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Abstract

Optimization of atomic structures presents a chal-
lenging problem, due to their highly rough and
non-convex energy landscape, with wide applica-
tions in the fields of drug design, materials dis-
covery, and mechanics. Here, we present a graph
reinforcement learning approach, STRIDERNET,
that learns a policy to displace the atoms towards
low energy configurations. We evaluate the perfor-
mance of STRIDERNET on three complex atomic
systems, namely, binary Lennard-Jones particles,
calcium silicate hydrates gel, and disordered sil-
icon. We show that STRIDERNET outperforms
all classical optimization algorithms and enables
the discovery of a lower energy minimum. In
addition, STRIDERNET exhibits a higher rate
of reaching minima with energies, as confirmed
by the average over multiple realizations. Fi-
nally, we show that STRIDERNET exhibits in-
ductivity to unseen system sizes that are an or-
der of magnitude different from the training sys-
tem. All the codes and datasets are available at
https://github.com/M3RG-IITD/StriderNET.

1. Introduction and Related Work
Optimization of functions exhibiting non-convex landscapes
is a ubiquitous problem in several fields, such as the design
of mechanical structures (Mistakidis & Stavroulakis, 2013),
robotics and motion planning (Alonso-Mora et al., 2018;
Schwager et al., 2011), materials (Le & Winkler, 2016),
and biological systems (Yang et al., 2019), such as proteins.
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Figure 1: Optimization of 100 atoms LJ system (Colorbar
shows node potential energy).

Specifically, materials discovery relies on finding stable
structures of atomic systems, such as new battery materials,
novel drugs, or ultralight super-hard materials, through effi-
cient optimization (Xiang et al., 1995). These materials pre-
dicted through optimization are then verified and validated
through experiments and tests for industrial applications.
However, even for a given material having a few hundred
atoms, a large number of possible structures can be obtained
by allowing various configurational arrangements of the
atoms. For instance, Fig. 1 shows the structure of a 100-
atom Lennard-Jones system (detailed later), where the poten-
tial energy and positions of the atoms before and after opti-
mization are shown. Extrapolation of previous work (Tsai &
Jordan, 1993) on simple atomic clusters suggests that a sys-
tem containing 147 atoms can have as many as 1060−10259

minima. These possible configurations of the atomic net-
work, represented by local minima in the energy landscape
separated by high energy barriers, make the optimization
problem extremely challenging (Wales et al., 2003).

Several classical approaches have been proposed for the
optimization of atomic structures. These include fast
inertial relaxation engine (FIRE) (Bitzek et al., 2006),
gradient-based approaches (Stillinger & LaViolette, 1986;
Leach, 2001), perturbation-based approaches (Wales &
Doye, 1997), Bayesian approaches (Gonzalez et al., 2015),
evolutionary algorithms (Daven et al., 1996), and learned
optimizers (Merchant et al., 2021). However, most of
these approaches present several drawbacks, namely, (i) a
significant number of iterations, (ii) carefully hand-crafted

1

https://github.com/M3RG-IITD/StriderNET


STRIDERNET: Graph RL to Optimize Atomic Structures 2

update rules that are sensitive to parameters, (iii) inability
to scale to larger system sizes, (iv) representation of
atomic structures, and, most importantly, (v) the inability to
overcome high-energy barriers (Wales et al., 2003). Another
approach toward finding minima is to combine classical
molecular simulation (MS) with machine learning. These
approaches focus on accelerated MS using machine-learned
force fields or coarse graining (Noé et al., 2020; Park et al.,
2021; Li et al., 2022).

An alternative approach is to allow the system learn policies
that discover better minimum energy structures through re-
inforcement learning (RL) (Christiansen et al., 2020; Simm
et al., 2020; Rumelhart et al., 1986; Meldgaard et al., 2020).
Most studies using RL for materials have focussed on small
atomic clusters or simple molecules having a limited num-
ber of atoms. For extending the work to realistic structures,
the first challenge is to develop a scalable representation
of atomic structures. To this extent, graph neural networks
(GNNs) is an excellent choice—thanks to their ability to
capture the local topology, while being inductive to unseen
system sizes. GNNs have been used extensively for mod-
eling atomic and physical structures (Batzner et al., 2022;
Bhattoo et al., 2023; Thangamuthu et al., 2022; Bhattoo
et al., 2022; Battaglia et al., 2018; Bishnoi et al., 2022).

Here, we propose a framework combining GNNs and RL,
namely STRIDERNET1, that allows optimization of atomic
structures exhibiting a rough energy landscape. Specifically,
we show that combining a graph representation of atomic
structures with a policy-gradient approach outperforms the
standard optimization algorithms. The main contributions
of the present work are as follows.

• STRIDERNET: A graph reinforcement learning frame-
work (Section 3) that outperforms state-of-the-art optimiz-
ers on atomic structures (Section 4.2).

• Graph matters: The neighborhood information of atomic
structure as captured by the graph architecture enables
efficient optimization (Section 4.4). More importantly, a
graph-based optimization framework for atomistic con-
figurations has hitherto been unexplored, and this work
initiates a new direction.

• Model adaptation: Adaptation of the model to a specific
atomic structure allows the discovery of low energy states
(Section 4.5).

• Inductivity: The graph architecture allows the adaptation
of a trained model to unseen system sizes in an inductive
fashion (Section 4.6).

1In our approach, RL trains the policy network to progressively
take small strides towards optimizing the graph representation of
the atomic structure.

