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Abstract
The reward hypothesis posits that, “all of what we
mean by goals and purposes can be well thought
of as maximization of the expected value of the
cumulative sum of a received scalar signal (re-
ward).” We aim to fully settle this hypothesis.
This will not conclude with a simple affirmation
or refutation, but rather specify completely the im-
plicit requirements on goals and purposes under
which the hypothesis holds.

1. Introduction
The reward hypothesis posited by Sutton states that, “all of
what we mean by goals and purposes can be well thought
of as maximization of the expected value of the cumulative
sum of a received scalar signal (reward).” (Sutton, 2004;
Sutton & Barto, 2018; Littman, 2017). This statement takes
on considerable import if one also accepts McCarthy’s claim
that “Intelligence is the computational part of the ability to
achieve goals in the world.” (McCarthy, 1998). Together
these two statements offer a sort of sufficiency to the study of
reinforcement learning (RL), whose agents learn to achieve
goals through the maximization of expected future rewards.
They imply that to succeed at building AI, it is sufficient to
succeed at solving RL.1

Silver et al. (2021) propose the related, reward-is-enough
hypothesis, which posits that “intelligence, and all of its
associated abilities, can be understood as subserving the
maximization of reward.” While the two hypotheses are of
course deeply connected, we emphasize that our focus is on
Sutton’s earlier reward hypothesis.

*Equal contribution 1Amii, University of Alberta 2Intel
Labs 3DeepMind. Correspondence to: John D. Martin
<john.martin@intel.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1Furthermore, it is possible these two claims show that RL is
necessary as well as sufficient. If some artificial system were to be
able to achieve all that we mean by goals and purposes, then such
a system would have to—at least implicitly—maximize expected
cumulative reward. In other words, there must be a reduction
between the RL problem and the problem the system solves.

Sutton’s original hypothesis provides an informal starting
point from which to question the expressivity of reward. In
this vein, Abel et al. (2021) grounded the notion of “goals
and purposes” as an ordering over policies and explored
whether a Markov reward2 function could express these
orderings. They provided examples showing that a Markov
reward is unable to express every such ordering. Their
analysis also reveals how using a behavioral definition of
goals can sometimes lead to unsatisfying conclusions. In
one example (“steady-state type” failures), an agent needs
to experience unrealizable outcomes to achieve their goal.
When viewed through the lens of McCarthy’s definition
of intelligence, it seems that a behavioral conception of
goals deflates the role that computation performs—to one of
simply executing a goal’s defining policy, or re-expressing
the policy in a different form. Surely intelligence involves
more meaningful computation than this?

Shakerinava & Ravanbakhsh (2022) take a different ap-
proach. They ground goals and purposes in preference
relations over (distributions of) state-trajectories in a con-
trolled Markov process. In the same spirit of von Neumann-
Morgenstern (vNM) utility axioms (von Neumann & Mor-
genstern, 1953), they propose axioms on the preference
relation (including the vNM rationality axioms) which are
necessary and sufficient for the preference to be expressed
with a Markov reward. Indeed, Shakerinava & Ravanbakhsh
(2022) build on work by Pitis (2019) that first analyzed
standard objectives of RL from the perspective of decision
theory. The work of Pitis can be viewed from two com-
plementary perspectives. First, Pitis provides a normative
account for why we should embrace a state-action depen-
dent discount factor, as developed by White (2017): A fixed
discount cannot capture all preferences we might consider
rational. Second, Pitis presents three axioms on top of the
vNM axioms that characterize the conditions under which
a state-action dependent discount factor can be viewed as
rational.

Our work builds off this pair of insightful approaches by
starting with preferences over histories. We abandon strictly
Markov processes to consider general stochastic environ-
ments and policies in line with recent work by Dong et al.

2They take a Markov reward function to be one that only de-
pends on the most recent experience of the agent.
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(2021), Lu et al. (2021), and early work on general RL (Lat-
timore et al., 2013; Lattimore, 2014; Leike, 2016; Majeed,
2021). We introduce a new axiom that generalizes previ-
ous axioms from Shakerinava & Ravanbakhsh (2022) and
accommodates the discounted reward, average reward (Ma-
hadevan, 1996), and episodic settings. Our approach posits
“goals and purposes” as preceding environment dynamics,
giving space for the agent’s computational role of learning
representations and behavior necessary to accomplish a goal.
Using our new axiom along with the standard vNM rational-
ity axioms, we provide a treatment of the reward hypothesis
in both the setting that goals are the subjective desires of the
agent and in the setting where goals are the objective desires
of an agent designer. Altogether, our account does not give
a simple affirmation or refutation of the reward hypothesis,
but rather aims to completely specify the implicit require-
ments on goals and purposes under which the hypothesis
holds.

2. The Reward Hypothesis
As we aim to settle the reward hypothesis, the first step in
doing so is to formalize what it claims, and to do so in as
much generality as possible. We do this by stating a series
of assumptions for each of the phrases in the claim.

2.1. Goals as Preferences

We ground “all of what we mean by goals and purposes”
with a binary preference relation expressing preference for
one outcome over another.

The core of agent interaction is the cycle of repeatedly ob-
serving the environment and taking action to affect the
environment. Let O be a finite set of observations, and
A a finite set of actions.3 A history is then a sequence
o1, a1, o2, a2, . . . with ε as the empty history of zero length.
We define the set of histories of length n ∈ N≥0 asHn

def
=

(O ×A)n, and all finite length histories asH def
=

⋃∞
n=1Hn.

For h ∈ H and transition t ∈ O × A, let t · h ∈ H be the
history with t prepended to h.

In deterministic settings, preferences are over histories.
However, when the environment or agent behavior are
stochastic, we consider distributions over histories, ∆(H).4
Given A,B ∈ ∆(H) and p ∈ [0, 1], let pA + (1 − p)B ∈
∆(H) be the distribution that samples a history from A with
probability p and B with (1 − p). For A ∈ ∆(H) and
t ∈ O ×A, let t ·A ∈ ∆(H), be the distribution where t is
prepended to a history sampled from A.

3We assume O and A are finite, but suspect the results general-
ize to the case where they are simply countable sets.

4We use ∆(S) to refer to the set of all probability distributions
with finite support over a countable set S.

The reward hypothesis posits a “received scalar signal”. This
could mean that the posited scalar reward signal is present in
the agent’s received observation, or can be computed by the
agent from it. Alternatively, it could mean that there is an
additional scalar signal provided to the agent by an external
observer. We call the first setting subjective goals, as the
posited reward signal can be constructed from the agent’s
subjective observation, and the latter case correspondingly
objective goals. We first develop our main result with the
subjective goals setting, but will later broaden the result to
objective goals.
Assumption 1 (Subjective Goals). “All of what we mean
by goals and purposes” can be expressed as a binary pref-
erence relation on distributions over finite histories. For
A,B ∈ ∆(H), we write A ≿ B if A is weakly preferred to
B, meaning that either A is strictly preferred B, or the two
are indifferently preferred, which we denote A ∼ B.

Notice that our notion of “goals and purposes” make no
reference to the environment. Goals are stated as desirable
histories, whereas the environment will act to constrain what
histories and distributions over histories are possible. An
agent’s behavior, along with the environment, then induces a
distribution over histories. Formally, given an environment
e : H → ∆(O) and policy π : H×O → ∆(A), let Dπ

n be
the distribution overHn induced by e and π.

