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Abstract
Message passing graph neural networks (GNNs)
are a popular learning architectures for graph-
structured data. However, one problem GNNs ex-
perience is oversquashing, where a GNN has diffi-
culty sending information between distant nodes.
Understanding and mitigating oversquashing has
recently received significant attention from the re-
search community. In this paper, we continue this
line of work by analyzing oversquashing through
the lens of the effective resistance between nodes
in the input graph. Effective resistance intuitively
captures the “strength” of connection between
two nodes by paths in the graph, and has a rich
literature spanning many areas of graph theory.
We propose to use total effective resistance as a
bound of the total amount of oversquashing in a
graph and provide theoretical justification for its
use. We further develop an algorithm to identify
edges to be added to an input graph to minimize
the total effective resistance, thereby alleviating
oversquashing. We provide empirical evidence
of the effectiveness of our total effective resis-
tance based rewiring strategies for improving the
performance of GNNs.

1. Introduction
Graph neural networks (GNNs) are powerful tools for graph
learning and optimization tasks (Scarselli et al., 2008). One
major framework for GNNs is message passing, where node
and edge features are repeatedly aggregated locally through
node neighborhoods. While it has proven successful, mes-
sage passing also suffers from several problem related to
the topology of the graph. The number of layers of a GNN
defines the radius of the neighborhood of a node from which
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information will be aggregated. When the number of lay-
ers is too small, the message passing will only be done
locally, and the GNN will not be able to capture informa-
tion from nodes outside this neighborhood. This problem
is known as underreaching. On the other hand, choosing
a large number of layers can lead to oversmoothing, where
node features might be smoothed out and become indistin-
guishable (Cai & Wang, 2020; Oono & Suzuki, 2020). A
third issue is oversquashing (Alon & Yahav, 2021), where as
larger neighborhoods are considered, information from long-
range interactions passing through certain bottlenecks of the
graph will have negligible impact on the training of GNNs.
This behaviour was named oversquashing as information
from potentially exponentially many (with respect to the
number of layers) nodes will be squashed into fixed-sized
node vectors.

Understanding when oversquashing occurs is an active area
of research. Recently, oversquashing has been analyzed
using different techniques such as graph curvature (Topping
et al., 2021) and information theory (Banerjee et al., 2022).
Moreover, various rewiring techniques have been proposed
to alleviate oversquashing, where edges are added or re-
moved or edge weights are changed to decrease bottlenecks
in the graph before applying GNNs (Arnaiz-Rodrı́guez et al.,
2022; Deac et al., 2022; Karhadkar et al., 2022; Topping
et al., 2021).

In this paper, we propose to analyze oversquashing through
the lens of effective resistance. The concept of effective re-
sistance originates from Electrical Engineering (Kirchhoff,
1847), where the effective resistance between two nodes u
and v in an electrical network is the difference in voltage
between u and v when a unit of current is inserted at u and
removed at v. Since then, effective resistance has taken
on a new life in Graph Theory, where effective resistance
has been shown to be tied to many properties of the graph
underlying the electrical network (Doyle & Snell, 1984;
Lyons & Peres, 2017). For example, the effective resistance
between a pair of vertices is proportional to the commute
time between two vertices—the expected number of steps in
a random walk from one vertex to the other and back (Chan-
dra et al., 1996). The effective resistance between the end
points of an edge is proportional to the probability of the
edge being included in a random spanning tree of the graph
(Biggs, 1997). Furthermore, effective resistance is closely
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related to the Cheeger constant for graphs that measures
bottlenecks in graphs (Mémoli et al., 2022). Because of
its various connections to many other objects (e.g., random
walks and Laplacians), effective resistance has been widely
used in practice; e.g., (Spielman & Srivastava, 2011; Alev
et al., 2018; Ahmad et al., 2021).

These properties suggest that the effective resistance is a
measure of how “well-connected” two nodes are (see Sec-
tion 3). In this paper, we will show that the effective resis-
tance can also be used to bound the amount oversquashing
between two nodes in a GNN. In particular, the lower the
effective resistance between a pair of nodes, the less over-
squashing is experienced by a graph neural network sending
messages between these nodes.

Contributions. In this paper, we propose to use effective re-
sistance as a way to quantify oversquashing in graph neural
networks. We then show how this perspective can be used
to modify input graphs to alleviate oversquashing.

• In Section 3, we prove that the information passed from
one node to another by any number of layers of a GNN
is upper bounded by a quantity related to the effective
resistance between the nodes.

• In Section 4, we utilize total effective resistance as
a global measure of oversquashing and develop a
rewiring algorithm for minimizing total effective resis-
tance by adding edges to the graphs.

• In Section 5, we empirically demonstrate that our
rewiring technique is effective in alleviating over-
squashing. Our method outperforms the curvature
based method SDRF from (Topping et al., 2021) and
has similar performance compared to the spectral gap
based method FoSR from (Karhadkar et al., 2022).

All missing technical details and proofs are in the Appendix.

More on related work. Alon & Yahav (2021) were the
first to study the oversquashing problem in GNNs, although
they did not provide a theoretical analysis of the problem.
Topping et al. (2021) were the first to introduce a method
for quantitatively analyzing the oversquashing problem. In-
spired by Xu et al. (2018), Topping et al. proposed using
norm of the Jacobian between node features at different lev-
els of a GNN as a measure of oversquashing. Intuitively the
norm of the Jacobian represents the ability of the features at
one node to influence the features at another. They proved an
upper bound on the norm of the Jacobian for certain nodes
by the Balanced Forman Curvature of an edge. However,
their theoretical analysis has the limitation that their final
upper bound of the Jacobian via curvature only applies to
nodes within 2-hop neighborhoods. In contrast, our analysis
(Lemma 3.2 and Theorem 3.3) applies to any two nodes at

any layer of the GNN. Banerjee et al. (2022) proposed an
approach for analyzing the oversquashing problem using
techniques from information theory.

Di Giovanni et al. (2023) also analyzed oversquashing using
the commute time between a pair of nodes in a concurrent
work. Both ours and their papers use similar approaches and
reach the conclusion that large effective resistance between
a pair of nodes results in more oversquashing. Additionally,
they provide an analysis of how the width and depth of a
GNN affect oversquashing.

In addition to analyzing the oversquashing problem, there
has also been a line of research on ways to alleviate over-
squashing. One of the most popular approaches is rewiring
the graph: adding, removing, or reweighting the edges of
the graph to improve the topology of the graph. For exam-
ple, Alon & Yahav (2021) proposed using a fully connected
graph in the last layer of a GNN.

A popular, generic approach to rewiring is to optimize some
quantity measuring the graph topology. For example, Top-
ping et al. (2021) proposed a rewiring technique to alleviate
the oversquashing problem by increasing the curvature of
edges in the graph. However, the most common approach
has been to try to increase the spectral gap of the graph:
the smallest eigenvalue of the Laplacian. Intuitively, the
spectral gap is proportional to bottlenecks of graphs through
the Cheeger inequality (Chung, 1996), so increasing the
spectral gap decreases the bottleneck. However, there was
previously no theoretical work directly tying the spectral
gap to oversquashing (see Section 3.2). Some approaches to
decrease the spectral gap have been to add edges (Karhad-
kar et al., 2022), flip edges (Banerjee et al., 2022), reweight
edges (Arnaiz-Rodrı́guez et al., 2022), or use an expander
to perform a GNN layer (Deac et al., 2022). Our rewiring
technique is most similar to the approach of Karhadkar et al.
(2022): we add edges to minimize the total effective resis-
tance. Conceptually speaking, however, our approach may
lead to better results as the total effective resistance reflects
the entire spectrum of the graph Laplacian, including the
spectral gap. See our discussion in Section 3.2.