2. Preliminaries and Problem Formulation
The configuration Ωc(x1;x2; :::xN ) of an atomic system
is given by the positions of all the atoms in the system
(x1;x2; : : : ;xN ) and their types !i. Each xi represents the
position of the ith atom in a d-dimensional space, where d
is typically 2 or 3. The potential energy U of an N -atom
structure is a function of Ωc. Specifically, the energy of a
system can be written as the summation of one-body U(ri),
two-body U(ri; rj), three-body U(ri; rj ; rk), up to N -body
interaction terms as:

U =

NX
i=1

U(ri)+

NX
i;j=1;
i 6=j

U(ri; rj)+

NX
i;j;k=1;
i 6=j 6=k

U(ri; rj ; rk)+· · ·

(1)
However, the exact computation of this energy is highly
challenging and involves expensive quantum mechanical
computations (Cohen et al., 2012). Alternatively, empirical
potential functions (Torrens, 2012) can approximately
capture this interaction while maintaining the minima asso-
ciated with these structures. These potentials are developed
relying only on two-, three- or four-body interactions and
ignoring higher-order terms for computational efficiency.
In this work, we rely on well-validated empirical potentials
to compute the energy of the different atomic structures.
Accordingly, the atomic structure optimization can now
be posed as a problem of identifying the configuration of
N -atoms in terms of their position vectors, such that the
system’s total energy is minimum.

The major challenge in such optimization is the rough land-
scape featuring an enormous number of stable structures
(local minima) and a large number of degrees of freedom as-
sociated with an atomic structure (Nd for an N -atom struc-
ture in d dimensional space; typically d = 2 or 3). While
characterizing the number of minima in the energy land-
scape of actual material is challenging, several studies have
focused on simple model systems. One of the classical sys-
tems extensively characterized includes the Lennard-Jones
(LJ) system, which can be used to model noble gases (Tsai
& Jordan, 1993; Wales & Doye, 1997; Malek & Mousseau,
2000; Doye et al., 1999). The energy of a system of N -
atoms interacting through the LJ potential is given by:

U = �

N�1X
i=1

NX
j=2;
j>i

"�
�

|xij |

�12

−
�

�

|xij |

�6
#

(2)

where |xij | = |xi −xj| is the distance is between the atoms
i and j, and � and � are constants depending on the atom
types. By extrapolating the studies on small LJ structures,
the scaling of minima with the number of atoms N can
be obtained as e(k1+k2N) or e(k1+k2N+k3N

2), where k1; k2
and k3 are constants obtained by fitting (Wales & Doye,
1997). Thus, it becomes incredibly challenging for a system
with thousands of atoms to get the global minima or even
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local minima with extremely low energy compared to the
global minima.

Traditional approaches for optimizing atomic structures
exploit the gradient of the energyU with the positions to
�nd stable structures near the starting con�guration leading
to local minima. Some of these approaches include steepest
descent (Stillinger & LaViolette, 1986), conjugate gradient,
and Newton-Raphson (Leach, 2001). Alternatively, FIRE
relies on a momentum-based approach and has been shown
to outperform purely gradient-based methods (Bitzek et al.,
2006). These approaches aim to �nd the most stable atomic
structure, starting from an arbitrary con�guration. Thus,
once trapped in a local minimum, these approaches cannot
escape the minima to move toward more stable structures.
Further, these approaches do not learn any new heuristics
based on the trajectory they followed. Thus, there is no
possibility of “adapting” these algorithms to obtain more
stable structures closer to the global minimum. To address
these challenges, we propose a framework that exploits the
atomic structure and energy relationship to discover stable
con�gurations.

Problem: (Discovering stable structures) Let

 c(x1 ; x2 ; :::xN ) be a con�guration of an N -atom
system with energyU 
 c sampled from the energy landscape
UNd of the system. Starting from
 c, our goal is to obtain
the con�guration 
 min exhibiting the minimum energy
U 
 min by displacing the atoms. To this end, we aim to
learn a policy� that displaces the atom so that the system
moves toward lower energy con�gurations while allowing it
to overcome local energy barriers.

In addition to the ability to �nd low-energy con�gurations,
we also desire policy� to satisfy the following properties:

• Permutation Invariance: Policy � is permutation in-
variant if � (
 c(x1 ; : : : ; xN )) = � (P(
 c(x1 ; : : : ; xN ))) ,
whereP(�) is a permutation over the constituent atoms.
An atomistic con�guration is a set of positions. Sets are
permutation invariant by de�nition. Hence, if the policy
is not permutation invariant, it will generate multiple rep-
resentations for the same set (con�guration) depending
on the index ordering of atoms. This hampers generaliz-
ability to unseen con�gurations.

• Inductivity: Policy � is inductive if the number of param-
eters in the model is independent ofN , i.e., the number of
atoms in the system. If the policy is not inductive, it will
be restricted to inferenceonly on atoms of sizeN , which
limits generalizability to con�gurations of unseen sizes.

3. STRIDER NET: Proposed Methodology
Fig. 2 describes the architecture ofSTRIDERNET. To
achieve the above-outlined objectives of permutation in-
variance and inductivity, we represent an atomistic con�gu-
ration as a graph (more details in Section 3.1). Subsequently,

we develop a message-passingGNN to embed graphs into
a feature space. The message-passing architecture of the
GNN ensures both permutation invariance and inductivity.
The graph, in turn, predicts the displacements of each of the
atoms based on which the rewards are computed. Finally,
the policy� is learned by maximizing the discounted re-
wards. Note that we learn the parameters of� using a set
of training graphs exhibiting diverse energies that are sam-
pled from the energy landscapeENd of an atomic system
with N -atoms ind dimensions. Thus, the initial structure,
although arbitrary and possibly unstable, is realistic and
physically feasible. Then given a new structure, we adapt
the parameters of our learned policy network� to the new
structure while optimizing the new graph structure. All nota-
tions used in the present work are given in Tab. 4 in App. A.
Before we de�ne the parametrization of our policy, we �rst
discuss how our atomic system is transformed into a graph.