Dπ
n

def
= Pr [o1, a1, . . . , on, an|e, π] =

n∏
i=1

e(oi|o1, a1, . . . ai−1)π(ai|o1, a1, . . . , oi).

While Dπ
n depends on the environment e, we do not pa-

rameterize it as such since e typically is fixed throughout.
We assume preferences over agent policies are then consis-
tent with the distributions over histories that they induce.
When comparing policies, we write π1 ≿g π2 to mean π1 is
weakly preferred to π2 under the goal g.
Assumption 2 (Policy Preferences). We weakly prefer
π1 ≿g π2 in e if and only if there exists N such that
Dπ1

n ≿ Dπ2
n for all n ≥ N .

This notion of eventually preferring one policy’s history
distribution to another allows us the generality of goals and
purposes that can be achieved in a defined time frame as
well as those of a continuing nature. This assumption is
just one simple way of handling infinite sequences, but it
is not the only one. For instance, Sobel (1975) and Pitis
(2019) propose alternative resolutions (horizon continuity
and countable transitivity—see details in cited resources).

2.2. Maximizing Cumulative Sums

We now consider what the reward hypothesis says about
these goals and purposes. First, let us examine what is en-
tailed by the “maximization of the cumulative sum” of a
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scalar reward. This is clearly the domain of reinforcement
learning, of which this problem takes a number of forms,
including episodic total reward with absorbing states, infi-
nite sum of discounted rewards, and average reward. We
want to unify all of these formalisms in what could be meant
by maximizing cumulative sums of rewards, and do so em-
ploying White’s generalization of transition-dependent dis-
counting (White, 2017). When comparing policies under a
reward r, we write π1 ≿r π2.

Assumption 3 (Cumulative Sum of Rewards). The “max-
imization of the expected value of the cumulative sum of
a received scalar signal (reward)” means that there is a
reward function r : O ×A → R and transition-dependent
discount function γ : O ×A → [0, 1], such that we weakly
prefer π1 ≿r π2 under our reward if and only if there exists
N such that V π1

n ≥ V π2
n for all n ≥ N , where

V π
n

def
= E

 n∑
i=1

i−1∏
j=1

γ(Oj , Aj)

 r(Oi, Ai)

∣∣∣∣π, e
 . (1)

Notice how (1) simultaneously captures objectives for the
average reward, discounted reward, and episodic settings.
If γ(t) = 1 for some o, a pair t, the objective corresponds
to a typical total reward or average reward setting (even if
the sum of the reward is not bounded). If γ(t) = γ < 1
is constant for all t, then the objective corresponds to a
discounted reward objective. If γ(t) = 0 infinitely often
then the objective can correspond to an episodic setting.
In the Appendix, we expand on the average reward case
and show how the notion of the expected cumulative sum
eventually being larger allows us to capture multiple kinds
of optimality.

We can now state what we take the reward hypothesis to
mean under all of these assumptions.

Assumption 4 (Reward Hypothesis). What the reward
hypothesis means by “well thought of” is that for any
preference relation on distributions of histories there
exists r and γ such that π1 ≿g π2 under the goal g iff
π1 ≿r π2.

In what follows, we explore if this is true or false, or more
precisely, what might be required of our preference relation
for the reward hypothesis to hold.

3. Rationality Axioms
The vNM axioms provide necessary and sufficient condi-
tions for a preference relation to be expressible as the ex-
pectation of some scalar-valued function of outcomes. The
“expected value of the cumulative sum” of rewards is central
to the reward hypothesis, so we present these axioms here
along with the corresponding vNM utility theorem. In the

statement of these and additional axioms, H is any set of
finite length sequences of some countable set of transitions
T (e.g., T may be O ×A as in the subjective goals case of
Assumption 1).

We next state each of the four vNM axioms alongside some
brief intuition.

Axiom 1 (Completeness). For all A,B ∈ ∆(H), A ≿ B
or B ≿ A (or both, if A ∼ B).

Completeness requires that the preference ordering make
some judgment about any pair of distributions. Note that the
preference could simply convey indifference: we might be
equally satisfied with an apple and a banana. This is distinct
from having no preference at all (Chang (2015) discusses
the incomparability of virtues like “justice” and “mercy”).
Note that there are alternative sets of axioms that simply
remove completeness, as developed by Aumann (1962).

Axiom 2 (Transitivity). For all A,B,C ∈ ∆(H), if A ≿
B ≿ C, then A ≿ C.

Transitivity is relatively straightforward: no coherent goal
can involve cyclical preferences.

Axiom 3 (Independence). For all A,B,C ∈ ∆(H) and
p ∈ (0, 1), A ≿ B if and only if

pA+ (1− p)C ≿ pB + (1− p)C

Independence was historically viewed as an unlikely axiom,
and one that led to skepticism about vNM’s initial results
(Machina, 1990). However, it does convey a relatively pow-
erful intuition, once it is unpacked. Consider the following
example. Suppose we must choose between an Apple, a
Banana, or Chocolate. We are asked: (1) Do you prefer
one Apple to one Banana? and (2) Consider two coins of
the same weight which, when flipped can yield {H: Ap-
ple, T: Chocolate}, and {H: Banana, T: Chocolate}—which
coin do you prefer to flip? Independence requires that for
all coin weights, your answer to (1) and (2) must be the
same. In other words, if you truly prefer an Apple to a
Banana, then the chance of procuring the Apple and Banana
should not change this preference (when the other alterna-
tives are the same). Independence is deeply connected to
many alternative objectives in RL such as risk-aversion and
multi-objective RL, which we discuss in more detail shortly.

Axiom 4 (Continuity). For all A,B,C ∈ ∆(H) if A ≿
B ≿ C, then there exists p ∈ [0, 1] such that,

pA+ (1− p)C ∼ B

Continuity demands the existence of a break-even point
when one becomes indifferent to a mixture of outcomes that
are individually more or less preferred. At what precise coin
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weight does one become indifferent between a Banana and
a distribution of Apple and Chocolate?

These four axioms comprise the typical account of rational
preferences under vNM’s theory. We next state the classical
vNM result.

Theorem 3.1 (von Neumann-Morgenstern Utility Theorem).
A binary preference relation on ∆(H) satisfies axioms 1-4
if and only if there exists a utility function u : ∆(H)→ R
such that,

1. ∀A,B ∈ ∆(H) A ≿ B ⇔ u(A) ≥ u(B),

2. ∀(
∑

i pihi) ∈ ∆(H) u(
∑

i pihi) =
∑

i piu(hi),

and u is unique up to positive affine transformations.

In other words, there exists a utility function whose expecta-
tion for any distribution over histories is consistent with the
preference relation.

These rationality axioms are sufficient for our interpretation
of the reward hypothesis (Assumption 4) to trivially hold
with no further assumptions. Simply define the “received”
reward for experiencing transition t following history h
as the change in utility from appending transition t to h,
written as r(t;h) = u(h · t)− u(h). However, this reward
function is not, in general, computable from the agent’s
received observation as it depends on the entire history. This
definition of reward function may not even be computable
by a bounded agent or a bounded external observer as, in
general, it requires complete memory of the history. We will
need to add an additional axiom for the reward hypothesis to
hold for a Markov reward; that is, a reward that is received
or computable from the agent’s most immediate experience.

4. A New Axiom: Temporal γ-Indifference
Here we derive a new axiom that ensures the existence of
Markov rewards and implicitly specifies the type of objec-
tive faced by an agent. We start from an observation about
how preferences can still encode statements about magni-
tude, even without reducing them to a scalar value.