Particularly relevant to this paper are rewiring techniques
that incorporate information about effective resistance
(Arnaiz-Rodrı́guez et al., 2022; Banerjee et al., 2022). These
papers observe that edges with high effective resistance of-
ten appear in the bottleneck of the graph, so they target these
edges in different ways. Banerjee et al. (2022) flip edges
with probability proportional to their effective resistance to
increase the spectral gap. Arnaiz-Rodrı́guez et al. (2022)
reweight edges proportionally to their effective resistance.
While our paper and these papers both study effective re-
sistance as it relates to oversquashing, we make different
observations about the relationship between oversquashing
and effective resistance. In short, these papers observes that
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edges of high effective resistance are important to the global
topology of the graph so propose to target these edges. In
contrast, our paper observes that oversquashing is in part
the result of pairs of vertices with high effective resistance
so propose to decrease total resistance. In particular, while
the approach of Arnaiz-Rodrı́guez et al. (2022) is effective,
its effectiveness can not be attributed to decreasing total
resistance, as the reweighted graph will have approximately
the same effective resistance between all pairs of nodes as
the original graph (see Theorem 1 of (Arnaiz-Rodrı́guez
et al., 2022).)

Additionally, while not a rewiring technique, Velingker et al.
(2022) propose node and edge features based on effective
resistance as a way of incorporating information about the
graph topology into GNNs.

2. Background
This section reviews some definitions from Spectral Graph
Theory; see books by Chung (1997) and Spielman (2019)
for a more thorough introduction.

2.1. Matrices and Spectra of Graphs.

Let G = (V,E) be a connected, undirected, unweighted
graph with n vertices and m edges. Let A be the adja-
cency matrix and D be the degree matrix. The Laplacian
is L = D − A. Additionally, let Â = D−1/2AD−1/2

be the normalized adjacency matrix and L̂ = I − Â =
D−1/2LD−1/2 be the normalized Laplacian.

The matrices L̂ and Â have the same orthonormal basis of
eigenvectors {zi : 1 ≤ i ≤ n} (up to choice of basis) but
different eigenvalues. The eigenvalues λi of L̂ are in the
range [0, 2], and the eigenvalues of Â are µi = 1−λi, which
are in the range [−1, 1]. The matrix Â always has eigenvalue
1 and has eigenvalue −1 if and only if G is bipartite. We
use the notational convention that λn ≥ · · · ≥ λ2 > λ1 = 0
and µn ≤ · · · ≤ µ2 < µ1 = 1. z1, the µ1-eigenvector of
Ã satisfies z1(v) =

√
dv/2m, where dv is the degree of a

vertex v.

2.2. Graph Neural Networks

Consider a graph G with node features X ∈ Rn×d. We let
xv ∈ Rd denote the row in X corresponding to the vertex
v ∈ V . A Graph Neural Network (GNN) updates the node
features by iteratively aggregating features of nodes in the
neighborhood. More precisely, the feature vectors at each
layer are iteratively computed by

h(0)v := xv, h
(l+1)
v = ϕl

h(l)v ,
∑

u∈N (v)

Âuvψl

(
h(l)u

)

for learnable functions ϕl and ψl. Note that this is a strict
subset of the more general class of Message-Passing Neural
Networks (Gilmer et al., 2017).

Relational GNNs. In the process of graph rewiring, the
structure of the underlying graph will be changed. In or-
der to retain information of the original graph and also ex-
ploit the new graph structure induced from graph rewiring,
we use relational GNNs (R-GNNs) (Battaglia et al., 2018)
to accommodate both information. The idea of using R-
GNNs for rewired graphs was introduced in (Karhadkar
et al., 2022). In the framework of R-GNNs, for a graph G,
there exists a set R of relation types such that each edge
{u, v} ∈ E is associated with an edge type r ∈ R. For
each v ∈ V and r ∈ R, we let Nr(v) ⊆ N (v) denote the
collection of all neighbors of v incident to an edge of type
r. An R-GNN is a function of the form

h(l+1)
v = ϕl

h(l)v ,
∑
r∈R

∑
j∈Nr(v)

Âuvψ
r
l

(
h(l)u

)
for learnable functions ϕl and ψr

l .

3. Effective Resistance and Oversquashing

a b u v

Figure 1. Two examples where effective resistance can be easily
computed. For vertices u and v connected by several vertex-
disjoint paths p, Ru,v = (

∑
uv-paths p length(p)

−1)−1. Left:
Ra,b = 6, the length of the path. Right: Ru,v = 10/9.

Let u and v be vertices of G. The effective resistance
between u and v is defined

Ru,v = (1u − 1v)
TL+(1u − 1v),

where 1v is the indicator vector of the vertex v and L+ is
the pseudoinverse of L. The effective resistance can also be
computed using the normalized Laplacian L̂. This follows
from a formula for effective resistance given by Lovász
(1993, Corollary 3.2), but is somewhat non-standard. We
provide a different proof in Appendix A.1 for completeness.

Lemma 3.1. Let G be a connected graph. Let u and v be
two vertices. Then

Ru,v =

(
1√
du

1u − 1√
dv

1v

)T

L̂+

(
1√
du

1u − 1√
dv

1v

)
.

Intuitively, the effective resistance is a measure of how
“well-connected” two vertices u and v are. While “well-
connected”-ness is informal, there are many theorems which
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suggest such a connection. For example, if u and v are con-
nected by k edge-disjoint paths of length at most l, then
the effective resistance Ru,v is a most l/k. Therefore, the
more and shorter paths connecting u and v, the smaller the
effective resistance between u and v. See the Introduction
for more intuition behind effective resistance.

3.1. Effective Resistance and the Jacobian of GNNs.

As a way of measuring oversquashing in graph neural net-
works, Topping et al. (2021) proposed upper bounding the
2-norm of the Jacobian between node features ∥∂h(r)u /∂xv∥;
here, both h(r)u and xv are vectors, so ∂h(r)u /∂xv is the Ja-
cobian matrix. The Jacobian captures the influence of initial
feature vector xv at vertex v upon the feature vector h(r)u at
vertex u at the rth layer of the GNN. A smaller upper bound
on the partial derivative indicates that that the features at the
node v can have less influence on the features at the node u.
We adopt this way of analysis and establish a bound on the
norm of the Jacobian matrix via the effective resistance.

First, we show how the norm of the Jacobian is upper
bounded by the powers of the normalized adjacency ma-
trix.

Lemma 3.2. Let u, v ∈ V and let r ∈ N. Assume that
∥∇ϕl∥ ≤ α and max{∥∇ψl∥ , 1} ≤ β for all l = 0, . . . , r,
where ∇f denotes the Jacobian of a map f . Then∥∥∥∥∥∂h(r)u

∂xv

∥∥∥∥∥ ≤ (2αβ)r
r∑

l=0

(Âl)uv.

This result is different from Lemma 1 in (Topping et al.,
2021) in which the two vertices u and v are required to be
exactly distance r apart from each other; while our result is
for any two vertices.

We can now use Lemma 3.2 to establish a new bound via
effective resistance. Recall that µn ≤ · · · ≤ µ2 < µ1 = 1
denote the eigenvalues of Â.

Theorem 3.3. Let G be a non-bipartite graph. Let u, v ∈
V . Let ∥∇ϕl∥ ≤ α and max{∥∇ψl∥ , 1} ≤ β. Let
dmin = min{du, dv} and dmax = max{du, dv}. Let
max{|µ2|, |µn|} ≤ µ. Then∥∥∥∥∥∂h(r)u

∂xv

∥∥∥∥∥ ≤ (2αβ)r
dmax

2

(
2

dmin

(
r + 1 +

µr+1

1− µ

)
−Ru,v

)

Theorem 3.3 intuitively suggests that vertices with low ef-
fective resistance have a better influence over each other in
message passing; that is, the node feature h(r)u at node u
in level r is more affected by the initial node feature xv at
node v. Intuitively this makes sense, as effective resistance
is tied to the number and length of paths connecting u and v.
The more and shorter paths connecting u and v, the lower

the effective resistance between u and v is. This implies that
there are more ways for a GNN to send messages between u
and v, and indeed, by Theorem 3.3, the less oversquashing
between u and v.

Sketch of proof of Theorem 3.3. Lemma 3.2 allows us to
bound the Jacobian by a sum of entries of powers of the
adjacency matrix. Therefore, we need a way of connect-
ing powers of the adjacency matrix to effective resistance.
For this, we use the following two lemmas, which them-
selves may be of independent interest. Detailed proofs of
the theorem and the lemmas can be found in Appendix A.3.

