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Abstract
When dealing with electro or magnetoencephalog-
raphy records, many supervised prediction tasks
are solved by working with covariance matrices to
summarize the signals. Learning with these matri-
ces requires using Riemanian geometry to account
for their structure. In this paper, we propose a new
method to deal with distributions of covariance
matrices and demonstrate its computational effi-
ciency on M/EEG multivariate time series. More
specifically, we define a Sliced-Wasserstein dis-
tance between measures of symmetric positive
definite matrices that comes with strong theoret-
ical guarantees. Then, we take advantage of its
properties and kernel methods to apply this dis-
tance to brain-age prediction from MEG data and
compare it to state-of-the-art algorithms based on
Riemannian geometry. Finally, we show that it
is an efficient surrogate to the Wasserstein dis-
tance in domain adaptation for Brain Computer
Interface applications.

1. Introduction
Magnetoencephalography and electroencephalography
(M/EEG) are non-invasive techniques for recording the elec-
trical activity of the brain (Hämäläinen et al., 1993). The
data consist of multivariate time series output by sensors
placed around the head, which capture the intensity of the
magnetic or electric field with high temporal resolution.
Those measurements provide information on cognitive pro-
cesses as well as the biological state of a subject.

Successful machine learning (ML) techniques that deal with
M/EEG data often rely on covariance matrices estimated
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from band-passed filtered signals in several frequency bands
(Blankertz et al., 2007). The main difficulty that arises
when processing such covariance matrices is that the set of
symmetric positive definite (SPD) matrices is not a linear
space, but a Riemannian manifold (Bhatia, 2009; Bridson &
Haefliger, 2013). Therefore, specific algorithms have to be
designed to take into account the non Euclidean structure
of the data. The usage of Riemannian geometry on SPD
matrices has become increasingly popular in the ML com-
munity (Huang & Van Gool, 2017; Chevallier et al., 2017;
Ilea et al., 2018; Brooks et al., 2019). In particular, these
tools have proven to be very effective on prediction tasks
with M/EEG data in Brain Computer Interface (BCI) appli-
cations (Barachant et al., 2011; 2013; Gaur et al., 2018) or
more recently in brain-age prediction (Sabbagh et al., 2019;
2020; Engemann et al., 2022). As covariance matrices sets
from M/EEG data are often modeled as samples from a
probability distribution – for instance in domain adaptation
for BCI (Yair et al., 2019) – it is of great interest to develop
efficient tools that work directly on those distributions.

Optimal transport (OT) (Villani, 2009; Peyré et al., 2019)
provides a powerful theoretical framework and computa-
tional toolbox to compare probability distributions while
respecting the geometry of the underlying space. It is well
defined on Riemannian manifolds (McCann, 2001; Cui et al.,
2019; Alvarez-Melis et al., 2020) and in particular on the
space of SPD matrices that is considered in M/EEG learn-
ing tasks (Brigant & Puechmorel, 2018; Yair et al., 2019;
Ju & Guan, 2022). The original OT problem defines the
Wasserstein distance which has a super cubic complexity
w.r.t samples. To alleviate the computational burden, differ-
ent alternatives were proposed such as adding an entropic
regularization (Cuturi, 2013) or computing the distance be-
tween mini-batches (Fatras et al., 2020). Another popular
alternative is the Sliced-Wasserstein distance (SW) (Rabin
et al., 2011) which computes the average of the Wasser-
stein distance between one-dimensional projections. SW
has recently received a lot of attention as it significantly re-
duces the computational burden while preserving topologi-
cal properties of Wasserstein (Bonnotte, 2013; Nadjahi et al.,
2020; Bayraktar & Guo, 2021). Moreover, Kolouri et al.
(2016); Meunier et al. (2022) have shown that, as opposed to
Wasserstein, SW allows to properly extend kernel methods
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to data-sets of distributions with very efficient computation
of the kernel matrix. This opens the way to new regression
and classification methods. However, the initial construc-
tion of SW is restricted to Euclidean spaces. Thus, a new
line of work focuses on its extension to specific manifolds
(Rustamov & Majumdar, 2020; Bonet et al., 2022; 2023).

Contributions. In order to benefit from the advantages of
SW in the context of M/EEG, we propose an SW distance
on the manifold of SPD matrices and evaluate its efficiency
on two prediction tasks.

• We introduce an SW discrepancy between measures of
symmetric positive definite matrices (SPDSW), and
provide a well-founded numerical approximation.

• We derive theoretical results, including topological,
statistical, and computational properties. In particu-
lar, we prove that SPDSW is a distance topologically
equivalent to the Wasserstein distance in this context.

• We extend the distribution regression with SW kernels
to the case of SPD matrices, apply it to brain-age regres-
sion with MEG data, and show that it performs better
than other methods based on Riemannian geometry.

• We show that SPDSW is an efficient surrogate to the
Wasserstein distance in domain adaptation for BCI.

2. Sliced-Wasserstein on SPD matrices
In this section, we introduce an SW discrepancy on SPD
matrices and provide a theoretical analysis of its properties
and behavior. The proofs are deferred to Appendix C.

2.1. Euclidean Sliced-Wasserstein distance

For µ, ν ∈ Pp(Rd) two measures with finite moments of
order p ≥ 1, the Wasserstein distance is defined as

W p
p (µ, ν) = inf

γ∈Π(µ,ν)

∫
∥x− y∥p2 dγ(x, y) , (1)

where Π(µ, ν) = {γ ∈ P(Rd×Rd), π1
#γ = µ, π2

#γ = ν}
denotes the set of couplings between µ and ν, π1 : (x, y) 7→
x and π2 : (x, y) 7→ y the projections on the first and
second coordinate and # is the push-forward operator, de-
fined as a mapping on all borelian A ⊂ Rd, such that
T#µ(A) = µ(T−1(A)). For practical ML applications,
this distance is computed between two empirical distribu-
tions with n samples and the main bottleneck consists in
solving the linear program (1). Its computational complexity
is O(n3 log n) (Pele & Werman, 2009) which is expensive
for large scale applications.

While computing (1) is costly in general, it can be com-
puted efficiently for problems where d = 1, as it admits the

following closed-form (Peyré et al., 2019, Remark 2.30)

W p
p (µ, ν) =

∫ 1

0

|F−1
µ (u)− F−1

ν (u)|p du , (2)

where F−1
µ and F−1

ν are the quantile functions of µ and
ν. By computing order statistics, this can be approximated
from samples in O(n log n).

This observation motivated the construction of the SW dis-
tance (Rabin et al., 2011; Bonneel et al., 2015) which is
defined as the average of the Wasserstein distance between
one dimensional projections of the measures in all direc-
tions, i.e. for µ, ν ∈ Pp(Rd),

SWp
p(µ, ν) =

∫
Sd−1

W p
p (t

θ
#µ, t

θ
#ν) dλ(θ) , (3)

where λ is the uniform distribution on the sphere Sd−1 =
{θ ∈ Rd, ∥θ∥2 = 1} and tθ is the coordinate of the pro-
jection on the line span(θ), i.e. tθ(x) = ⟨x, θ⟩ for x ∈ Rd,
θ ∈ Sd−1. This distance has many advantages, motivating
its use in place of the Wasserstein distance. First, it can
be approximated in O

(
Ln(d+ log n)

)
with L projections

and a Monte-Carlo method. Moreover, it is topologically
equivalent to the Wasserstein distance as it also metrizes
the weak convergence (Nadjahi et al., 2019), and its sample
complexity is independent of the dimension (Nadjahi et al.,
2020) as opposed to Wasserstein. Finally, it is a Hilbertian
metric and it can be used to define kernels over probabil-
ity distributions (Kolouri et al., 2016; Carriere et al., 2017;
Meunier et al., 2022). This is particularly interesting for
regression or classification over data-sets of distributions,
as we will see in Section 3.1 for brain-age prediction.

2.2. Background on SPD matrices

Let Sd(R) be the set of symmetric matrices of Rd×d, and
S++
d (R) be the set of SPD matrices of Rd×d, i.e. matrices

M ∈ Sd(R) satisfying

∀x ∈ Rd \ {0}, xTMx > 0 . (4)

S++
d (R) is a Riemannian manifold (Bhatia, 2009), meaning

that it behaves locally as a linear space, called a tangent
space. Each point M ∈ S++

d (R) defines a tangent space
TM , which can be given an inner product ⟨·, ·⟩M : TM ×
TM → R, and thus a norm. The choice of this inner-product
induces different geometry on the manifold. One example
is the geometric and Affine-Invariant metric (Pennec et al.,
2006), where the inner product is defined as

∀M ∈ S++
d (R), A,B ∈ TM ,

⟨A,B⟩M = Tr(M−1AM−1B) .
(5)
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Denoting by Tr the Trace operator, the corresponding
geodesic distance dAI(·, ·) is given by

∀X,Y ∈ S++
d (R), dAI(X,Y ) =

√
Tr(log(X−1Y )2) .

(6)
Another example is the Log-Euclidean metric (Arsigny et al.,
2005; 2006) for which,

∀M ∈ S++
d (R), A,B ∈ TM ,

⟨A,B⟩M = ⟨DM logA,DM logB⟩ ,
(7)

with log the matrix logarithm and DM logA the directional
derivative of the log at M along A (Huang et al., 2015).
This definition provides another geodesic distance (Arsigny
et al., 2006)

∀X,Y ∈ S++
d (R), dLE(X,Y ) = ∥ logX − log Y ∥F ,

(8)
which is simply an Euclidean distance in Sd(R) in this
case. We will use the Log-Euclidean metric in the fol-
lowing, as it is simpler and faster to compute while being
a good first order approximation of the Affine-Invariant
metric (Arsigny et al., 2005; Pennec, 2020). In this case,
the geodesic between X,Y ∈ S++

d (R) is t ∈ R 7→
exp((1− t) logX+ t log Y ). log is a diffeomorphism from
S++
d (R) to Sd(R), whose inverse is exp. Thus, the geodesic

line going through A ∈ Sd(R) and the origin of Sd(R) is
GA = {exp(tA), t ∈ R}. To span all such geodesics, we
can restrict to A with unit Frobenius norm, i.e. ∥A∥F = 1.

2.3. Construction of SPDSW

On a Euclidean space, the SW distance is defined by av-
eraging the Wasserstein distance between the distributions
projected over all possible straight lines passing through the
origin. As S++

d (R) with Log-Euclidean metric is a geodesi-
cally complete Riemannian manifold, i.e. there exists a
geodesic curve between each couple of points and each
geodesic curve can be extended to R, a natural generaliza-
tion of SW on this space can be obtained by averaging the
Wasserstein distance between distributions projected over
all geodesics passing through the origin Id.

To construct SPDSW, we need several ingredients. First, it
is required to find the projection onto a geodesic GA passing
through Id where A ∈ Sd(R). Such projection PGA can be
obtained as follows

∀M ∈ S++
d (R), PGA(M) = argmin

X∈GA

dLE(X,M) , (9)

and we provide the closed-form in Proposition 2.1.

Proposition 2.1. Let A ∈ Sd(R) with ∥A∥F = 1, and let
GA be the associated geodesic line. Then, for any M ∈
S++
d (R), the geodesic projection on GA is

PGA(M) = exp
(
Tr(A logM)A

)
. (10)

Figure 1: (Left) Random geodesics drawn in S++
2 (R).

(Right) Projections (green points) of covariance matrices
(depicted as red points) over one geodesic (in black) passing
through I2 along the Log-Euclidean geodesics (blue lines).

Then, the coordinate of the projection on GA can be obtained
by giving an orientation to GA and computing the distance
between PGA(M) and the origin Id, as follows

tA(M) = sign(⟨logM,A⟩F )dLE(PG(M), Id) . (11)

The closed-form expression is given by Proposition 2.2.