Let A,B,C,D ∈ ∆(H) with A ≿ B and C ≿ D. Sup-
pose we wanted to state that A is preferred over B by the
same amount as C is preferred over D. If we could encode
preferences as utilities, then we could write

u(A)− u(B) = u(C)− u(D),

u(A) + u(D) = u(B) + u(C),

1/2u(A) + 1/2u(D) = 1/2u(B) + 1/2u(C),

u(1/2A+ 1/2D) = u(1/2B + 1/2C).

Notice that now we are just comparing utilities of two distri-
butions. We could equivalently state this entirely through

the preference relation:

1/2A+ 1/2D ∼ 1/2B + 1/2C.

Furthermore, suppose we wanted to state that A is preferred
to B by a multiplicative factor α > 0 of how much C
is preferred to D. Again, if we had an equivalent utility
function we could write

u(A)− u(B) = α(u(C)− u(D)),

u(A) + αu(D) = u(B) + αu(C),
1

1+αu(A) + α
1+αu(D) = 1

1+αu(B) + α
1+αu(C),

u
(

1
1+αA+ α

1+αD
)
= u

(
1

1+αB + α
1+αC

)
,

1
1+αA+ α

1+αD ∼
1

1+αB + α
1+αC.

So we can write the same concept entirely within the prefer-
ence relation.

Now if we consider a transition t ∈ T and two distributions
over histories A,B ∈ ∆(H), we can use the above to state
that t ·A is preferred to t ·B by a multiplicative factor γ(t)
of the amount A is preferred to B:

1
γ(t)+1 (t ·A) + γ(t)

γ(t)+1B ∼
1

γ(t)+1 (t ·B) + γ(t)
γ(t)+1A.

This brings us to what we call the Temporal γ-Indifference
axiom.

Axiom 5 (Temporal γ-Indifference). For all A,B ∈ ∆(H)
and transitions t ∈ T ,

1
γ(t)+1 (t ·A) + γ(t)

γ(t)+1B ∼
1

γ(t)+1 (t ·B) + γ(t)
γ(t)+1A.

Notice this axiom is parameterized by a discount function
γ : T → [0, 1] defined on transitions T .

The axiom essentially requires that t ·A is preferred to t ·B
by a multiplicative factor γ(t) of how much A is preferred
to B. This fact is illustrated in the following example.

Example 1. Suppose γ(t) = 1 for all transitions t ∈ T .
Then, the temporal indifference axiom states that for all
h1, h2 ∈ H and transitions t ∈ T ,

1/2(t · h1) + 1/2h2 ∼ 1/2(t · h2) + 1/2h1.

In other words, given any two histories to be experienced
with equal probability, the agent is indifferent to which
history gets prepended with a transition, regardless of the
transition. No matter which history is prepended with t,
the transition t must be experienced. So the indifference is
requiring the agent has no preference over which history is
delayed, even if one history is highly preferred to the other.

We now state our main result. All proofs are included in the
Appendix.
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Theorem 4.1 (Markov Reward Theorem). A binary pref-
erence relation on ∆(H) satisfies Axioms 1-5 if and only
if there exists a utility function u: ∆(H) → R, a reward
function r : T → R, and transition-dependent discount
function γ : T → [0, 1], such that u(ε) def

= 0, and

u(t · h) def
= r(t) + γ(t)u(h),

under the following conditions.

1. ∀A,B ∈ ∆(H) A ≿ B ⇔ u(A) ≥ u(B),

2. ∀(
∑

i pihi) ∈ ∆(H) u(
∑

i pihi) =
∑

i piu(hi),

where r is unique up to a positive scale factor, and γ is the
function for which Axiom 5 is satisfied.

In other words, there exist a deterministic, Markov reward
function such that the expected sum of rewards under a
particular transition-dependent discount factor is consistent
with the preference relation. Furthermore, we can show
there exists an efficient algorithm that constructs the reward
function and discount factor from a preference relation that
satisfies Axioms 1–5 (See Algorithm 1 in the Appendix for
additional details.).

Additionally, notice the form the objective takes (e.g. dis-
counted reward, episodic total reward, average reward) is
determined by the preference relation and how it satisfies
the Temporal γ-Indifference axiom. This is what ultimately
dictates γ(t).

5. Objective Goals
The results thus far assume that the preferences and rewards
of interest originate from the same perspective—that is, the
agent doing the maximizing is the same as the agent holding
the preferences. In practice, we often find ourselves in a
different setting in which the relevant preferences originate
from an agent designer that has a desired goal or purpose
in mind for a separate learning agent to pursue (Alice and
Bob in work by Abel et al. (2021), or the “designer” and
“agent” in work by Singh et al. (2009)). In this section we
adapt our previous assumptions to show how the results of
Theorem 4.1 apply more broadly—to arbitrary sequences
that contain the designer’s experiences. This is what we re-
fer to as the objective goals case. Indeed, this setup includes
common cases from the literature where preferences are
expressed in numerous ways: as demonstrations of desired
behaviors (Ng et al., 2000), partial orders over a set of trajec-
tories (Wirth et al., 2017), or through a generic interaction
process with the designer (Leike et al., 2018).

In the objective goals setting, the designer experiences a
stream of observations ō ∈ Ō. These form a distinct process
which is potentially related to the observation stream of

the agent. For instance, the designer may observe more
than the agent: O ⊂ Ō. In other cases, Ō may include
the agent’s actions. The designer provides the agent with a
learning signal that reflects its preferences on distributions
over histories h̄t = ō1, ō2, . . . , ōt, where each ōi ∈ Ō. We
let H̄n be all histories of length n and H̄ def

=
⋃∞

n=0 H̄n be all
finite length histories over designer observations. In what
follows, we suppose the designer maintains a preference
relation over distributions from ∆(H̄), then we adapt our
assumptions so the results of Theorem 4.1 apply to this
setting.

Assumption 5 (Objective Goals). “All of what we mean
by goals and purposes” can be expressed as a binary pref-
erence relation on distributions over finite histories of de-
signer observations ∆(H̄).

We have two choices here for defining the agent’s interface
to the environment. First, the designer can provide the
rewards r and the discounts γ as separate inputs to the agent.
Second, the designer can provide rewards that are already
discounted,

ri
def
=

i−1∏
j=1

γ(ōj)

 r(ōi). (2)

We adopt the second view to maintain the standard agent-
environment interface, but note that the former view might
yield an alternative plausible account.

Assumption 6 (Cumulative Sum of Objective Rewards).
The “maximization of the expected value of the cumulative
sum of a received scalar signal (reward)” means that there
is a reward function r : Ō → R and transition-dependent
discount function γ : Ō → [0, 1], such that a designer
prefers π1 ≿r π2 under the reward r if and only if there
exists N such that V π1

n > V π2
n for all n ≥ N , where

V π
n = E [

∑n
i=1 ri] .

With this we can now restate our interpretation of the reward
hypothesis for the objective goals case. What the reward
hypothesis means by “well thought of” is that for any binary
preference relation on distributions of a designer’s histories,
there exists an already discounted r, as defined in (2), such
that π1 ≿g π2 if and only if π1 ≿r π2.

6. History and Related Work
We next discuss relevant literature from across the RL com-
munity. We discuss connections to the economics literature
in the appendix.