Let Âr denote the restriction of Â to the space orthogonal to
the eigenvector z1, i.e. Âr =

∑n
i=2 µiziz

T
i . Recall that the

eigenvalues of Âr are in the range [−1, 1), and (−1, 1) if G
is not bipartite. The pseudoinverse of L̂ can be characterized
as follows.

Lemma 3.4. Let G be a connected, non-bipartite graph.
Then L̂+ =

∑∞
j=0 Â

j
r.

This characterization of L̂+ allows us to prove the following
relationship between the effective resistance and powers of
the normalized adjacency matrix Â (not just Âr.)

Lemma 3.5. Let G be a non-bipartite graph. Let u and v
be two vertices in G. Then

Ru,v =

∞∑
i=0

(
1

du
(Âi)uu +

1

dv
(Âi)vv −

2√
dvdu

(Âi)uv

)
.

The upper bound in Theorem 3.3 follows from Lemma 3.2
and Lemma 3.5.

Total Resistance We now take our analysis one step fur-
ther and summarize message passing rate between all pairs
of nodes at any given layer of GNN using the notion of total
effective resistanceRtot—the sum of the effective resistance
between all pairs of vertices.

As the partial derivative between a pair of vertices is
bounded above by a function of the effective resistance,
the total resistance bounds the sum of the Jacobian between
all pairs of vertices in the graph. The following corollary
follows immediately from Theorem 3.3.

Corollary 3.6. Let G be a non-bipartite graph. Let
∥∇ϕl∥ ≤ α and max{∥∇ψl∥ , 1} ≤ β. Let
dmin = minv∈V dv and dmax = maxv∈V dv. Let
max{|µ2|, |µn|} ≤ µ. Then

∑
u ̸=v∈V

∥∥∥∥∥∂h(r)u

∂xv

∥∥∥∥∥
≤(2αβ)r

dmax

2

(
n · (n− 1)

dmin

(
r + 1 +

µr+1

1− µ

)
−Rtot

)
.
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Comparison with Curvature Bounds. Theorem 3.3 and
Corollary 3.6 are inspired by Theorem 4 in (Topping et al.,
2021), which bounds the Jacobian matrix between vertex
features by the Balanced Forman curvature of an edge. In
some ways, the effective resistance and Balanced Forman
curvature of an edge are similar, as both measure how con-
nected the endpoints are. However, our analysis generalizes
the previous bound in several important ways.

(1) Our analysis can be applied to any pair of vertices in a
graph, not just those vertices at distance 2.

(2) Effective resistance can be used to bound the oversquash-
ing between node features after an arbitrary number of layers
of a GNN, unlike Balanced Forman Curvature which can
only measure oversqushing after 2 consecutive layers.

In short, the reason for both of these generalizations is
that effective resistance measures the global connectivity
between a pair of vertices, while Balanced Forman curvature
only measures the local connectivity between a pair of nodes.
See Figure 2 for an illustration.

Figure 2. The edges {a, b} and {u, v} have the same Balanced
Forman curvature of Ric(a, b) = Ric(u, v)−6/5. However, their
effective resistance are different (Ra,b = 1 and Ru,v = 3/5). This
shows how the curvature only measure local connectivity and does
not distinguish global connectivity as effective resistance does.

Comparison with Commute Time Bounds Concurrently
to this work, Di Giovanni et al. (2023) showed that over-
squashing between a pair of nodes u and v could be bounded
by the commute time τ(u, v)—the expected number of
steps in a random walk from u to v and back to u. The
commute time and effective resistance are proportional:
τ(u, v) = 2mRu,v (Chandra et al., 1996); thus, our The-
orem 3.3 and their Theorem 5.5 are analogous. Indeed,
both theorems agree that oversquashing occurs between
nodes with large effective resistance/commute time. The
two theorems also use similar techniques to connect effec-
tive resistance/commute time to the Jacobian of a GNN. The
main differences between our theorems are the result of
differences in the quantities we bound (both are related to
the Jacobian of the GNN) and differences in assumptions
about the GNN.

3.2. Effective Resistance and the Spectral Gap

Let 0 = σ1 ≤ σ2 ≤ · · ·σn denote the eigenvalues of the
(un-normalized) Laplacian L. The second eigenvalue σ2 is
called the spectral gap1of the graph G. The spectral gap
is often used as a measure of the “bottleneck” of a graph.
This is because the spectral gap is proportional to the size
of the sparsest cut in the graph, a classic result known as
Cheeger’s Inequality (Chung, 1996).

Previous research has attempted to connect oversquashing to
the spectral gap of the graph (Topping et al., 2021; Banerjee
et al., 2022). This has motivated rewiring heuristics aimed
at raising at the spectral gap (Arnaiz-Rodrı́guez et al., 2022;
Banerjee et al., 2022; Deac et al., 2022; Karhadkar et al.,
2022). However, unlike our theoretical analysis for effective
resistance (Theorem 3.3 and Corollary 3.6), while the use of
spectral gap for measuring oversquashing is intuitive, there
was previously no theoretical evidence for how the spectral
gap directly bounds information passing between nodes.

In this section, we first discuss the connections between
spectral gap and effective resistance in order to derive a
first-step theoretical justification for using spectral gap for
bounding oversquashing. Then, we discuss potential limita-
tions of only using the spectral gap.

The following existing result shows that the worst-case ef-
fective resistance between any pair of nodes is proportional
to the spectral gap.

Theorem 3.7 (Theorem 4.2, (Chandra et al., 1996)). Let
Rmax denote the maximum effective resistance between any
pair of vertices in G. Then

1

nσ2
≤ Rmax ≤ 2

σ2
.

Corollary 3.6 and Theorem 3.7 combine to reinforce the
idea that low spectral gap is tied to oversquashing, as seen
by the following corollary.

Corollary 3.8. Under the same assumptions as in Corol-
lary 3.6, one has that

∑
u ̸=v∈V

∥∥∥∥∥∂h(r)u

∂xv

∥∥∥∥∥
≤(2αβ)r

dmax

2

(
n · (n− 1)

dmin

(
r + 1 +

µr+1

1− µ

)
− 1

nσ2

)
.

1 In this section, we focus on the spectral gap and eigenvalues
of the unnormalized Laplacian, while previous papers studying
oversquashing have focused on the spectral gap of the normalized
Laplacian. There are variants of Cheeger’s inequality for both the
normalized and unnormalized spectral gap (Chung, 1997), so both
spectral gaps provide a measure of the connectivity and bottleneck
of a graph. The eigenvalues of L and L̂ are also closely related as
follows: dminλk ≤ σk ≤ dmaxλk.
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Of course, the bound above is looser than the bound using
Rtot in Corollary 3.6. Furthermore, the following result
suggests that oversquashing behavior of the graph is tied
not just to the spectral gap, but rather to the entire spectrum
of the Laplacian. Therefore, raising the entire spectrum of
the Laplacian, not just the spectral gap, could potentially
further reduce oversquashing.
Theorem 3.9 (Section 2.5, (Ghosh et al., 2008)). Let G be
a connected graph with n vertices, Laplacian L, and total
resistance Rtot. Then

Rtot = n · trL+ = n

n∑
i=2

1

σi

The higher eigenvalues of L also carry topological meaning
about the graph. Just as the spectral gap λ2 measures the
obstruction to bipartitioning a graph (the “bottleneck”), the
kth smallest eigenvalue λk of L̂ is related to partitioning a
graph into k parts (Lee et al., 2014). See Footnote 1 for the
relationship between the eigenvalues λk and σk.

4. Minimizing Total Resistance by Rewiring
Motivated by Corollary 3.6, we propose to address over-
squashing by “rewiring” a graph to minimize its total resis-
tance. Adding any edge to the graph will decrease its total
resistance (a result known as Rayleigh Monotonicity), so in
this section, we (1) derive a formula to determine how much
adding a specific edge decreases the total resistance and (2)
propose a rewiring method that greedily adds the edge to
the graph that most decreases total resistance. Note that our
“rewiring” just refers to adding edges, while some previous
usage of the term “rewiring” might refer to replacing one
edge with another (Topping et al., 2021; Banerjee et al.,
2022).