Proposition 2.2. Let A ∈ Sd(R) with ∥A∥F = 1, and let
GA be the associated geodesic line. Then, for any M ∈
S++
d (R), the geodesic coordinate on GA is

tA(M) = ⟨A, logM⟩F = Tr(A logM) . (12)

These two properties give a closed-form expression for the
Riemannian equivalent of one-dimensional projection in
a Euclidean space. Note that coordinates on the geodesic
might also be found using Busemann coordinates, simi-
larly to the construction proposed by Bonet et al. (2022),
and that they actually coincide here. We add more de-
tails in Appendix C. In Figure 1, we illustrate the pro-
jections of matrices M ∈ S++

2 (R) embedded as vectors
(m11,m22,m12) ∈ R3. S++

2 (R) is an open cone and we
plot the projections of random SPD matrices on geodesics
passing through I2.

We are now ready to define an SW discrep-
ancy on measures in Pp(S++

d (R)) = {µ ∈
P(S++

d (R)),
∫
dLE(X,M0)

p dµ(X) < ∞, M0 ∈
S++
d (R)}.

Definition 2.3. Let λS be the uniform distribution on {A ∈
Sd(R), ∥A∥F = 1}. Let p ≥ 1 and µ, ν ∈ Pp(S++

d (R)),
then the SPDSW discrepancy is defined as

SPDSWp
p(µ, ν) =

∫
Sd(R)

W p
p (t

A
#µ, t

A
#ν) dλS(A) . (13)

As shown by the definition, being able to sample from
λS is the cornerstone of the computation of SPDSW. In
Lemma 2.4, we propose a practical way of uniformly sam-
pling a symmetric matrix A. More specifically, we sample
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an orthogonal matrix P and a diagonal matrix D of unit
norm and compute A = PDPT which is a symmetric ma-
trix of unit norm. This is equivalent to sampling from λS
as the measures are equal up to a normalization factor d!
which represents the number of possible permutations of
the columns of P and D for which PDPT = A.

Lemma 2.4. Let λO be the uniform distribution on Od =
{P ∈ Rd×d, PTP = PPT = I} (Haar distribution), and
λ be the uniform distribution on Sd−1 = {θ ∈ Rd, ∥θ∥2 =
1}. Then λS ∈ P(Sd(R)), defined such that ∀ A =
Pdiag(θ)PT ∈ Sd(R), dλS(A) = d! dλO(P )dλ(θ), is
the uniform distribution on {A ∈ Sd(R), ∥A∥F = 1}.

Then, the coordinate of the projection on the geodesic GA is
provided by tA(·) = Tr(A log ·) defined in Proposition 2.2.
The Wasserstein distance is easily computed using order
statistics, and this leads to a natural extension of the SW
distance in S++

d (R). There exists a strong link between
SW on distributions in Rd×d and SPDSW. Indeed, Propo-
sition 2.5 shows that SPDSW is equal to a variant of SW
where projection parameters are sampled from unit norm
matrices in Sd(R) instead of the unit sphere, and where the
distributions are pushed forward by the log operator.

Proposition 2.5. Let µ̃, ν̃ ∈ Pp(Sd(R)), and t̃A(B) =
Tr(ATB) for A,B ∈ Sd(R). We define

SymSWp
p(µ̃, ν̃) =

∫
Sd(R)

W p
p (t̃

A
#µ̃, t̃

A
#ν̃) dλS(A) . (14)

Then, for µ, ν ∈ Pp(S++
d (R)),

SPDSWp
p(µ, ν) = SymSWp

p(log# µ, log# ν) . (15)

Thus, it seems natural to compare the results obtained
with SPDSW to the Euclidean counterpart log SW =
SW(log# ·, log# ·) where the distributions are made of pro-
jections in the log space and where the sampling is done
with the uniform distribution on the sphere. The Wasserstein
distance is also well defined on Riemannian manifolds, and
in particular on the space of SPD matrices. Denoting d a
geodesic distance on S++

d (R), we can define the correspond-
ing Wasserstein distance between µ, ν ∈ Pp(S++

d (R)) as

W p
p (µ, ν) = inf

γ∈Π(µ,ν)

∫
d(X,Y )p dγ(X,Y ) . (16)

In the following, we study properties of SPDSW and in
particular, we show that it is a computationally efficient al-
ternative to Wasserstein on P(S++

d (R)) as it is topologically
equivalent while having a better computational complexity
and being better conditioned for regression of distributions.

2.4. Properties of SPDSW

We now derive theoretical properties of SPDSW.

Topology. Following usual arguments which are valid for
any sliced divergence with any projection, we can show
that SPDSW is a pseudo-distance. Here, S++

d (R) with the
Log-Euclidean metric is of null sectional curvature (Arsigny
et al., 2005; Xu, 2022) and we have access to a diffeomor-
phism to a Euclidean space – the log operator. This allows
us to show that SPDSW is a distance in Theorem 2.6.
Theorem 2.6. Let p ≥ 1, then SPDSWp is a finite distance
on Pp(S++

d (R)).

In the case of the Affine-Invariant metric, the Rieman-
nian manifold endowed with this metric has a non-positive
and non-constant sectional curvature, and closed-forms of
geodesics projections are not known to the best of our knowl-
edge. We can however derive Busemann coordinates, which
involve a costly additional projection. Moreover, whether
or not it satisfies the indiscernible property remains an open
question. Hence, we focus on SPDSW with Log-Euclidean
metric and discuss the use of the Affine-Invariant metric in
Appendix D.

An important property which justifies the use of the SW dis-
tance in place of the Wasserstein distance in the Euclidean
case is that they both metrize the weak convergence (Bon-
notte, 2013). We show in Theorem 2.7 that this is also the
case with SPDSW in Pp(S++

d (R)).
Theorem 2.7. For p ≥ 1, SPDSWp metrizes the weak
convergence, i.e. for µ ∈ Pp(S++

d (R)) and a sequence
(µk)k in Pp(S++

d (R)), limk→∞ SPDSWp(µk, µ) = 0 if
and only if (µk)k converges weakly to µ.

Moreover, SPDSWp and Wp – the p-Wasserstein distance
with Log-Euclidean ground cost – are also weakly equiva-
lent on compactly supported measures on Pp(S++

d (R)), as
demonstrated in Theorem 2.8.
Theorem 2.8. Let p ≥ 1, let µ, ν ∈ Pp(S++

d (R)). Then

SPDSWp
p(µ, ν) ≤ cpd,pW

p
p (µ, ν) , (17)

where cpd,p = 1
d

∫
∥θ∥pp dλ(θ). Let R > 0 and B(I,R) =

{A ∈ S++
d (R), dLE(A, Id) = ∥ logA∥F ≤ R} be a

closed ball. Then there exists a constant Cd,p,R such that
for all µ, ν ∈ Pp(B(I,R)),

W p
p (µ, ν) ≤ Cd,p,RSPDSWp(µ, ν)

2
d(d+1)+2 . (18)

The theorems above highlight that SPDSWp behaves
similarly to Wp on Pp(S++

d (R)). Thus, it is justified to use
SPDSWp as a surrogate of Wasserstein and take advantage
of the statistical and computational benefits that we present
now.

Statistical properties. In practice, we approximate
SPDSW using the plug-in estimator (Niles-Weed & Rigol-
let, 2022; Manole et al., 2022), i.e. for µ, ν ∈ Pp(S++

d (R)),
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we approximate SPDSWp
p(µ, ν) by SPDSWp

p(µ̂n, ν̂n)
where µ̂n and ν̂n denote empirical distributions of µ and
ν. Hence, we are interested in the speed of convergence
towards SPDSWp

p(µ, ν), which we call the sample com-
plexity. We derive the convergence rate for SPDSW in
Proposition 2.9, relying on the proof of Nadjahi et al. (2020)
and on the sample complexity of the Wasserstein distance
(Fournier & Guillin, 2015). The sample complexity we find
does not depend on the dimension, which is an important
property of sliced divergences (Nadjahi et al., 2020).

Proposition 2.9. Let q > p ≥ 1, µ, ν ∈ Pp(S++
d (R)),

and µ̂n, ν̂n the associated empirical measures. We define
the moment of order q by Mq(µ) =

∫
∥X∥qF dµ(X), and

Mq(µ, ν) = Mq(log# µ)1/q+Mq(log# ν)1/q . Then, there
exists a constant Cp,q depending only on p and q such that

E
[
|SPDSWp(µ̂n, ν̂n)− SPDSWp(µ, ν)|

]
(19)

≤ αn,p,qC
1/p
p,q Mq(µ, ν) ,

where αn,p,q =


n−1/(2p) if q > 2p

n−1/(2p) log(n)1/p if q = 2p

n−(q−p)/(pq) if q ∈ (p, 2p) .

Proposition 2.9 assumes we can exactly compute the outer
integral, which is not the case in practice, as it requires a
Monte-Carlo approximation. In Proposition 2.10, we show
that, L being the number of projections, the Monte-Carlo
error is O( 1√

L
) for a fixed dimension d. This time, the

dimension intervenes in VarA∼λS

[
W p
p (t

A
#µ, t

A
#ν)

]
.

Proposition 2.10. Let p ≥ 1, µ, ν ∈ Pp(S++
d (R)). Then,

the error made by the Monte Carlo estimate of SPDSWp

with L projections can be bounded as follows

EA
[
| ̂SPDSW

p

p,L(µ, ν)− SPDSWp
p(µ, ν)|

]2
≤ 1

L
VarA∼λS

[
W p
p (t

A
#µ, t

A
#ν)

]
,

(20)

where ̂SPDSW
p

p,L(µ, ν) =
1
L

∑L
i=1 W

p
p (t

Ai

# µ, tAi

# ν) with
(Ai)

L
i=1 independent samples from λS .

Computational complexity and implementation. Let
µ, ν ∈ Pp(S++

d (R)) and (Xi)
n
i=1 (resp. (Yj)mj=1) samples

from µ (resp. from ν). We approximate SPDSWp
p(µ, ν) by

̂SPDSW
p

p,L(µ̂n, ν̂m) where µ̂n = 1
n

∑n
i=1 δXi

and ν̂m =
1
m

∑m
j=1 δYj

. Sampling from λO requires drawing a matrix
Z ∈ Rd×d with i.i.d normally distributed coefficients, and
then taking the QR factorization with positive entries on the
diagonal of R (Mezzadri, 2006), which needs O(d3) opera-
tions (Golub & Van Loan, 2013, Section 5.2). Then, comput-
ing n matrix logarithms takes O(nd3) operations. Given L
projections, the inner-products require O(Lnd2) operations,

Algorithm 1 Computation of SPDSW

Input: (Xi)
n
i=1 ∼ µ, (Yj)mj=1 ∼ ν, L the number of

projections, p the order
for ℓ = 1 to L do

Draw θ ∼ Unif(Sd−1) = λ
Draw P ∼ Unif(Od(R)) = λO
A = Pdiag(θ)PT

∀i, j, X̂ℓ
i = tA(Xi), Ŷ ℓ

j = tA(Yj)

Compute W p
p (

1
n

∑n
i=1 δX̂ℓ

i
, 1
m

∑m
j=1 δŶ ℓ

j
)

end for
Return 1

L

∑L
ℓ=1 W

p
p (

1
n

∑n
i=1 δX̂ℓ

i
, 1
m

∑m
j=1 δŶ ℓ

j
)

102 103 104

Number of samples

10 1

101

Ti
m

e 
(s

)

LEW
AIW
LES
SPDSW
log SW

Figure 2: Runtime in log-log scale of SPDSW and log SW
(200 proj., d=20) compared to alternatives based on Wasser-
stein between Wishart samples. Sliced discrepancies can
scale to larger distributions in S++

d (R).

and the computation of the one-dimensional Wasserstein
distances is done in O(Ln log n) operations. Therefore, the
complexity of SPDSW is O(Ln(log n+ d2)+ (L+n)d3).
The procedure is detailed in Algorithm 1. In practice, when
it is required to call SPDSW several times in optimization
procedures, the computational complexity can be reduced
by drawing projections only once at the beginning.