6.1. Utility Theory for Sequential Decision Making

Pitis (2019) explored the relationship between the vNM ax-
ioms and the typical objectives of RL, with a focus on the
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discount factor, γ. As discussed in the introduction, Pitis
provides a normative account for why we should embrace
a state-action dependent discount factor, as developed by
White (2017): A fixed discount cannot capture all prefer-
ences we might consider rational. Second, Pitis presents
three axioms on top of the vNM axioms that characterize
the conditions under which a state-action dependent dis-
count factor can be viewed as rational. These axioms bear
some resemblance to aspects of our formalism: For instance,
Pitis’ countable transitivity axiom also addresses the issue
of infinite experiences, like our Assumption 2.

Shakerinava & Ravanbakhsh (2022) build off the work of
Pitis (2019) to study the existence of reward functions in a
variety of controlled MDPs. In their work, Shakerinava &
Ravanbakhsh formalize the notion of goals with a preference
relation over outcomes generated from the given MDP.

Our work differs from Shakerinava & Ravanbakhsh (2022)
in several ways. Firstly, we take into account preference
relations over distributions of observation-action histories,
enabling us to reason about goals in a wide range of stochas-
tic environments, including fully-observable MDPs. Fur-
thermore, we formalize the reward hypothesis with a set
of formal assumptions. This applies to the discounted re-
ward, average reward, and episodic total reward settings.
We establish a connection between our findings and scenar-
ios where the reward is internally generated by the agent,
as well as situations involving the objective desires of an
observer. We show there exists an efficient algorithm to
construct rewards using a preference relation that satisfies
Axioms 1–5 (See Algorithm 1 in the Appendix). Moreover,
our Temporal γ-Indifference axiom provably generalizes
two of their axioms. We expand on this below.

Axiom 6 (Memoryless; Shakerinava & Ravanbakhsh, 2022).
For all t ∈ T and A,B ∈ ∆(H)

A ≿ B ⇐⇒ t ·A ≿ t ·B.

Theorem 6.1. A binary preference relation on ∆(H) sat-
isfies Axioms 1-5 where γ(t) is relaxed to be in R≥0 if and
only if Axioms 1-4 and the Memoryless axiom are satisfied.

Axiom 7 (Additivity; Shakerinava & Ravanbakhsh, 2022).
For all h1, h2 ∈ H, A,B,C,D ∈ ∆(H) and p ∈ [0, 1],

p(h1 ·A) + (1− p)C ≿ p(h1 ·B) + (1− p)D

⇔p(h2 ·A) + (1− p)C ≿ p(h2 ·B) + (1− p)D.

Theorem 6.2. A binary preference relation on ∆(H) satis-
fies Axioms 1-5 with γ(t) = 1 if and only if Axioms 1-4 are
satisfied as well as Additivity.

Separately, Sunehag & Hutter (2011; 2015) study what con-
stitutes a rational reinforcement learning agent. More con-
cretely, in both works, Sunehag and Hutter suppose the

environment and reward function are defined, and set out
to characterize what kinds of agents might we consider ra-
tional. In their first work (Sunehag & Hutter, 2011), they
provide a series of properties that characterize what it means
for an RL agent to be rational. These properties bear some
similarity to the vNM axioms, but are agent-side properties
rather than implicit requirements on the structure of goals
or rewards themselves. In follow up work Sunehag & Hut-
ter (2015) focus specifically on the rationality of optimistic
agents. That is, given a reward function and environment,
they contrast optimistic agents with those that are strictly
expected utility maximizers. They give a full characteriza-
tion of rational agency that justifies the use of optimism for
exploration, showing that expected utility maximization on
its own can be strictly worse than optimistic behavior.

6.2. The Limited Expressivity of Markov Reward

Abel et al. (2021) study the expressivity of reward in Marko-
vian environments. In particular, they suppose the envi-
ronment is characterized by a finite state space and tran-
sition function, and assume that preferences over objects
defined with respect to the environment are given. These
preferences come in three forms: (1) A set of acceptable
policies, (2) A partial ordering on policies, or (3) A par-
tial ordering on fixed-length state-action trajectories. Each
of these preference types are defined with respect to the
environment’s state space, S, that is known to be suffi-
cient to support a Markovian transition function (and thus,
e : S × A → ∆(S)). For example, in the case of (1), the
policy space is defined as all deterministic mappings of the
form π : S → A. Then, a choice of the first preference type
is just a selection of acceptable policies. Under these three
types, Abel et al. show that there are restrictions on what
kinds of preferences can be codified in terms of a reward
function that is Markov with respect to the same state space.
Specifically, they point out two styles of counterexample:
(1) the steady state type, in which preferences have bear-
ing on impossible outcomes, and (2) the entailment type,
in which the desirability of an action choice depends on
behavior elsewhere in the environment.

We next show how the two styles of counterexample from
Abel et al. play out in the context of our results. We find
that the steady state type violates one of our assumptions,
and the entailment type violates an axiom.

Steady State. First, recall the steady state counterexample,
pictured in Figure 1(a). The given preference over policies
asserts that the only acceptable policy chooses a2 in the left
state, but a1 in the right. This is a counterexample in the
sense that there is no Markov reward function that ensures
the policy π22 : {s0 7→ a2 | s1 7→ a2}, has higher value
than π21 : {s0 7→ a2 | s1 7→ a1}, since both policies never
reach state s1.
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(b) Entailment Case

Figure 1. The two counterexamples from Abel et al. (2021). In the steady state case, the set of acceptable policies contains only the policy
that executes a2 in the left, and a1 in the right. In the entailment case, the two acceptable policies are those that choose a different action
across the two states.

Under our formalism, these policies would induce equiv-
alent outcome distributions and thus be interchangeably
preferred. We begin with preferences over outcomes of the
kind suggested by Assumption 1. That is, in the two-state
environment described, our preferences are over sequences
of state-action pairs. Recall that under Assumption 2, we
understand a preference over policies π1 ≿g π2 to mean
that there exists a time after which we always prefer the
distribution over outcomes produced by π1 to π2. Thus,
when we consider the steady state counter example, we can
see that Assumption 2 is violated: We prefer π1 to π2 even
though they induce identical distributions Dπ1

n and Dπ2
n . In

this sense, the counterexample is an instance of a broader
principle we have codified in our formalism.

Entailment. The second kind of counterexample deals
with cases in which the value of one policy necessarily
entails something about the value of another policy. For
instance, in the example pictured in Figure 1(b), the two
acceptable policies are those that take a different action in
each of the two states. So, π12 : {s0 7→ a1 | s1 7→ a2} and
π21 : {s0 7→ a2 | s1 7→ a1} are both desirable because they
each take opposing actions across the two states. In follow
up work, Abel et al. (2022) demonstrate that a simple state-
construction procedure can resolve the counterexample. In
our framing, where precisely do the preferences of this
entailment type go wrong? Such preferences directly violate
Axiom 5, the new axiom. To see why, consider the two
(Dirac) distributions: A = s2, a2 and B = s2, a1. Let
t = s1, a1. That is, the composite distributions formed are t·
A = s1, a1, s2, a2 and t·B = s1, a1, s2, a1. However, there
is no choice of γ(t) for which the indifference expressed by
the Axiom holds, as the preference requires that A ≿ B.

7. Challenges to the Reward Hypothesis
We next summarize common challenges to the reward hy-
pothesis and consider whether our formalization of the hy-
pothesis provides any further insight into these arguments.