Change to Rtot after adding one edge. We first need a
new notion. The biharmonic distance between a pair of
vertices u and v is

Bu,v =
√

(1u − 1v)T (L+)2(1u − 1v).

The biharmonic distance was first introduced in the con-
text of geometry processing (Lipman et al., 2010). How-
ever, before it was properly named, it was discovered
that the squared biharmonic distance between u and v
is proportional to the partial derivative of the total resis-
tance with respect to the weight of the edge {u, v}, i.e.
∂Rtot/∂wu,v = −n · B2

u,v (Ghosh et al., 2008). This sug-
gests that the biharmonic distance can be used as a measure
for the effect an edge has on the global connectivity of the
graph.

The following theorem may be seen as the unweighted and
combinatorial analogue of the previous result (but is proved

using completely different means.) This theorem allows us
to calculate how much the total resistance decreases when
an (unweighted) edge {u, v} is added to the graph.

Theorem 4.1. Let G be a connected graph with n vertices.
Let {u, v} be an edge not in G. The difference in total
resistance after adding the edge {u, v} to G is

Rtot(G)−Rtot(G ∪ {u, v}) = n ·
B2

u,v

1 +Ru,v

Sketch of proof of Theorem 4.1. Note that adding the edge
{u, v} to G changes the Laplacian from L to L + (1u −
1v)(1u − 1v)

T . Hence by Theorem 3.9 we need to compare
the traces of the pseudoinverses of L and L+(1u−1v)(1u−
1v)

T . This naturally leads us Woodbury’s formula:

Lemma 4.2 (Woodbury’s Formula). Let A be an invertible
matrix. Let x be a vector. Then

(A+ xxT )−1 = A−1 −A−1x(1 + xTA−1x)−1xTA−1.

As L is singular, we cannot apply Woodbury’s Formula
directly to L+ (1u − 1v)(1u − 1v)

T . Hence, we consider
the variant of the Laplacian L + 11T

n , where 1 is the all-
ones vector. If G is connected, then L+ 11T

n is invertible.
Moreover, it can be shown that

Lemma 4.3 ((Ghosh et al., 2008)). Let G be a connected
graph. Then

• Ru,v = (1u − 1v)
T (L+ 11T

n )−1(1u − 1v);

• B2
u,v = (1u − 1v)

T (L+ 11T

n )−2(1u − 1v);

• Rtot = n · tr(L+ 11T

n )−1 − n.

We can therefore apply Lemma 4.2 to compute (L+ 11T

n +
(1u − 1v)(1u − 1v)

T )−1, take the trace, and conclude the
theorem. See Appendix A.4 for all the details.

Figure 3 shows the value n · B2
u,v

1+Ru,v
for edges in various

graphs.

Rewiring heuristic. Motivated by Theorem 4.1, we pro-
pose the following heuristic, Greedy Total Resistance
(GTR) rewiring, to minimize the total resistance: repeat-
edly add the edge {u, v} that maximizes B2

u,v/(1 +Ru,v).
For disconnected graphs, the effective resistance and bihar-
monic distance between vertices in different components
is not meaningful. Therefore, we only add edges between
vertices that are already in the same connected component.
While we could also use Theorem 4.1 to determine which
edge to remove to most decrease the total resistance, we
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

∆Rtot

0 5 10 15 20 25 30 35 40

∆Rtot

0 1 2 3 4 5 6 7 8

∆Rtot

Figure 3. When an edge {u, v} is added to a graph, it decreases the total resistance by ∆Rtot := n · (B2
u,v/(1 +Ru,v)) (Theorem 4.1).

This figure shows the value ∆Rtot for various pairs of vertices in graphs with n = 8 vertices. Edges originally in the graph are black,
and edges not in the graph are colored according to ∆Rtot. Left: For pairs of vertices with equal effective resistance Ru,v = 2, edges
towards the center of the graph have the highest biharmonic distance Bu,v . Center: The pairs of vertices that maximize ∆Rtot are those at
opposite ends of the path. Right: The pairs of vertices that maximize ∆Rtot are on opposite sides of the cycle.

will only add edges in this paper. A PyTorch Geometric
implementation of the GTR algorithm is available online2.
See Appendix E for plots of how much GTR decreases total
resistance for various datasets.

Time complexity. GTR can naively be implemented in
O(n3) time, but there are more sophisticated algorithms that
take timeO(m poly log n+n2 poly log n). See Appendix B
for an asymptotic and empirical analysis of its runtime.

Adding multiple edges. While Theorem 4.1 tells us which
single edge most decreases the total resistance when added
to the graph, unfortunately, we cannot use this formula to
determine which set of k ≥ 2 edges most decrease the total
resistance of the graph. In Appendix C, we give an example
of a graph where the two edges that most decrease the total
resistance are not the two edges that maximize the formula
in Theorem 4.1.

Another challenge for designing recursive algorithms to add
multiple edges is that the amount an edge decreases the total
resistance is non-monotonic with respect to subgraphs. By
non-monotonic, we mean that for nested graphsH ⊂ G, the
amount an edge decreases the total resistance when added
to G can be more than the amount the same edge would
decrease the total resistance when added to H . Appendix C
gives an example where this is the case. Intuitively, this
means that an edge can become more important to the global
topology of a graph when more edges are added. This is
in contrast to the effective resistance, which only decreases
with the addition of more edges.

The best algorithm we know for computing the set of k
edges that most decrease the total resistance is a brute-force

search over all O(
((n2)

k

)
) sets of k edges. It was recently

2https://github.com/blackmit/gtr_rewiring

shown that finding the k edges that most decrease the total
resistance is NP-Hard (Kooij & Achterberg, 2023). Because
of this, it is reasonable to use a heuristic rather than exactly
compute the best edges to add to decrease total resistance.

5. Experiments
We primarily compare our new GTR rewiring algorithm
with the FoSR (for “first-order spectral rewiring”) algorithm
proposed by Karhadkar et al. (2022), as FoSR is the rewiring
strategy with the best performance. FoSR aims at reduc-
ing oversquashing in graphs by increasing the spectral gap.
FoSR is perhaps the rewiring heuristic most similar to GTR
for two reasons. First, it only changes the topology of the
graph by adding edges. Second, it is designed to increase
the spectral gap of the graph, which will necessarily increase
the total resistance of the graph.

5.1. Spectral Gap vs. Total Resistance

0 10 20 30 40 50
Index i

0.00

0.05

0.10

0.15

0.20

0.25

Ei
ge

nv
al

ue
 

i

FOSR
GTR

FoSR GTR
σ2 0.085 0.075
Rtot 4250377 4114024

Figure 4. A comparision of the largest connected component of
Cora after adding 50 edges with FoSR and GTR. Left: A plot of
the smallest 50 eigenvalues of the Laplacian. Right: The spectral
gap and total resistance.

To compare FoSR and GTR, we use both methods to add
50 edges to the largest connected component of the Cora
citation network (McCallum et al., 2000). Figure 4 shows
the 50 smallest eigenvalue after rewiring. FoSR increases
the first few eigenvalues (including the spectral gap) more,
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while GTR increases the larger eigenvalues more. In total,
GTR does more to decrease the total resistance of the graph.

5.2. Graph Classification

We evaluate our rewiring heuristic, GTR, as a preprocessing
step for training a graph neural network to perform graph
classification. We compare GTR with the following rewiring
method: making the last layer fully connected (Last FA)
and making all layers fully connected (All FA) from (Alon
& Yahav, 2021), DIGL from (Gasteiger et al., 2019), SDRF
from (Topping et al., 2021), and FOSR (Karhadkar et al.,
2022). We also report results for no rewiring (None). We
conduct the same experiment as in (Karhadkar et al., 2022)
for GTR; see Table 1 for results. All results except for GTR
and those marked with an asterisk are taken from Table 1 of
(Karhadkar et al., 2022).

Datasets. We test GTR on the same set of graph classifica-
tion benchmarks as Karhadkar et al. (2022). All datasets are
from the TUDataset (Morris et al., 2020).