3.1. Transforming Atomic System to Graph

The total energyU of an atomic system is closely related to
the local neighborhood of an atom. In order to leverage this
neighborhood information, we transform the atomic struc-
ture into a graph, where the nodes and edges of the graph
represent the atoms and the chemical bonds between the
atoms, respectively. Thus, an atomic system is represented
by a graphG = ( V; E) where the nodesv 2 V denotes the
atoms andevu 2 E represents edges corresponding to the
interactions between atomsv andu. Note that the edges can
be dynamic in nature; new edges may form, or existing ones
may break depending on the con�guration
 i . Thus, the
edges are de�ned for each
 c as a function of the distance
between two nodes asE = f euv = ( u; v) j d (u; v) � � g
whered (u; v) is a distance function over node positions
and� is a distance threshold. This threshold can be selected
based on the �rst neighbor cutoff of the atomic structures as
obtained from the pair-distribution function or based on the
cutoff of the empirical potential. The cutoff thus de�nes the
neighborhood of a nodev given byNv = f uj(u; v) 2 Eg.

3.2. Learning Policy� as Markov Decision Process

Given an atomic structure represented as a graphGwith the
potential energyUG, our goal is to update the positions of
the nodesv 2 V for t steps, such that the graph structure
obtained after these updatesGt = ( V; Et ), has a lower
potential energyUGt . We model this task of iteratively
updating the node positions as aMarkov decision process
de�ned by the tuple(S;A ; P; R;  ). Here,S is thestate
space, A is the set of all possibleactions, P : S � S �
A ! [0; 1] denotes thestate transition probability function,
R : S � A ! R denotes thereward functionand 2 (0; 1)
thediscounting factor.We next detail each of these MDP
components.
State: We denote the state of a graphGat stept as a matrix

SGt , where thei th row in the matrix corresponds to the
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Figure 2:STRIDERNET architecture: The atomic structure is transformed into a graph, which is passed to a policy network
that predicts node displacement, and reward is computed. Finally, the policy parameters are updated based on the discounted
reward.

input node representation for thei th node. Intuitively, the
state should contain information that would help our model
make a decision regarding the magnitude and direction of
each node's displacement. In this context, we note that the
overall potential energy of the system is a function of the
potential energy of individual atoms2, which in turn depends
upon the local neighborhood around an atom. To capture
these intricacies, we construct our state space using a set of
semantic and topological node features.

• Node type: Each nodev 2 V is characterized by its type
! v . The type! v is a discrete variable and is useful in
distinguishing particles of different characteristics within
a system (Ex. two different types of atoms). We use
one-hot encodingto represent the node type.

• Node potential energy:Potential energy, being a scalar
and an extensive quantity, is additive in nature; that is, the
potential energy of a systemUG is the sum of the potential
energy of individual atoms. Consequently, the potential
energy of a node can be a useful feature to identify the
nodes that need to be displaced to reduce the overall en-
ergy. We denote the potential energy of nodev after t
steps asU t

v (Ex. see Fig. 1 for the distribution of potential
energy per atom in an LJ system).

• Neighborhood potential energy of a node:As detailed
earlier, the potential energy of an atom depends on its
neighborhood (see Eq. 2). Thus, the energy of the neigh-
borhood represents whether the atom is located in a rela-
tively stable or unstable region. To this extent, we use the
mean and the sum of the potential energy of atoms in the
locality of the central atom as a node feature. We denote
the sum of the potential energy of a nodev's neighborhood
at stept as SUM(U t

N v
), and the mean as MEAN(U t

N v
).

2We use the terms atoms and nodes interchangeably.

Additionally, in order to capture the interactions of atoms,
we use edge features. Speci�cally, we use theL 1 distance
between two nodesu andv to characterize each edgeeuv .
Finally, the empirical potentials modeling atomic structures
present anequilibrium bond lengthjxequi

vu j between two
atoms; the distance at which these two atoms exhibit a mini-
mum energy con�guration. Note thatjxequi

vu j for an atomic
system can be directly obtained from the potential param-
eters (Ex.21=6� for LJ; see Eq. 2). To represent this, we
include an additional featurejxequi

vu j � j xvu j, wherejxvu j is
the bond length of the edgeevu connecting two atomsv and
u. This feature quanti�es how much stretched/compressed
the edge is from its equilibrium con�guration. Finally, the
initial features of a nodev at stept are:

st
v = ! v k U t

v k SUM(U t
N v

) k MEAN(U t
N v

) (3)

where,st
v 2 Rds andjj denotes theconcatenationoperation.

Further, for an edgeevu with terminal nodesv andu, its
initial representation at stept is:

st
e = xv � xu k yv � yu k zv � zu k (jxequi

vu j � j xvu j) (4)

Using the above-designed node features, the state of a graph
G at stept is denoted by a matrixSGt 2 RjVj� ds where
each rowSGt [i ] = st

i .
Action: The action is to displace all the graph nodes ind
dimensional space at each step. The action space is continu-
ous and is represented asa 2 RjVj� d, whered = 3 .
Reward: Our objective is to reduce the overall potential
energy of the system. One option is to de�ne the rewardRt

at stept � 0 as the reduction in potential energy of the sys-
tem at stept, i.e.,UGt � UGt +1 . However, this de�nition of
reward focuses on short-term improvements instead of long-
term. In rough energy landscapes, the path to the global
minima may involve crossing over several low-energy barri-
ers. Hence, we usediscounted rewardsD t to increase the
probability of actions that lead to higher rewards in the long

4



STRIDER NET: Graph RL to Optimize Atomic Structures 5

term. The discounted rewards are computed as the sum of
the rewards over atrajectoryof actions with varying degrees
of importance (short-term and long-term). Mathematically,

D t = Rt + R t +1 +  2Rt +2 + : : : =
T � tX

k=0

 k Rt + k (5)

whereT is the length of the trajectory and 2 (0; 1] is adis-
counting factor(hyper-parameter) describing how much we
favor immediate rewards over the long-term future rewards.
State transition: At each stept, all the nodes in the graph
Gt are displaced based on the translation determined by the
policy function� . The graph state thus transits fromSGt

to SGt +1 . Since it is hard to model the transition dynamics
p(SGt +1 jSGt ) (Hu et al., 2020), we learn the policy in a
model-freeapproach. Sec. 3.3 discusses the details.