7.1. Human Irrationality

Extensive work by Kahneman & Tversky and Johnson-Laird
showed how human behavior deviates from the rational
model proposed by von Neumann and Morgenstern (Kah-
neman et al., 1982; Kahneman & Tversky, 1982; Tversky
& Kahneman, 1983; Johnson-Laird, 1983). Based on these,
one might conclude that our description of goals and pur-
poses does not apply to humans, and is therefore incomplete.
However, the expression of goals is distinct from the be-
haviors that emerge in their pursuit. Our results prove the
existence of a Markov reward signal under the presumption
that all goals and purposes can be rationally expressed.

7.2. Multiple Objectives

Another natural reaction to the reward hypothesis is to sus-
pect that collapsing all of the nuance that might go into
“purpose” down to a single scalar seems difficult, if not
impossible. Suppose we are interested in designing an au-
tonomous taxi to take passengers between the airport and
the university. We would like the taxi to balance between
safety, timeliness, and energy use. But how precisely do we
make these trade-offs, and can we really reduce the nuances
of their trade-offs down to a single scalar?

This challenge often yields a variant called multi-objective
or multi-criteria decision making that has been studied ex-
tensively in the literature. Hausner (1953) drops continu-
ity (Axiom 4) in order to generalize the vNM results to
the multi-dimensional setting. Gábor et al. (1998) propose
multi-criteria RL in MDPs and establish initial conditions
for importing classical results from scalar-valued rewards
such as the existence of stationary policies and the Bellman
equation. More recently, Miura (2022) explicitly focus on
the expressivity of multi-dimensional reward, enriching the
result’s of Abel et al. (2021). In particular, Miura shows
that multi-dimensional Markov reward functions are strictly
more expressive than scalar Markov reward functions in
MDPs. However, we note that this expressivity comes with
the cost of violating at least one of the axioms—we describe
this in more detail shortly. Pitis et al. (2022) make a similar
argument, and prove that some multi-objective problems

7
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LL LR RL RR

History Total r1 Total r2
LL 1 -1
LR 0 -1
RL 1 -1
RR 0 1

Figure 2. An environment used to illustrate how Constrained MDPs can violate independence and continuity. Two actions, L and R,
produce four histories shown in the table above. Also shown are the cumulative rewards of each history.

cannot be collapsed to a scalar objective.

Constrained MDPs. Constrained MDPs have been viewed
as a challenge to the reward hypothesis (Szepesvári, 2020).
In a Constrained MDP, the goal is to maximize the expected
sum of a base scalar reward, subject to additional constraints
on the expected sums of other independent reward functions.
Szepesvári (2020) showed that it is generally not possible
to solve these objectives as typical MDPs, with a process of
“scalarization”. One can show that Constrained MDPs do
not always respect our notion of “goals and purposes”.

Consider the example pictured in Figure 2. The environ-
ment contains two actions, L and R, whose combinations
produce four different histories, denoted LL,LR,RL,RR.
The cumulative payoffs under the base reward r1 and sec-
ondary reward r2 are also shown. Suppose the constrained
objective involves maximizing expected utility under r1
while demanding expected utility under r2 be non-negative.
Under this objective, distributions of feasible histories are
preferred to those which are infeasible. Consider two such
distributions A = 1

2RL + 1
2RR and B = LL. We have

A ≿ B, since the first distribution is feasible and the second
is not. Independence (Axiom 3) asserts that the prefer-
ence remains unchanged when A and B are equally-mixed
with any other distribution. However, in this example, the
preference reverses when mixed with C = RR. That is
1
2A+ 1

2C ≾ 1
2B + 1

2C. In this case, both distributions are
feasible, but the first achieves less expected utility under the
base reward r1.

A similar example can be used for continuity (Axiom 4).
This time let A = 1

2RL + 1
2RR, B = 1

2LR + 1
2RR, and

C = RR. We have A ≿ B ≿ C, because A is feasible with
the highest expected base utility, B is feasible but achieves
less utility than A, and C is infeasible. For this selection,
there is no break even point p ∈ (0, 1) that would make an
agent indifferent between A and the mixture pB+(1−p)C;
the latter is always infeasible.

Risk. Risk-sensitive goals provide another challenge to
the reward hypothesis. Risk-sensitive objectives applied
to the returns generated by a policy can, in general, cause

the optimal policy to be non-Markovian (Bellemare et al.,
2023). This can be readily seen in the case of maximizing
a variance-penalized mean return, where the agent first ex-
periences some uncontrolled randomness that produces two
different rewards (e.g. 0 or 1) and then faces the choice of
two actions with different rewards (again, 0 or 1) allowing it
to choose between maximizing value or reducing variance.
For sufficiently large variance penalties the optimal policy
will be to choose the action leading to the opposite reward
of what it had previously experienced. However, this is not
possible for Markov policies.

Observe that when all optimal policies are non-Markov,
such as in this example, there does not exist any Markov
reward function with the same optimal policy under a risk-
neutral objective. This is because the optimal policy will
necessarily be Markovian. As a result, we can conclude
that at least one of our assumptions or axioms must have
been violated. In the above example, the issue is a violation
of Axiom 5 and can be overcome by augmenting the state
using the objective goals formulation.

8. Conclusion
We have here provided a conclusive account summarizing
the implicit conditions required for the reward hypothesis.
We separate such conditions into assumptions, that cen-
ter around interpretations of the hypothesis, and axioms,
that express specific formal properties about rational pref-
erence relations of all that one could mean by goals and
purposes. Our main result (Theorem 4.1) states that, under
Assumptions 1-4, the reward hypothesis for Markov reward
functions holds if and only if Axioms 1-5 are satisfied. This
result completely specifies the requirements on preferences
under which the hypothesis holds. We further explore conse-
quences of our new framing and results, including a variant
from the viewpoint of the designer, an efficient constructive
algorithm that translates rational preferences into a reward
function, and discussion of how this axiomatic perspective
can sharpen our understanding of alternative RL objectives
such as constrained MDPs and risk.
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A. Proof of Main Theorem
Theorem 4.1 (Markov Reward Theorem). A binary preference relation on ∆(H) satisfies Axioms 1-5 if and only if
there exists a utility function u: ∆(H) → R, a reward function r : T → R, and transition-dependent discount function

γ : T → [0, 1], such that u(ε) def
= 0, and

u(t · h) def
= r(t) + γ(t)u(h),

under the following conditions.

1. ∀A,B ∈ ∆(H) A ≿ B ⇔ u(A) ≥ u(B),

2. ∀(
∑

i pihi) ∈ ∆(H) u(
∑

i pihi) =
∑

i piu(hi),

where r is unique up to a positive scale factor, and γ is the function for which Axiom 5 is satisfied.

Proof. We first show the axioms imply the existence of a Markov reward. By Theorem 3.1 and axioms 1-4, we can select
u : ∆(H)→ R, such that u(ε) = 0, leaving u unique up to a positive scale factor. Define r(t)

def
= u(t). From Axiom 5 and

choosing h1 = h and h2 = ε,

1

γ(t) + 1
(t · h) + γ(t)

γ(t) + 1
ε ∼ 1

γ(t) + 1
(t · ϵ) + γ(t)

γ(t) + 1
h

Applying Theorem 3.1 (first consequence 1 then consequence 2) we get,

1

γ(t) + 1
u(t · h) + γ(t)

γ(t) + 1
u(ε) =

1

γ(t) + 1
u(t) +

γ(t)

γ(t) + 1
u(h)

Multiplying by γ(t) + 1, we get,

u(t · h) + γ(t)u(ε) = u(t) + γ(t)u(h),

u(t · h) = r(t) + γ(t)u(h)

We now show that any Markov reward satisfies the axioms. Due to Theorem 3.1 we know Axioms 1-4 are satisfied. We also
know, for all h ∈ H,

u(t · h) = r(t) + γ(t)u(h)

so,
u(t · h)− γ(t)u(h) = r(t).