Experiments. We compare four types of graph convolu-
tions: GCN (Kipf & Welling, 2017), Relational-GCN (R-
GCN) (Battaglia et al., 2018), GIN (Xu et al., 2019), and
Relational-GIN (R-GIN). Relational graph neural networks
perform different aggregation steps for edges of different
types. In the case of GTR, we use two edge types: original
graph edges and new edges added by the rewiring algo-
rithms. We tune the number of edges added by GTR and fix
all other hyperparameters. Full experimental details can be
found in Appendix D.

Results. Test accuracies are presented in Table 1 and the
number of edges added for each graph are reported in Ap-
pendix D. We observe the following: (1) In general, both our
GTR and FoSR outperform the rewiring strategies DIGL,
SDRF, or no rewiring at all. In particular, for the case of
relational versions of GNNs (i.e., R-GCN and R-GIN), these
two approaches often out-perform no-rewiring or SDRF by
a large margin. Note that SDRF adds edges based on a local
curvature criterion; while both FoSR and our GTR can add
any edges, taking the global connectivity of graph into ac-
count. Table 1 shows that both global strategies outperform
the local SDRF, especially for the relation-GNN cases. (2)
The performance of our GTR and FoSR are similar for the
GIN and R-GIN architectures. On R-GCN however, GTR
not only outperforms FoSR, but often by a large margin.

5.3. Edge Ablation

In Appendix F, we repeat the experiment from Section 5.2
but vary the number of edges added. In particular, our
experiments suggest that there is no optimal number of edges
to add that works across datasets. Moreover, performance
does not necessarily increase as total resistance decreases,

which we can see by comparing FoSR and GTR to Every
Layer FA in Table 1. Therefore, we recommend treating
the number of edges added as a hyperparameter to be tuned
during training.

5.4. Hidden Dimension Ablation

Another method for address oversquashing is to increase
the hidden dimension of the GNN (Alon & Yahav, 2021;
Di Giovanni et al., 2023). To compare this method with
rewiring, in Appendix G, we repeat the experiment from
Section 5.2 but vary both the number of edges added and the
hidden dimension. We conclude that rewiring and increas-
ing the hidden dimension are complementary methods for
addressing oversquashing, as doing either or both increases
the performance of GNNs.

6. Concluding Remarks
In this paper, we have provided theoretical evidence that
effective resistance can be used as a bound on oversquash-
ing between a pair of nodes in a graph, and that the total
resistance can be used as a bound of total oversquashing
in a graph. We have also empirically demonstrated that
lowering total resistance improves the performance of graph
neural networks. Indeed, rewiring techniques based on total
effective resistance can significantly improve performance
of GNN / R-GNNs for graph classification tasks, reinforcing
the notion that improving the connectivity of a graph can
improve the performance of graph neural networks.

Limitations and future work. We provide theoretical evi-
dence (Theorem 3.3) showing that total effective resistance
can be used to bound the amount of oversquashing in a
graph. This is in contrast to previous work on oversquash-
ing which relates oversquashing to the spectral gap through
intuition alone. While we prove that the spectral gap can
also be used to bound oversquashing (Corollary 3.8), the
bound for total resistance is tighter than the bound for the
spectral gap.

Despite the theoretical strength of using total resistance over
spectral gap for measuring oversquashing, more research is
needed to contrast the effects of the two on oversquashing. A
challenge to this task is that the total resistance and spectral
gap are intimately linked; for example, adding edges to the
graph will necessarily both decrease the total resistance and
increase the spectral gap. The oversquashing issue becomes
more prominent for graphs with long range interactions
(e.g., (Dwivedi et al., 2022)). Hence it will be interesting
to explore a much broader family of graph benchmarks to
study the pros and cons of different rewiring methods.

Finally, we also note that currently we employ a greedy
approach to identify a collection of edges to be inserted
into an input graph as shortcuts. As discussed in Section 4,
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Table 1. Results of different combinations of rewiring and convolutions on different graph classification datasets. First, second, and third
best results are colored. See Section 5.2 for discussion. All results except for GTR are from (Karhadkar et al., 2022), with the exception
of R-GIN FoSR results marked with an asterisk (∗); these are the best runs from the edge ablation study (Section 5.3).

GCN
Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

None 72.15± 2.44 70.98± 0.74 27.67± 1.16 68.26± 1.10 49.77± 0.82 33.78± 0.49
Last FA 70.05± 2.03 71.02± 0.96 26.47± 1.20 68.49± 0.95 48.98± 0.95 33.32± 0.44

Every FA 70.45± 1.96 60.04± 0.93 18.33± 1.04 48.49± 1.04 48.17± 0.80 51.80± 0.42
DIGL 79.70± 2.15 70.76± 0.77 35.72± 1.12 76.04± 0.78 64.39± 0.91 54.50± 0.41
SDRF 71.05± 1.87 70.92± 0.79 28.37± 1.17 68.62± 0.85 49.40± 0.90 33.45± 0.47
FoSR 80.00± 1.57 73.42± 0.81 25.07± 0.994 70.33± 0.72 49.66± 0.86 33.84± 0.58
GTR 79.10± 1.86 72.59± 2.48 27.52± 0.99 68.99± 0.61 49.92± 0.99 33.05± 0.40

R-GCN
Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

None 69.25± 2.09 69.52± 0.73 28.60± 1.19 49.85± 0.65 50.01± 0.92 33.60± 1.05
Last FA 70.55± 1.81 69.53± 0.82 28.23± 1.14 49.80± 0.63 50.65± 0.96 34.73± 1.19

Every FA 70.50± 1.84 71.67± 0.88 33.40± 1.14 49.95± 0.59 50.50± 0.89 33.62± 0.98
DIGL 73.40± 2.00 68.23± 0.85 28.28± 1.21 50.00± 0.62 49.67± 0.84 16.93± 1.44
SDRF 72.30± 2.22 69.11± 0.76 33.48± 1.25 58.62± 0.65 53.64± 1.04 67.99± 0.39
FoSR 84.45± 1.57 73.80± 0.69 35.66± 1.151 76.59± 0.53 64.05± 1.12 70.65± 0.48
GTR 85.50± 1.47 75.78± 0.76 41.33± 1.28 80.18± 0.60 65.09± 0.93 74.34± 0.41

GIN
Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

None 77.70± 3.60 70.80± 0.83 33.80± 1.12 86.79± 1.06 70.18± 0.99 72.99± 0.38
Last FA 83.45± 1.74 72.30± 0.67 47.40± 1.39 90.22± 0.48 70.91± 0.79 75.06± 0.41

Every FA 72.55± 3.02 70.38± 0.91 28.38± 1.05 50.36± 0.65 49.16± 0.87 32.89± 0.39
DIGL 79.70± 2.15 70.76± 0.77 35.72± 1.20 76.04± 0.77 64.39± 0.91 54.50± 0.41
SDRF 78.40± 2.80 69.81± 0.79 35.82± 1.09 86.44± 0.59 69.72± 1.15 72.96± 0.42
FoSR 78.00± 2.22 75.11± 0.82 29.20± 1.38 87.35± 0.60 71.21± 0.92 73.28± 0.42
GTR 77.60± 2.84 73.13± 0.69 30.57± 1.42 86.98± 0.66 71.28± 0.86 72.93± 0.42

R-GIN
Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

None 83.05± 1.44 70.50± 0.81 39.02± 1.17 87.97± 0.56 68.89± 0.87 75.54± 0.32
Last FA 80.60± 1.64 70.30± 0.84 48.18± 1.40 90.00± 0.65 69.71± 1.03 75.43± 0.49

Every FA 83.05± 1.52 71.05± 0.91 54.95± 1.33 56.86± 0.94 71.48± 0.88 75.43± 0.48
DIGL 81.45± 1.49 71.31± 0.76 37.60± 1.20 74.43± 0.72 63.93± 0.95 54.71± 0.42
SDRF 82.70± 1.78 70.70± 0.82 39.58± 1.33 86.83± 0.52 70.21± 0.81 76.48± 0.39
FoSR 86.15± 1.49 75.25± 0.86∗ 45.55± 0.13 90.94± 0.47∗ 71.96± 0.69∗ 77.20± 0.38∗

GTR 86.10± 1.76 75.64± 0.74 50.03± 1.32 90.41± 0.41 71.49± 0.93 77.45± .039

finding the k best edges to add to decrease total resistance
is NP-Hard (Kooij & Achterberg, 2023), and it is not clear
whether such a greedy strategy even leads to an approxi-
mation algorithm of selecting the optimal set of k edges to
minimizing total effective resistance. We leave the prob-
lem of identifying efficient approximation algorithms for
the optimal edges or better heuristics for minimizing total
effective resistance as a future direction to investigate.
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propagation. In The First Learning on Graphs Con-
ference, 2022. URL https://openreview.net/
forum?id=IKevTLt3rT.

