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Abstract
A hallmark of biological neural networks, which
distinguishes them from their artificial counter-
parts, is the high degree of sparsity in their acti-
vations. This discrepancy raises three questions
our work helps to answer: (i) Why are biologi-
cal networks so sparse? (ii) What are the bene-
fits of this sparsity? (iii) How can these benefits
be utilized by deep learning models? Our an-
swers to all of these questions center around train-
ing networks to handle random noise. Surpris-
ingly, we discover that noisy training introduces
three implicit loss terms that result in sparsely
firing neurons specializing to high variance fea-
tures of the dataset. When trained to reconstruct
noisy-CIFAR10, neurons learn biological recep-
tive fields. More broadly, noisy training presents a
new approach to potentially increase model inter-
pretability with additional benefits to robustness
and computational efficiency.

1. Introduction
A striking difference between biological and artificial neural
networks is activation sparsity. The brain is highly sparse,
with an estimated 15% of neurons firing at any given time
(Attwell & Laughlin, 2001), whereas deep learning models
are often dense. A unifying understanding of this difference
is elusive, since there are advantages, disadvantages and
unclear implications of sparse representations (Olshausen &
Field, 2004).

A popular reason for sparsity in the brain is metabolic effi-
ciency, since action potentials consume ∼20% of the brain’s
energy (Sterling & Laughlin, 2015; Sengupta et al., 2010).
This theory is supported by the field of sparse coding which
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enforces an L1 penalty on neuron activations and results in
neurons learning biological receptive fields when trained on
a reconstruction task (Olshausen & Field, 1997).

In this work, we advance an alternative theory that the
need to handle noise is a key driver behind activation spar-
sity.Removing the L1 activation penalty and simply adding
random isotropic Gaussian noise to the data also produces
sparse activations and biological receptive fields.

Previous work found that by taking a first order Taylor
approximation, noisy training added a single penalty to the
loss function: minimize the Frobenius norm of the model’s
Jacobian. Formally, minθ ||δfθ(x)/δx||2F where x is the
input data and fθ(x) is any non-linear function that maps
the input to the output (Bishop, 1995; Camuto et al., 2020).
In words, this means the model outputs should be robust
with respect to small input perturbations.

However, this result leaves much unexplained. Empirically,
training networks with this additional loss term fails to pro-
duce sparsity or biological receptive fields. Theoretically,
this loss makes no predictions for how the network param-
eters should change and being a Taylor approximation it
only holds in the small noise limit. Moreover, because the
Frobenius norm is an L2 penalty instead of L1, this adds to
the mystery of why noise results in sparse activations.

Motivated by this discrepancy, we avoid the Taylor approx-
imation and disentangle more nuanced effects that noisy
training implicitly has on the loss function. To summarize,
noisy training adds three additional terms that the loss seeks
to maximize:

Noise Terms = Maximize([Neuron Sparsity] (1)
+ [Neuron Activation Margin]
+ [Specialized Model Weights])

The theoretical effects of Eq. 1 on what each neuron learns
are summarized in Fig. 1. The ReLU activation function
plays a key role. By default, each neuron should have a
very negative pre-activation so that it is turned off and un-
perturbed by any noise. When a neuron must turn on to help
in the reconstruction task, it should “jump” from being very
negative to very positive in order to maximize the margin
around the ReLU activation threshold of 0.

This threshold is where the noise has a non-linear effect on
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Figure 1: The three loss objectives introduced by noisy
training. We show the distribution of activations across the
dataset for an idealized, hypothetical neuron to clarify the
loss terms. 1. The neuron should learn specialized weights,
in this case we plot a real example of a Gabor filter that will
fire strongest for edges like that along the truck bottom. 2.
The neuron should be negative such that it spends a majority
of its time off (blocking the influence of noise). 3. The
neuron when it is activated should “jump” over the ReLU
activation threshold to a large positive value, reducing the
ability for noise to switch it off. This produces the long right
hand tail.

the model output and is avoided by the neuron’s receptive
field only modelling high variance regions of the distribution.
Finally, each neuron should learn receptive fields that de-
correlate the effects of noise on the activations, resulting in
specialization to non-redundant subsets of the high variance
data features.

Empirically, we find that trained networks follow these the-
oretical predictions (e.g., Fig. 2). In proportion to the noise
variance up to a cutoff, each neuron learns a negative bias
so that it is off by default. Many of the neurons also learn bi-
ological receptive fields known to capture the high variance
features of natural images and have low activation covari-
ance. Finally, the bias terms and weight norms synchronize
such that a sparse ∼ k neurons fire for any input datum.

This form of sparsity is distinct from sparsity created via
an L1 activation penalty where many of the neurons in the
network are dead and never fire for any input. Dead neuron
sparsity is misleading and equivalent to having a pruned,
smaller network that is densely firing. We distinguish this
alternative form of sparsity throughout our work. Note that
we consider activation sparsity, not weight sparsity, which
can contribute to activation sparsity but is fundamentally
different.

We show that our findings generalize across a number of
deep learning tasks, datasets, architectures, and can even
be used as a pre-training task. Pretraining with noise then
removing it still results in sparse activations and, aside from
the highest noise variances, has no final performance cost.

Figure 2: Pre-Activation Distributions of Shallow Denois-
ing Autoencoders on CIFAR-10 pixels. Distribution of
250 units’ pre-activation values, randomly sampled from
10,000 neurons. The bias for each neuron becomes more
negative and tails grow longer in proportion to the noise.

Noisy training is appealing because of its simplicity and
the inductive biases it introduces. Alternative methods to
create activation sparsity are varied but all have in common
explicitly penalizing or preventing dense activations and
need to account for the issues this introduces (Bricken et al.,
2023; Gregor & LeCun, 2010; Elhage et al., 2022a; Srivas-
tava et al., 2014; Martins & Astudillo, 2016). For example,
sparse coding with an L1 penalty needs to be combined with
constraints on weight norms to avoid the model “cheating”
by shrinking its weights (Olshausen & Field, 1997).

Meanwhile, methods like Top-k that force exactly the k
most active neurons to turn off must pre-determine their k
value and need to slowly introduce this constraint (Bricken
et al., 2023). Noisy training endogenously incentivizes spar-
sity, in addition to weight norm regularization and feature
specialization. Noise also results in different receptive fields
from sparse coding, resulting in a transition from Gabors
to center-surround (Karklin & Simoncelli, 2011). This lat-
ter finding suggests that noisy training could potentially be
a different approach to removing neuron polysemanticity
(Elhage et al., 2022a;b).

2. Related Work
Injecting noise into training data has a rich history, dating
back as early as Sietsma & Dow (1991). Noise injection has
been interpreted as a form of model regularization to help
avoid overfitting (Zur et al., 2009) and improve generaliza-
tion (Sietsma & Dow, 1991; Matsuoka, 1992). Interest in
training with noise rose recently due to de-noising autoen-
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coders playing a critical role in modern diffusion models
(Goodfellow et al., 2015; Song & Ermon, 2019).

Poole et al. (2014) discovered that noise injection results in
sparse activations but focused on comparisons to Dropout
(Srivastava et al., 2014) and noise injection at different
model layers. Our work enriches their contributions by
correcting erroneous equations1, investigating the network
sparsity mechanism, deriving more detailed implicit loss
terms, exploring the generality of findings across model
architectures, and finding the emergence of biological re-
ceptive fields (Olshausen & Field, 1997).

It was previously discovered that de-noising auto encoders,
when trained on the MNIST hand written digits dataset
(LeCun & Cortes, 2005), learn receptive fields that can
be interpreted as Gabor-like (Vincent et al., 2008; Chen
et al., 2014). However, because MNIST digits consist of
strokes, it is easy to interpret the receptive fields as stroke
detectors for this specific dataset, rather than generalized
Gabor filters appearing in V1 (Sterling & Laughlin, 2015).
To the best of our knowledge, our work is the first to find
the emergence of biological receptive fields from MLPs
trained on naturalistic whole CIFAR10 images. Regarding
the formation of receptive fields found by other models such
as AlexNet (Krizhevsky et al., 2012), what is striking about
our receptive fields is not how quantitatively similar they
look to true biological receptive fields but that they emerge
at all just from noisy training.

Another interesting connection exists with the implicit loss
terms found in the Kullback-Leibler Divergence (KLD) of
variational autoencoders (VAEs). Intuitively, VAEs can be
thought of as introducing noise through stochastically sam-
pling from their latent space. This noise is enforced by the
prior distribution over the latents, incentivizing the model to
parameterize its latent distribution with non-zero variance.
Kumar & Poole (2020) use the Jacobian approximation
to make this relationship explicit while Chen et al. (2018)
decompose the KLD loss term into three terms which are
closely related to maximizing the neuron activation mar-
gin and de-correlating neuronal activations. The sparsity
term is notably absent but should only appear with rectified
non-linearities that are uncommon in VAE latent spaces.

Approaches to enforce activation sparsity include using Top-
k activation functions (Ranzato et al., 2007; Makhzani &
Frey, 2014; Ahmad & Scheinkman, 2019), novel regular-
ization terms (Kurtz et al., 2020; Yang et al., 2020) and
other approaches (Andriushchenko et al., 2022; Schwarz
et al., 2021; Molchanov et al., 2017; Srivastava et al., 2014;
Elhage et al., 2022a; Martins & Astudillo, 2016).

1The authors confirmed and kindly helped us to verify the
limitations of Eqns. 4 & 7 via private correspondence (Appendix
F has a corrected derivation).