Hence for all h1, h2 ∈ H
u(t · h1)− γ(t)u(h1) = r(t) = u(t · h2)− γ(t)u(h2).

Rearranging we get,
u(t · h1) + γ(t)u(h2) = u(t · h2) + γ(t)u(h1).

Dividing all terms by γ(t) + 1,

1

γ(t) + 1
u(t · h1) +

γ(t)

γ(t) + 1
u(h2) =

1

γ(t) + 1
u(t · h2) +

γ(t)

γ(t) + 1
u(h1).

Applying Theorem 3.1 (first consequence 2 then consequence 1),

1

γ(t) + 1
(t · h1) +

γ(t)

γ(t) + 1
h2 ∼

1

γ(t) + 1
(t · h2) +

γ(t)

γ(t) + 1
h1

thus Axiom 5 is satisfied.
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B. Proofs of Relationship to (Shakerinava & Ravanbakhsh, 2022)

For the following proofs let ut(x)
def
= u(t · x) for all t ∈ O ×A.

Theorem 6.1. A binary preference relation on ∆(H) satisfies Axioms 1-5 where γ(t) is relaxed to be in R≥0 if and only if
Axioms 1-4 and the Memoryless axiom are satisfied.

Proof. Starting from the Temporal γ-Indifference Axiom, we use the vNM theorem under a specific choice of history to
reduce the utility function to a positive affine form.

=⇒ Take some t from O ×A, and let γ(t) > 0. Temporal γ-Indifference states that for any distributions A and B from
∆(H)

1

1 + γ(t)
(t ·A) +

γ(t)

1 + γ(t)
B ∼ 1

1 + γ(t)
(t ·B) +

γ(t)

1 + γ(t)
A.

The vNM utility theorem guarantees this indifference has a utility representation:

1

1 + γ(t)
u(t ·A) +

γ(t)

1 + γ(t)
u(B) =

1

1 + γ(t)
u(t ·B) +

γ(t)

1 + γ(t)
u(A),

u(t ·A) + γ(t)u(B) = u(t ·B) + γ(t)u(A).

Let B = ϵ, and define u(ϵ) ≜ 0, r(t) ≜ u(t · ϵ) so we obtain

u(t ·A) = r(t) + γ(t)u(A).

Using Lemma B.1 we get that ut is strategically equivalent to u, where a = r(t) and b = γ(t). Hence, for all distributions
A,B ∈ ∆(H)

u(A) ≥ u(B) ⇐⇒ ut(A) ≥ ut(B),

therefore,

A ≿ B ⇐⇒ (t ·A) ≿ (t ·B).

⇐= The Memoryless Axiom states that for all t ∈ T and A,B ∈ ∆(H)

A ≿ B ⇐⇒ (t ·A) ≿ (t ·B)

This means that ut is strategically equivalent to u. By Lemma B.1, we know there exists constants, which we label r(t) and
γ(t), such that,

u(t ·A) = ut(A) = r(t) + γ(t)u(A), u(t ·B) = ut(B) = r(t) + γ(t)u(B).

Simple algebra shows that

u(t ·A)− γ(t)u(A) = u(t ·B)− γ(t)u(B),

u(t ·A) + γ(t)u(B) = u(t ·B) + γ(t)u(A)
1

1 + γ(t)
u(t ·A) +

γ(t)

1 + γ(t)
u(B) =

1

1 + γ(t)
u(t ·B) +

γ(t)

1 + γ(t)
u(A),

1

1 + γ(t)
(t ·A) +

γ(t)

1 + γ(t)
B ∼ 1

1 + γ(t)
(t ·B) +

γ(t)

1 + γ(t)
A.

The last line follows from the vNM utility theorem.

Definition 1 (Strategic Equivalence). Two utility functions u1 and u2 are strategically equivalent if and only if they imply
the same preference ranking for any two distributions.
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Lemma B.1. Two utility functions u1 and u2 are strategically equivalent if and only if there exists two constants a and
b > 0 such that

u1(x) = a+ bu2(x) for all x.

Proof. The first direction follows a similar argument to Theorem 4.1 from Keeney et al. (1993).

=⇒ Let x0 ∈ argminx u2(x) and x∗ ∈ argmaxx u2(x). We first consider the degenerate case where u2(x0) = u2(x
∗),

so u2 is a constant function. By strategic equivalence u1 must also be a constant function, trivially satisfying the implication.
Now consider the case where u2(x

∗) > u2(x0). For any x, there exists c ∈ [0, 1] such that x ∼ cx∗ + (1− c)x0 under u2,
and by strategic equivalence u1 as well. Therefore,

ui(x) = cui(x
∗) + (1− c)ui(x0) for i = 1, 2.

Letting i = 2 and solving for c we get

c =
u2(x)− u2(x0)

u2(x∗)− u2(x0)
.

Substituting this value of c in when i = 1 gives.

u1(x) =

(
u2(x)− u2(x0)

u2(x∗)− u2(x0)

)
u1(x

∗) +

(
1− u2(x)− u2(x0)

u2(x∗)− u2(x0)

)
u1(x0),

=

(
u1(x0) +

u2(x0)u1(x0)− u2(x0)u1(x
∗)

u2(x∗)− u2(x0)

)
︸ ︷︷ ︸

a

+

(
u1(x

∗)− u1(x0)

u2(x∗)− u2(x0)

)
︸ ︷︷ ︸

b

u2(x).

Notice that b > 0, because u2(x
∗) > u2(x0).

⇐= Assume there exists constants a and b > 0 such that

u1(x) = a+ bu2(x) for all x.

Take any two x and x′ such that u2(x) > u2(x
′). Scaling by a positive constant b and shifting the utility by a leaves the

relation unchanged. Therefore,

u2(x) > u2(x
′),

a+ bu2(x) > a+ bu2(x
′),

u1(x) > u1(x
′).

Theorem 6.2. A binary preference relation on ∆(H) satisfies Axioms 1-5 with γ(t) = 1 if and only if Axioms 1-4 are
satisfied as well as Additivity.

Proof. The first direction follows from Independence and Lemma B.2. The converse is reduced to the Memoryless Axiom,
then the remainder of the argument follows from Theorem 6.1.

=⇒ Take any t ∈ O ×A, and A,B,C,D ∈ ∆(H) for which

p(t ·A) + (1− p)C ≿ p(t ·B) + (1− p)D.

By the Independence Axiom, the preference remains unchanged after mixing distributions with (t′ · X) by an amount
q ∈ [0, 1]:

qp(t ·A) + q(1− p)C + (1− q)(t′ ·X) ≿ qp(t ·B) + q(1− p)D + (1− q)(t′ ·X).
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If we take qp = (1− q), then we can form uniform compound distributions of (t, ·) and (t′ ·X):

qp[(t ·A) + (t′ ·X)] + q(1− p)C ≿ qp[(t ·B) + (t′ ·X)] + q(1− p)D,

2qp

[
1

2
(t ·A) +

1

2
(t′ ·X)

]
+ q(1− p)C ≿ 2qp

[
1

2
(t ·B) +

1

2
(t′ ·X)

]
+ q(1− p)D,

2qp

[
1

2
(t′ ·A) +

1

2
(t ·X)

]
+ q(1− p)C ≿ 2qp

[
1

2
(t′, B) +

1

2
(t ·X)

]
+ q(1− p)D.