Di Giovanni, F., Giusti, L., Barbero, F., Luise, G., Lio’, P.,
and Bronstein, M. On over-squashing in message passing
neural networks: The impact of width, depth, and topol-
ogy. In Proceedings of the 40th International Conference
on Machine Learning, Proceedings of Machine Learning
Research. PMLR, 2023.

Doyle, P. G. and Snell, J. L. Random walks and electric net-
works, volume 22. American Mathematical Soc., 1984.
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A. Proofs
A.1. Proof of Lemma 3.1

Lemma 3.1. Let G be a connected graph. Let u and v be two vertices. Then

Ru,v =

(
1√
du

1u − 1√
dv

1v

)T

L̂+

(
1√
du

1u − 1√
dv

1v

)
.

Proof. We will prove this using an alternative but well-known characterization of effective resistance in terms of uv-flows.
First, we must define another matrix associated with a graph. Let ∂ be the n×m boundary matrix of the graph G, where
n := |V | and m := |E|. The matrix ∂ is defined such that for an edge e = {u, v}, the column ∂1e = 1u − 1v. (The order
of u and v is arbitrary for what follows.)

Many of the definitions in this paper can alternatively be expressed in terms of the boundary matrix. The Laplacian can be
expressed L = ∂∂T , the normalized Laplacian L̂ = D−1/2∂(D−1/2∂)T , and the effective resistance Ru,v = min{∥f∥2 :
∂f = (1u − 1v)}. Phrased differently, the effective resistance between u and v is the minimum squared-2-norm of any
uv-flow. This characterization of the effective resistance follows from the general fact that for any matrix AAT and any
vector x ∈ imA we have that xT (AAT )+x = (A+x)T (A+x) = min{∥y∥2 : Ay = x}. The proof of the current lemma
just applies this fact twice.

Ru,v =(1u − 1v)
TL+(1u − 1v)

=min{∥f∥2 : ∂f = (1u − 1v)}
=min{∥f∥2 : D−1/2∂f = D−1/2(1u − 1v)} (as D−1/2 is bijective)

=

(
1√
du

1u − 1√
dv

1v

)T

L̂+

(
1√
du

1u − 1√
dv

1v

)
.

A.2. Proof of Lemma 3.2

Lemma 3.2. Let u, v ∈ V and let r ∈ N. Assume that ∥∇ϕl∥ ≤ α and max{∥∇ψl∥ , 1} ≤ β for all l = 0, . . . , r, where
∇f denotes the Jacobian of a map f . Then ∥∥∥∥∥∂h(r)u

∂xv

∥∥∥∥∥ ≤ (2αβ)r
r∑

l=0

(Âl)uv.

Proof. We prove this by induction on the layer r. For the base case of r = 0, either u = v or u ̸= v; in the first case

∂h
(0)
u

∂xv
=
∂xv
∂xv

= Idd×d,

and in the second case,

∂h
(0)
u

∂xv
=
∂xu
∂xv

= 0d×d.

Therefore, ∥∥∥∥∥∂h(0)u

∂xv

∥∥∥∥∥ ≤ max{∥Idd×d∥ , ∥0d×d∥} = 1. (1)

12
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Assume that the statement holds for some r ≥ 0. We now prove the inductive case of r + 1.∥∥∥∥∥∂h(r+1)
u

∂xv

∥∥∥∥∥ =

∥∥∥∥∥∥∇1ϕr ·
∂h

(r)
u

∂xv
+∇2ϕr ·

∑
w∈N (u)

Âuw · ∇ψr ·
∂h

(r)
w

∂xv

∥∥∥∥∥∥
≤ ∥∇1ϕr∥ ·

∥∥∥∥∥∂h(r)u

∂xv

∥∥∥∥∥+ ∥∇2ϕr∥ ·
∑

w∈N (u)

Âuw ∥∇ψr∥ ·

∥∥∥∥∥∂h(r)w

∂xv

∥∥∥∥∥ (as Âuw positive ∀ u, w)

≤ α ·

∥∥∥∥∥∂h(r)u

∂xv

∥∥∥∥∥+ αβ ·
∑

w∈N (u)

Âuw ·

∥∥∥∥∥∂h(r)w

∂xv

∥∥∥∥∥
≤ 2r(αβ)r+1

r∑
l=0

(Âl)uv + 2r(αβ)r+1
r∑

l=0

∑
w∈N (u)

Âuw(Â
l)wv (induction)

= 2r(αβ)r+1
r∑

l=0

(Âl)uv + 2r(αβ)r+1
r+1∑
l=1

(Âl)uv (definition of matrix multiplication)

≤ (2αβ)r+1
r+1∑
l=0

(Âl)uv.

Here ∇ϕr = [∇1ϕr|∇2ϕr] and ∇ψr denote the Jacobian matrices for ϕr and ψr, respectively. ∇1ϕr corresponds to partial
derivatives w.r.t. the first several arguments in ϕr corresponding to h(r)v in the formula ϕr

(
h
(r)
v ,

∑
u∈N (v) Âuvψl

(
h
(r)
u

))
and ∇2ϕr is defined similarly. In the second inequality, we used the fact for 2-norm that ∥[A|B]∥ ≥ max{∥A∥ , ∥B∥}. In
the third inequality, we used the fact that β ≥ 1 and in this way we have that α ≤ αβ.

A.3. Proof of Theorem 3.3

In this section, we provide proofs of Lemma 3.4, Lemma 3.5 and Theorem 3.3.

Lemma 3.4. Let G be a connected, non-bipartite graph. Then L̂+ =
∑∞

j=0 Â
j
r.

Proof. First, recall that the eigenvalues of Âr are in the range (−1, 1) if G is not bipartite. Also note that any number
µ ∈ (−1, 1) satisfies

∑∞
j=0 µ

j = 1
1−µ . We prove the lemma by applying this fact to the spectral decomposition of L̂+.

L̂+ =

n∑
i=2

1

λi
ziz

T
i =

n∑
i=2

1

1− µi
ziz

T
i

=
n∑

i=2

(
∞∑
j=0

µj
i )ziz

T
i =

∞∑
j=0

Âj
r.

Based on Lemma 3.4, we then prove Lemma 3.5 below.

Lemma 3.5. Let G be a non-bipartite graph. Let u and v be two vertices in G. Then

Ru,v =

∞∑
i=0

(
1

du
(Âi)uu +

1

dv
(Âi)vv −

2√
dvdu

(Âi)uv

)
.

Proof. Observe that ( 1√
du

1u − 1√
dv

1v
)T
Âi

r

( 1√
du

1u − 1√
dv

1v
)

=
( 1√

du
1u − 1√

dv
1v
)T
Âi
( 1√

du
1u − 1√

dv
1v
)

13
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for all i ≥ 0 as ( 1√
du

1u − 1√
dv
1v)

T z1 = 0. We use this equation to alternatively express the effective resistance.

Ru,v =(
1√
du

1u − 1√
dv

1v)
T L̂+(

1√
du

1u − 1√
dv

1v)

=

∞∑
i=0

(
1√
du

1u − 1√
dv

1v)
T Âi

r(
1√
du

1u − 1√
dv

1v) (Lemma 3.4)

=

∞∑
i=0

(
1√
du

1u − 1√
dv

1v)
T Âi(

1√
du

1u − 1√
dv

1v) (Above observation)

=

∞∑
i=0

(
1

du
(Âi)uu +

1

dv
(Âi)vv −

2√
dudv

(Âi)uv

)

Now, we finish proving Theorem 3.3 as follows.