Note that it is possible to draw symmetric matrices with
complexity O(d2) by taking A = Z+ZT

∥Z+ZT ∥F
. Although this

is a great advantage from the point of view of computation
time, we leave it as an open question to know whether this
breaks the bounds in Theorem 2.8.

We illustrate the computational complexity w.r.t samples
in Figure 2. The computations have been performed on a
GPU NVIDIA Tesla V100-DGXS 32GB using PyTorch
(Paszke et al., 2017)1. We compare the runtime to the
Wasserstein distance with Affine-Invariant (AIW) and
Log-Euclidean (LEW) metrics, and to Sinkhorn algorithm
(LES) which is a classical alternative to Wasserstein to
reduce the computational cost. When enough samples are
available, then computing the Wasserstein distance takes
more time than computing the cost matrix, and SPDSW
is fast to compute.

1Code is available at https://github.com/clbonet/
SPDSW.
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3. From Brain Data to Distributions in S++
d (R)

M/EEG data consists of multivariate time series X ∈
RNC×T , with NC channels, and T time samples. A widely
adopted model assumes that the measurements X are lin-
ear combinations of NS sources S ∈ RNS×T degraded by
noise N ∈ RNC×T . This leads to X = AS + N , where
A ∈ RNC×NS is the forward linear operator (Hämäläinen
et al., 1993). A common practice in statistical learning on
M/EEG data is to consider that the target is a function of the
power of the sources, i.e. E[SST ] (Blankertz et al., 2007;
Dähne et al., 2014; Sabbagh et al., 2019). In particular,
a broad range of methods rely on second-order statistics
of the measurements, i.e. covariance matrices of the form
C = XXT

T , which are less costly and uncertain than solving
the inverse problem to recover S before training the model.
After proper rank reduction to turn the covariance estimates
into SPD matrices (Harandi et al., 2017), and appropriate
band-pass filtering to stick to specific physiological patterns
(Blankertz et al., 2007), Riemannian geometry becomes an
appropriate tool to deal with such data.

In this section, we propose two applications of SPDSW to
prediction tasks from M/EEG data. More specifically, we
introduce a new method to perform brain-age regression,
building on the work of Sabbagh et al. (2019) and Meunier
et al. (2022), and another for domain adaptation in BCI.

3.1. Distributions Regression for Brain-age Prediction

Learning to predict brain age from population-level
neuroimaging data-sets can help characterize biological
aging and disease severity (Spiegelhalter, 2016; Cole
& Franke, 2017; Cole et al., 2018). Thus, this task has
encountered more and more interest in the neuroscience
community in recent years (Xifra-Porxas et al., 2021; Peng
et al., 2021; Engemann et al., 2022). In particular, Sabbagh
et al. (2019) take advantage of Riemannian geometry for
feature engineering and prediction with the following steps.
First, one covariance estimate is computed per frequency
band from each subject recording. Then these covariance
matrices are projected onto a lower dimensional space to
make them full rank, for instance with a PCA. Each newly
obtained SPD matrix is projected onto the log space to
obtain a feature after vectorization and aggregation among
frequency bands. Finally, a Ridge regression model predicts
brain age. This white-box method achieves state-of-the-art
brain age prediction scores on MEG datasets like Cam-CAN
(Taylor et al., 2017).

MEG recordings as distributions of covariance matrices.
Instead of modeling each frequency band by a unique covari-
ance matrix, we propose to use a distribution of covariance
matrices estimated from small time frames. Concretely,
given a time series X ∈ RNC×T and a time-frame length

t < T , a covariance matrix is estimated from each one
of the n = ⌊Tt ⌋ chunks of signal available. This process
models each subject by as many empirical distributions of
covariance estimates (Ci)ni=1 as there are frequency bands.
Then, all samples are projected on a lower dimensional
space with a PCA, as done in Sabbagh et al. (2019). Here,
we study whether modeling a subject by such distributions
provides additional information compared to feature engi-
neering based on a unique covariance matrix. In order to
perform brain age prediction from these distributions, we
extend recent results on distribution regression with SW
kernels (Kolouri et al., 2016; Meunier et al., 2022) to SPD
matrices, and show that SPDSW performs well on this
prediction task while being easy to implement.

SPDSW kernels for distributions regression. As shown
in Section 2.4, SPDSW is a well-defined distance on dis-
tributions in S++

d (R). The most straightforward way to
build a kernel from this distance is to resort to well-known
Gaussian kernels, i.e. K(µ, ν) = e−

1
2σ2 SPDSW2

2(µ,ν).

However, this is not sufficient to make it a proper positive
kernel. Indeed, we need SPDSW to be a Hilbertian distance
(Hein & Bousquet, 2005). A pseudo-distance d on X is
Hilbertian if there exists a Hilbert space H and a feature
map Φ : X → H such that ∀x, y ∈ X , d(x, y) = ∥Φ(x)−
Φ(y)∥H. We now extend Meunier et al. (2022, Proposition
5) to the case of SPDSW in Proposition 3.1.

Proposition 3.1. Let m be the Lebesgue measure and let
H = L2([0, 1]× Sd(R),m⊗ λS). We define Φ as

Φ : P2(S
++
d (R)) → H

µ 7→
(
(q, A) 7→ F−1

tA#µ
(q)
)
,

(21)

where F−1
tA#µ

is the quantile function of tA#µ. Then, SPDSW2

is Hilbertian and for all µ, ν ∈ P2(S
++
d (R)),

SPDSW2
2(µ, ν) = ∥Φ(µ)− Φ(ν)∥2H . (22)

The proof is similar to the one of Meunier et al. (2022) for
SW in Euclidean spaces and highlights two key results. The
first one is that SPDSW extensions of Gaussian kernels
are valid positive definite kernels, as opposed to what we
would get with the Wasserstein distance (Meunier et al.,
2022). The second one is that we have access to an explicit
and easy-to-compute feature map that preserves SPDSW,
making it possible to avoid inefficient quadratic algorithms
on empirical distributions from very large data. In practice,
we rely on the finite-dimensional approximation of projected
distributions quantile functions proposed in Meunier et al.
(2022) to compute the kernels more efficiently with the
ℓ2-norm. Then, we leverage Kernel Ridge regression for
prediction (Murphy, 2012). Let 0 < q1 < · · · < qM < 1,
and (A1, . . . , AL) ∈ Sd(R)L. The approximate feature
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6.4 6.6 6.8 7.0 7.2
Average MAE

Filterbank-riemann (Sabbagh et al. 2019)
Filterbank-riemann kernel

logSW kernel
SPDSW kernel

0.74 0.76 0.78 0.80
Average R2

Figure 3: Average MAE and R2 score for 10 random seeds on the Cam-CAN data-set with time-frames of 2s and 1000
projections. Kernel Ridge regression based on SW kernels performs best. SPDSW and log SW are close to each other.
Sampling from symmetric matrices offers a slight advantage but does not play a key role on performance. For information,
Euclidean SW led to poor results on the task (MAE 9.7).

map has a closed-form expression in the case of empirical
distributions and is defined as

Φ̂(µ) =

(
1√
ML

F−1

t
Ai
# µ

(qj)

)
1≤j≤M,1≤i≤L

. (23)

Regarding brain-age prediction, we model each couple of
subject s and frequency band f as an empirical distribution
µs,fn of covariance estimates (Ci)ni=1. Hence, our data-set
consists of the set of distributions in S++

d (R)(
µs,fn =

1

n

n∑
i=1

δCi

)
s,f

. (24)

First, we compute the associated features (Φ̂(µs,fn ))s,f by
loading the data and band-pass filtering the signal once
per subject. Then, as we are interested in comparing each
subject in specific frequency bands, we compute one ap-
proximate kernel matrix per frequency f , as follows

Kf
i,j = e−

1
2σ2 ∥Φ̂(µi,f

n )−Φ̂(µj,f
n )∥2

2 . (25)

Finally, the kernel matrix obtained as a sum over frequency
bands, i.e. K =

∑
f K

f , is plugged into the Kernel Ridge
regression of scikit-learn (Pedregosa et al., 2011).

Numerical results We demonstrate the ability of our al-
gorithm to perform well on brain-age prediction on the
largest publicly available MEG data-set Cam-CAN (Taylor
et al., 2017), which contains recordings from 646 subjects
at rest. We take advantage of the benchmark provided by
Engemann et al. (2022) – available online2 and described in
Appendix B.2 – to replicate the same pre-processing and pre-
diction steps from the data, and thus produce a meaningful
and fair comparison.

For each one of the seven frequency bands, we divide every
subject time series into frames of fixed length. We estimate
covariance matrices from each timeframe with OAS (Chen
et al., 2010) and apply PCA for rank-reduction, as in Sab-
bagh et al. (2019), to obtain SPD matrices of size 53× 53.

2https://github.com/meeg-ml-benchmarks/
brain-age-benchmark-paper

This leads to distributions of 275 points per subject and
per frequency band. In Sabbagh et al. (2019), the authors
rely on Ridge regression on vectorized projections of SPD
matrices on the tangent space. We also provide a compari-
son to Kernel Ridge regression based on a kernel with the
Log-Euclidean metric, i.e. K log

i,j = e−
1

2σ2 ∥ logCi−logCj∥2
F .

Figure 3 shows that SPDSW and log SW (1000 projections,
time-frames of 2s) perform best in average on 10-folds cross-
validation for 10 random seeds, compared to the baseline
with Ridge regression (Sabbagh et al., 2019) and to Ker-
nel Ridge regression based on the Log-Euclidean metric,
with identical pre-processing. We provide more details on
scores for each fold on a single random seed in Figure A.
In particular, it seems that evaluating the distance between
distributions of covariance estimates instead of just the aver-
age covariance brings more information to the model in this
brain-age prediction task, and allows to improve the score.
Moreover, while SPDSW gives the best results, logSW ac-
tually performs well compared to baseline methods. Thus,
both methods seem to be usable in practice, even though
sampling symmetric matrices and taking into account the
Riemannian geometry improves the performances compared
to logSW. Also note that Log-Euclidean Kernel Ridge re-
gression works better than the baseline method based on
Ridge regression (Sabbagh et al., 2019). Then, Figure B
in the appendix shows that SPDSW does not suffer from
variance with more than 500 projections in this use case
with matrices of size 53 × 53. Finally, Figure C shows that
there is a trade-off to find between smaller time-frames for
more samples per distribution and larger time-frames for
less noise in the covariance estimates and that this is an
important hyper-parameter of the model.

3.2. Domain Adaptation for BCI

BCI consists of establishing a communication interface
between the brain and an external device, in order to assist
or repair sensory-motor functions (Daly & Wolpaw, 2008;
Nicolas-Alonso & Gomez-Gil, 2012; Wolpaw, 2013). The
interface should be able to correctly interpret M/EEG
signals and link them to actions that the subject would like
to perform. One challenge of BCI is that ML methods are
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Table 1: Accuracy and Runtime for Cross Session.

Subjects Source AISOTDA SPDSW LogSW LEW LES SPDSW LogSW LEW LES
(Yair et al., 2019) Transformations in S++

d (R) Descent over particles

1 82.21 80.90 84.70 84.48 84.34 84.70 85.20 85.20 77.94 82.92
3 79.85 87.86 85.57 84.10 85.71 86.08 87.11 86.37 82.42 81.47
7 72.20 82.29 81.01 76.32 81.23 81.23 81.81 81.73 79.06 73.29
8 79.34 83.25 83.54 81.03 82.29 83.03 84.13 83.32 80.07 85.02
9 75.76 80.25 77.35 77.88 77.65 77.65 80.30 79.02 76.14 70.45

Avg. acc. 77.87 82.93 82.43 80.76 82.24 82.54 83.71 83.12 79.13 78.63
Avg. time (s) - - 4.34 4.32 11.41 12.04 3.68 3.67 8.50 11.43

generally not robust to the change of data domain, which
means that an algorithm trained on a particular subject
will not be able to generalize to other subjects. Domain
adaptation (DA) (Ben-David et al., 2006) offers a solution
to this problem by taking into account the distributional
shift between source and target domains. Classical DA
techniques employed in BCI involve projecting target
data on source data or vice versa, or learning a common
embedding that erases the shift, sometimes with the help
of optimal transport (Courty et al., 2016). As Riemannian
geometry works well on BCI (Barachant et al., 2013;
Yger et al., 2016), DA tools have been developed for SPD
matrices (Yair et al., 2019; Ju & Guan, 2022).