We state that our model is more robust simply because it has
been trained with random noise perturbations (Kireev et al.,
2021). However, we do not extend this claim to include ad-
versarial robustness due to both noise and sparsity causing
“gradient masking” that confounds canonical gradient based
adversarial attacks. For example, Xiao et al. (2020) used
Top-k activation sparsity to boost adversarial robustness.
However, this was overturned by Tramèr et al. (2020), show-
ing this was the result of gradient masking and alternative
attacks remained effective. Li et al. (2018) claim similar
adversarial robustness from additive noise and acknowledge
the gradient masking confounder, however, it is unclear if it
is adequately accounted for.

Learning reconstructions of training data with sparse acti-
vations is the mainstay of sparse coding (for a formal intro-
duction, see App. A). Prior work showed that combining
the sparse coding L1 penalty with noisy training produces
biological receptive fields (Karklin & Simoncelli, 2011; Doi
et al., 2012). Karklin & Simoncelli (2011) notably used a
non-linear model that not only learned ReLU like activa-
tion functions but also negative activation thresholds just
like the bias terms our networks learn. The model also
shows, in agreement with our findings, that increasing noise
causes the transition from Gabors to center-surround recep-
tive fields. Our work brings these findings into the field of
deep learning (e.g., using stochastic gradient descent, deeper
models, full images) and simplifies the model assumptions
by considering only training with noise applied to the input
data rather than inside the model, and without additional
activation penalties or weight norm constraints.

Finally, sparsely activated networks, when trained with
noise, are closely related to the Sparse Distributed Memory
(SDM) and Modern Hopfield Network associative memory
models that activate a sparse subset of neurons and handle
noisy queries (Kanerva, 1988; Krotov & Hopfield, 2016).
SDM in particular can be viewed as a de-noising autoen-
coder and can also be written as an MLP using the Top-k
activation function (Bricken et al., 2023; Keeler, 1988).

3. Results
Shallow Denoising Autoencoder - As a starting point, we
train a single hidden layer ReLU autoencoder, with additive
random noise ϵ sampled from a zero mean, isotropic Gaus-
sian with variance σ2. The corrupted datum x̃ = x + ϵ is
then fed through the encoder and decoder, and the training
objective is to reconstruct the noiseless input. For the single
hidden layer case of Eq. 2, the encoder and decoder weight
matrices and bias terms are: We ∈ Rm×n,be ∈ Rm,Wd ∈
Ro×m,bd ∈ Ro where n is the input dimension, o is output
dimension, and m is the number of neurons in the hidden
layer. Our loss function uses the mean squared error be-
tween the original image and reconstruction across our full
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dataset, X .

x̃ = x+ ϵ, ϵ ∼ N(0, σ2I)

z = Wex̃+ be

h = φ(z)

ỹ = Wd h+ bd (2)

L =
∑
x∈X

||x− ỹ||2.

where φ is the element-wise ReLU nonlinearity. We use
Kaiming randomly initialized weights (He et al., 2015) and
train until the fraction of active neurons converges.2 We
primarily use the CIFAR10 dataset of 50,000 images with
32x32x3 dimensions, training either on the raw pixels (flat-
tening them into a 3,072 dimensional vector) or latent em-
beddings of 256 dimensions, produced by a ConvMixer
pretrained on ImageNet (Trockman & Kolter, 2022; Rus-
sakovsky et al., 2015). All code and training parameters can
be found at: https://github.com/TrentBrick/
SparsityFromNoise.

To visually communicate the relation between noise vari-
ance and reconstruction quality, we visualize the reconstruc-
tions of shallow autoencoders trained directly on CIFAR10
pixels in Fig. 3. Unsurprisingly, the more noise that is
applied, the worse reconstruction performance is. This is
especially true for noise levels large enough to make a com-
peting image closer to the noisy input than the ground truth
input image.

Figure 3: Example CIFAR10 reconstructions. Example
reconstructions obtained at different noise levels for five
randomly selected images from the test data. The network at
σ ≥ 0.8 qualitatively transitions from fuzzy reconstructions
to more general image details.

We summarize our derivation of the three implicit loss terms
introduced by noisy training where additional steps can be
found in Appendix E. We then present empirical results
and investigations confirming that noisily trained networks
agree with our analysis.

2This happens after the train and test losses plateau

Theory - The key to our result is taking an expectation over
the noise (Bishop, 1995). Working with scalars for clarity:

Loss =
1

D

∑
x∈X

Eε

[
o∑
i

(xi − ỹi)
2

]

=
1

D

∑
x∈X

o∑
i

r2i − 2riEε[ξi] + Eε[ξ
2
i ] (3)

where D is the size of the dataset, ri = xi − ȳi, and ξi =
ỹi − ȳi is the difference between ỹi, the output produced by
the input with noise ε, and the hypothetical output without
noise ȳi. Keep in mind that because the input noise is
independent of the data, driving the error from noise ξi → 0
will maximize the quality of the reconstruction.

Figure 4: Intuition for why noise results in max margin
activations and sparsity. The columns reference the noise
free neuron being on (left, z̄j > 0) or off (right, z̄j ≤ 0).
Going row-wise: #1. Shows the noise distribution around
z̄j . #2. Post-ReLU, the truncated tail results in a positive
mean shift Eε[h̃j ] ≥ h̄j (black vs blue vertical dotted lines).
#3. The variance Eε[ηj ] depends on how much of the distri-
bution is positive.

Defining ξi =
∑m

j Wdi,j
ηj , where ηj = h̃j − h̄j , we

can write Eε[ξi] =
∑m

j Wdi,j
Eε[ηj ]. The noise penalty

ultimately results from the terms Eε[ηj ], to maximize the
activation margin, and Eε[η

2
j ], to both sparsify activations

and de-correlate the encoder weights. We show in Appendix
E that h̃ is a rectified Gaussian distribution (Salimans, 2016)
and Eε[ηj ] ≥ 0. Intuitively, this is because, as shown in
Fig. 4 going from the top row to the second row, the noise
creates a Gaussian distribution around the pre-ReLU neuron
activation z̄j which gets truncated where it crosses 0. This
destroys symmetry and results in three parts to the Gaussian,
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the two tails, one of which is now set to 0, and the center
which is still symmetric. Taking an expectation, the center
cancels with itself but only one of the tails on the positive
right hand side is non-zero resulting in the expectation be-
coming more positive. This positive shift is proportional to
how close z̄j is to the 0 activation threshold and given by
the integral:

Eε[ηj ] =

∫ ∞

t=|z̄j |
N(x; 0, ||wej ||σ)(x− t)dx ≥ 0, (4)

where N() is the PDF of a normal distribution. Turning to
our other term Eε[ξ

2
i ], we can expand it as:

Eε[(

m∑
j

Wdi,jηj)
2] = Eε[

m∑
j

W 2
di,j

η2j +

m∑
k ̸=j

Wdi,jWdi,k
ηjηk]

(5)

This results in integrals over the error terms summarized by
the bottom row of Fig. 4 and given formally in Appendix E.
There are three observations to be made from these terms:
1. The penalty when the neuron is on (h̄j > 0) is strictly
greater than when it is off. 2. When the neuron is off, z̄j
should be as negative as possible to avoid the noise flipping
it positive. 3. The cross term Wdi,jWdi,k

Eε [ηjηk] incen-
tivizes both minimizing the sum of the decoder weights
outer product ||wdi

wT
di
|| and de-correlating the encoder

weights. This is because the term is only present when both
neurons are turned on and the probability of this is reduced
as z̄j → −∞.

Because z̄j and z̄k receive the same noise sample they are
not independent and their correlation is a function of the
cosine similarity between their encoder weights wej and
wek . Therefore, a way to utilize both neurons in the model
(increasing model capacity) but avoid this cross term is by
making their encoder weights specialize to unique, localized
features of the data.

It is important to note that the encoder weights cannot in-
crease their activation margin by simply increasing their L2

norm. This is because, increasing their scale will linearly
increase noise as much as it does the activation. Therefore,
the way to both reduce noise and maximize the activation
margin is by having the weights specialize to distinct dataset
features, ignoring noise across most of the input while being
very activated by unique features. Combining this with the
neuron’s bias term being strongly negative is a good way to
ensure the neuron is not otherwise activated. These desider-
ata predict that neurons should have activation distributions
across the data distribution like in Fig. 1 where it has a neg-
ative mean and a long right hand tail (shown empirically in
Fig. 2). Ideally, the tail would in fact be a another mode re-
sulting in a bimodal distribution that straddles the activation
threshold, however, this depends upon the distribution of
the particular dataset features the neuron specializes to. We

now support the theoretical predictions from our derivation
with empirical results from training neural networks with
noise.

Symmetric Mean Zero Noise Induces Sparse Coding
Networks - Our headline Fig. 5 shows that a single hidden
layer ReLU network with 10,000 neurons learns to become
a sparse coding network with a smaller k number of neurons
activated by any input as the amount of noise increases.
This network was trained on the CIFAR10 embeddings to
mimick training within a deeper network.

While Fig. 5 only shows the mean number of neurons that
are active across all 50,000 CIFAR10 inputs per epoch, Fig.
6 shows the fraction of active neurons for every training
batch. This reveals that as noise increases, the variance
for how many neurons are active shrinks, making the mean
an accurate summary statistic. Note that there are no dead
neurons. Fig. 6 also shows the bias terms for each neuron
and the L2 norm of their encoder weights We. It is clear
that these values all synchronize to a value decided on by
the network and are responsible for the sparse k neurons
remaining active after the ReLU nonlinearity is applied.

