non-neural baselines, the

We trainedSTRIDERNET on a larger LJ-system of 250 acceleration of which also is an open challenge.

atoms. For the model trained on larger system, adaptation

was further performed on 10 random con gurations with 6. Acknowledgement
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A. Notations

All the notations used in this work are outlined in Tab. 4.

Symbol Meaning
G Graph at step
\Y Node set
Et Edge set at step
Set State of Graph at step
Ny Neighboring nodes of node
Uy Potential energy of node
u! Potential energy of nodeat stept for graphG!
Uat Potential energy of grapB at stept
e Edgee2 E
d Number of Dimensions in the system
s, Initial feature representation of nodeat stept
T Length of trajectory

Policy function

a Action vector for all nodes of a graph.2 RV d

; Predicted mean displacement for ifenode. ; 2 RY

Covariance Matrix. 2 R9 ¢

Table 4: Notations used in the paper

B. System Details
B.1. Binary Lennard-Jones (LJ)

The system has two types of particles with composifiggB »o9 consisting of total N(=25,50,100,250,500) particles in a
cubic ensemble with periodic boundaries. The interaction between the particles is governed by
12 6
Vi (r)=4" T T (11)

wherer refers to the distance between two particless the distance at which inter-particle potential energy is minimum and
" refers to the depth of the potential well. Here, we use the LJ paranigters 1:0,"ag =1:5,"gg =0:5, an =1:0,

as =0:8and gg =0:88. The mass for all particles is setid). All the quantities are expressed in reduced units with
respectto aa , "aa , and Boltzmann constalg . We set the interaction cutoff = 2:5 (Singh et al., 2013) and the time
stepdt = 0:003for simulations.

We perform all the molecular dynamic simulations at constant volume and temperature. For preparing the initial high energy
structures, the ensemble is taken to a high temperature :0 where it equilibrates in the liquid state. Once it equilibrates,
100 random con gurations are sampled.

B.2. Stillinger Weber (SW) Silicon

The system consists of N=64 patrticles in a cubic ensemble with periodic boundaries interacting via the Stillinger Weber(SW)
potential, as given by the following equation.

X X X X X
E= 2(rj )+ 3(rij s ik ik )
i i i j8i k>j
i Pij i ij i
2(i)= Ay j By —- e exp ——— 12
( ] ) /] 1) rIJ r|] p r” a” ij ( )
3(rijriks ik )= ik ik [COS ik  COS gik ]2 exp Ly eXp Kk
I adij Mk  ak ik

where ; is the two body term ands is the three-body angle term. The following are the standard parameters(Stillinger &
LaViolette, 1986) used in the equation:
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Parameten " A B plqla COS g
Value 2.1683 eV| 2.0951A | 7.0495| 0.6022| 4 | 0| 1.80| 21.0| 1.20| -1/3

Table 5: Parameters for Stillinger weber potential

We equilibrate the system at a high temperature of T=3500 K in an isochoric-isothermal (NVT) ensemble to obtain the
initial high-energy con gurations.

B.3. Calcium silicate hydrate (C-S-H) gel

Calcium silicate hydrate(C-S-H) is the binding phase in concrete. C-S-H is known to govern various properties of concrete,

including strength and creep. The coarse-grained colloidal gel model of C-S-H used in this work was proposed by Masoero

et al.(Masoero et al., 2012). The model has been studied extensively and found to be capable of simulating the realistic
mesoscale structure of C-S-H as well as long-term creep behavior(Liu et al., 2019a; 2021).

The C-S-H particles interact with each other via a generalized Lennard-Jones interaction potential as given by the following

equation: " #
2

Ui (rj)=4" ﬁ ﬁ (13)

WhereU; is the interaction potential energy between any pair particles 'i* andjjj'is the distance between the particles,

and is the grain diameter which is taken to be 5 nm in the modek a parameter that controls the potential well's
narrowness. is chosen to be 14 such that the tensile strain at failure is close to that obtained in previous simulations of
bulk C-S—H." is the potential well's energy depth. The energy depth is givehbyA, 3, whereAo, = kE and E is the
young's modulus of bulk C—S—H grain, which is around 63.6 GPa (Manzano et al., 2013) and k=0.0023324.

B.3.1. RREPARATION OFC-S-HBY GCMC SIMULATIONS AND OBTAINING HIGH ENERGY STATES

During the hydration process, the chemical reaction between the cement and electrolytes in water occurs via a dissolution-
precipitation reaction. The grand canonical Monte Carlo (GCMC) simulations mimic the precipitation process during the
hydration of cement. The C-S-H particles are iteratively inserted in an empty cubic box ensemble with periodic boundary
conditions. In each step of the simulation, “X' attempts of grain exchanges(i.e., insertions and deletions) are performed,
which is followed by "M' attempts of randomly displacing the grains to achieve a more stable con guration. The following
equation gives the Monte Carlo acceptance probability according to the Metropolis algorithm:

( 1)

Pacceptance = min 1; exp u —— (14)
ke T

where U is the change in energy after the Monte Carlo trial movis the chemical potential which represents the free
energy gained by the formation of C-S-H hydratess the variation in the number of C-S-H particlés, is Boltzmann
constant.T is the temperature of an in nite reservoir source. The chemical potential of the reservoir is Kipths

as per the previous studies(loannidou et al., 2016; Liu et al., 2019b). The GCMC steps are performed until the no. of
inserted C-S-H grains reaches saturation. The simulations are performed at a temperature of T=300 K. The nal saturated
con gurations so obtained are relaxed in the isothermal-isobaric (NPT) ensemble at 300 K and zero pressure for 50 ns to
release ant macroscopic tensile stress induced during GCMC simulation. Finally, energy minimization is performed to reach
the inherent state of the con guration.

Next, the obtained structure is taken to a high temperature of T=1000K in an isothermal-isochoric (NVT) ensemble and
allowed to equilibrate. Once it equilibrates, 100 random con gurations are sampled. The GCMC simulation was performed
in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Thompson et al., 2022) software.

C. Reward and Validation Curves of StriderNet

Figure 4 shows the reward at the end of each of the validation trajectori€&®DERNET trained on LJ, SW Si, and
C-S-H systems. Positive values of the rewards suggest that the model has outperformed FIRE on the validation graphs.
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