SPDSW for domain adaptation on SPD matrices. We
study two training frameworks on data from P(S++

d (R)). In
the first case, a push forward operator fθ is trained to change
a distribution µS in the source domain into a distribution
µT in the target domain by minimizing a loss of the form
L(θ) = L

(
(fθ)#µS , µT

)
, where L is a transport cost like

Wasserstein on P(S++
d (R)) or SPDSW. The model fθ is a

sequence of simple transformations in S++
d (R) (Rodrigues

et al., 2018), i.e. TW (C) = WTCW for W ∈ S++
d (R)

(translations) or W ∈ SOd (rotations), potentially combined
to specific non-linearities (Huang & Van Gool, 2017). The
advantage of such models is that they provide a high level
of structure with a small number of parameters.

In the second case, we directly align the source on the tar-
get by minimizing L with a Riemannian gradient descent
directly over the particles (Boumal, 2020), i.e. by denot-
ing µS((xi)

|XS |
i=1 ) = 1

|XS |
∑|XS |
i=1 δxi with XS = {xSi }i the

samples of the source, we initialize at (xSi )
|XS |
i=1 and mini-

mize L((xi)
|XS |
i=1 ) = L

(
µS((xi)

|XS |
i=1 ), µT

)
.

We use Geoopt (Kochurov et al., 2020) and Pytorch
(Paszke et al., 2017) to optimize on manifolds. Then, an
SVM is trained on the vectorized projections of XS in the
log space, i.e. from couples (vect(log xSi ), yi)

|XS |
i=1 , and we

evaluate the model on the target distribution.

Source
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Figure 4: (Left) PCA on BCI data before and after align-
ment. Minimizing SPDSW with enough projections allows
aligning sources on targets. (Right) Accuracy w.r.t num. of
projections for the cross-session task with transformations.
Here, there is no need for too many projections to converge.

Numerical results. In Table 1, we focus on cross-session
classification for the BCI IV 2.a Competition dataset (Brun-
ner et al., 2008) with 4 target classes and about 270 samples
per subject and session. We compare accuracies and run-
times for several methods run on a GPU Tesla V100-DGXS-
32GB. The distributions are aligned by minimizing different
discrepancies, namely SPDSW, logSW, Log-Euclidean
Wasserstein (LEW) and Sinkhorn (LES), computed with
POT (Flamary et al., 2021). Note that we did not tune hyper-
parameters on each particular subject and discrepancy, but
only used a grid search to train the SVM on the source data-
set, and optimized each loss until convergence, i.e. without
early stopping. We compare this approach to the naive one
without DA, and to the barycentric OTDA (Courty et al.,
2016) with Affine-Invariant metric reported from Yair et al.
(2019). We provide further comparisons on cross-subject
in Appendix A.2. Our results show that all discrepancies
give equivalent accuracies. As expected, SPDSW has an
advantage in terms of computation time compared to other
transport losses. Moreover, transformations in S++

d (R) and
descent over the particles work almost equally well in the
case of SPDSW. We illustrate the alignment we obtain
by minimizing SPDSW in Figure 4, with a PCA for vi-
sualization purposes. Additionally, Figure 4 shows that
SPDSW does not need too many projections to reach opti-
mal performance. We provide more experimental details in
Appendix B.
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4. Conclusion
We proposed SPDSW, a discrepancy between distributions
of SPD matrices with appealing properties such as being
a distance and metrizing the weak convergence. Being
a Hilbertian metric, it can be plugged as is into Kernel
methods, as we demonstrate for brain age prediction from
MEG data. Moreover, it is usable in loss functions dealing
with distributions of SPD matrices, for instance in domain
adaptation for BCI, with less computational complexity than
its counterparts. Beyond M/EEG data, our discrepancy is of
interest for any learning problem that involves distributions
of SPD matrices, and we expect to see other applications
of SPDSW in the future. One might also be interested in
using other metrics on positive definite or semi-definite
matrices such as the Bures-Wasserstein metric, with the
additional challenges that this space is positively curved and
not geodesically complete (Thanwerdas & Pennec, 2023).
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A. Complementary experiments
A.1. Brain Age Prediction

Performance of SPDSW-based brain age regression on 10-folds cross validation for one random seed. In Figure A,
we display the Mean Absolute Error (MAE) and the R2 coefficient on 10-folds cross validation with one random seed.
SPDSW is run with time-frames of 2s and 1000 projections.

5 6 7 8 9
MAE

Filterbank-riemann (Sabbagh et al. 2019)
Filterbank-riemann kernel

SPDSW kernel

0.70 0.74 0.78 0.82 0.86
R2

Figure A: Results of 10-folds cross validation on the Cam-CAN data-set for one random seed. We display the Mean Absolute
Error (MAE) and the R2 coefficient. SPDSW, with time-frames of 2s and 1000 projections, performs best. Note that Kernel
Ridge regression based on the Log-Euclidean distance performs better than Ridge regression.

Performance of SPDSW-based brain age regression depending on number of projections. In Figure B, we display the
MAE and R2 score on brain age regression with different number of projections for 10 random seeds. In this example, the
variance and scores are acceptable for 500 projections and more.

6.4 6.6 6.8 7.0 7.2
Average MAE

Filterbank-riemann (Sabbagh et al. 2019)

Filterbank-riemann kernel

SPDSW kernel 200 proj

SPDSW kernel 500 proj

SPDSW kernel 1000 proj

0.74 0.76 0.78 0.80
Average R2

Figure B: Average results for 10 random seeds with 200, 500 and 1000 projections for SPDSW compared to average MAE
and R2 obtained with Ridge and Kernel Ridge regression on features from covariance estimates (Sabbagh et al., 2019). With
enough projections, SPDSW kernel does not suffer from variance and performs best.

Performance of SPDSW-based brain age regression depending on timeframe length. In Figure C, we display the
MAE and R2 score on brain age regression with different time-frame lengths for 10 random seeds. The performance of
SPDSW -kernel Ridge regression depends on a trade-off between the number of samples in each distribution (smaller
time-frames for more samples), and the level of noise in the covariance estimate (larger time-frame for less noise). In this
example, time-frames of 400 samples seems to be a good choice.

A.2. Domain Adaptation for BCI

Alignement. We plot on Figure D the classes of the target session (circles) and of the source session after alignment
(crosses) on each subject. We observe that the classes seem to be well aligned, which explains why simple transformations
work on this data-set. Hence, minimizing a discrepancy allows to align the classes even without taking them into account in
the loss. More complicated data-sets might require to take into account the classes for the alignment.

Cross Subject Task. In Table 2, we add the results obtained on the cross subject task. On the column “subjects”, we
denote the source subject, and we report in the table the mean of the accuracies obtained over all other subjects as targets.
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6.4 6.6 6.8 7.0 7.2
Average MAE

Filterbank-riemann (Sabbagh et al. 2019)
Filterbank-riemann kernel

SPDSW kernel timeframe 200
SPDSW kernel timeframe 300
SPDSW kernel timeframe 400
SPDSW kernel timeframe 500
SPDSW kernel timeframe 650

SPDSW kernel timeframe 1000
SPDSW kernel timeframe 2000

0.74 0.76 0.78 0.80
Average R2

Figure C: Average MAE and R2 score on brain age regression with different time-frame lengths for 10 random seeds The
performance depends on the time-frame length, and there is a trade-off to find between number of samples and noise in the
samples.

Subject 1

Class 1
Class 2
Class 3
Class 4

Subject 3 Subject 7 Subject 8 Subject 9

Figure D: PCA representation on BCI data. Circles represent points from the target session and crosses points from the
source after alignment.

The results for AISTODA are taken from Yair et al. (2019, Table 1.b, Alg.1 (u)). The preprocessing and hyperparameters
might not be the same as in our setting.

We add on Table 3 the detailed accuracies between subjects (with on the rows the Table, and on the columns the targets) for
SPDSW, LEW, and when applying the classifier on the source.

Table 3: Accuracy between subjects. The row denote the source and the columns the targets.

Table 4: Source.

1 3 7 8 9

1 - 52.22 50.55 39.02 26.58
3 34.43 - 30.10 49.62 27.43
7 52.01 53.33 - 26.14 26.58
8 49.82 57.78 24.35 0 39.66
9 26.74 28.52 24.72 39.39 -

Table 5: Particles + SPDSW.

1 3 7 8 9

1 - 69.04 60.89 68.18 52.15
3 66.23 - 70.18 70.83 55.70
7 58.02 71.04 - 61.82 53.00
8 57.73 70.44 58.16 - 57.47
9 55.24 61.85 52.10 65.68 -

Table 6: Particles + LEW.

1 3 7 8 9

1 - 72.59 55.42 69.32 54.01
3 63.37 - 61.99 62.12 53.59
7 50.18 62.96 - 48.11 51.48
8 61.54 74.07 53.87 - 57.22
9 48.35 63.33 57.20 64.02 -

Table 7: Transf. + SPDSW.

1 3 7 8 9

1 - 68.00 59.04 68.79 51.81
3 68.42 - 71.07 69.24 56.88
7 57.66 69.78 - 60.83 53.42
8 62.71 72.07 53.87 - 55.70
9 53.92 59.04 40.15 60.15 -

Table 8: Transf. + LEW.

1 3 7 8 9

1 - 70.00 59.78 68.18 53.59
3 69.60 - 71.59 69.32 54.85
7 57.88 73.37 - 61.74 53.59
8 63.00 72.22 54.24 - 55.70
9 55.31 60.00 39.48 64.02 -
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Table 2: Accuracy and Runtime for Cross Subject.

Subjects Source AISOTDA SPDSW LogSW LEW LES SPDSW LogSW LEW LES
(Yair et al., 2019) Transformations in S++

d (R) Descent over particles

1 42.09 62.94 61.91 60.50 62.89 63.64 62.56 61.91 62.84 63.25
3 35.62 71.01 66.40 66.53 66.34 66.30 65.74 64.96 60.27 62.29
7 39.52 63.98 60.42 57.29 60.89 60.43 60.97 58.49 53.18 59.52
8 42.90 66.06 61.09 60.19 61.29 62.14 60.95 60.00 61.68 61.77
9 29.94 59.18 53.31 50.63 54.79 54.89 58.72 54.91 58.22 64.90

Avg. acc. 38.01 64.43 60.63 59.03 61.24 61.48 61.79 60.05 59.24 62.55
Avg. time - - 4.34 4.31 11.76 11.21 3.67 3.64 9.54 10.32
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(a) Transformations on cross-subjects.
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(b) Particles on cross-session.
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(c) Particles on cross-subject.

Figure E: Accuracy w.r.t the number of projections when optimizing over particles or transformations, and for the cross-
session task and cross subject task. In all cases, the accuracy converge for 500 projections.

Evolution of the accuracy w.r.t the number of projections. On Figure 4, we plot the evolution of the accuracy obtained
by learning transformations on S++

d (R) on the cross session task. We report on Figure E the plot for the other cases. We
compared the results for L ∈ {10, 16, 27, 46, 77, 129, 215, 359, 599, 1000} projections, which are evenly spaced in log
scale. Other parameters are the same as in Table 1 and are detailed in Appendix B.3. The results were averaged over 10 runs,
and we report the standard deviation.