Figure 5 also shows what looks like a delayed phase transi-
tion for the higher noise training to sparsify (e.g. σ = 10,
brown line). This delay arises from the network waiting
for the L2 norms of its encoder weights We to become
sufficiently small and bias terms sufficiently negative to si-
lence more than 50% of the neurons (bottom row of Fig.
6). Higher noise levels increase the L2 norm of the data,
which the weights must counteract to keep the neuron acti-
vations small enough so that bias term can have an effect
(each bias is initialized at 0 and can only become negative
so quickly). Appendix B confirms this explanation by ini-
tializing weights with smaller L2 norms that result in faster
sparsification.

Shared Bias Terms and Inhibitory Interneurons - In bio-
logical neural networks, sparsity is achieved via inhibitory
interneurons that suppress all but the most active neurons
from firing (Haider et al., 2010). Theoretical and empirical
results support their involvement in both silencing noise
and separating neural representations. Examples include
horizontal interneurons in the retina (Sterling & Laughlin,
2015) and Golgi interneurons in cerebellar-like structures
(Fleming et al., 2022; Lin et al., 2014; Xie et al., 2022).

To test the observed transition into a sparse coding network,
we modify the encoder bias from be to be1, where be is a
(shared) scalar and 1 is the all ones vector. This results in
near identical model performance and sparsity.

It is interesting that the bias terms of all the neurons con-
verge to a particular negative scalar and L2 norms of the
weights also converge to a different scalar value (Fig. 6).
This results in any given data point, producing activations
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Figure 5: The positive relationship between activation
sparsity and noise. The average fraction of neurons active
during each latent CIFAR10 training batch over 800 epochs.
Each line corresponds to training randomly initialized net-
works with different noise levels σ denoted by different
colors. We show the average of three different random seeds
and their standard error of the mean (not visible as variance
is so low). The higher noise levels take longer to sparsify
because the noise results in larger magnitude activation val-
ues that require more parameter updates to counteract.

that all fall within a particular range of values that is cali-
brated with the negative bias term such that only a sparse k
neurons are active for any given input.

This is analogous to the operation of an inhibitory interneu-
ron implementing a Top-k activation function. This dynamic
transition during learning into a Top-k network also avoids
complications associated with an explicit Top-k implemen-
tation (App. D) (Bricken et al., 2023; Makhzani & Frey,
2014; Ahmad & Scheinkman, 2019).

Biological Receptive Fields - Looking closer at the sparse
solutions found by our ReLU networks, we discovered that
for σ ≥ 0.3, neurons begin to form receptive fields reminis-
cent of V1 Gabor filters and center-surround retinal ganglion
cells (Sterling & Laughlin, 2015; Olshausen & Field, 1997).
Figure 7 shows the receptive fields of the 125 neurons most
activated (sorted from left-to-right and top-to-bottom) by a
noisy image of a car when σ = 0.8. The longer training pro-
gressed, the more the receptive fields resembled Gabor-like
and center-surround functions. See Appendix C for more
receptive fields at varying noise levels and over the course
of training.

Relations to Sparse Coding - Training with the L1 penalty
and enforcing a unitary L2 norm on all weights also resulted
in biological receptive fields (Fig. 14). The receptive fields
were all Gabors or textures with the latter likely existing due
to training on full CIFAR10 images instead of the typical
smaller 8x8 patches (Olshausen & Field, 1997; Karklin &
Simoncelli, 2011). The L2 weight normalization is crucial
to obtaining biological receptive fields; otherwise, weights

Figure 6: Noise induces the formation of sparse coding
networks. Shown column-wise are the fraction of neurons
that are active for each training batch (Left), the values of
each of the 10,000 bias terms (Middle) and the L2 norms
of the neuron encoder weights We (Right), all as a function
of training epochs. Each is shown for three different repre-
sentative noise levels (rows). These plots show each input
to the network and use the density of blue to represent how
many times a particular value occurs.

can change to avoid the activation penalty.3 Karklin &
Simoncelli (2011) showed, in agreement with our results,
that an increase in noise causes a transition from Gabors to
center-surround receptive fields. Both Gabors and center-
surround fields capture aspects of natural image statistics.
However, center-surround covers a smaller portion of the
image and we hypothesize that they are thus less sensitive
to noise, resulting in their emergence with noisy training.

Another difference between noisy training and L1 is how
sparsity emerges. Noisy training uses the synchronization
between its weight norms and negative bias terms without
killing off neurons while L1 uses negative neuron weights
to kill off most of its neurons. However, for reasons outlined
in Appendix I.2, we find that eventually our noisy training
will also kill off many neurons when using the Adam opti-
mizer. This means a different trajectory on the optimization
landscape is followed but that it is still possible to kill many
neurons without affecting performance. Finally, the use
of a shared bias term combined with the ReLU activation
function can be related to the lambda coefficient that scales
the sparse coding L1 activation penalty (see Appendix G).

Noisy Pre-Training Retains Model Sparsity - Investigat-
ing our noise-trained sparse networks, we find that even after
removing noise, the networks remain sparse. We train our
models in the same way as in Fig. 5 but at epoch 800 linearly
anneal the noise to zero over the next 800 epochs. Figure 8

3Interestingly, the L1 penalty is not completely avoided and
the network still sparsifies, however, it does not learn biological
receptive fields.
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Figure 7: Biological receptive fields form with noise. Net-
works trained on CIFAR10 pixels with σ = 0.8 Gaussian
noise. The most active 125 neuron receptive fields are re-
shaped into 32x32x3 and re-scaled so their values span the
pixel range [0, 255]. Neurons are sorted by activity lev-
els (top left is most active, going across rows then down
columns) for a randomly chosen car image. Starting at
σ ≥ 0.1 and particularly for σ = 0.8 (shown here) we ob-
serve both Gabor filters and center-surround receptive fields.

shows that the sparsity levels remain largely unperturbed.

For classification (Fig. 8, right), it is clear that while the
correlation between noise and sparsity holds, it is not quite
as strong. This is likely due to the fact that classification
only needs to cluster the data into the ten CIFAR10 labels,
meaning interference between neural representations is less
of an issue and denser representations can be used.

There is also no reduction in reconstruction or classification
performance for this single MLP setting.4 In fact, for classi-
fication both σ ∈ {0.1, 0.3} get 94.3% validation accuracy
instead of the baseline 93.4%, showing slightly better gen-
eralization while also being more sparse (66% for baseline
versus 55% for σ = 0.1 and 45% for σ = 0.3, see Appendix
H.1). Note that networks with σ ≥ 0.8 for reconstruction
and σ ≥ 3.0 for classification, annealing noise results in
dead neurons, presumably because the volume of the data
manifold shrinks, leaving some neurons behind. However,
these dead neurons neither harm task performance nor en-
tirely explain the sparsity levels. See Appendix I.3 for data
on the fractions of dead neurons.

Model Ablations and Generalization - We investigate
sparsity across experimental conditions in the single hidden
layer setting and find that they all reproduce our results
(Appendix H.1): (i) datasets: CIFAR10 pixels, CIFAR10
latent embeddings, MNIST, CIFAR100, and SVHN; (ii)
two noise distributions: Gaussian and Laplace; (iii) four
numbers of neurons: 100, 1,000, 10,000 and 100,000; (iv)
two training tasks: reconstruction and classification.

Additionally, we test multiple nonlinearities: sigmoid,
GELU, ELU, and Tanh activation functions (Hendrycks &
Gimpel, 2016). We find that the asymmetric ReLU, GELU,
and ELU activation functions generally produce sparsity
across datasets, albeit to slightly different extents while the
symmetric sigmoid and Tanh do not (Appendix H.1). This

4Deeper MLPs or Transformers also don’t show performance
costs. Only AlexNet does (Appendix J.3).

Figure 8: Noisy pretraining retains network sparsity. The
vertical purple lines denote the start and end of noise an-
nealing (epochs 800 and 1,600) where each noise level is
linearly decayed to σ = 0. For both reconstruction (left) and
classification (right) the networks remain highly sparse even
after noise is removed. Moreover, there is no noticeable
performance difference between any of the networks and
moderate noise models even perform slightly better than the
noise free baseline. We truncate the x-axis to start at epoch
600 (dotted vertical gray line) for the sake of clarity. The
classification networks continue to sparsify even when noise
annealing has started only because, unlike in the reconstruc-
tion task, the sparsity level did not converge within the first
800 epochs.

is consistent with our mathematical derivations where noise
is minimized by driving pre-activations to near-zero gra-
dient regions of the nonlinearity’s domain that correspond
to being “off” for the asymmetric ReLU, GELU, and ELU
but being either very “on” or very “off” for the symmetric
sigmoid or Tanh. On the CIFAR10 pixel dataset, none of
the activation functions become as sparse as ReLU but the
GELU networks do implement the same sparse coding con-
vergence shown in Fig. 6 and form biologically plausible
receptive fields like those of Fig. 7. It is important to note
that ReLU is the only truly sparse activation function with
the others requiring arbitrary activation thresholds close to
zero that are used to label neurons as “off”.

Optimizers and Dead Neurons - Exploring the effects of
different optimizers, batch sizes, and learning rates produced
a number of interesting findings. First, SGD – the only
optimizer without an adaptive learning rate – was found
to be capable of learning a non-sparse coding solution on
the latent CIFAR10 dataset with ∼50% neuron activity and
no updating of bias terms. This solution is only found on
the easier latent CIFAR10 dataset whereas the CIFAR10
pixels dataset requires all models to sparsify. However, it
is nevertheless interesting as it shows how the inductive
biases of noise can be counteracted by a combination of a
low learning rate and large batch size. We investigate this
finding further in Appendix H.2.