3.3. Neural Method for Policy Representation

The atoms in a system interact with other atoms in their
neighborhood. In order to capture these interactions and in-
fuse topological information, we parameterize our policy by
a GNN. At each stept, we �rst generate the representation
of nodes using our proposedGNN. These embeddings are
next passed to anMLP to generate ajVj � d-dimensional
vector that represents the mean displacement for each node
in each direction. The entire network is then trained end-to-
end. We now discuss each of these components in detail.
Graph neural network: Let h0

v = st
v denote the initial

node representation of nodev andh0
vu denote the initial

edge representation of edgeevu . We performL layers of
message passing to generate representations of nodes and
edges. To generate the embedding for nodev at layerl + 1
we perform the following transformation:

h l +1
v = �

 

MLP

 

h l
v k

X

u2N v

W l
V (h l

u k h l
vu )

!!

(6)

whereh ( l )
v is the node embedding in layerl andh ( l )

vu is the
embedding of the edge between nodev andu andu 2 N v .
W l

V is a trainable weight matrix and� is an activation
function. The edge embedding is computed as follows:

h l +1
vu = �

�
MLP

�
h l

vu k W l
E(h l

v k h l
u )

��
(7)

whereh ( l )
vu is edge embedding in layerl for edgeevu . W l

E
is a trainable parameter.

FollowingL layers of message passing, the �nal node repre-
sentation of nodev in theL th layer is denoted byhL

v 2 Rdh .
Intuitively hL

v characterizesv using a combination of its
own features and features aggregated from its neighborhood.
Note that the equations presented here correspond to
the speci�c GNN implementation used inSTRIDERNET.
Indeed, we evaluate the effect of graph architecture by
replacing ourGNN with other architectures such as graph

attention network (GAT) (Veli�cković et al., 2017), full graph
network (FGN) (Battaglia et al., 2018) later in Sec. 4.4.

As discussed, at each stept, the nodes inGt are displaced
based upon the action determined by policy function� .
Since our actions are continuous values, we must de�ne the
probability distribution over real-valued vectors. To this end,
we employmultivariate Gaussian distribution3 Nd(� ; � )
for modeling the probability distribution over nodes. Here,
� 2 Rd and� 2 Rd� d. Gaussian distribution is commonly
used for continuous control in reinforcement learning (Duan
et al., 2016; Mnih et al., 2016) since it is easy to sample
from and its gradients can also be easily computed (Duan
et al., 2016; Rumelhart et al., 1986).

For an actionai 2 Rd on nodei , we de�ne the policy
� � (ai jSGt ) constructed from the distribution parameters
� i 2 Rd and� 2 Rd� d as follows:

� � (ai jSGt ) =
�

1
2�

� d=2

j� j � 1=2� (8)

exp

"

�
1
2

(ai � � i )
0� � 1(ai � � i )

#

In the above equation, we parameterize mean� i for nodei
as: � i = � � (hL

i )

RecallhL
i is the embedding of nodei generated byGNN

in Eq. 6 and is a function of the state of the graphGt . We
do not parameterize� and instead use a �xed value, i.e.,
� = � � I where� is a hyper-parameter (see App. M) and
I 2 Rd� d is identity matrix. This is done in order to simplify
the learning process (Turner et al., 2022). Nonetheless, our
design can be extended to output� as well.

For a trajectory of lengthT, we sample actions for all nodes
of the graph at each stept using policy� . Consequently, for
Gt , we obtain an action vectorat 2 RjVj� d.

3.4. Policy Loss Computation with Baseline
Our goal is to learn parameters such that actions that lead to
an overall reduction in energy are favored more over others.
Towards this, we useREINFORCE gradient estimatorwith
baseline (Williams, 1992) to optimize the parameters of our
policy network. Speci�cally, we wish to maximize the re-
ward obtained for the trajectory of lengthT with discounted
rewardsD t . To this end, we de�ne a reward functionJ (� � )
as:

J (� � ) = E
� TX

t =0

�
D t � �

(9)

We, then, optimizeJ (� � ) with abaselinebas:

r J (� � ) =

"
TX

t =0

�
D t � b(SGt )

�
r � log� � (at =SGt )

#

(10)

3Since we deal withd dimensional action space, we use multi-
variate Gaussian.
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The role of a baselineb(SGt ) is to estimate the dif�culty
of a stateSGt (that is, how dif�cult it is to perform the
task onSGt for the baseline) and better contextualize the
rewards obtained by the actions generated by� (Kool et al.,
2018). Empirically, it often reduces variance and speeds up
learning. In our case, we use FIRE (Bitzek et al., 2006) as
the baseline since empirical performance obtained by FIRE
was found to be better than other optimization techniques
for rough landscapes (see Sec. D).

3.5. Training and Adaptation

Training phase: For a given set of training graphs, we
optimize the parameters of the policy network� � for T
steps using Eq. 10.
Adaptation Phase:Once we obtain the trained model� � ,
we adapt it to a target graphGtarget , which was unseen
during training. Toward this, we optimize the parameters
� � as well as the target graphGtarget using Eq. 10. The
central idea is to keep optimizing the graph structure
for an extremely long trajectory (much larger than the
training trajectory). However, training policy gradient
with large values ofT can be dif�cult due to long-horizon
problem (Wang et al., 2020). To overcome this challenge,
we sample a lower energy con�guration (graph) obtained
from the last three steps of the optimization trajectory (of
lengthT) of the target graphGtarget . This sampled graph
(con�guration) now becomes the target graph, and we
optimize this graph structure and the policy parameters.
This process continues for a large number of steps(� T).
It enables the policy to adapt to a low-energy environment,
completely unseen during the training, and successively
get more stable con�gurations after each iteration without
suffering from the long-horizon problem.