A.3. Illustrations

Sample Complexity. We illustrate Proposition 2.9 in Figure Fa by plotting SPDSW and the Wasserstein distance with
Log-Euclidean ground cost (LEW) between samples drawn from the same Wishart distribution, for d = 2 and d = 50.
SPDSW is computed with L = 1000 projections. We observe that SPDSW converges with the same speed in both
dimensions while LEW converges slower in dimension 50.

Projection Complexity. We illustrate Proposition 2.10 on Figure Fb by plotting the absolute error between ̂SPDSW
2

2,L

and ̂SPDSW
2

2,L∗ . We fix L∗ at 10000 which gives a good idea of the true value of SPDSW and we vary L between 1
and 103 evenly in log scale. We average the results over 100 runs and plot 95% confidence intervals. We observe that the
Monte-Carlo error converges to 0 with a convergence rate of O( 1√

L
).
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(a) Sample complexity of D = SPDSW and D = LEW for
d = 2 and d = 50.
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(b) Projection complexity of SPDSW and the logSW for d = 2
and d = 20.

Figure F: Sample and projection complexity. Experiments are replicated 100 times and we report the 95% confidence
intervals. We note µ̂n and µ̂′

n two different empirical distributions of µ. The sample complexity of SPDSW does not
depend on the dimension contrary to Wasserstein. The projections complexity has a slope which decreases in O( 1√

L
).

B. Experimental details
B.1. Runtime

In Figure 2, we plot the runtime w.r.t the number of samples for different OT discrepancies. Namely, we compare SPDSW,
log SW, the Wasserstein distance with Affine-Invariant ground cost, the Wasserstein distance with Log-Euclidean ground
cost, and the Sinkhorn algorithm used to compute the entropic regularized OT problem with Log-Euclidean ground cost. The
distance ground costs are computed with geoopt (Kochurov et al., 2020) while Wasserstein and Sinkhorn are computed
with POT (Flamary et al., 2021). All computations are done on a A6000 GPU. We average the results over 20 runs and
for n ∈ {100, 215, 464, 1000, 2154, 4641, 10000, 21544, 46415, 100000} samples, which are evenly spaced in log scale,
from a Wishart distribution in dimension d = 20. For the sliced methods, we fix L = 200 projections. For the Sinkhorn
algorithm, we use a stopping threshold of 10−10 with maximum 105 iterations and a regularization parameter of ϵ = 1.

B.2. Brain Age Prediction

We reuse the code for preprocessing steps and benchmarking procedure described in Engemann et al. (2022) for the CamCAN
data-set, and available at https://github.com/meeg-ml-benchmarks/brain-age-benchmark-paper,
which we recall here.

The data consist of measurements from 102 magnetometers and 204 gradiometers. First, we apply a band-pass filtering
between 0.1Hz and 49Hz. Then, the signal is subsampled with a decimation factor of 5, leading to a sample frequency
of 200Hz. Then, we apply the temporal signal-space-separation (tSSS). Default settings were applied for the harmonic
decomposition (8 components of the internal sources, 3 for the external sources) on a 10-s sliding window. To discard
segments for which inner and outer signal components were poorly distinguishable, we applied a correlation threshold of
98%.

For analysis, the band frequencies used are the following: (0.1Hz, 1Hz), (1Hz, 4Hz), (4Hz, 8Hz), (8Hz, 15Hz), (15Hz,
26Hz), (26Hz, 35Hz), (35Hz, 49Hz). The rank of the covariance matrices obtained after OAS is reduced to 53 with a PCA,
which leads to the best score on this problem as mentioned in Sabbagh et al. (2020).

The code for the MEG experiments is essentially based on the work by Engemann et al. (2022), the class SPDSW available
in the supplementary material, and the Kernel Ridge Regression of scikit-learn. The full version will be added later
in order to respect anonymity.

B.3. Domain Adaptation for BCI

For both the optimization over particles and over transformations, we use geoopt (Kochurov et al., 2020) with the
Riemannian gradient descent. We now detail the hyperparameters and the procedure.

First, the data from the BCI Competition IV 2a are preprocessed using the code from Hersche et al. (2018) available at
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https://github.com/MultiScale-BCI/IV-2a. We applied a band-pass filter between 8 and 30 Hz. With these
hyper-parameters, we get one regularized covariance matrix per subject.

For all experiments, we report the results averaged over 5 runs. For the sliced discrepancies, we always use L = 500
projections which we draw only once at the beginning. When optimizing over particles, we used a learning rate of 1000 for
the sliced methods and of 10 for Wasserstein and Sinkhorn. The number of epochs was fixed at 500 for the cross-session
task and for the cross-subject tasks. For the basic transformations, we always use 500 epochs and we choose a learning rate
of 1e−1 on cross session and 5e−1 on cross subject for sliced methods, and of 1e−2 for Wasserstein and Sinkhorn. For the
Sinkhorn algorithm, we use ϵ = 10 with the default hyperparameters from the POT implementation. Moreover, we only use
one translation and rotation for the transformation.

Furthermore, the results reported for AISOTDA in Table 1 and Table 2 are taken from Yair et al. (2019) (Table 1.a, column
Alg.1 (u)). We note however that they may not have used the same preprocessing and hyperparameters to load the covariance
matrices.

C. Proofs
Proposition 2.1. Let A ∈ Sd(R) with ∥A∥F = 1, and let GA be the associated geodesic line. Then, for any M ∈ S++

d (R),
the geodesic projection on GA is

PGA(M) = exp
(
Tr(A logM)A

)
. (10)

Proof. Let M ∈ S++
d (R). We want to solve

PGA(M) = argmin
X∈GA

dLE(X,M)2 . (26)

In the case of the Log-Euclidean metric, GA = {exp(tA), t ∈ R}. We have

dLE(exp(tA),M)2 = ∥ log exp(tA)− logM∥2F
= ∥tA− logM∥2F
= t2Tr(A2) + Tr(log(M)2)− 2tTr(A logM)

= g(t) .

(27)

Hence

g′(t) = 0 ⇐⇒ t =
Tr(A logM)

Tr(A2)
. (28)

Therefore

PGA(M) = exp

(
Tr(A logM)

Tr(A2)
A

)
= exp (Tr(A logM)A) , (29)

since ∥A∥2F = Tr(A2) = 1.

Proposition 2.2. Let A ∈ Sd(R) with ∥A∥F = 1, and let GA be the associated geodesic line. Then, for any M ∈ S++
d (R),

the geodesic coordinate on GA is
tA(M) = ⟨A, logM⟩F = Tr(A logM) . (12)

Proof. First, we give an orientation to the geodesic. This can be done by taking the sign of the inner product between
log(PGA(M)) and A.

tA(M) = sign(⟨A, log(PGA(M))⟩F )d
(
PA(M), I

)
= sign(⟨A, log(PGA(M))⟩F )d (exp (Tr(A logM)A) , I)

= sign(⟨A, ⟨A, logM⟩FA⟩F )∥⟨A logM⟩FA− log I∥F
= sign(⟨A, logM⟩F )|⟨A, logM⟩F |
= ⟨A, logM⟩F
= Tr(A logM) .

(30)
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There are actually two possible ways to find coordinates on geodesically complete Riemannian manifolds (Bonet et al.,
2022). The first one is to take the geodesic projection as previously done. A second solution is to use Busemann coordinates
(Bridson & Haefliger, 2013; Chami et al., 2021).

Definition C.1. Let γ be a geodesic ray on a geodesically complete Riemannian manifold M, i.e. for all s, t ≥ 0,
d(γ(s), γ(t)) = |t− s|. Then, the Busemann function Bγ associated to γ is defined as, for all x ∈ M,

Bγ(x) = lim
t→∞

(
d(x, γ(t))− t

)
. (31)

This function allows to derive coordinates on geodesically complete geodesics. For example, on Rd, it actually coincides
with the geodesic projection as it can be shown that, for θ ∈ Sd−1,

∀x ∈ Rd, Bspan(θ)(x) = −⟨x, θ⟩ . (32)

In Proposition C.2, we derive a closed-form for the Busemann function associated to a geodesic ray on S++
d (R) passing

through the identity.

Proposition C.2 (Busemann coordinates). Let A ∈ Sd(R) such that ∥A∥F = 1, and let GA be the associated geodesic line.
Then, the Busemann function associated to GA is defined as

∀M ∈ S++
d (R), BA(M) = −Tr(A logM) . (33)

Proof. First, following (Bridson & Haefliger, 2013), we have for all M ∈ S++
d (R),

BA(M) = lim
t→∞

(
dLE(γA(t),M)− t

)
= lim
t→∞

dLE(γA(t),M)2 − t2

2t
, (34)

denoting γA : t 7→ exp(tA) is the geodesic line associated to GA. Then, we get

dLE(γA(t),M)2 − t2

2t
=

1

2t

(
∥ log γA(t)− logM∥2F − t2

)
=

1

2t

(
∥tA− logM∥2F − t2

)
=

1

2t

(
t2∥A∥2F + ∥ logM∥2F − 2t⟨A, logM⟩F − t2

)
= −⟨A, logM⟩F +

1

2t
∥ logM∥2F ,

(35)

using that ∥A∥F = 1. Then, by passing to the limit t → ∞, we find

BA(t) = −⟨A, logM⟩F = −Tr(A logM) . (36)

We actually find that the Busemann coordinates are equal to the geodesic coordinates obtained in Proposition 2.2 up to the
direction of the geodesic. We also show in Proposition C.3 that both projections on the geodesic coincide.

Proposition C.3 (Busemann projections). Let A ∈ Sd(R) with ∥A∥F = 1 and let GA the geodesic line associated. Then,
for any M ∈ S++

d (R), the Busemann projection on GA is

PA(M) = exp
(
Tr(A logM)A

)
. (37)

Proof. The geodesic line is of the form
∀t ∈ R, γA(t) = exp(tA) . (38)
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We want to find a positive definite matrix on this geodesic with the same Busemann coordinate of M . Hence, we want to
find t such that

BA(M) = BA(γA(t)) ⇐⇒ Tr
(
A logM

)
= Tr

(
A log(exp(tA))

)
⇐⇒ Tr(A logM) = tTr(A2)

⇐⇒ t =
Tr(A logM)

Tr(A2)
= Tr(A logM) ,

(39)

since ∥A∥2F = Tr(A2) = 1.

Hence,
PA(M) = exp (Tr(A logM)A) . (40)

Lemma 2.4. Let λO be the uniform distribution on Od = {P ∈ Rd×d, PTP = PPT = I} (Haar distribution), and λ be
the uniform distribution on Sd−1 = {θ ∈ Rd, ∥θ∥2 = 1}. Then λS ∈ P(Sd(R)), defined such that ∀ A = Pdiag(θ)PT ∈
Sd(R), dλS(A) = d! dλO(P )dλ(θ), is the uniform distribution on {A ∈ Sd(R), ∥A∥F = 1}.