Second, Adam was found to produce dead neurons if we
continued training beyond the discovery of the sparse cod-
ing solution without any effect on training or validation loss.
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The final number of dead neurons created corresponded
to the complexity of the dataset with many more for the
latent CIFAR10 dataset compared to the raw pixels. We
hypothesize that neurons that are on less often are gradu-
ally killed off due to the “Stale Momentum” phenomenon.
Bricken et al. (2023) discovered that adaptive optimizers
like Adam not only update inactive neurons using an out-of-
date moving average but also create large gradient spikes
when they are re-activated after periods of quiescence (see
Appendix D of Bricken et al. (2023) for an investigation of
this phenomenon in greater detail).

Crucially, for our single-layer MLP results, the dead neu-
rons appear after the sparse coding solution is found and not
beforehand, which would be a misleading source of sparsity.
However, this was not the case for some of the deeper mod-
els outlined in the next section where dead neurons appear
early in training. Changing optimizer and increasing batch
size removed dead neurons but still had no effect on training
or validation loss (Appendix I.2).

Deeper Models - While our primary focus is on single-layer
MLPs, we extend the work to Transformers, AlexNet, and
three-layer MLPs.

Transformers - We train small GPT2 models (Radford et al.,
2019) with three blocks of interleaved Attention and Feed-
forward MLP layers on the WikiText-103 dataset for next
token prediction.5 In front of each MLP, we inject one of the
noise levels σ ∈ {0.0, 0.05, 0.1, 0.8, 1.5, 3.0, 8.0} to spar-
sify each of them. At training step 200k, we remove noise
to evaluate the effects of noisy pretraining.

Sparsity increased with noise and is retained even after noise
is removed. Furthermore, there are no dead neurons and
aside from the highest noise σ = 8, pre-training has no
significant effect on model performance (Appendix J.1).
The σ = 3 noisy pretraining results in layers that are ∼3x
more sparse in the first layer (17% for the baseline vs 6%),
∼9x for the second layer (18% vs 2%), and ∼3x (30% vs
13%) for the third layer.

AlexNet - Alexnet uses five layers of convolutions fol-
lowed by three MLP layers. We trained it on raw CI-
FAR10 image classification for 3.5k epochs with noise
σ ∈ {0.0, 1.5, 3.0, 5.0, 10.0} applied for the first 1,000
epochs and linearly annealed to 0 over the next 500 epochs,
leaving 2,000 epochs of noise-free training. Unlike the
Transformer, where we apply noise in front of every MLP
layer, we only apply noise to the input pixels.

Interestingly, upon removing the noise, the models recov-
ered perfect training accuracy like the baseline but failed
to recover validation accuracy, seeing ∼20% reductions

5These Transformers use the HuggingFace implementation that
includes LayerNorm and Residual connections.

(82% baseline vs ∼62%). The noisy models remained more
sparse but this was misleadingly caused by dead neurons.
We first hypothesized that these dead neurons harmed model
capacity resulting in poor validation accuracy. However, tak-
ing steps to reduce dead neurons I.2 still failed to improve
validation accuracy (Appendix J.3). We suspect that the
convolutional layers are responsible and incompatible with
noisy training but leave further investigation to future work.

Three-Layer MLP - Using 200 neurons per layer, we
train for 2,000 epochs on classifying the latent 256
dimensional CIFAR10 embeddings with noise σ ∈
{0.0, 0.1, 0.5, 1.5, 3.0, 5.0, 10.0}. Noise annealing starts
at epoch 500 and reaches σ = 0 by epoch 1,000. As in
AlexNet, we only apply noise to the input layer. The net-
works showed sparsity in proportion to noise in the second
and third layers but not the first.

Unlike with AlexNet but in line with the single-layer MLP
and Transformer, once noise was removed, every noisy
model saw equal or slightly improved (up to +1%) valida-
tion accuracy compared to the baseline (see Appendix J.2).
However, like with AlexNet, the sparsity was created by
dead neurons. Using SGD or SparseAdam as an optimizer
solved this problem and allowed for neurons to implement
the sparse coding solution.

Additional experiments injected noise only deeper inside
the model, just in front of the second or third layers to see
how this may affect the sparse coding solution. Interestingly,
we found that this allowed the model to “cheat” the noise
injection by making the L2 norm of its weights and bias
terms in the layers preceding the noise very large. This
produced very large activation magnitudes that reduced the
perturbative effect of noise.

4. Discussion
Our noise-free baselines show that neural networks do not
typically choose to become sparse. So why does noisy train-
ing induce our network to become a biologically plausible
sparse coding network? Fundamentally, the network should
want to use as many neurons as necessary to give the best
reconstruction of the input data as possible. However, it
must trade-off the increase in accuracy from pooling more
neurons with increased noise interference which favours
sparsity. An increase in noise will create more erroneous
low-level activations in neurons that must be ignored to max-
imize signal-to-noise ratio. Therefore, during noisy training,
the model must learn weight vectors to encode information
about the data distribution that can be separated from the
noise using only ReLU functions. In natural images, for
example, certain projections (e.g., with Gabor filters) have
high kurtosis which allows them to be easily distinguished
from noise via thresholding or “coring” (Simoncelli & Adel-
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son, 1996). Similarly, the encoding layer in our network
is learning such projections, so that thresholding performs
noise rejection while also producing sparse activations.

It is interesting that the number of dead neurons does not
have an effect on training or validation accuracy and appears
only after the model performance and sparsity have fully
converged. Bricken et al. (2023) found Stale Momentum
harmed continual learning but it may be a feature instead
of a bug when training within a single data distribution by
acting as a way to gradually prune less active, unnecessary
neurons.

The positive correlation between noise and sparsity is op-
posite to Transformer Attention and associative memory
models such as SDM and Hopfield Networks (Bricken &
Pehlevan, 2021; Krotov & Hopfield, 2016). Because these
models don’t store patterns in a distributed fashion across
neurons, they utilize a form of nearest neighbour lookup. In
the low noise regime, where the target pattern is nearby, they
use sparse activations to retrieve just the target. With more
noise, they resort to averaging over many more neurons and
patterns, losing accuracy but giving a solution in the correct
neighbourhood (see App. K).

Limitations - Regarding the biological plausibility of train-
ing with random noise, we acknowledge that some noise in
biological systems is dynamic and correlated with neural
activity. However, there is also uncorrelated random noise
in any biological process. For example, Brownian noise
that influences the diffusion of neurotransmitters (Sterling &
Laughlin, 2015; Doi et al., 2012). Moreover, for the inputs
trained on directly on image pixels, Gaussian and Poisson
noise are realistic for modelling photon noise on photore-
ceptors (Sterling & Laughlin, 2015). We also only provide
qualitative comparisons to biological receptive fields rather
than formally quantifying these, however, we restate that
it is impressive these receptive fields emerge from noisy
training alone.

Conclusion - We have shown that simple Gaussian noise
results in three implicit loss terms that produce sparse and
specialized receptive fields to capture high variance features
in the data distribution. Empirical results support our theory
and introduce a new approach to sparsify deep neural net-
works. The fact noise alone results in sparse coding without
an explicit sparsity penalty in the loss function suggests that
the primary driver behind sparse coding may be the handling
of noise with metabolic efficiency as an added benefit, rather
than the other way around. Combining noisy training with
other approaches to induce sparsity, including taking addi-
tional ideas from sparse coding, may result in even higher
degrees of sparsity with potential downstream benefits to
robustness, continual learning, interpretability, and compu-
tational efficiency. More broadly, this work builds a new
bridge between artificial and biological neural networks by

showing how noise can make them more similar.
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Appendix
A. Sparse Coding Overview
Sparse coding uses an overcomplete basis with an L1 activation penalty. The (flattened) image reconstruction can be written
as x̂ =

∑N
i aiwi, where wi is a column of weight matrix W , corresponding to the output weights of a neuron and ai is the

neuron’s activity. The objective function aims to minimize the reconstruction error while having sparse neuron activity:
argminW,a(x− x̂)2+λ

∑N
i |ai|. This sparse coding task is an example of a statistical model converging with neuroscience

because, in addition to producing sparse representations, the neuron weights learn to become Gabor filters (Olshausen &
Field, 1997).

B. Varying Weight Initialization Scale
Here we confirm the hypothesis that the reason higher noise models take longer to become sparse is because they need to
significantly shrink the weight norms of their encoder weights We. We test this by initializing We with weights of varying
scales and using σ = 3.0 noise. Figure 9 shows how networks with smaller weight initializations sparsify faster. In addition,
their bias terms become larger negative values and L2 norms fall until they reach values where the bias terms can effectively
implement sparsity.
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Figure 9: Varying Weight Initialization Scale. We use s to denote the amount we multiply our initialized weights by
before training. s = 1.0 (yellow) is the default Kaiming initialization (He et al., 2015).
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C. Receptive Fields
Here we show additional images of the receptive fields for networks trained with different amounts of noise (Fig. 11), the
queries used to activate these neurons (Fig. 10) and how the receptive fields look more biological as the network is trained
for longer (Fig. 12).

Figure 10: Queries used to activate the receptive fields. These queries were randomly selected. We use the cat (left) and
truck images (middle) with the relevant noise levels to activate the neurons shown in Fig. 11. We use the car image (right)
for the main text Fig. 7 and receptive field changes across epochs in Fig. 12.
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Figure 11: Receptive fields across noise levels. We show across all noise levels the ≤ 625 most active neurons for the truck
query (middle of Fig. 10). For 0.8 ≥ σ which activates fewer neurons, we use the extra space to also show the cat query.
Biological receptive fields start to appear when σ = 0.1 and can be seen most clearly when σ ∈ {0.3, 0.8, 1.5}.
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Figure 12: Receptive fields become more biological across epochs. We show how the most active receptive fields for
the car image (rightmost in Fig. 10) with σ = 0.3 evolves over the course of training to become more biologically similar.
The specific number of epochs used (3,000, 9,000 and 19,000) were chosen simply because of when the models were
checkpointed and re-loaded for additional training.
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D. L1 and Top-k compared to Noise
To test the performance, sparsity, and receptive fields of L1 and Top-k in comparison to noisy training, we trained 10,000
neuron models using Adam for 2,000 epochs to reconstruct CIFAR10 pixels. Figure 13 shows the relationships between
validation loss, number of dead neurons, and sparsity.