4. Experiments
In this section, we evaluate the performance ofSTRIDER-
NET to optimize atomic structures and compare it with
classical optimizers. We also analyze the effect of mod-
ifying the reward function, including additional features,
and graph architectures. Further, we show how the graph
architecture enables generalization to unseen system sizes.

4.1. Experimental Setup
� Simulation environment: All the training and forward
simulations are carried out in the JAX environment (Schoen-
holz & Cubuk, 2020). The graph architecture is imple-
mented using the jraph package (Godwin* et al., 2020).
All the codes and datasets are available at https://github.
com/M3RG-IITD/StriderNET. The software packages and
the hardware details can be found in App. E. Training and
inference time details are given in App. F and App. G
respectively.
� Atomic systems and datasets:To evaluate the perfor-
mance ofSTRIDERNET, we consider three systems that

are characterized by rough energy landscape, namely, (i)
binary LJ mixture, (ii) Stillinger-Weber (SW) silicon, and
(iii) calcium-silicate-hydrate (C-S-H) gel. The systems are
discussed brie�y below. The detailed equations of energy
functions for these systems can be found in App. B.
Binary LJ: We select a well-known binary mixture of two
atom types with the atomsA andB in the ratio 80 and 20,
respectively (Kob & Andersen, 1995). The interactions in
this system are pair-wise LJ (Eq. 2). However, this system
is a good glass former and hence exhibits a large number of
stable local minima. Further, the presence of two types of
atoms makes optimization challenging for this system.
SW Silicon (SW Si): The empirical potential of SW Si
is more complex, owing to the three-body angular term,
thereby making the energy landscape more challenging to
optimize (Stillinger & Weber, 1985). Similar to the LJ sys-
tem, SW Si also exhibits a large number of stable amorphous
(disordered) states, although exhibiting a stable ordered crys-
talline state as well.
Calcium silicate hydrate (C-S-H): C-S-H is a coarse-
grained model colloidal gel with interactions similar to LJ
(Masoero et al., 2012), but of a higher degree polynomial.
This structure is rarely found in an ordered state and, thus,
similar to other systems, exhibits a rough landscape.
Dataset generation:The atomic structures corresponding
to each of the systems are generated through molecular dy-
namics or Monte Carlo simulations at high temperatures.
This ensures that the initial disordered structures are realistic
and sampled from the high-energy regions of the landscape.
For each system,100 atomic structures are selected ran-
domly from the simulation. The detailed data generation
procedure is given in App. B.
� Baselines:We compare the performance ofSTRIDER-
NET with the following three classical optimizers, namely,
(i) gradient descent (Stillinger & LaViolette, 1986), (ii)
Adam (Kingma & Ba, 2014), and (iii) FIRE (Bitzek et al.,
2006). It is worth noting that while gradient descent and
FIRE are widely used for atomic structures, Adam is rarely
used. Nevertheless, due to the wide use of Adam for other
optimization tasks, we include it in the present work. The
hyper-parameters of the baseline have been chosen for each
system to reach the lowest energy possible.
� Evaluation metric: Since the goal of the present work
is to �nd the most stable structure starting from a random
initial structure, we use the potential energy of the structure
as the metric to evaluate the performance of the algorithms.
A more stable structure corresponds to lower energies, with
the global minima exhibiting the lowest energy structure.
Note that the energy for each of the systems considered is
computed using the respective empirical potential. Addi-
tionally, to evaluate the performance of the model during the
training phase, we compute the change in energy during a
given trajectory of lengthT on the validation graphs. Specif-
ically, at different training epochs, we calculate the average
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Atomic system Metric Gradient Descent FIRE Adam STRIDER NET

LJ (" units) Min -799.53 -813.66 -808.62 -815.63
Mean -795.38 -806.29 -801.96 -811.99

C-S-H (kcal/mol) Min -1583539.3 -1637194.1 -1622905.9 -1671916.8
Mean -1548798.6 -1588792.4 -1596680.4 -1648965.9

SW Silicon (eV) Min -249.22 -256.98 -258.86 -259.94
Mean -247.56 -256.37 -256.93 -257.35

Table 1: Comparison ofSTRIDERNET with classical optimization algorithms for LJ, C-S-H, and SW Silicon systems. For
each system, the minimum and mean energies are evaluated on 10 random initial structures.

reduction in energy of the system in20optimization steps
(5 steps longer than the training trajectory),< E 20 � E0 > ,
whereE20 is the energy at the20th step andE0 is the energy
of the initial con�guration from the validation set.
� Model architecture and training setup: All the hyper-
parameters of the model and baselines are given in Tabs. 6
and 7 in App. D respectively. A study on effect of learning
rate is given in App. H and App. L. For theGNN, the node
and edge embeddings are chosen to be of size 48 with a
single message passing layer. All MLPs, except the initial
node embedding generation MLP and the �nal displacement
prediction MLP, have two hidden layers, each having48
hidden layer units. The initial node embedding generation
MLP has an additional batch-normalization layer, while the
�nal MLP has four hidden layers. Leaky-ReLU is used for
all the MLPs as the activation function.

For each system, a dataset of100initial states of the envi-
ronment sampled from the simulation randomly split into
75 : 25training and validation sets, respectively, are used
to train the model. During training, at each epoch, a tra-
jectory length ofT = 15 is used to compute the reward
functionJ (� � ), and the batch-average loss is used to com-
pute the policy gradient. Validation is performed for the
trained model on a trajectory ofT = 20 steps by selecting
graphs randomly from the validation set. Note that valida-
tion is performed every20 epoch. For the adaptation of
the trained model to obtain minimum energy,10 newtar-
get structures(graphs), that were not part of the training
or validation sets and randomly sampled from the simula-
tion, were used as starting structures. Adaptations of these
graphs were carried out for1000epochs, with each epoch
having a trajectory length of 15 steps. Further, for each
structure, the adaptation ofSTRIDERNET was performed
on10 random seeds, and the model that gave the minimum
energy structure was selected. For each system, the mean of
the minimum energy obtained on the 10 structures and the
lowest minima among the 10 structures are reported.