Proof. A matrix in Sd(R) has a unique decomposition Pdiag(θ)PT up to permutations of the columns of P ∈ Od and
coefficients of θ ∈ Sd−1. Thus, there is a bijection between {A ∈ Sd(R), ∥A∥F = 1} and the set S(O),Sd−1 of d!-
tuple {(P1, θ1), . . . , (Pd!, θd!) ∈ (Od × Sd−1)d!} such that (Pi, θi) is a permutation of (Pj , θj). Therefore, the uniform
distribution λS

(O),Sd−1
on S(O),Sd−1 , defined as dλS

(O),Sd−1
((P1, θ1), . . . , (Pd!, θd!)) =

∑n!
i=1 d(λO ⊗ λ)(Pi, θi) = d! ·

d(λO ⊗ λ)(P1, θ1), allows to define a uniform distribution λS on {A ∈ Sd(R), ∥A∥F = 1}. Let A = PdiagθPT with
(P, θ) ∈ Od × Sd−1, then

dλS(A) = d! d(λO ⊗ λ)(P, θ) . (41)

Proposition 2.5. Let µ̃, ν̃ ∈ Pp(Sd(R)), and t̃A(B) = Tr(ATB) for A,B ∈ Sd(R). We define

SymSWp
p(µ̃, ν̃) =

∫
Sd(R)

W p
p (t̃

A
#µ̃, t̃

A
#ν̃) dλS(A) . (14)

Then, for µ, ν ∈ Pp(S++
d (R)),

SPDSWp
p(µ, ν) = SymSWp

p(log# µ, log# ν) . (15)

Proof. Denoting t̃A(B) = ⟨B,A⟩F for all B ∈ Sd(R), we obtain using (Paty & Cuturi, 2019, Lemma 6)

W p
p (t̃

A
# log# µ, t̃A# log# ν) = inf

γ∈Π(µ,ν)

∫
S++
d (R)×S++

d (R)

|t̃A(log(X))− t̃A(log(Y ))|p dγ(X,Y )

= inf
γ∈Π(µ,ν)

∫
S++
d (R)×S++

d (R)

|tA(X)− tA(Y )|p dγ(X,Y )

= W p
p (t

A
#µ, t

A
#ν) ,

(42)

since t̃A(logX) = ⟨A, logX⟩F = tA(X). Hence,

SymSWp
p(log# µ, log# ν) = SPDSWp

p(µ, ν) . (43)

Theorem 2.6. Let p ≥ 1, then SPDSWp is a finite distance on Pp(S++
d (R)).

Proof. Let p ≥ 1, and µ, ν ∈ Pp(S++
d (R)). First, let’s check that SPDSWp

p(µ, ν) < ∞.

To see that, we will use on one hand Villani (2009, Definition 6.4) which states that on a Riemannian manifold M, for any
x0 ∈ M,

∀x, y ∈ M, d(x, y)p ≤ 2p−1
(
d(x, x0)p + d(x0, y)p

)
. (44)

Moreover, we will use that the projection tA is equal (up to a sign) to the Busemann function which is 1-Lipschitz
(Bridson & Haefliger, 2013, II. Proposition 8.22) and hence for any A ∈ Sd(R) such that ∥A∥F = 1 and X,Y ∈ S++

d (R),
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|tA(X) − tA(Y )| ≤ dLE(X,Y ). Then, using Paty & Cuturi (2019, Lemma 6), we have, for any π ∈ Π(µ, ν) and
X0 ∈ S++

d (R),

W p
p (t

A
#µ, t

A
#ν) = inf

γ∈Π(µ,ν)

∫
S++
d (R)×S++

d (R)

|tA(X)− tA(Y )|p dγ(X,Y )

≤
∫
S++
d (R)×S++

d (R)

|tA(X)− tA(Y )|p dπ(X,Y )

≤ 2p−1

(∫
S++
d (R)

|tA(X)− tA(X0)|p dµ(X) +

∫
S++
d (R)

|tA(X0)− tA(Y )|p dν(Y )

)

≤ 2p−1

(∫
S++
d (R)

dLE(X,X0)
p dµ(X) +

∫
S++
d (R)

dLE(Y,X0)
p dν(Y )

)
< ∞ .

(45)

Let p ≥ 1, then for all µ, ν ∈ Pp(S++
d (R)), it is straightforward to see that SPDSWp(µ, ν) ≥ 0, SPDSWp(µ, ν) =

SPDSWp(ν, µ). It is also easy to see that µ = ν =⇒ SPDSWp(µ, ν) = 0 using that Wp is a distance.

Now, we can also derive the triangular inequality using the triangular inequality for Wp and the Minkowski inequality:

∀µ, ν, α ∈ Pp(S++
d (R)), SPDSWp(µ, ν) =

(∫
Sd(R)

W p
p (t

A#µ, tA#ν) dλS(A)
) 1

p

≤
(∫

Sd(R)

(
Wp(t

A
#µ, t

A
#α) +Wp(t

A
#α, t

A
#ν)

)p
dλS(A)

) 1
p

≤
(∫

Sd(R)

W p
p (t

A#µ, tA#α) dλS(A)
) 1

p

+
(∫

Sd(R)

W p
p (t

A
#α, t

A
#ν) dλS(A)

) 1
p

= SPDSWp(µ, α) + SPDSWp(α, ν) .

(46)

Lastly, we can derive the indiscernible property. Let µ, ν ∈ Pp(S++
d (R)) such that SPDSWp(µ, ν) = 0. Then, as for all

A ∈ Sd(R), W p
p (t

A
#µ, t

A
#ν) ≥ 0, it implies that for λS-almost every A, W p

p (t
A
#µ, t

A
#ν) = 0 which implies tA#µ = tA#ν for

λS-almost every A since Wp is a distance. By taking the Fourier transform, this implies that for all s ∈ R, t̂A#µ(s) = t̂A#ν(s).
But, we have

t̂A#µ(s) =

∫
R
e−2iπts d(tA#µ)(s)

=

∫
S++
d (R)

e−2iπtA(M)s dµ(M)

=

∫
S++
d (R)

e−2iπ⟨sA,logM⟩F dµ(M)

=

∫
Sd(R)

e−2iπ⟨sA,S⟩F d(log# µ)(S)

= l̂og# µ(sA) .

(47)

Hence, we get that SPDSWp(µ, ν) = 0 implies that for λS-almost every A,

∀s ∈ R, l̂og# µ(sA) = t̂A#µ(s) = t̂A#ν(s) = l̂og# ν(sA) . (48)

By injectivity of the Fourier transform on Sd(R), we get log# µ = log# ν. Then, as log is a bijection from S++
d (R) to
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Sd(R), we have for all Borelian M ⊂ S++
d (R),

µ(M) =

∫
S++
d (R)

1M (X) dµ(X)

=

∫
Sd(R)

1M (exp(S)) d(log# µ)(S)

=

∫
Sd(R)

1M (exp(S)) d(log# ν)(S)

=

∫
S++
d (R)

1M (Y ) dν(Y )

= ν(M) .

(49)

Hence, we conclude that µ = ν and that SPDSWp is a distance.

To prove Theorem 2.7, we will adapt the proof of Nadjahi et al. (2020) to our projection. First, we start to adapt Nadjahi
et al. (2020, Lemma S1):

Lemma C.4 (Lemma S1 in Nadjahi et al. (2020)). Let (µk)k ∈ Pp(S++
d (R)) and µ ∈ Pp(S++

d (R)) such that

limk→∞ SPDSW1(µk, µ) = 0. Then, there exists φ : N → N non decreasing such that µφ(k)
L−−−−→

k→∞
µ.

Proof. By Bogachev & Ruas (2007, Theorem 2.2.5),

lim
k→∞

∫
Sd(R)

W1(t
A
#µk, t

A
#µ) dλS(A) = 0 (50)

implies that there exits a subsequence (µφ(k))k such that for λS-almost every A ∈ Sd(R),

W1(t
A
#µφ(k), t

A
#µ) −−−−→

k→∞
0 . (51)

As the Wasserstein distance metrizes the weak convergence, this is equivalent to tA#µφ(k)
L−−−−→

k→∞
tA#µ.

Then, by Levy’s characterization theorem, this is equivalent with the pointwise convergence of the characterization function,
i.e. for all t ∈ R, ϕtA#µφ(k)

(t) −−−−→
k→∞

ϕtA#µ(t). Moreover, we have for all s ∈ R,

ϕtA#µφ(k)
(s) =

∫
R
e−itsd(tA#µφ(k))(t)

=

∫
S++
d (R)

e−it
A(M)s dµφ(k)(M)

=

∫
S++
d (R)

e−i⟨sA,logM⟩F dµφ(k)(M)

=

∫
Sd(R)

e−i⟨sA,S⟩F d(log# µφ(k))(S)

= ϕlog# µφ(k)
(sA)

−−−−→
k→∞

ϕlog# µ(sA) .

(52)

Then, working in Sd(R) with the Frobenius norm, we can use the same proof of Nadjahi et al. (2020) by using a convolution
with a gaussian kernel and show that it implies that log# µφ(k)

L−−−−→
k→∞

log# µ.
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Finally, let’s show that it implies the weak convergence of (µφ(k))k towards µ. Let f ∈ Cb(S
++
d (R)), then∫

S++
d (R)

f dµφ(k) =

∫
Sd(R)

f ◦ exp d(log# µφ(k))

−−−−→
k→∞

∫
Sd(R)

f ◦ exp d(log# µ)

=

∫
S++
d (R)

f dµ .

(53)

Hence, we an conclude that µφ(k)
L−−−−→

k→∞
µ.

Theorem 2.7. For p ≥ 1, SPDSWp metrizes the weak convergence, i.e. for µ ∈ Pp(S++
d (R)) and a sequence (µk)k in

Pp(S++
d (R)), limk→∞ SPDSWp(µk, µ) = 0 if and only if (µk)k converges weakly to µ.

Proof. First, we suppose that µk
L−−−−→

k→∞
µ in Pp(S++

d (R)). Then, by continuity, we have that for λS almost every

A ∈ Pp(S++
d (R), tA#µk −−−−→

k→∞
tA#µ. Moreover, as the Wasserstein distance on R metrizes the weak convergence,

Wp(t
A
#µk, t

A
#µ) −−−−→

k→∞
0. Finally, as Wp is bounded and it converges for λS-almost every A, we have by the Lebesgue

convergence dominated theorem that SPDSWp
p(µk, µ) −−−−→

k→∞
0.

On the other hand, suppose that SPDSWp(µk, µ) −−−−→
k→∞

0. We first adapt Lemma S1 of (Nadjahi et al., 2020) in Lemma

C.4 and observe that by the Hölder inequality,

SPDSW1(µ, ν) ≤ SPDSWp(µ, ν) , (54)

and hence SPDSW1(µk, µ) −−−−→
k→∞

0.

By the same contradiction argument as in Nadjahi et al. (2020), let’s suppose that (µk)k does not converge to µ. Then, by
denoting dP the Lévy-Prokhorov metric, limk→∞ dP (µk, µ) ̸= 0.

Then, we have first that limk→∞ SPDSW1(µφ(k), µ) = 0. Thus, by Lemma C.4, there exists a subsequence (µψ(φ(k)))k

such that µψ(φ(k))
L−−−−→

k→∞
µ which is equivalent to limk→∞ dP (µψ(φ(k)), µ) = 0 which contradicts the hypothesis.

We conclude that (µk)k converges weakly to µ.

For the proof of Theorem 2.8, we will first recall the following Theorem:

Theorem C.5 ((Rivin, 2007), Theorem 3). Let f : Rd 7→ R a homogeneous function of degree p (i.e. ∀α ∈ R, f(αx) =
αpf(x)). Then,

Γ
(d+ p

2

)∫
Sd−1

f(x) λ(dx) = Γ
(d
2

)
E[f(X)] , (55)

where ∀i ∈ {1, ..., d}, Xi ∼ N (0, 1
2 ) and (Xi)i are independent.

Then, making extensive use of this theorem, we show the following lemma:

Lemma C.6.

∀S ∈ Sd(R),
∫
Sd−1

|⟨diag(θ), S⟩F |p λ(dθ) =
1

d

(∑
i

S2
ii

) p
2 ∫

Sd−1

∥θ∥pp λ(dθ) . (56)
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Proof. Let f : θ 7→ ∥θ∥pp =
∑d
i=1 θ

p
i , then we have f(αθ) = αpf(θ) and f is p-homogeneous. By applying Theorem C.5,

we have: ∫
Sd−1

∥θ∥pp λ(dθ) =
Γ
(
d
2

)
Γ
(
d+p
2

)E[∥X∥pp] with Xi
iid∼ N (0,

1

2
)

=
Γ
(
d
2

)
Γ
(
d+p
2

)d E[|X1|pp]

=
Γ
(
d
2

)
Γ
(
d+p
2

)d ∫ |t|p 1√
π
e−t

2

dt .