With the noisy models, we anneal noise from epochs 1000 to 1500 to give a more accurate final performance comparison.
This resulted in dead neuron like those shown in Appendix I.3 but in agreement with the reconstruction task of Fig. 8, did
not significantly change sparsity. We test noise levels σ ∈ {0.05, 0.1, 0.3, 0.8, 1.5, 3.0, 10.0}, L1 ∈ {1e− 04, 1e− 05, 1e−
06, 1e− 07, 1e− 08} (≥ 1e− 04 killed all neurons) and Top-k ∈ {3, 10, 30, 100, 300, 1000, 3000}. For Top-k we linearly
annealed the k value from 10,000 down to its final value within the first 500 epochs.

Across methods there is a clear Pareto frontier between sparsity and validation loss. For at least the CIFAR10 raw pixel
dataset and the Adam optimizer, there is also a relationship between sparsity and the number of dead neurons. However,
caution should be applied when interpreting the number of dead neurons, due sparse models being sensitive to choice of
optimizer, learning rate, and batch size (App. I.2) (Bricken et al., 2023). For Noise and Top-k, it is possible that more careful
annealing schedules would also prevent more dead neurons.

Figure 13: Relationships between validation reconstruction loss, sparsity, and dead neurons for Noise, L1 and Top-k.
There are a few observations here: (i) There is a Pareto frontier between sparsity and validation loss (left). (ii) The sparser
the activity, the more neurons die (right), however, Noise and L1 sparsity is not explained exclusively by neuron dead which
is largely true for Top-k.

Figure 14 shows the receptive fields for the different L1 coefficients and the formation of Gabor filters for the sparsest
(highest L1) models. In agreement with Karklin & Simoncelli (2011) there are no center-surround receptive fields that form
absent noise.

We tried to visualize the most active receptive fields for the Top-k model however, the most active neurons are completely
un-interpretable because they have very large and uniform magnitudes that when normalized look all white (some examples
in Fig. 15).6 This result, combined with the high number of dead neurons (Fig. 13) suggests a problem documented in
Bricken et al. (2023) where there are a few “greedy” neurons with much larger weight norms with activations always in the
top k. That work used L2 normalization of weights to ensure all neurons participated democratically. This need for weight
normalization is an issue with explicit Top-k algorithms that noisy training shows an ability to regulate on its own (e.g. Fig.
6). Instead of showing these all white receptive fields, we display 625 random receptive fields in Fig. 15. Interestingly, in
further agreement with Bricken et al. (2023), a number of these neurons learn to memorize specific training examples yet
this is with a reconstruction task instead of classification.

6Note that the decoder weights did exhibit meaningful structure such as spots of color and for larger values of k could reconstruct the
image (as supported by the competitive validation losses in Fig. 13). Therefore, we assume there are imperceptible differences in the
weights that still ensure a different subset of neurons fire for each data point.
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Figure 14: Receptive fields across L1 coefficients. We show the ≤ 625 most active neurons for a red car query (not shown).
The L1 coefficients go from highest to lowest, top to bottom, left to right 1e-04, 1e-05,1e-06, 1e-07, 1e-08. Gabor filters are
visible for the highest L1 coefficients of 1e-4 and 1e-5 (left column top and middle figures). However, no center surround
receptive fields are visible.
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Figure 15: Receptive fields across Top-k. We show a random subset of 625 neurons. All white receptive fields that have
large uniform weights which dominate in the Top-k are shown along with neurons that have memorized specific CIFAR10
datapoints. Examples of cars, planes, dogs, and frogs are all visible.
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E. Noise Analytical Derivation
Some proofs have used first order Taylor series approximations to show that noisy training minimizes the Frobenius norm
of the model’s Jacobian. Here, we avoid this approximation and are able to disentangle more nuanced effects that noisy
training implicitly has on the loss.

Loss =
1

D

∑
x∈X

Eε

[
o∑
i

(xi − ỹi)
2

]
(6)

(xi − ỹi)
2 = (xi − (ȳi + ỹi − ȳi︸ ︷︷ ︸

ξi

))2 = (xi − ȳi︸ ︷︷ ︸
ri

−ξi)
2 (7)

= (ri − ξi)
2 (8)

Loss =
1

D

∑
x∈X

o∑
i

r2i − 2riEε[ξi] + Eε[ξ
2
i ] (9)

where ri = xi − ȳi and ξi = ỹi − ȳi is the difference between ỹi, the output produced by the input with noise ε, and the
output without noise ȳi. Keep in mind that because the input noise is independent of the data, minimizing ξi → 0 will
maximize the quality of the reconstruction.

Figure 16: Graphical depiction of how each neuron in the hidden layer is affected by noise. Through our derivation we
focus on one output unit and trace the effects of noise back through the network.
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To understand the loss, we expand the operations performed on the noisy input for a single ξi:

ξi =

m∑
j

Wdi,j
ηj (10)

=

m∑
j

Wdi,j
(h̃j − h̄j) (11)

=

m∑
j

Wdi,j

([
wej (x+ ε) + bj

]
+
−
[
wejx+ bj

]
+

)
(12)

=

m∑
j

Wdi,j

[ o∑
k

Wej,k(xk + εk) + bj

]
+

−

[
o∑
k

Wej,kxk + bj

]
+

 (13)

Plugging this back into Eq. 9 full loss gives:

−2riEε[ξi] + Eε[ξ
2
i ] = −2ri

 m∑
j

Wdi,j
Eε[ηj ]

+ Eε

( m∑
j

Wdi,j
ηj)

2

 (14)

(15)

Expanding out the second term:

Eε

( m∑
j

Wdi,jηj)
2

 = Eε

 m∑
j

W 2
di,j

η2j +

m∑
k ̸=j

Wdi,jWdi,k
ηjηk

 (16)

And plugging these back into Eq. 9 again makes our full loss:

Loss =
1

D

∑
x∈X

o∑
i

r2i − 2ri

m∑
j

Wdi,j
Eε[ηj ]︸ ︷︷ ︸

#1 Max Margin

+

m∑
j

W 2
di,j

Eε

[
η2j
]︸ ︷︷ ︸

#2 Sparsity

+

m∑
j

m∑
k ̸=j

Wdi,j
Wdi,k

Eε [ηjηk]︸ ︷︷ ︸
#3 Specialization

(17)

The implicit loss terms of noisy training manifest in the three terms outlined by underbraces. Each of these terms should be
minimized for the network to remove the independent random noise and optimize its reconstruction.

#1 Max Margin - We first show that Eε[ηj ] ≥ 0 because h̃ is a rectified Gaussian meaning that Eε[h̃j ] ≥ h̄j . Before
applying the ReLU:

z̃j =

o∑
k

Wej,k(xk + εk) + bj (18)

=

o∑
k

Wej,kxk +Wej,kN(0, σ2) + bj (19)

∼ N(z̄, σ2||wej ||2) (20)

Giving us a Gaussian centered on the noise free point. With CDF(−|z̄|/σ2||wej ||2) the noise is sufficient to flip a neuron
from being on to off or vice versa. The mean of the rectified Gaussian will be z̄ +

∫∞
t=|z̄| p(ε)(ε− t)dε where the integral

defines the Gaussian region where symmetry is not applied (these positive values are not cancelled out by the opposite
values but instead by the threshold constant, t = |z̄|). See Fig. 17 for visual intuition on why this is the case. For curious
readers, the solution to this integral is:

Eε[h̃j ] = h̄j +
||wej ||σ√

2π
exp

(
−1

2

(
|z̄|

||wej ||σ

)2
)

+
|z̄|
2

(
erf

(
|z̄|

||wej ||σ
√
2

)
− 1

)
(21)
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Figure 17: ReLU truncates the Gaussian causing a positive shift in the mean. We provide intuition for why only the
positive right hand side of the tail remains resulting in the mean of the post activation noisy neuron being higher than it
would otherwise be. This increase in the mean is a function of how much noise causes the neuron to cross the activation
threshold.

The best way to minimize this error term in the loss is by setting h̄j to be maximally far from the ReLU 0 activation threshold.
It is also possible to shrink the weight norms of either ||wej || to reduce noise variance or Wdi,j

to reduce the weighting of
this loss term (refer back to Eq. 17) however, these are both in conflict with maximizing the reconstruction.

#2 Sparsity - Eε

[
η2j
]
= Eε

[
(h̃j − h̄j)

2
]

is the deviation between the noisy and noise free activation, squared which
depends if z̄j > 0. Providing Fig. 18 for visual intuition, if z̄j > 0:

Eε

[
(h̃j − h̄j)

2
]
= z̄2j

∫ −z̄j

−∞
p(ε)dε+

∫ ∞

−z̄j

p(ε)ε2dε (22)

= z̄2j CDF(
−z̄

σ2||wej ||2
) +

∫ ∞

−|z̄j |
p(ε)ε2dε (23)
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Else if z̄j ≤ 0:

Eε

[
(h̃j − h̄j)

2
]
= 0 ∗

∫ |z̄j |

−∞
p(ε)dε+

∫ ∞

|z̄j |
p(ε)ε2dε (24)

=

∫ ∞

|z̄j |
p(ε)ε2dε (25)

Figure 18: The variance of the noise and its contribution to the error. Graphical intuition behind Eqs. 23 & 25 .This
term incentivizes neurons to be as negative as possible to avoid noise turning the neuron on.