For the baselines, the minimization was carried out for
1000steps in the case of LJ and SW Si, and for2000steps
in the case of C-S-H. In all the cases, the steps were long
enough to ensure that the energy of the structures obtained
by baselines was saturated. Similar toSTRIDERNET, the
minimization was performed on the same10con�gurations,

and both the mean minimum energy and lowest minimum
energy obtained are reported.

4.2. STRIDER NET: Comparison with Baselines

First, we analyze the performance ofSTRIDERNET on
the three systems, namely, LJ, C-S-H, and SW Silicon, to
optimize the structures. Figs. 4, 5, in Appendix C show
the reward and validation curves, respectively, for these
models during the training. Table 1 shows the minimum
and mean energies obtained bySTRIDERNET compared
to the baselines for the three systems on 10 initial structures.
We note thatSTRIDERNET achieves better minima than the
baselines for LJ, C-S-H, and SW Silicon systems, both in
terms of the minimum energy achieved and the mean over
10 structures. We also note that both FIRE and Adam con-
sistently outperform gradient descent. Interestingly, Adam
outperforms FIRE on SW Silicon. For the C-S-H system,
Adam and FIRE exhibit comparable performance, while for
the LJ system, FIRE outperforms Adam. Nevertheless, we
observe thatSTRIDERNET exhibits notably better perfor-
mance than all the other classical optimization algorithms
in obtaining a stable low-energy structure. A comparison at
�xed running time is also given in App. K We also observe
that as the structure gets optimized, the distribution of
energy and stress gets narrower (see App. I). The superior
performance ofSTRIDERNET could be attributed to several
components, such as discounted rewards and graph topology.
While discounted reward allows it to overcome local bar-
riers, graph-based modeling enables richer characterization
of atomistic con�gurations through topology.

4.3. Effect of Different Components in STRIDER NET

Now, we analyze the role of various components inSTRID-
ERNET such as the use of FIRE as baseline in eq. 10 and
additional features towards its performance.

Impact of baseline and radial features: STRIDERNET
uses FIRE as baseline during training and adaptation. To
analyze the effect of baseline, the �rst variation, termed RL,
discards the FIRE baseline and is trained withb(SGt )=0 .
The second variation, termed RL+FIRE, equivalent to
the STRIDERNET, uses FIRE as a baseline during the
training. The third variation, termed RL+Radial, employs
vanilla RL with the radial symmetry functions (Behler,

7
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Figure 3: (a) Validation curve during training for different models. (b) Performance ofSTRIDERNET with different
features (c) Comparison of different graph architectures for RL algorithm, namely, GAT, FGN,STRIDERNET, and MLP. (d)
Evolution of energy during adaptation ofSTRIDERNET for: (i) LJ, (ii) SW Silicon, and (iii) C-S-H system, respectively.
The curve represents the mean over 10 structures, and the shaded regions represent the standard deviation. Note that the
STRIDERNET for C-S-H is run only for 1000 epochs and the dotted line represents the value at the1000th step.

2011) as an additional node input feature for theGNNs,
which has been shown to provide excellent neighborhood
representation for atomic structures. Another variation
termed RL+Radial+FIRE, uses both FIRE as the baseline
and the radial functions as additional input features for the
nodes in theGNNs for better neighborhood representation.
Fig. 3(a) shows the validation curve of the trained models
with the above-mentioned variations. We observe that the
best performance is achieved by RL+FIRE and RL+Radial.
Note that including radial features (RL+Radial) makes the
computation more expensive for this model (Behler, 2011).
We also observe that RL performs similarly to RL+FIRE,
although for larger epochs. However, the forward trajectory
of the RL without baseline occasionally exhibits instability,
whereas the RL+FIRE exhibits highly stable inference. We
observe that RL+Radial+FIRE shows poorer performance
than RL+FIRE and RL+Radial. Altogether, we observe that
the STRIDERNET, represented by RL+FIRE, represents
the optimal model in terms of computational ef�ciency and
inference.

Ablation study w.r.t different input features: To under-
stand the contribution of each of the node and edge features
toward the performance ofSTRIDERNET, we performed
the ablation studies by removing the node and edge fea-
tures one by one inSTRIDERNET. The validation score of
each of the models is studied in Fig. 3(b) . First, we ob-
serve that the edge features play a crucial role as the model
without edge features exhibits poor performance. We also

note thatSTRIDERNET with all the features exhibits the
best performance among all the models. Thus, although the
edge features play a major role in the model performance,
the node features enhance the performance when used in
conjunction with the edge features.

4.4. GNN Architectures: MLP, GAT, FGN,
STRIDER NET

We evaluate the role of theGNNs architecture on the perfor-
mance ofSTRIDERNET. To this extent, we compare three
models with different graph architectures, namely, GAT,
FGN, andSTRIDERNET, which has our own architecture
(see Sec. 3.3). In order to evaluate the role ofGNNs, we
also trained a model with a fully-connected feed-forward
multilayer perceptron (MLP). Details of the hyperparame-
ters for all the models are in App. J. In Fig. 3(c) we observe
that the proposedGNN architecture inSTRIDERNET pro-
vides superior performance, although GAT also leads to
similar performance for larger epochs. We note that the
FGN architecture is unable to achieve comparable perfor-
mance. Interestingly, the MLP-based model fails to train
and shows no reduction in energy, even at large epochs. This
suggests that the topology and neighborhood information,
as captured by theGNN through message passing plays a
crucial role in the performance of STRIDERNET.

4.5. Model Adaptation
Now, we analyze the evolution of the energy of a structure
during adaptation. Fig. 3(d) shows the performance of
STRIDERNET along with the baselines on10 structures.