(57)

On the other hand, let f̃ : θ 7→ |⟨diag(θ), S⟩F |p, then f̃(αθ) = αpf̃(θ) and f̃ is p-homogeneous. By applying Theorem
C.5, we have:

∫
Sd−1

|⟨diag(θ), S⟩F |p λ(dθ) =
Γ
(
d
2

)
Γ
(
d+p
2

)E[|⟨diag(X), S⟩F |p] with Xi
iid∼ N (0,

1

2
)

=
Γ
(
d
2

)
Γ
(
d+p
2

) ∫ |t|p 1√∑
i S

2
iiπ

e
− t2∑

i z2
ii dt as ⟨diag(X), S⟩F =

∑
i

SiiXi ∼ N
(
0,

∑
i S

2
ii

2

)

=
Γ
(
d
2

)
Γ
(
d+p
2

) (∑
i

S2
ii

) p
2 ∫

|u|p 1√∑
i S

2
iiπ

e−u
2

√∑
i

S2
iidu by u =

t√∑
i S

2
ii

=
Γ
(
d
2

)
Γ
(
d+p
2

) (∑
i

S2
ii

) p
2 ∫

|u|p 1√
π
e−u

2

du .

(58)

Hence, we deduce that

∫
Sd−1

|⟨diag(θ), S⟩F |p λ(dθ) =
1

d

(∑
i

S2
ii

) p
2 ∫

Sd−1

∥θ∥pp dλ(θ) . (59)

Theorem 2.8. Let p ≥ 1, let µ, ν ∈ Pp(S++
d (R)). Then

SPDSWp
p(µ, ν) ≤ cpd,pW

p
p (µ, ν) , (17)

where cpd,p =
1
d

∫
∥θ∥pp dλ(θ). Let R > 0 and B(I,R) = {A ∈ S++

d (R), dLE(A, Id) = ∥ logA∥F ≤ R} be a closed ball.
Then there exists a constant Cd,p,R such that for all µ, ν ∈ Pp(B(I,R)),

W p
p (µ, ν) ≤ Cd,p,RSPDSWp(µ, ν)

2
d(d+1)+2 . (18)

Proof. First, we show the upper bound of SPDSWp. Let µ, ν ∈ Pp(S++
d (R) and γ ∈ Π(µ, ν) an optimal coupling. Then,

following the proof of Bonnotte (2013, Proposition 5.1.3), and using Paty & Cuturi (2019, Lemma 6) combined with the
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fact that (tA ⊗ tA)#γ ∈ Π(tA#µ, t
A
#ν) for any A ∈ Sd(R) such that ∥A∥F = 1, we obtain

SPDSWp
p(µ, ν) =

∫
Sd(R)

W p
p (t

A
#µ, t

A
#ν) dλS(A)

≤
∫
Sd(R)

∫
S++
d (R)×S++

d (R)

|tA(X)− tA(Y )|p dγ(X,Y ) dλS(A)

=

∫
Sd(R)

∫
S++
d (R)×S++

d (R)

|⟨A, logX − log Y ⟩F |p dγ(X,Y ) dλS(A)

=

∫
Sd−1

∫
Od

∫
S++
d (R)×S++

d (R)

|⟨Pdiag(θ)PT , logX − log Y ⟩F |p dγ(X,Y ) dλO(P )dλ(θ)

=

∫
Sd−1

∫
Od

∫
S++
d (R)×S++

d (R)

|⟨diag(θ), PT (logX − log Y )P ⟩F |p dγ(X,Y ) dλO(P )dλ(θ) .

(60)

By Lemma C.6, noting S = PT (logX − log Y )P , we have

∫
Sd−1

|⟨diag(θ), S⟩F |p dλ(θ) =
1

d

(∑
i

S2
ii

) p
2 ∫

Sd−1

∥θ∥pp dλ(θ)

≤ 1

d
∥S∥pF

∫
Sd−1

∥θ∥pp dλ(θ) ,

(61)

since ∥S∥2F =
∑
i,j S

2
ij ≥

∑
i S

2
ii. Moreover, ∥S∥F = ∥PT (logX − log Y )P∥F = ∥ logX − log Y ∥F . Hence, coming

back to (60), we find

SPDSWp
p(µ, ν) ≤

1

d

∫
Sd−1

∥θ∥pp dλ(θ)
∫
S++
d (R)×S++

d (R)

∥ logX − log Y ∥pF dγ(X,Y )

=
1

d

∫
Sd−1

∥θ∥pp dλ(θ)W p
p (µ, ν)

= cpd,pW
p
p (µ, ν) .

(62)

since γ is an optimal coupling between µ and ν for the Wasserstein distance with Log-Euclidean cost.

For the lower bound, let us first observe that

W1(µ, ν) = inf
γ∈Π(µ,ν)

∫
S++
d (R)×S++

d (R)

dLE(X,Y ) dγ(X,Y )

= inf
γ∈Π(µ,ν)

∫
S++
d (R)×S++

d (R)

∥ logX − log Y ∥F dγ(X,Y )

= inf
γ∈Π(µ,ν)

∫
Sd(R)×Sd(R)

∥U − V ∥F d(log⊗ log)#γ(U, V )

= inf
γ∈Π(log# µ,log# ν)

∫
Sd(R)×Sd(R)

∥U − V ∥F dγ(U, V )

= W1(log# µ, log# ν) ,

(63)

where we used Paty & Cuturi (2019, Lemma 6).

Using Proposition 2.5, we have
SymSW1(log# µ, log# ν) = SPDSW1(µ, ν) . (64)

Therefore, as Sd(R) is an Euclidean space of dimension d(d+ 1)/2, we can use (Bonnotte, 2013, Lemma 5.1.4) and we
obtain that

W1(log# µ, log# ν) ≤ Cd(d+1)/2R
d(d+1)/(d(d+1)+2)SymSW1(log# µ, log# ν)2/(d(d+1)+2) . (65)
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Then, using that SymSW1(log# µ, log# ν) = SPDSW1(µ, ν) and W1(log# µ, log# ν) = W1(µ, ν), we obtain

W1(µ, ν) ≤ Cd(d+1)/2R
d(d+1)/(d(d+1)+2)SPDSW1(µ, ν)

2/(d(d+1)+2) . (66)

Now, following the proof of Bonnotte (2013, Theorem 5.1.5), we use that on one hand, W p
p (µ, ν) ≤ (2R)p−1W1(µ, ν), and

on the other hand, by Hölder, SPDSW1(µ, ν) ≤ SPDSWp(µ, ν). Hence, using inequalities (62) and (66), we get

SPDSWp
p(µ, ν) ≤ cpd,pW

p
p (µ, ν)

≤ (2R)p−1W1(µ, ν)

≤ 2p−1Cd(d+1)/2R
p−1+d(d+1)/(d(d+1)+2)SPDSW1(µ, ν)

2/(d(d+1)/2)

= Cd
d,pR

p−2/(d(d+1))SPDSW1(µ, ν)
2/(d(d+1)+2) .

(67)

Proposition 2.9. Let q > p ≥ 1, µ, ν ∈ Pp(S++
d (R)), and µ̂n, ν̂n the associated empirical measures. We define the moment

of order q by Mq(µ) =
∫
∥X∥qF dµ(X), and Mq(µ, ν) = Mq(log# µ)1/q +Mq(log# ν)1/q . Then, there exists a constant

Cp,q depending only on p and q such that

E
[
|SPDSWp(µ̂n, ν̂n)− SPDSWp(µ, ν)|

]
(19)

≤ αn,p,qC
1/p
p,q Mq(µ, ν) ,

where αn,p,q =


n−1/(2p) if q > 2p

n−1/(2p) log(n)1/p if q = 2p

n−(q−p)/(pq) if q ∈ (p, 2p) .

Proof. In this proof, we will follow the derivations used in Nadjahi et al. (2020) and in (Rakotomamonjy et al., 2021).
Notably, we will use the adaptation of Fournier & Guillin (2015, Theorem 2) reported in Rakotomamonjy et al. (2021,
Lemma 1), which we recall now.

Lemma C.7 (Lemma 1 in Rakotomamonjy et al. (2021) and Theorem 2 in Fournier & Guillin (2015)). Let p ≥ 1 and
η ∈ Pp(R). Denote Mq(η) =

∫
|x|q dη(x) the moments of order q and assume that Mq(η) < ∞ for some q > p. Then,

there exists a constant Cp,q depending only on p, q such that for all n ≥ 1,

E[W p
p (η̂n, η)] ≤ Cp,qMq(η)

p/q
(
n−1/21{q>2p} + n−1/2 log(n)1{q=2p} + n−(q−p)/q1{q∈(p,2p)}

)
. (68)

First, let us observe that by the triangular and reverse triangular inequalities, as well as Jensen for x 7→ x1/p (which is
concave since p ≥ 1),

E [|SPDSWp(µ̂n, ν̂n)− SPDSWp(µ, ν)|] = E[|SPDSWp(µ̂n, ν̂n)− SPDSWp(µ̂n, ν)

+ SPDSWp(µ̂n, ν)− SPDSWp(µ, ν)|]
≤ E[|SPDSWp(µ̂n, ν̂n)− SPDSWp(µ̂n, ν)|]
+ E[|SPDSWp(µ̂n, ν)− SPDSWp(µ, ν)|]
≤ E[SPDSWp(ν̂n, ν)] + E[SPDSWp(µ̂n, µ)]

≤ E[SPDSWp
p(ν̂n, ν)]

1/p + E[SPDSWp
p(µ̂n, µ)]

1/p .

(69)

Moreover, by Fubini-Tonelli,

E[SPDSWp
p(µ̂n, µ)] = E

[∫
Sd(R)

W p
p (t

A
#µ̂n, t

A
#µ) dλS(A)

]

=

∫
Sd(R)

E[W p
p (t

A
#µ̂n, t

A
#µ)] dλS(A) .

(70)
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By applying Lemma C.7, we get for q > p that there exists a constant Cp,q such that,

E[W p
p (t

A
#µ̂n, t

A
#µ)] ≤ Cp,qMq(t

A
#µ)

p/q
(
n−1/21{q>2} + n−1/2 log(n)1{q=2p} + n−(q−p)/q1{q∈(p,2p)}

)
. (71)

Furthermore, using Cauchy-Schwartz and that ∥A∥F = 1,

Mq(t
A
#µ) =

∫
R
|x|q d(tA#µ)(x)

=

∫
S++
d (R)

|⟨A, logX⟩|q dµ(X)

≤
∫
S++
d (R)

∥ logX∥qF dµ(X)

= Mq(log# µ) .