Theorem 3.3. Let G be a non-bipartite graph. Let u, v ∈ V . Let ∥∇ϕl∥ ≤ α and max{∥∇ψl∥ , 1} ≤ β. Let dmin =
min{du, dv} and dmax = max{du, dv}. Let max{|µ2|, |µn|} ≤ µ. Then∥∥∥∥∥∂h(r)u

∂xv

∥∥∥∥∥ ≤ (2αβ)r
dmax

2

(
2

dmin

(
r + 1 +

µr+1

1− µ

)
−Ru,v

)

Proof. Now, we will combine the equation for effective resistance of Lemma 3.5 with the bound on the Jacobian matrix of
Lemma 3.2. This gives us the bound∥∥∥∥∥∂h(r)u

∂xv

∥∥∥∥∥ ≤ (2αβ)r
r∑

l=0

(Âl)uv.

≤ (2αβ)r ·
√
dudv
2

·

(
1

du

∞∑
l=0

(Âl)uu +
1

dv

∞∑
l=0

(Âl)vv −
2√
dudv

∞∑
l=r+1

(Âl)uv −Ru,v

)

≤ (2αβ)r · dmax

2
·

(
1

du

∞∑
l=0

(Âl)uu +
1

dv

∞∑
l=0

(Âl)vv −
2√
dudv

∞∑
l=r+1

(Âl)uv −Ru,v

)

We now simplify some of the terms in this bound. First, we partition the sums in the right-hand side of this equation as

1

du

∞∑
l=0

(Âl)uu +
1

dv

∞∑
l=0

(Âl)vv −
2√
dudv

∞∑
l=r+1

(Âl)uv

=

(
1

du

r∑
l=0

(Âl)uu +
1

dv

r∑
l=0

(Âl)vv

)

+

(
1

du

∞∑
l=r+1

(Âl)uu +
1

dv

∞∑
l=r+1

(Âl)vv −
2√
dudv

∞∑
l=r+1

(Âl)uv

)

=

(
1

du

r∑
l=0

(Âl)uu +
1

dv

r∑
l=0

(Âl)vv

)

+

(
1√
du

1u − 1√
dv

1v

)T ∞∑
l=r+1

Âl

(
1√
du

1u − 1√
dv

1v

)

Let µ = max{|µ2|, |µn|}. We can bound the second term in the above equation using the Courant-Fischer Theorem, which
says for a symmetric matrix B with maximum eigenvalue λmax and any vector x, one has that xTBx ≤ xTx · λmax. Then,
we have that

14
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(
1√
du

1u − 1√
dv

1v

)T ∞∑
l=r+1

Âl

(
1√
du

1u − 1√
dv

1v

)

≤
(

1

du
+

1

dv

) ∞∑
l=r+1

µl ≤ µr+1

(
1

du
+

1

dv

) ∞∑
l=0

µl

≤ µr+1

(
1

du
+

1

dv

)
1

1− µ
(as µ ∈ (−1, 1))

≤ µr+1 2

dmin

1

1− µ

We now bound the first term. Again, we rely on the Courant-Fischer theorem, and note that Âl
uu = 1Tu Â

l1u; however, as
1Tu z1 ̸= 0, we only get a bound of Âl

uu ≤ 1 · 1Tu 1u = 1. Thus,

1

du

r∑
l=0

(Âl)uu +
1

dv

r∑
l=0

(Âl)vv ≤ 2

dmin
(r + 1).

A.4. Proof of Theorem 4.1

In this section, we prove Theorem 4.1, which gives a formula for how much the effective resistance changes when an edge is
added. Recall that our strategy is to apply Woodbury’s formula to compute (L+ 11T

n + (1u − 1v)(1u − 1v)
T )−1. Before

doing this, we provide a proof for Lemma 4.3.
Lemma 4.3 ((Ghosh et al., 2008)). Let G be a connected graph. Then

• Ru,v = (1u − 1v)
T (L+ 11T

n )−1(1u − 1v);

• B2
u,v = (1u − 1v)

T (L+ 11T

n )−2(1u − 1v);

• Rtot = n · tr(L+ 11T

n )−1 − n.

Proof. By Equation (7) of (Ghosh et al., 2008), one has that

L+ =

(
L+

11T

n

)−1

− 11T

n
.

Then, we have that

(L+)2 =

(
L+

11T

n

)−2

− 11T

n

(
L+

11T

n

)−1

−
(
L+

11T

n

)−1
11T

n
+

11T

n
.

Note that vectors of the form 1u − 1v are orthogonal to the all-ones vector 1, i.e., (1u − 1v)
T 1 = 1T (1u − 1v) = 0. Hence

Ru,v = (1u − 1v)
TL+(1u − 1v) = (1u − 1v)

T (L+
11T

n
)−1(1u − 1v),

and

B2
u,v = (1u − 1v)

T (L+)2(1u − 1v) = (1u − 1v)
T (L+

11T

n
)−2(1u − 1v).

Now, by Theorem 3.9, one has that

Rtot = n · trL+ = n · tr

((
L+

11T

n

)−1

− 11T

n

)
= n · tr

(
L+

11T

n

)−1

− n.
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Theorem 4.1. Let G be a connected graph with n vertices. Let {u, v} be an edge not in G. The difference in total resistance
after adding the edge {u, v} to G is

Rtot(G)−Rtot(G ∪ {u, v}) = n ·
B2

u,v

1 +Ru,v

Proof of Theorem 4.1. Adding the edge {u, v} to G changes the Laplacian from L to L+ (1u − 1v)(1u − 1v)
T . Then, by

Lemma 4.3, we can find the difference in the total resistance by considering difference of Rtot(G) = n · tr(L+ 11T

n )−1 − n

and Rtot(G ∪ {u, v}) = n · tr(L + 11T

n + (1u − 1v)(1u − 1v)
T )−1 − n. The difference of these is the trace of the third

term in Woodbury’s formula, which simplifies to the quantity in the statement as follows.

Rtot(G)−Rtot(G ∪ {u, v})

=n · tr
(
L+

11T

n

)−1

− n · tr
(
L+

11T

n
+ (1u − 1v)(1u − 1v)

T

)−1

=n · tr

(1 + (1u − 1v)
T

(
L+

11T

n

)−1

(1u − 1v)

)−1

·

((
L+

11T

n

)−1

(1u − 1v)

)((
L+

11T

n

)−1

(1u − 1v)

)T


=n ·

(
1 + (1u − 1v)

T

(
L+

11T

n

)−1

(1u − 1v)

)−1

︸ ︷︷ ︸
c

· tr

((L+
11T

n

)−1

(1u − 1v)

)((
L+

11T

n

)−1

(1u − 1v)

)T
 .

For the coefficient term c, one has that(
1 + (1u − 1v)

T

(
L+

11T

n

)−1

(1u − 1v)

)
= (1 +Ru,v).

For the trace term, one has that

tr

((L+
11T

n

)−1

(1u − 1v)

)((
L+

11T

n

)−1

(1u − 1v)

)T


= (1u − 1v)

(
L+

11T

n

)−2

(1u − 1v)
T

= B2
u,v

by the fact that tr(xxT ) = xTx for any vector x.