This reveals that the penalty for a neuron being on (h̄j > 0) is strictly greater than being off. Not only is there an additional
positive term but also the shared ε2 integral is over a 2|z̄j | larger interval spanning [−|z̄j |,∞] instead of [|z̄j |,∞]. This
means that neurons noise free activation (z̄j) should be as negative as possible.

Note that When the neuron is on, there will be a tradeoff between the max margin Eε[η] term that wants the neuron to be
as far away from the ReLU threshold at zero as possible and the sparsifying Eε[η

2], which wants to be as close to zero as
possible.

#3 Specialization - The cross term Eε [ηjηk] is closely related to covariance:

Eε [ηjηk] = Eε

[
(h̃j − h̄j)(h̃k − h̄k)

]
.

Where it is not a true covariance due to the non-linearity that means h̄ is not the mean of h̃. In seeking to minimize
covariance, the model is incentivized to both sparsify activations and specialize its weights. Sparsity comes from the fact
that this term is only present when both neurons are turned on and the probability of this occurring is reduced the more
negative z̄j is. Specialization comes from h̄j and h̄k not being independent because they receive the same noise input. This
means their covariance is a function of receptive field similarity. Therefore, one way to utilize both neurons in the model
(increasing model capacity for the reconstruction task) but minimize the covariance term is by having weights that respond
to different parts of the input space where there are independent noise values (e.g. Fig. 11).

We confirm that our networks minimize noisy activation covariance by taking five different CIFAR10 images, applying 100
different noise patterns to them at a range of noise levels and storing their activations to compute Eε [ηjηk] where h̄ is the
noise free image. The results are shown in Figure 19.

We found it difficult to quantify our notion of weight specialization which is qualitatively very distinct. For example,
comparing the random weights of σ = 0 to the highly structured biological receptive fields of σ = 0.8. However, computing
pairwise cosine similarity, L1 or L∞ norms all give higher values for the random weights displayed by σ = 0. While two
Gabor filters may only fire for very specific features with the remainder of their weights all close to zero, these zero weights
still result in less orthogonality than random weights covering the entire space of the image. Future work should develop
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Figure 19: Noise Trained models minimize neuron activation covariance. We inject noise at different scales (shown by
each line) into networks trained at different noise levels defined by the x-axis. We compute Eε [ηjηk] for 100 different noise
patterns and average over ten queries. Independent of the noise level injected, neuron activation covariance is inversely
proportional to noise. The y-axis is on a log scale. Networks are trained on CIFAR10 pixels.

some notion of structured orthogonality to better quantify the interpretable specialization weights that networks trained with
noise display.

Loss Term Effects - The way our networks empirically (Fig. 2) decide to achieve all three of these objectives is by setting
neuron activations to be very negative by default with only a sparse few jumping to very large activations that all for the
reconstruction task to be solved. This is implemented by having large negative bias terms and weights that specialize to
distinct dataset features. This maximizes the signal to noise ratio by ignoring noise across most of the input while being very
activated by unique features, therefore not firing all the time and firing strongly when it does. In other words, the weights
focus on capturing high variance regions of the data distribution while being unique from other neurons.

Relation to Sparse Coding’s L1 Penalty - Because we want to minimize Eε[ξ
2
i ] and have shown Eε[η

2
i ] ≥ 0 we can loosely

relate this loss to the L1 activation penalty of sparse coding by seeking to minimize:
∑m

j W 2
di,j

|Eε[η
2
j ]|. This linear sum of

neuron activations has the same flavour as an L1 penalty.

F. Taylor Series Approximation Derivation
Here we trace the reasoning of Poole et al. (2014), correcting incorrect results and furthering the analysis, to show how a
similar conclusion can be reached via a Taylor series approximation. For convenience, we repeat the nonlinear autoencoder
network equations (Eqn. 2):

x̃ = x+ ϵ, ϵ ∼ N(0, σ2I)

z = Wex̃+ be

h = φ(z)

ỹ = Wd h+ bd

L =
∑
x∈X

||x− ỹ||2.

For small noise ϵ with mean 0 and variance σ2, the first-order Taylor series expansion is x̃ ≈ x+J(x)ϵ, where J(x) def
=∇xȳ

is the input-output Jacobian at x. The expected loss over dataset X (averaging over the noise) can then be written as (Bishop,
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1995; Rifai et al., 2011):

Eϵ[L] ≈
∑
x∈X

||x− ȳ||22 + σ2
∑
x∈X

||J(x)||2F (26)

The noise regularizes the Jacobian of the network, proportional to the noise’s variance. In our toy autoencoder model, the
Jacobian is:

J(x)
def
=∇x ȳ

= ∇x

(
Wd φ(We x+ be) + bd

)
= ∇x φ(We x+ be) W

T
d

=
(
∇xWex

)
diag(φ′(Wex+ be))W

T
d

= WT
e diag(φ′(Wex+ be))W

T
d

Pausing for a moment, Poole et al. (2014) reach a slightly different conclusion (their Equation 7). Two hints that their
Equation 7 cannot be correct is (1) that it multiplies two incompatible matrices together, with shapes hidden-by-hidden and
input-by-input, and (2) that the noise’s variance appears squared even though the noise itself only appears squared (recalling
that a variable squared produces its variance, not its variance squared). Continuing along, for commonly used non-linearities
e.g. ReLU, GeLU, the nonlinearity’s domain can be split in two: regions with non-zero gradients, and regions with (near) 0
gradients. We can split the Jacobian’s squared Frobenius norm into two terms based on these gradient regions:

||J(x)||2F =
∑
ij

[J(x)]2ij

=
∑

ij:φ′
h(z) ̸=0

(
[WT

e ]ih[diag(φ′(z))]hh[W
T
d ]hj

)2
+

∑
ijh:φ′

h(z)=0

(
[WT

e ]ih [diag(φ′(z))]hh︸ ︷︷ ︸
=0

[WT
d ]hj

)2
︸ ︷︷ ︸

=0

(27)

Minimizing the Jacobian’s squared Frobenius norm can be accomplished in one of two non-mutually-exclusive ways: (1)
minimise the (gradient-scaled) squared dot product of the encoder and decoder weights, and/or (2) drive the pre-activations
z to regions where the nonlinearity’s gradient is 0. Because the first term is a squared error, it is likely to contribute at least
some error, but the second term contributes exactly zero error, meaning pushing all pre-activations z into the zero-gradient
region is highly advantageous. However, the reconstruction loss creates an opposing pressure by incentivizing the network
to faithfully recapitulate the uncorrupted data. To balance these competing demands, a compromise is struck: keep enough
units “on” to reconstruct the data, then for the weights in use, regularize them, and for the weights not in use, drive the
corresponding activations to the regions where the nonlinearity gradient is 0.

We note that while the math here describes a denoising autoencoder with a single hidden layer, the same reasoning holds
generally for feedforward networks on generic losses: the loss forces the network to propagate useful information in the
data, while the noise implicitly regularizes the network’s Jacobian’s squared Frobenius norm, and since the Jacobian will
always have the form of the pre-activation times derivative of nonlinearity times gradient of network output with respect to
post-activation, moving the pre-activation to regions where the nonlinearity’s derivative is zero will help minimize the loss.
Because most non-linearities’ zero-gradient regions coincide with where the nonlinearity is “inactive” (e.g., < 0 for ReLU),
the network’s activations become sparse.

This understanding yields two predictions: First, pre-activations of different non-linearities should increasingly concentrate
in zero-gradient regions of the nonlinearity as noise variance σ2 increases, for both standard non-linearities (e.g., ReLU,
GELU) and non-standard non-linearities (e.g. horizontally reflected ReLU, sat(x) def

=max(min(x, 0.5),−0.5)). We test
whether increasing noise drives pre-activation values towards zero-gradient regions of different non-linearities (Fig. 20).

Our second prediction is that, the same noise-inducing-sparsity result should hold qualitatively in nontrivial deep feedforward
neural networks. We train nontrivial deep feedforward, convolutional and transformer architectures on standard benchmark
tasks, validating that increasing noise drives increasing sparsity (App. J).
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Figure 20: Noise drives neural activations to near-zero gradient regions of the nonlinearity’s domain.

G. Relation between λ coefficient and noise bias terms
The use of a shared bias term combined with the ReLU activation function can be related to the lambda coefficient that
scales the sparse coding L1 activation penalty. Assuming that sparse coding learns orthogonal weights, this results in the
optimal solution for neuron activity ai when non-negative to be ReLU(wT

i x − λ), where wT
i x is the value obtained by

projecting the data onto the neuron output weights wi (Ba, 2020; Gregor & LeCun, 2010). Intuitively, if the values of our
target image x reconstructed by aiw

T
i are too small, it is better for ai = 0 than to predict x with the threshold for this

tradeoff given by λ. This −λ term behaves as an activation threshold in an analogous fashion to the bias terms of our noisily
trained network converging to a single shared negative value.

H. Ablations
H.1. Single MLP Layer Ablations

Figure 21 shows that the relationship between sparsity and noise holds across numbers of neurons, datasets, and noise
distributions.

For CIFAR10, we train each model for 3,000 epochs and present the mean number of active neurons for GELU (Fig. 22)
and sigmoid (Fig. 23). We don’t show the latent CIFAR10 results as sigmoid and GELU are fully dense with no sparsity
when the 0.0001 activation threshold is used. Neither of these networks are as sparse as the ReLU network. Also neither
network creates sparsity through “dead” neurons.