8
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Number of atoms Metric Gradient descent Adam FIRE STRIDER NET

25
Min. -6.94 -7.00 -6.99 -7.08
Mean -6.79 -6.91 -6.81 -6.97

50
Min. -7.67 -7.70 -7.67 -7.77
Mean -7.57 -7.62 -7.63 -7.71

100
Min. -8.00 -8.09 -8.14 -8.16
Mean -7.92 -8.03 -8.06 -8.12

250
Min. -8.02 -8.15 -8.15 -8.15
Mean -7.98 -8.10 -8.11 -8.13

500
Min. -8.02 -8.14 -8.14 -8.16
Mean -7.99 -8.12 -8.12 -8.14

1000
Min. -8.00 -8.13 -8.14 -8.13
Mean -8.12 -8.12 -8.12 -8.12

Table 2: Minimum energy obtained by adaptation ofSTRID-
ERNET trained on a100-atom LJ system to varying system
sizes. For comparison among multiple sizes, total energy
normalized by the number of atoms in the system is shown.

It should be noted that forSTRIDERNET, the adaptation
of the trained model involves back-propagation; hence, the
evolution of energy is plotted with the number of epochs
in this case. In the case of both LJ and C-S-H systems,
we observe thatSTRIDERNET consistently exhibits lower
energy than other models. In the case of SW Si, we observe
that STRIDERNET, although initially exhibiting higher
energy, eventually outperforms other models. Thus, we
observe that the model adaptation on an unseen target graph
structure allowsSTRIDERNET to outperform classical
optimization algorithms.

4.6. Inductivity to Varying System Sizes
Finally, we evaluate the ability ofSTRIDERNET trained
on a given graph size to adapt to unseen graph sizes. To
this extent, we consider theSTRIDERNET trained for the
LJ system having 100 atoms and adapt it to different system
sizes withN = 25; 50; 250; 500; 1000. Table 4.6 shows
the performance ofSTRIDERNET on all the system sizes.
Interestingly, for all structures from25 to 500 atoms, we
observe thatSTRIDERNET gives the best performance in
terms of both the overall minimum and the mean of the
minimum energies of 10 structures. For the 1000 atom
system, we observe thatSTRIDERNET gives the same
performance as Adam and FIRE for mean energy, while
FIRE outperforms Adam andSTRIDERNET in terms of
the minimum energy achieved. However, it is worth noting
thatSTRIDERNET gives comparable performance for the
mean energy even for1000 atom structures; that is one
order larger than the trained graph.

4.7. Training on Larger Systems
We trainedSTRIDERNET on a larger LJ-system of 250
atoms. For the model trained on larger system, adaptation
was further performed on 10 random con�gurations with
(250, 500, and 1000) atoms. The results of these models are
compared with the ones obtained from the originalSTRID-
ERNET trained on 100 atoms (see Tab. 3). Interestingly,
we observe that the model trained on 250 atoms outperform
STRIDERNET trained on 100 atoms. This suggests that

the model performance improves when trained on larger
number of atoms. This result suggests thatSTRIDERNET
can indeed be used for more larger complex systems with
potentially better performance.

System Size Metric Training
on N=100

Training
on N=250

Gradient Descent Adam FIRE

250 Min -8.148 -8.154 -8.025 -8.152 -8.153
Mean -8.133 -8.143 -7.978 -8.103 -8.109

500 Min -8.161 -8.172 -8.016 -8.144 -8.136
Mean -8.139 -8.142 -7.990 -8.118 -8.120

1000 Min -8.126 -8.139 -8.003 -8.135 -8.139
Mean -8.121 -8.123 -7.984 -8.119 -8.124

Table 3: Performance ofSTRIDERNET when trained on
100 and 250 atom systems for the LJ-system. The table
shows minimum energy obtained(normalized by number of
atoms) for different system sizes.

5. Conclusion
In this work, we presentSTRIDERNET, a graph reinforce-
ment learning approach that enables the optimization of
atomic structures on a rough landscape. We evaluate the
model on three systems, namely, LJ, C-S-H, and SW Silicon,
and show thatSTRIDERNET outperforms the classical
optimization algorithms such as gradient descent, FIRE,
and Adam. We also show that the model exhibits inductivity
to completely unseen system sizes;STRIDERNET trained
on 100 atom yields superior performance for a 500 atom
system. Altogether,STRIDERNET presents a promising
framework to optimize atomic structures.
Limitations and future work: Although promising,
STRIDERNET is limited to a relatively small number of
atoms. Scaling it to a larger number of atoms presents a
major computational challenge. Further, althoughSTRID-
ERNET outperformed classical local optimizers, the energy
reached bySTRIDERNET is not the global minimum. Thus,
there is further scope for improvement that enables one
to discover the global minimum in these structures. The
GNN employed inSTRIDERNETis not SE(3) equivariant.
While it is known that SE(3) equivariantGNNs have better
expressibility, they are computationally expensive. It
would be interesting to explore the application of such
architectures on the performanceSTRIDERNET. In many
cases, energy might not be the sole criterion for optimizing
atomic structure. For such problems, the reward function
in STRIDERNET can be modi�ed to be multi-objective.
Finally, an iteration ofSTRIDERNET is computationally
more expensive compared to non-neural baselines, the
acceleration of which also is an open challenge.
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A. Notations

All the notations used in this work are outlined in Tab. 4.

Symbol Meaning

Gt Graph at stept

V Node set

Et Edge set at stept

SGt State of Graph at stept

Nv Neighboring nodes of nodev

Uv Potential energy of nodev

U t
v Potential energy of nodev at stept for graphGt

UGt Potential energy of graphGat stept

e Edgee 2 E

d Number of Dimensions in the system

st
v Initial feature representation of nodev at stept

T Length of trajectory

� Policy function

a Action vector for all nodes of a graph.a 2 RjVj� d

� i Predicted mean displacement for thei th node.� i 2 Rd

� Covariance Matrix.� 2 Rd� d

.