The last line follows from Lemma B.2, which takes Temporal Indifference as its precondition.

Finally, we invoke the Independence axiom to remove (t ·X) mixture:

p(t′ ·A) + (1− p)C ≿ p(t′, B) + (1− p)D.

⇐= For any t, t′ ∈ T , and A,B,C,D ∈ ∆(H), the Additivity Axiom states

p(t, A) + (1− p)C ≿ p(t ·B) + (1− p)D ⇐⇒ p(t′, A) + (1− p)C ≿ p(t′, B) + (1− p)D.

This reduces to the Memoryless Axiom if we restrict t to O ×A, and take t′ = ϵ and C = D:

p(t, A) + (1− p)D ≿ p(t ·B) + (1− p)D ⇐⇒ p(ϵ, A) + (1− p)D ≿ p(ϵ, B) + (1− p)D,

p(t, A) + (1− p)D ≿ p(t ·B) + (1− p)D ⇐⇒ pA+ (1− p)D ≿ pB + (1− p)D,

(t, A) ≿ (t ·B) ⇐⇒ A ≿ B.

The last line follows from independence on D.

Finally, Theorem 6.1 established that the Memoryless Axiom holds if and only if the Temporal γ-Indifference Axiom holds.
Therefore, the remainder of the proof follows from that.

Lemma B.2. If Temporal γ-Indifference holds when γ = 1, along with Axioms 1-5, then for any t, t′ ∈ O × A, and
A,X ∈ ∆(H),

1

2
(t ·A) +

1

2
(t′ ·X) ∼ 1

2
(t′ ·A) +

1

2
(t ·X).

Proof. Take some t from O ×A, and let γ(t) = 1. Temporal γ-Indifference states that for any distributions A and X

1

2
(t ·A) +

1

2
X ∼ 1

2
(t ·X) +

1

2
A.

This applies to any t, so it must apply to any other t′ from O ×A with γ(t′) = 1:

1

2
(t ·A) +

1

2
X ∼ 1

2
(t ·X) +

1

2
A ⇐⇒ 1

2
(t′ ·A) +

1

2
X ∼ 1

2
(t′ ·X) +

1

2
A.

The vNM utility theorem guarantees these preferences have a utility representation, meaning:

1

2
u(t ·A) +

1

2
u(X) =

1

2
u(t ·X) +

1

2
u(A) ⇐⇒ 1

2
u(t′ ·A) +

1

2
u(X) =

1

2
u(t′ ·X) +

1

2
u(A).

Regardless of whether a distribution involves t or t′, the difference between utilities will be equal:

u(t ·A) + u(X)− u(t ·X)− u(A) = u(t′ ·A) + u(X)− u(t′ ·X)− u(A),

u(t ·A)− u(t ·X) = u(t′ ·A)− u(t′ ·X),

u(t ·A) + u(t′ ·X) = u(t′ ·A) + u(t ·X),

u

(
1

2
(t ·A) +

1

2
(t′ ·X)

)
= u

(
1

2
(t′ ·A) +

1

2
(t ·X)

)
,

1

2
(t ·A) +

1

2
(t′ ·X) ∼ 1

2
(t′ ·A) +

1

2
(t ·X).
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C. Preferences in the Average Reward Setting
The notion of the cumulative sum eventually being larger allows us to capture settings where the series is convergent (i.e.,
limn→∞ V π

n exists) as well as cases where it is not, such as average reward; if one policy has higher average reward, then its
finite sum must eventually be larger. For this analysis we will assume without loss of generality that the transition-dependent
discount γ(t) = 1 ∀t ∈ T .

This last point is made formal in the following proposition, where the average reward for policy π is µπ ≜ limn→∞
1
nV

π
n .

Proposition C.1. For any policies πA, πB whose average rewards µA, µB exist, if µA > µB , then there exists an N such
that V A

n > V B
n for all n ≥ N .

Proof. Assume µA > µB exist. According to the definition of a limit, for any εA, εB > 0, there exists some NA and NB

such that

µA − εA <
1

k
V A
k µB + εB >

1

m
V B
m ,

for all k ≥ NA and m ≥ NB .

Choose εA = εB = 1
2 (µA − µB) > 0 and let N = max{NA, NB}, so the above inequalities hold for all n ≥ N . If you

negate the second inequality and add them together, then for all n > N ,

(µA − εA)− (µB + εB) <
1

n
V A
n −

1

n
V B
n

(µA − µB)− (εA + εB) <
1

n

(
V A
n − V B

n

)
(µA − µB)− (µA − µB) <

1

n

(
V A
n − V B

n

)
0 <

1

n

(
V A
n − V B

n

)

Thus, V A
n > V B

n .

We can show a similar result for the specialized bias-optimal case of average reward.

Definition 2 (Bias Value). The relative difference in total reward gathered is

V π ≜ lim
n→∞

E

[
n∑

i=1

(Rπ
i − µπ)

]
.

Proposition C.2. For any policies πA, πB whose average rewards µA, µB exist, if µA = µB and the bias values exist with
V A > V B , then there exists an N such that V A

n > V B
n for all n ≥ N .

Proof. Assume µA = µB exist as well as the bias optimal values V A > V B .

V A ≜ lim
n→∞

E

[
n∑

i=1

(RA
i − µA)

]
, V B ≜ lim

n→∞
E

[
n∑

i=1

(RB
i − µB)

]
.

Distributing the expectation, breaking the summation, and recognizing the expected n-step sums as V A
n = E[

∑n
i=1 R

A
i ]

and V B
n = E[

∑n
i=1 R

B
i ], we have

V A = lim
n→∞

(V A
n − nµA), V B ≜ lim

n→∞
(V B

n − nµB).

According to the definition of a limit, for any εA, εB > 0, there exists some NA and NB such that

V A − εA <V A
k − kµA V B + εB >V B

m −mµB ,
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for all k ≥ NA and m ≥ NB .

Choose εA = εB = 1
2 (V

A − V B) > 0 and let N = max{NA, NB}, so that for all n ≥ N , the above inequalities hold. If
you negate the second inequality and add them together, then for all n > N ,

(V A − εA)− (V B + εB) <
1

n
V A
n −

1

n
V B
n − nµA + nµB

Since µA = µB ,

(V A − εA)− (V B + εB) <
1

n

(
V A
n − V B

n

)
(V A − V B)− (εA + εB) <

1

n

(
V A
n − V B

n

)
(V A − V B)− (V A − V B) <

1

n

(
V A
n − V B

n

)
0 <

1

n

(
V A
n − V B

n

)

Thus, V A
n > V B

n .

D. A Constructive Algorithm
We now develop an algorithm that can construct the realizing reward function given a preference relation that is known to
satisfy Axioms 1-5. Algorithm 1 uses the preference relation to sort outcomes, then computes rewards and two-step utilities
by scaling their rankings relative to their break-even point with the best and worst outcomes. With this information, the
discount factor can be computed in closed-form. Below we summarize the procedures for using a preference relation to sort
and scale outcomes.

PrefSort (Algorithm 2) is a procedure for sorting a set of outcomes according to their preference. Our implementation takes
in a preference relation and set of outcomes T . The procedure returns a tuple of outcomes which are sorted in ascending
order, according toR, with MergeSort.