While we just show the mean active neurons here, both solutions look like those of Fig. 6 with the neurons for all inputs
converging to a Top-k solution where the bias terms converge to a single negative scalar and calibrate with the encoder L2

weight norms.
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Figure 21: Training ablations. The positive correlation between noise and sparsity is robust to (a) neuron counts, (b)
datasets, (c) noise distributions.

Figure 22: The GELU network sparsifies with noise when trained on CIFAR10. The GELU network closely resembles
the ReLU network by sparsifying (but not to the same degree). It also forms biological receptive fields. We use the arbitrary
0.0001 absolute activation threshold to label if a neuron is on or off.
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Figure 23: The sigmoid network also sparsifies with noise for CIFAR10. While sigmoid sparsifies in proportion to noise,
it does not form biological receptive fields and remains less sparse than GELU or ReLU. This is likely explained by there
being a zero gradient positive region (see Fig. 20).

Figure 24: Alternative noise distributions produce the same increasing sparsity with increasing noise variance. Here,
multiplicative “Salt and Pepper” noise causes the same increasing sparsity with increasing noise probability.
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H.2. SGD Learning Rate and Batch Size

We discover that SGD is able to avoid the sparsifying effects of noise when either its batch size is large enough or its learning
rate is low enough as shown in Figure 25. We hypothesize that both of these observations are explained by the random noise
being cancelled out by the central limit theorem. Formally, let g∗ be the true gradient update on the full dataset and ĝ be
the minibatch gradient that approximates g∗ with some error ϵb caused by our minibatch: g∗ = ĝ + ϵb. In the presence of
random noise, we can de-compose our minibatch gradient further into ĝ = ĝb + ĝn to represent the gradient from the data
and the gradient from the noise. This gives us:

g∗ = ĝb + ĝn + ϵb.

Because ĝn comes from independent random variables with mean 0 and finite variance, by the Lyapunov Central Limit
Theorem, as our batch size b → ∞ the variance of ĝn will shrink by σ/

√
b to zero (Blitzstein & Hwang, 2019). This means

that as our batch size increases, the contribution of noise to the gradient converges to zero; the same reasoning can also be
applied to the noise ϵb from the batch size.

Reducing the learning rate approximates increasing the batch size by allowing for the noise terms of the gradient step
aggregate across multiple steps. This can only occur if each gradient step is sufficiently small and the optimization landscape
sufficiently smooth such that each intermediate gradient step does not cause the model to deviate from its noise free
optimization trajectory.

As an additional ablation we tried giving our bias terms a separate, higher learning rate, hypothesizing that without a
parameter specific adaptive optimizer the learning rate may be too small for the bias terms that have larger values than the
weights. However, even with a large parameter sweep we found that having a different bias term learning rate did not have
an effect.

When we test SGD without any noise, we find that neither modifying the batch size nor learning rate have any sparsity effect.
This supports our hypothesis that increasing batch size or reducing learning rate helps to reduce the random noise injection,
rather than having a smaller batch size introducing a new source of noise. However, there is evidence that with a very high
learning rate and a sustained plateau in training loss, the minibatch can be a source of label noise that induces sparsity as
analyzed by Andriushchenko et al. (2022).

Therefore, using SGD with a low enough learning rate or large enough batch size removes the effects of noising training.
This removes the implicit noise loss terms and results in a model that is not sparse.7

The fact a non-sparse solution to the de-noising problem exists is on the surface problematic for our statements about
sparse coding being better at modelling the noisy data. However, we found that this result did not generalize to the more
challenging raw CIFAR10 pixels dataset. Even using the full batch of 50,000 images and a low learning rate resulted in a
sparse coding solution that corresponds to better train and validation loss.

More broadly, the fact that SGD with low learning rate and large batch size can have different inductive biases may generalize
to other problems and findings. For example, we are aware of SGD with a low learning rate failing to produce networks with
weights that could be interpolated between using Git Rebasin (Ainsworth et al., 2022).

7One caveat is that the models retain their initial 50% sparsity rather than becoming fully dense as they do when there is no noise
present.
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Figure 25: SGD Sparsity as a function of Batch Size and Learning Rate. We train 1,000 neurons in a sin-
gle hidden layer on the reconstruction task for latent CIFAR10 with three noise amounts (one for each plot).
We allow the lower learning rates to have more gradient steps where the [learning rate, training steps] pairs are:
[0.001, 800k], [0.01, 600k], [0.1, 400k], [1.0, 200k] and we confirm that all runs have converged to the same training loss
and there are no dead neurons. To make the sweeps more efficient, we randomly sample 5,000 datapoints out of the 50,000
from the CIFAR10 256 dimensional latent embeddings and use this same subset for all experiments. The only anomaly is in
the bottom subfigure (σ = 8) on the bottom row where batch size is 128 and learning rate is 1.0 and the model is denser
than other batch sizes. This anomaly is robust to random seeds and deserves further investigation.
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I. Dead Neurons
I.1. Stale Momentum

In order to avoid Stale Momentum where the moving average are lagging and noisy for sparse models, SGD must be
used but this removes the very advantages that adaptive optimizers were developed for – namely faster convergence that is
more robust to hyperparameter choices. As a result, we introduce SparseAdam which was originally developed to make
backpropagation more computationally efficient for highly sparse models in the “Sparse Layers” library (PyTorch, 2022).
We implemented SparseAdam to work with dense layers and found that it reduces the number of dead neurons about as
effectively as SGD for the three layer MLP (Fig. 26). We believe this is because, while it prevents inactive neurons from
being updated by an out of date moving average, it fails to prevent gradient spikes when neurons are re-activated after a long
period of quiescence.

The AlexNet (Sec. J.3) and Deep MLP (Sec. J.2) appendices both have futher analysis of the different optimizers effect on
dead neurons and sparsity. Meanwhile, the next section I.2 provides further analysis on when and why Adam results in dead
neurons.

(a) (b)

(c) (d)

Figure 26: Adam leads to more dead neurons than Sparse Adam or SGD in the later layers of Deep MLPs. We
compare the final fraction of dead neurons for Adam and SGD (top row) and Adam and Sparse Adam (bottom row) on the
full CIFAR10 latent embedding dataset on a classification task. We train each model for 2,000 epochs and anneal all initial
noise levels down to zero between epochs 500 and 1,000. We leave out Layer 0 because there are no dead neurons for any of
optimizers or noise levels.
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I.2. Dead Neurons from Adam

We investigated more deeply when and why Adam produces dead neurons resulting in a few conclusions:

• Adam kills fewer neurons when it has a larger batch size – this is because more neurons are activated by at least one
batch element resulting in a non-stale gradient update (Fig. 27).

• Adam kills neurons only after it has minimized its training and validation losses and converged to its sparse coding
solution (Fig. 28).

• The total number of dead neurons is a function of dataset complexity. This includes the size of the dataset and the
intrinsic dimensionality of the datapoints (Fig. 29).

• Neurons die more as a function of epochs through the whole dataset rather than the number of gradient steps (Fig. 30).

As shown in Fig. 27, there are fewer dead neurons with a larger batch size or smaller learning rate. This is because a large
enough batch size results in more neurons being activated at least once and receiving a gradient update that is not stale.

Figure 27: Larger batches reduce dead neurons with Adam. Across noise levels, the larger the batch size the fewer the
dead neurons. All models achieve the same validation accuracy. The models are sparser in direct proportion to the number
of neurons. We don’t show the first layer (Layer 0) because it does not have any dead neurons. For these experiments the
learning rate is always 0.0001.

Figure 28 shows how Adam starts to kill neurons only after both training loss and the number of dead neurons have
converged. Figure 29 shows how dataset size and complexity determines the number of dead neurons Adam eventually
kills. These two plots show different datasets (latent CIFAR10 (top) and raw CIFAR10 pixels (bottom)) and we vary the
total size of the dataset D where the full dataset size is D = 50, 000. The two main observations are: (i) the less complex
latent CIFAR10 dataset results in many more dead neurons, almost independently of D; (ii) the larger D is, the more slowly
neurons are killed off and the lower the total number is.

Finally, neurons die as a function of epochs rather than gradient steps. It is more than just the size of the dataset and noise
introduced by the batch size but also the number of passes through the full dataset suggesting a relationship with the novelty
of datapoints (Fig. 29 ). In Fig. 30 we show how the smallest batch size of 2 kills neurons very quickly as a function of
epochs but very slowly as a function of gradient steps because it takes much longer to iterate through the dataset of 5,000
latent CIFAR10 images.
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Figure 28: AlexNet Killing Neurons Long After Training Loss and Sparsity Converge. We use the same settings as Fig.
5 with σ = 3.0 on the full CIFAR10 latent dataset but 1,000 neurons instead of 10,000 and for a much larger number of
epochs. We label the 800th epoch which shows the point where both training loss (top left) and mean number of active
neurons (top right) have converged. Meanwhile, the fraction of dead neurons is only just about to go from ∼0 to 92%
(bottom right). Validation loss looks the same as train loss.