B. Runtime Analysis of GTR
B.1. Asymptotic Analysis

The time complexity for GTR rewiring depends on the time it takes to (step 1) compute the effective resistance and
biharmonic distance for each pair of vertices, (step 2) find the pair of vertices maximizing Ru,v/(1 +B2

u,v), and (step 3)
update the effective resistance and biharmonic distance. If we are adding k edges to the graph, the naive implementation
for GTR takes O(n3 + kn2) time. We can compute L+ and L2+ in O(n3) time using the singular value decomposition,
which we can use to compute all pairs effective resistance and biharmonic distance in time O(n2). In total, step (1) would
take O(n3 + n2) time. Step (2) would take O(n2) time to iterate over all pairs of vertices. Finally, for step (3), we can
update L+ and L2+ in O(n2) time. This is because adding the edge {u, v} to G only causes a constant-rank change to
the Laplacian; the Laplacian changes from L to L+ (1u − 1v)(1u − 1v)

T and the squared Laplacian changes from L2 to
L2 + L(1u − 1v)(1u − 1v)

T + (1u − 1v)(1u − 1v)
TL + (1u − 1v)(1u − 1v)

T . The pseudoinverse of L+ and L2+ can
then be updated in O(n2) using Woodbury’s Formula (see Lemma 4.2). 3

3In general, Woodbury’s Formula cannot be used to update the pseudoinverse of a matrix; however, in the special case of adding
an edge to a connected graph, it can be used to update the pseudoinverse of L and L2. In short, this is because the vector 1u − 1v is
orthogonal to the kernels of L and L2. See the discussion in Appendix A.4.
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However, more efficient implementations for GTR are possible thanks to nearly-linear time Laplacian solvers: algorithms for
solving linear systems of the form Lx = b in O(mpoly log n) time (Spielman & Teng, 2004; Jambulapati & Sidford, 2021).
Using these algorithms, the pseudoinverses L+ and L2+ could be computed in O(n ·m poly log n) by using Laplacian
solvers to find the columns of the matrix. Alternatively, all-pairs effective resistance and biharmonic distance can be estimated
in time O(m poly log n+ n2 poly log n) using an algorithm that combines Laplacian solvers and Johnson-Lindenstrauss
random projection (Spielman & Srivastava, 2011).

B.2. Experimental Analysis

We implemented the GTR algorithm in PyTorch Geometric; our analysis is available here: https://github.com/
blackmit/gtr_rewiring. The fastest implementation of GTR we found was to use the naive algorithm; this is
because we can calculate the pseudoinverse of the Laplacian using a GPU. The following table contains the amount of time
needed to compute 50 edges using each algorithm.

MUTAG PROTEINS ENZYMES IMDB-BINARY REDDIT-BINARY COLLAB
FoSR 0.10 1.00 0.37 0.51 199.20 15.94
GTR 12.86 68.10 35.76 57.23 349.98 423.79

Table 2. Time in seconds to compute 50 additional edges to add to the graph using both FoSR and GTR

C. Counterexamples to the Optimality of GTR.
Theorem 4.1 proves that GTR adds the single edge that most decreases the total resistance; however, GTR will not necessarily
add the k edges that most decrease total resistance for k > 1. Figure 5 gives an example where this is the case.

GTR Optimal

Figure 5. The path on 5 vertices is a counterexample showing that GTR does not add the k edges that most decrease Rtot when k > 1.
Left: The two edges added by GTR. GTR first adds the edge connecting the first and last vertex in the path. The total resistance of this
graph is Rtot ≈ 8.18. Right: The two edges that most deceases the total resistance. The total resistance of this graph is Rtot ≈ 7.67.

The amount an edge decreases the total resistance can increase as more edges are added to the graph. Figure 6 gives such an
example. This can be interpreted as an edge becoming more important for the global topology of the graph as the graph
changes.

Figure 6. The path on 20 vertices is an example showing that the amount an edge decreases the total resistance is not monotonic. Top:
Adding the red edge would decrease the total resistance by ≈ 30.33. Bottom: After adding the edge connecting the first and last vertex in
the path, adding the red edge would decrease the total resistance by ≈ 40.17

D. Experimental Details
We use the same configuration of hyperparameters as in (Karhadkar et al., 2022). We use randomly generated 80%/10%/10%
train/validation/test splits of the data. We use the Adam optimizer and the ReduceLROnPlateau scheduler in Torch that
reduces the learning rate after 10 epochs without an improvement in the validation accuracy. We use a stopping patience
of 100 epochs of the validation loss. For the hyperparameter search, we consider average accuracies over 10 randomly
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generated splits of the data. For the test results, we report the average test accuracy and 95% confidence intervals over 100
randomly generated splits.

Table 3. Number of edges added by GTR of FoSR for each dataset. Note that FoSR only contains the number of edges when our run in
the edge ablation experiment (Section 5.3) outperformed the run in (Karhadkar et al., 2022). The number of edges added by FoSR for all
other experiments can be found in the appendix to (Karhadkar et al., 2022).

GCN
Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

GTR 45 25 20 5 5 5
R-GCN

Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab
GTR 50 10 40 20 40 25

GIN
Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

GTR 25 5 5 5 15 25
R-GIN

Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab
FoSR - 20 - 25 50 20
GTR 15 5 50 5 20 30

Table 4. Hyperparameters for Graph Classifcation. These are consistent across all GNN types. These are the same as used in the
experiments in (Karhadkar et al., 2022)

Hyperparameters
Number of Hidden Layers 4

Dimension of Hidden Layers 64
Dropout 0.5

Learning Rate 1.0× 10−3

E. Total Resistance vs. Number of Edges Added
Figure 7 shows the decrease in average total resistance across a dataset as edges are added to a graph by GTR or FoSR. GTR
seems to outperform FoSR in decreasing total resistance.

F. Edge Ablation
Figure 8 shows the effect of adding between 0 and 50 edges on the classification accuracy across different graph classification
datasets. We used the R-GIN architecture for the experiments and followed the same experimental procedure as described in
Appendix D.

We see a variety of behaviors across the datasets. For some datasets like Proteins or IMDB-Binary, we see an initial large
jump in accuracy after adding a few edges, but generally see little improvement by adding more edges. For Enzymes,
the accuracy almost only increases as we add more edges, suggesting that the optimal number of edges was greater than
the maximum of 50 we tested. The variety of behaviors suggest that there is no optimal number of edges to add that will
maximize performance across datasets. Our experiments also suggest that, while adding some number of edges helps for all
datasets, performance doesn’t continue to increase as more edges are added.

For almost all datasets, we see the greatest rate of improvement in accuracy after adding a few edges. A possible explanation
might be that the rate total resistance decreases is greatest for the first few edges added, as we see in Figure 7.

G. Hidden Dimension Ablation
Figure 9 shows the effect of adding between 0 and 30 edges and using a hidden dimension of 32, 64, or 128 on graph
classification accuracy. We used the R-GIN architecture for these experiments and followed the same experimental
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procedure as described in Appendix D. Generally, we see that both rewiring and increasing the hidden dimension improve
the classification accuracy.
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Figure 7. Plots of average total resistance vs. number of edges added. For disconnected graphs, plots show the sum of effective resistances
for all pairs of vertices in the same connected component, as effective resistance between vertices in different connected components is
ill-defined. As FoSR adds edges between different connected components and GTR does not, it would not be meaningful to compare
total effective resistance for datasets with disconnected graphs (i.e., Proteins, Enzymes, and IMDB-Binary) as FoSR may connect these
disconnected componets, which is why FoSR curves are not reported for these datasets.
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Figure 8. Plots of graph classification accuracy vs. number of edges added by GTR or FoSR.

40 60 80 100 120
Hidden Dimension

78

80

82

84

86

88

Ac
cu

ra
cy

MUTAG

Number edges added: 0
Number edges added: 10
Number edges added: 20
Number edges added: 30

40 60 80 100 120
Hidden Dimension

68

70

72

74

76

Ac
cu

ra
cy

PROTEINS

Number edges added: 0
Number edges added: 10
Number edges added: 20
Number edges added: 30

40 60 80 100 120
Hidden Dimension

35

40

45

50

Ac
cu

ra
cy

ENZYMES

Number edges added: 0
Number edges added: 10
Number edges added: 20
Number edges added: 30

40 60 80 100 120
Hidden Dimension

84

86

88

90

92

Ac
cu

ra
cy

REDDIT-BINARY

Number edges added: 0
Number edges added: 10
Number edges added: 20
Number edges added: 30

40 60 80 100 120
Hidden Dimension

68

69

70

71

72

Ac
cu

ra
cy

IMDB-BINARY

Number edges added: 0
Number edges added: 10
Number edges added: 20
Number edges added: 30

40 60 80 100 120
Hidden Dimension

72

73

74

75

76

77

78

Ac
cu

ra
cy

COLLAB

Number edges added: 0
Number edges added: 10
Number edges added: 20
Number edges added: 30

Figure 9. Plots of graph classification accuracy vs. hidden dimension for a variable number of edges added by GTR.
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