PrefScale (Algorithm 3) is a procedure to determine the relative degree of preference between outcomes. In our implemen-
tation, it takes a preference relation, a tuple of preference-sorted outcomes T , and a tolerance parameter ε ∈ (0, 1]. The
procedure returns a set of numerical scale factors that reflect the degree to which each outcome is preferred relative to best
and worst outcomes. Our implementation assigns scale factors using a binary line search informed by the continuity axiom
Axiom 4. The inner loop of the line search terminates when the difference between subsequent factors differ less than a
pre-specified ε.

The complexity of Algorithm 1 only depends on |A| and |O|. The call to PrefSort requires O(n log n) operations, where
n = 2|A × O|, ignoring an additive constant. The call to PrefScale requires O(n) operations. We then run two for loops,
the largest of which iterating through |U|= 2|A × O|+2 elements. Thus, the total run-time is O (2|A × O|log|A × O|).

E. Additional Comments on Objective Goals
As a special case, consider when the environment can be modeled as a Partially Observable MDP (POMDP, (Cassandra
et al., 1994)), and suppose that the designer observes the environment states and the agent’s actions, Ō = S ×A, so that
histories are h̄ = a1, s1, a2, s2, . . .. If Axioms 1-5 apply to the designer’s preference relation on this distributions over
histories, where the reference to transition (O ×A) in Axiom 5 now refers to (S ×A), then Theorem 4.1 extends to reward
functions r : (S ×A)→ R and discount functions γ : (S ×A)→ [0, 1].

Note that the in the objective goals setting, the designer’s states may encode more than necessary to produce Markov state
transitions. For example, they could encode a reward bundle (Abel et al., 2022), a finite state machine defining an otherwise
non-Markov reward. This should allow us to define a variant of Axiom 5 that only needs to be satisfied when state transitions
consist of POMDP states produced with any other finite state machine that transitions on POMDP transitions. In other
words, preferences that can be expressed as reward bundles are captured by this extended axiom.
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Algorithm 1 Reward and Discount Design
INPUT: R = {≺,≾,≻,≿,∼}.
OUTPUT: r : A×O → R, γ : A×O → [0, 1].

1: T1 = A×O ∪ {ε}
2: T2 = {t · t : t ∈ T1}
3: U = PrefSort(R, T1 ∪ T2)
4: P = PrefScale(R,U , ϵ)
5: Let iε be the index of ε in U .
6: for i ∈ {1, · · · , |U|} do
7: u(τi) = piε − pi
8: end for
9: for i ∈ {1, · · · , |T1|} do

10: r(ti) = u(ti)
11: γ(ti) = u(ti · ti)/u(ti)− 1
12: end for
13: return r, γ

Algorithm 2 PrefSort
INPUT: R, T = (t1, · · · , tn).
OUTPUT: Sorted T .

1: if n ≤ 1 then
2: output T
3: end if
4: L,K ← ()
5: for i = 1, · · · , n do
6: if ti ≿ t⌊n/2⌋ then
7: K ← concat(K, ti)
8: else
9: L ← concat(L, ti)

10: end if
11: end for
12: L ←PrefSort(L)
13: K ←PrefSort(K)
14: T ← concat(L,K)
15: output T

F. Additional Comments on Multiple Objectives
Here we examine the temporal nature of handling multiple objectives in view of an agent’s lived experience. We present an
additional axiom with which we may want to constrain goals and purposes. Let A[h → B] refer to the distribution over
histories where all histories with non-zero support in A that share the prefix h are removed, and their support shifted to h ·B.

Axiom 8 (Sequential Consistency). For all A,B,C ∈ ∆(H) and h ∈ H, h·A ≻ h·B if and only if C[h→ A] ≻ C[h→ B].

In other words, extensions to a hypothetical history that are more aligned with some goal or purpose do not change if that
hypothetical history becomes certain. In behavioral terms, goal-aligning behavior following a possible future is the same as
goal-aligning behavior following that future occurring. Alternatively, goal-aligning behavior after some history should not
depend on hypothetical alternative pasts that did not come about.

This is related to notions of dynamic inconsistency in behavioural economics5: one may prefer to receive $110 in 101 days
to $100 in 100 days, and yet when 100 days passes the same person may now prefer $100 to waiting one day for $110 (i.e.,

5It is best to think of “time passing” in our formalization as “the past” at some time t becoming certain — fixing ht ∈ Ht — and so
the policy and environment specify distributions over histories whose support has ht as a prefix.

17



Settling the Reward Hypothesis

Algorithm 3 PrefScale
INPUT: R, T = (t1 ≾ t2 ≾ · · ·), ϵ ∈ (0, 1].
OUTPUT: P = {p1, · · · , p|T |}.

1: for i ∈ {1, · · · , |T |} do
2: pk−1

i ← 1
3: ∆← 2ϵ
4: while ∆ ≥ ϵ do
5: if ti ≻ pk−1

i t1 + (1− pk−1
i )t|T | then

6: pki ← 3pk−1
i /2

7: else if ti ≺ pk−1
i t1 + (1− pk−1

i )t|T | then
8: pki ← pk−1

i /2
9: else

10: break
11: end if
12: ∆← |pki − pk−1

i |
13: pk−1

i ← pki
14: end while
15: pi = pk−1

i

16: end for
17: output P .

human preferences are often not dynamically consistent). It is straightforward to see that Independence (Axiom 3) implies
Sequential Consistency (Axiom 8). However, while one may reject Independence, it seems much more difficult to reject
Sequential Consistency, i.e., the goal-alignment of extensions of histories change if the history becomes certain. Notice,
however, that Constrained MDP formulations for capturing multiple objectives, in fact, violate this more specific axiom.

G. Additional Related Work
G.1. Economics

Economics has been studying the nature of rational behavior for centuries. In the 1700s, Gabriel Cramer and Daniel
Bernoulli independently formulated what is now called the Expected Utility Hypothesis (Machina, 1990) in response to
the “St. Petersburg Paradox” (Martin, 2011) articulated by Daniel’s cousin Nicholas (Bernoulli, 1738). The Expected
Utility Hypothesis says, roughly, that individuals “might maximize the expectation of ‘utility’ rather than of monetary
value.” (Machina, 1990). Centuries later, Ramsey (1926) provided the first formal axiomatic treatment of expected utility,
which would later be refined by von Neumann & Morgenstern (1953) to form the now widely adopted foundations of
decision theory. Following this development, an expansive body of research has explored how to account for other aspects of
rationality, including uncertainty (Kreps & Porteus, 1978), time (Koopmans, 1960; Koopmans et al., 1964), and computation
(Lewis, 1985; Rustem & Velupillai, 1990; Richter & Wong, 1999).

H. Constant Discounting
In this section, we comment on the constant discounting case, which is commonly employed in practice. According to our
results, if the preference relation satisfies Temporal γ-Indifference with a constant discount, then there exists a Markov
reward that can effectively express the desired goal. However, it’s important to note that Pitis (2019) highlights the limitation
of using a constant discount to express general preferences. This observation holds true, particularly in episodic problems
where the discount is set to zero upon termination and remains at a constant positive value less than one elsewhere. While
our results encompass scenarios where the discount remains constant and is applied exponentially, we do not specifically
address situations where the discount is applied in a hyperbolic manner, as discussed by Fedus et al. (2019).
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