(72)

Therefore, we have that

E[SPDSWp
p(µ̂n, µ)] ≤ Cp,qMq(log# µ)p/q

(
n−1/21{q>2p} + n−1/2 log(n)1{q=2p} + n−(q−p)/q1{q∈(p,2p)}

)
, (73)

and similarly

E[SPDSWp
p(ν̂n, ν)] ≤ Cp,qMq(log# ν)p/q

(
n−1/21{q>2p} + n−1/2 log(n)1{q=2p} + n−(q−p)/q1{q∈(p,2p)}

)
. (74)

Hence, we conclude that the sample complexity is

E [|SPDSWp(µ̂n, ν̂n)− SPDSWp(µ, ν)|] ≤ C1/p
p,q

(
Mq(log# µ)1/q +Mq(log# ν)1/q

)
n−1/(2p) if q > 2p

n−1/(2p) log(n)1/p if q = 2p

n−(q−p)/(pq) if q ∈ (p, 2p) .
(75)

Proposition 2.10. Let p ≥ 1, µ, ν ∈ Pp(S++
d (R)). Then, the error made by the Monte Carlo estimate of SPDSWp with L

projections can be bounded as follows

EA
[
| ̂SPDSW

p

p,L(µ, ν)− SPDSWp
p(µ, ν)|

]2
≤ 1

L
VarA∼λS

[
W p
p (t

A
#µ, t

A
#ν)

]
,

(20)

where ̂SPDSW
p

p,L(µ, ν) =
1
L

∑L
i=1 W

p
p (t

Ai

# µ, tAi

# ν) with (Ai)
L
i=1 independent samples from λS .

Proof. Let (Ai)
L
i=1 be iid samples of λS . Then, by first using Jensen inequality and then remembering that

EA[W p
p (t

A
#µ, t

A
#ν)] = SPDSWp

p(µ, ν), we have

EA
[
| ̂SPDSW

p

p,L(µ, ν)− SPDSWp
p(µ, ν)|

]2
≤ EA

[∣∣∣ ̂SPDSW
p

p,L(µ, ν)− SPDSWp
p(µ, ν)

∣∣∣2]

= EA

∣∣∣∣∣ 1L
L∑
i=1

(
W p
p (t

Ai

# µ, tAi

# ν)− SPDSWp
p(µ, ν)

)∣∣∣∣∣
2


=
1

L2
VarA

[
L∑
i=1

W p
p (t

Ai

# µ, tAi

# ν)

]

=
1

L
VarA

[
W p
p (t

A
#µ, t

A
#ν)

]
=

1

L

∫
Sd(R)

(
W p
p (t

A
#µ, t

A
#ν)− SPDSWp

p(µ, ν)
)2

dλS(A) .

(76)
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Proposition 3.1. Let m be the Lebesgue measure and let H = L2([0, 1]× Sd(R),m⊗ λS). We define Φ as

Φ : P2(S
++
d (R)) → H

µ 7→
(
(q,A) 7→ F−1

tA#µ
(q)
)
,

(21)

where F−1
tA#µ

is the quantile function of tA#µ. Then, SPDSW2 is Hilbertian and for all µ, ν ∈ P2(S
++
d (R)),

SPDSW2
2(µ, ν) = ∥Φ(µ)− Φ(ν)∥2H . (22)

Proof. Let µ, ν be probability distributions on S++
d (R) with moments of order p = 2. Then

SPDSW2
2(µ, ν) =

∫
Sd

∥F−1
tA#µ

− F−1
tA#ν

∥2 dλS(A)

=

∫
Sd

∫ 1

0

(
F−1
tA#µ

(q)− F−1
tA#ν

(q)
)2

dqdλS(A)

= ∥Φ(µ)− Φ(ν)∥2H .

Thus, SPDSW2 is Hilbertian.

D. SPDSW with Affine-Invariant Metric
In the main part of the paper, we focused on S++

d (R) endowed with the Log-Euclidean metric. With this metric, S++
d (R) is

a Riemannian manifold of constant null curvature as classical Euclidean spaces. Another metric of interest, very related
to the Log-Euclidean one, is the Affine-Invariant metric, which yields a Riemannian manifold of non-constant and non-
positive curvature (Bhatia, 2009; Bridson & Haefliger, 2013). The Log-Euclidean distance is actually a lower bound of
the Affine-Invariant distance, and they coincide when the matrices commute. Notably, they share the same geodesics
passing through the identity (Pennec, 2020, Section 3.6.1). The Log-Euclidean metric can actually be seen as a good first
order approximation of the Affine-Invariant metric (Arsigny et al., 2005; Pennec, 2020) which motivated the proposal of
this metric. But it can lose some information when matrices are not commuting. Hence, we can wonder whether or not
constructing a sliced discrepancy with projections obtained in S++

d (R) endowed with the Affine-Invariant metric could
improve the results.

D.1. Busemann Function on Affine-Invariant Space

As recalled in Section 2.2, for the Affine-Invariant metric, the inner product in the tangent space is defined as

∀M ∈ S++
d (R), A,B ∈ TM , ⟨A,B⟩M = Tr(M−1AM−1B) , (77)

and the corresponding geodesic distance is

∀X,Y ∈ S++
d (R), dAI(X,Y ) =

√
Tr(log(X−1Y )2) . (78)

This distance notably satisfies the affine-invariant property, that is, for any g ∈ GLd(R), where GLd(R) denotes the set of
invertibles matrices in Rd×d,

∀X,Y ∈ S++
d (R), dAI(g ·X, g · Y ) = dAI(X,Y ) , (79)

where g ·X = gXgT . Geodesics passing through the identity coincide with those of the Log-Euclidean metric, and are
therefore of the form GA = {exp(tA), t ∈ R} where A ∈ Sd(R). Hence, we now need to find a projection of M ∈ S++

d (R)
onto GA.

Unfortunately, to the best of our knowledge, there is no closed-form for the geodesic projection on geodesics. We will
discuss here the horospherical projection which can be obtained with the Busemann function. For A ∈ Sd(R) such that
∥A∥F = 1, denoting γA : t 7→ exp(tA) the geodesic passing through Id with direction A, the Busemann function BA

associated to γA writes as

∀M ∈ S++
d (R), BA(M) = lim

t→∞

(
dAI(exp(tA),M)− t

)
. (80)
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Contrary to the Log-Euclidean case, we cannot directly compute this quantity by expanding the distance since exp(−tA)
and M are not necessarily commuting. The main idea to solve this issue is to first find a group G ⊂ GLd(R) which will
leave the Busemann function invariant. Then, we can find an element of this group which will project M on the space of
matrices commuting with exp(A). This part of the space is of null curvature, i.e. it is isometric to an Euclidean space. In this
case, we can compute the Busemann function as in Proposition C.2 as the matrices are commuting. Hence, the Busemann
function is of the form

BA(M) = −⟨A, log(πA(M))⟩F , (81)

where πA is a projection on the space of commuting matrices.

When A is diagonal with sorted values such that A11 > · · · > Add, then the group leaving the Busemann function invariant
is the set of upper triangular matrices with ones on the diagonal (Bridson & Haefliger, 2013, II. Proposition 10.66), i.e.
for such matrix g, BA(M) = BA(gMgT ). If the points are sorted in increasing order, then the group is the set of lower
triangular matrices. Let’s note GU the set of upper triangular matrices with ones on the diagonal. For a general A ∈ Sd(R),
we can first find an appropriate diagonalization A = PÃPT , where Ã is diagonal sorted, and apply the change of basis
M̃ = PTMP (Fletcher et al., 2009). Note that since we sample the eigenvalues from the uniform distribution on Sd−1, the
values are all different almost surely. Therefore, we suppose that all the eigenvalues of A have an order of multiplicity of
one. By the affine-invariance property, the distances do not change, i.e. dAI(exp(tA),M) = dAI(exp(tÃ), M̃) and hence,
using the definition of the Busemann function, we have that BA(M) = BÃ(M̃). Then, we need to project M̃ on the space
of matrices commuting with eÃ which we denote F (A). By Bridson & Haefliger (2013, II. Proposition 10.67), this space
corresponds to the diagonal matrices. Moreover, by Bridson & Haefliger (2013, II. Proposition 10.69), there is a unique
pair (g,D) ∈ GU × F (A) such that M̃ = gDgT , and therefore, we can note πA(M̃) = D. This decomposition actually
corresponds to a UDU decomposition. If the eigenvalues of A are sorted in increasing order, this would correspond to a
LDL decomposition.

For more details about the Busemann function on the Affine-invariant space, we refer to Bridson & Haefliger (2013, Section
II.10) and Fletcher et al. (2009; 2011).

D.2. Horospherical SPDSW

Now that we know how to compute the coordinates on geodesics passing through the identity, we can derive an associated
sliced discrepancy, which we call horospherical SPDSW (HSPDSW) since the projection is made along level sets of the
Busemann function, which are called horospheres (Fletcher et al., 2009).

Definition D.1. Let λO be the uniform distribution on orthogonal matrices Od = {P ∈ Rd×d, PTP = PPT = I} (Haar
distribution), λ be the uniform distribution on Sd−1 = {θ ∈ Rd, ∥θ∥2 = 1}, and λS be a probability distribution on Sd(R)
such that for all VS ∈ σ(Sd(R)), λS(VS) = (λO ⊗ λ)(AS) where AS = {(P, θ) ∈ Od × Sd−1, Pdiag(θ)PT ∈ VS}. Let
µ, ν ∈ Pp(S++

d (R)), the HSPDSW discrepancy is defined as

HSPDSWp
p(µ, ν) =

∫
Sd(R)

W p
p (B

A
#µ,B

A
#ν) dλS(A) , (82)

where BA(M) = −Tr
(
A log(πA(M))

)
, with πA the projection derived in Appendix D.1.

On the side of theoretical properties, this discrepancy is still a pseudo-distance. However, since the projection log ◦πA is not
a diffeomorphism, whether the indiscernible property holds or not remains an open question.

On the computational side, it requires an additional projection step with a UDU decomposition for each sample and projection.
Hence the overall complexity becomes O(Ln(log n+ d3)) where the O(Lnd3) comes from the UDU decomposition. In
practice, it takes more time than SPDSW for results which are pretty similar. In the same setting detailed in Appendix B,
we plot on Figure G the runtime w.r.t the number of samples and observe that it takes even more time than the Wasserstein
distance. We detail the procedure to compute HSPDSW in Algorithm 2.

D.3. Experimental results on brain age prediction.

As for SPDSW, HSPDSW allows to define a kernel for distributions (µi)ni=1 ∈ (Pp(S++
d (R)))n

K(µi, µj) = e−
HSPDSW(µi,µj)

2σ2 . (83)
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Algorithm 2 Computation of HSPDSW

Input: (Xi)
n
i=1 ∼ µ, (Yj)mj=1 ∼ ν, L the number of projections, p the order

for ℓ = 1 to L do
Draw θ ∼ Unif(Sd−1) = λ
Draw P ∼ Unif(Od(R)) = λO
Get Q the permutation matrix such that θ̃ = Qθ is sorted in decreasing order
Set A = diag(θ̃), P̃ = PQT

∀i, j, X̃ℓ
i = P̃TXiP̃ , Ỹ ℓ

j = P̃TYjP̃

∀i, j, Dℓ
i = UDU(X̃ℓ

i ), ∆
ℓ
j = UDU(Ỹ ℓ

j )

∀i, j, X̂ℓ
i = tA(Dℓ

i ), Ŷ
ℓ
j = tA(∆ℓ

j)

Compute W p
p (

1
n

∑n
i=1 δX̂ℓ

i
, 1
m

∑m
j=1 δŶ ℓ

j
)

end for
Return 1

L

∑L
ℓ=1 W

p
p (

1
n

∑n
i=1 δX̂ℓ

i
, 1
m

∑m
j=1 δŶ ℓ

j
)
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Figure G: Runtime of SPDSW, HPDSW and log SW (200 proj.) compared to alternatives based on Wasserstein between
Wishart samples. Sliced discrepancies can scale to larger distributions in S++

d (R).
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Figure H: Average MAE and R2 score for 10 seeds on the Cam-CAN dataset with time-frames of 2s and 1000 projections.
HSPDSW does not improve the performance of standard methods and the computation time is much higher than for
SPDSW.

Moreover, it is also a Hilbertian pseudo-distance, thus the kernel is positive definite and well-defined for Kernel methods.
Therefore, it can be easily adapted to brain age prediction, as done with SPDSW in Section 3.1. The Affine-Invariant metric
is well-suited for problems involving source localization, as noted in Sabbagh et al. (2019). Even though we only have access
to the Busemann coordinate, which might involve a loss of information due to the need of an additional projection, it is still
of interest to compare to the Log-Euclidean metric. We report numerical results in the same setting as Figure 3 in Figure H.
This time, the method does not beat Log-Euclidean Kernel Ridge regression based on the covariance matrices computed
over all time samples. This suggests that the projection πA derived in Appendix D.1 does not bring more information to
the model in this scenario. Note that the computational cost suffers from the high complexity of the UDU decomposition
needed for the calculation of each projection.
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