34



Emergence of Sparse Representations from Noise

Figure 29: Adam Dead Neurons as a Function of Dataset Complexity and Size. We train Adam keeping all parameters
including batch size constant and set σ = 3.0, only varying the size of the dataset denoted by D for latent and raw CIFAR10.
The runs with smaller dataset sizes did not complete as many gradient steps due to an issue with model checkpointing but the
results are sufficient for a few observations: (i) the 256 dimensional latent CIFAR dataset allows for much higher numbers
of dead neurons than the 3072 dimensional raw CIFAR dataset. (ii), the smaller the dataset, the faster dead neurons are
created. (iii), the latent CIFAR10 dataset is sufficiently simple that ∼92% of neurons eventually die almost independently of
dataset size. For clarity, we smooth our lines in the bottom figure.
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Figure 30: Neuron dead as a function of epochs vs gradient steps. Using the random 5,000 latent CIFAR10 images
(keeping the subset constant) and σ = 3.0 with Adam we vary the batch size from full batch B = 5, 000 (green) to B = 2
(dark blue). The top row shows that the smallest batch sizes kill neurons fastest as a function of epochs. The bottom row
shows the opposite where the smallest batch sizes die slowest as a function of gradient steps. These results suggest that both
larger batch size and more data diversity are important for slowing neuron death.
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I.3. Dead Neurons from Noise Annealing

Here we show the number of dead neurons that are present because of noise annealing for reconstruction and classification
(Fig. 31). This source of dead neurons is separate from using the Adam optimizer (App. I.2).

Figure 31: Dead Neurons during the reconstruction (top) and classification (bottom) tasks. Reconstruction (top) during
noise annealing, the higher noise levels σ ≥ 0.8 see a number of dead neurons. However, this does not full explain their
sparsity levels and on this trivial task it does not hurt their reconstruction performance. Classification (bottom) here there are
fewer dead neurons, they only appear for σ ≥ 3.0 and they only appear close to when the noise is entirely turned off. Again
these results do not fully explain the sparsity amounts found.
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J. Deeper Models
J.1. Transformer

Here we provide the training and validation performance for the Transformer as well as sparsity values. This is after 1.7
million training steps when the models look to have converged. Table 1 shows all of the data and Fig. 32 provides a visual
depiction of how sparsity levels change for each layer as a function of noise. Only the largest noise level σ = 8 leads to a
slight reduction in model performance.

Noise σ Layer 1 Layer 2 Layer 3 Train Loss Val. Loss Val. Acc

0.0 0.171 0.184 0.296 2.790 3.048 0.437
0.05 0.173 0.178 0.291 2.782 3.038 0.437
0.1 0.164 0.165 0.287 2.793 3.029 0.438
0.3 0.172 0.117 0.252 2.769 3.025 0.439
0.8 0.155 0.056 0.186 2.759 3.002 0.442
1.5 0.133 0.046 0.148 2.778 3.009 0.441
3.0 0.058 0.022 0.137 2.830 3.011 0.440
8.0 0.013 0.001 0.055 3.073 3.134 0.420

Table 1: Transformer Sparsity and Performance Levels - We show the mean number of active neurons for each batch
across all three layers in addition to the noise levels and training loss obtained at the end of 1.7 million training steps on the
WikiText-103 dataset. After 200k training steps the noise levels are annealed down to zero. Only the highest noise level
σ = 8 has a noticeable hit to performance while σ = 3 has a minor hit to performance while being significantly sparser.

Figure 32: Transformer Layer Sparsity. Only the most sparse model σ = 8.0 has a real hit to train and validation loss.
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J.2. Deep MLP

Here we provide the validation accuracies for the Deep MLPs in Table 2 and use Fig. 33 to show how sparsity levels and
dead neurons change for each layer as a function of noise, comparing the different optimizers.

Optimizer Noise Train Acc Val. Acc

Adam 0.0 1.0 0.915
SGD 0.0 1.0 0.920
SparseAdam 0.0 1.0 0.915

Adam 0.1 1.0 0.925
SGD 0.1 1.0 0.923
SparseAdam 0.1 1.0 0.924

Adam 0.5 1.0 0.926
SGD 0.5 1.0 0.924
SparseAdam 0.5 1.0 0.927

Adam 1.5 1.0 0.924
SGD 1.5 1.0 0.928
SparseAdam 1.5 1.0 0.923

Adam 3.0 1.0 0.917
SGD 3.0 1.0 0.923
SparseAdam 3.0 1.0 0.921

Adam 5.0 1.0 0.916
SGD 5.0 1.0 0.919
SparseAdam 5.0 1.0 0.917

Adam 10.0 1.0 0.915
SGD 10.0 1.0 0.923
SparseAdam 10.0 1.0 0.915

Table 2: Deep MLP Validation Accuracy is better for small amounts of noisy pretraining but independent of dead
neurons - We show the final validation accuracies for the Deep MLP models that have been noise annealed for the CIFAR10
latent embeddings classification task. Models with small amounts of noise do slightly better than the baseline without noise.
There is no significant difference in performance between noise levels or optimizers, even though they kill off different
numbers of neurons (Fig. 33).

The SGD optimized model only has dead neurons in its final layer and is almost as sparse as Adam which has the most dead
neurons. This is accomplished by the SGD model using negative bias terms in its first layer and then negative weights in its
later layers to ensure fewer neurons are activated. This is in contrast to Adam and SparseAdam which only create sparsity
through dead neurons. It is worth pointing out that SparseAdam does use negative bias terms to create sparsity and never has
dead neurons before noise is annealed, afterwards the neurons die and become the source of sparsity while the bias terms
become positive.
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(a) (b)

(c) (d)

(e) (f)

Figure 33: Deep MLP Layer Sparsity and Dead Neurons across Optimizers. Adam (top row) produces the most sparse
models but this is almost entirely a consequence of dead neurons. Meanwhile, SGD (bottom row) is the only model to avoid
dead neurons in its second layer (orange line) and implement a sparse coding solution analogous to the results from our
single layer MLP. Note the different ranges for the y-axes.
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J.3. AlexNet

Here we provide the validation accuracies for AlexNet in Table 3 and use Fig. 35 to show how sparsity levels change for
each layer as a function of noise. Interestingly, even for the smallest noise (σ = 0.5) the noisy pretraining significantly hurts
validation accuracy but not training accuracy (the model always overfits in every case to get 100% train accuracy). The noise
was found to produce dead neurons like in the DeepMLP setting. Believing these dead neurons may explain the decrease in
validation accuracy, we trained the network using SGD and SparseAdam. While this solved the dead neuron problem (see
Fig. 34), Table 3 shows no increase in validation accuracy. Testing AlexNet with Average instead of Max Pooling also did
not alleviate the noise performance gap.

Optimizer Noise Train Acc Val. Acc

Adam 0.0 1.0 0.815
SGD 0.0 1.0 0.710
SparseAdam 0.0 1.0 0.820

Adam 0.5 1.0 0.614
SGD 0.5 1.0 0.575
SparseAdam 0.5 1.0 0.618

Adam 1.5 1.0 0.540
SGD 1.5 1.0 0.559
SparseAdam 1.5 1.0 0.551

Adam 3.0 1.0 0.597
SGD 3.0 1.0 0.568
SparseAdam 3.0 1.0 0.602

Adam 5.0 1.0 0.613
SGD 5.0 1.0 0.593
SparseAdam 5.0 1.0 0.618

Adam 10.0 1.0 0.648
SGD 10.0 1.0 0.625
SparseAdam 10.0 1.0 0.647

Table 3: AlexNet Validation Accuracy Damage From Any Noisy Pretraining - We show the final train and validation
accuracies for the AlexNet models across optimizers. The SGD and Sparse Adam reductions in dead neurons do not translate
into validation accuracy improvements.

In this light, it is interesting that the Transformer is immune to dead neurons and that noise does not affect final validation
accuracy. This is particularly surprising given that noise is injected at every Transformer MLP layer instead of just at the
first layer. We hypothesize this may be due to the Transformer’s residual connections and Layer Normalization that occurs
right before the MLP weights to rescale the activations (Ba et al., 2016).

We also experimented with injecting noise after the five convolutional layers, just before the MLP layers. However, this
also harmed validation accuracy (albeit to a lesser extent). The noisy pretraining results in validation accuracies from 76%
(for σ = 0.5) down to 70% (for σ = 10) compared to the baseline 82%. Like with injecting noise at the deeper layers of
the MLP, doing so caused the convolutional layers to become more active than they would otherwise be and this may have
contributed to the reduced performance.
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Figure 34: AlexNet Dead Neurons By Optimizer. SGD (left plot) results in no dead neurons while SparseAdam (right)
creates fewer dead neurons in all but one case (all points aside from one are below the dotted line y = x). Dots correspond
to the layer and we plot all noise levels on the same plot.
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Figure 35: AlexNet Sparsity and Dead Neurons By Layer. We see the same effect upon noise annealing here as with the
DeepMLP where the first layer starts sparse but then becomes significantly more dense than baseline while the later layers
all remain more sparse. Note the different y-axes scales for each plot.
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K. Why Transformer Attention, Hopfield Nets, and Sparse Distributed Memory show the inverse
relationship between sparsity and noise

For Transformer Attention, the difference is that it has direct access to every input within its receptive field but no further.
This provides for high accuracy when dealing with these inputs (keys) but an inability to store long term memories. As
a result, in the low noise regime, it is optimal for Attention to implement a form of nearest neighbour lookup, activating
few keys. When there is more noise, especially noise that moves the query so far from its target key that it is no longer
the nearest, it is optimal to activate more keys and average over them, losing accuracy but giving a solution in the correct
neighbourhood.

By contrast, SDM can store long term memories. However, it has the same negative correlation between noise and sparsity
as Attention because it attempts to store full patterns with maximum fidelity within each neuron instead of distributing the
features of each pattern across neurons (Kanerva, 1988). This results in SDM attempting to also perform a nearest neighbour
lookup, activating only as many neurons around the noisy query as is necessary to activate those storing the target pattern.

Our sparse coding networks in this work take the opposite approach where they learns subcomponents that generalize across
images instead of all the features of specific images. As a result, they always want to use as many neurons as possible, but
must reduce the number used in the presence of noise to avoid interference.
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