Table 4: Notations used in the paper

B. System Details

B.1. Binary Lennard-Jones (LJ)

The system has two types of particles with compositionA80B20 consisting of total N(=25,50,100,250,500) particles in a
cubic ensemble with periodic boundaries. The interaction between the particles is governed by

VLJ (r ) = 4 "
� � �

r

� 12
�

� �
r

� 6
�

(11)

wherer refers to the distance between two particles,� is the distance at which inter-particle potential energy is minimum and
" refers to the depth of the potential well. Here, we use the LJ parameters"AA = 1 :0, "AB = 1 :5, "BB = 0 :5, � AA = 1 :0,
� AB = 0 :8 and� BB = 0 :88. The mass for all particles is set to1:0. All the quantities are expressed in reduced units with
respect to� AA , "AA , and Boltzmann constantkB . We set the interaction cutoffr c = 2 :5� (Singh et al., 2013) and the time
stepdt = 0 :003for simulations.

We perform all the molecular dynamic simulations at constant volume and temperature. For preparing the initial high energy
structures, the ensemble is taken to a high temperatureT = 2 :0 where it equilibrates in the liquid state. Once it equilibrates,
100 random con�gurations are sampled.

B.2. Stillinger Weber (SW) Silicon

The system consists of N=64 particles in a cubic ensemble with periodic boundaries interacting via the Stillinger Weber(SW)
potential, as given by the following equation.

E =
X

i

X

j>i

� 2 (r ij ) +
X

i

X

j 6= i

X

k>j

� 3 (r ij ; r ik ; � ijk )

� 2 (r ij ) = A ij � ij

�
B ij

�
� ij

r ij

� pij

�
�

� ij

r ij

� qij
�

exp
�

� ij

r ij � aij � ij

�
(12)

� 3 (r ij ; r ik ; � ijk ) = � ijk � ijk [cos� ijk � cos� 0ijk ]2 exp
�

 ij � ij

r ij � aij � ij

�
exp

�
 ik � ik

r ik � aik � ik

�

where� 2 is the two body term and� 3 is the three-body angle term. The following are the standard parameters(Stillinger &
LaViolette, 1986) used in the equation:

13
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Parameter " � A B p q a �  cos�0
Value 2.1683 eV 2.0951 	A 7.0495 0.6022 4 0 1.80 21.0 1.20 -1/3

Table 5: Parameters for Stillinger weber potential

We equilibrate the system at a high temperature of T=3500 K in an isochoric-isothermal (NVT) ensemble to obtain the
initial high-energy con�gurations.

B.3. Calcium silicate hydrate (C-S-H) gel

Calcium silicate hydrate(C-S-H) is the binding phase in concrete. C-S-H is known to govern various properties of concrete,
including strength and creep. The coarse-grained colloidal gel model of C-S-H used in this work was proposed by Masoero
et al.(Masoero et al., 2012). The model has been studied extensively and found to be capable of simulating the realistic
mesoscale structure of C-S-H as well as long-term creep behavior(Liu et al., 2019a; 2021).

The C-S-H particles interact with each other via a generalized Lennard-Jones interaction potential as given by the following
equation:

Uij (r ij ) = 4 "

" �
�
r ij

� 2�

�
�

�
r ij

� �
#

(13)

WhereUij is the interaction potential energy between any pair particles 'i' and 'j',r ij is the distance between the particles,
and� is the grain diameter which is taken to be 5 nm in the model.� is a parameter that controls the potential well's
narrowness.� is chosen to be 14 such that the tensile strain at failure is close to that obtained in previous simulations of
bulk C–S–H." is the potential well's energy depth. The energy depth is given by" = A0� 3, whereA0 = kE and E is the
young's modulus of bulk C–S–H grain, which is around 63.6 GPa (Manzano et al., 2013) and k=0.0023324.

B.3.1. PREPARATION OFC-S-H BY GCMC SIMULATIONS AND OBTAINING HIGH ENERGY STATES

During the hydration process, the chemical reaction between the cement and electrolytes in water occurs via a dissolution-
precipitation reaction. The grand canonical Monte Carlo (GCMC) simulations mimic the precipitation process during the
hydration of cement. The C-S-H particles are iteratively inserted in an empty cubic box ensemble with periodic boundary
conditions. In each step of the simulation, `X' attempts of grain exchanges(i.e., insertions and deletions) are performed,
which is followed by `M' attempts of randomly displacing the grains to achieve a more stable con�guration. The following
equation gives the Monte Carlo acceptance probability according to the Metropolis algorithm:

Pacceptance = min

(

1; exp
�

�

 

� U �
��

kB T

!#)

(14)

where� U is the change in energy after the Monte Carlo trial move,� is the chemical potential which represents the free
energy gained by the formation of C-S-H hydrates,� is the variation in the number of C-S-H particles,kB is Boltzmann
constant.T is the temperature of an in�nite reservoir source. The chemical potential of the reservoir is kept as2kB T
as per the previous studies(Ioannidou et al., 2016; Liu et al., 2019b). The GCMC steps are performed until the no. of
inserted C-S-H grains reaches saturation. The simulations are performed at a temperature of T=300 K. The �nal saturated
con�gurations so obtained are relaxed in the isothermal-isobaric (NPT) ensemble at 300 K and zero pressure for 50 ns to
release ant macroscopic tensile stress induced during GCMC simulation. Finally, energy minimization is performed to reach
the inherent state of the con�guration.

Next, the obtained structure is taken to a high temperature of T=1000K in an isothermal-isochoric (NVT) ensemble and
allowed to equilibrate. Once it equilibrates, 100 random con�gurations are sampled. The GCMC simulation was performed
in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Thompson et al., 2022) software.

C. Reward and Validation Curves of StriderNet

Figure 4 shows the reward at the end of each of the validation trajectories forSTRIDERNET trained on LJ, SW Si, and
C-S-H systems. Positive values of the rewards suggest that the model has outperformed FIRE on the validation graphs.
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