
Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

Dongqi Cai 1 Yangyuxuan Kang 1 Anbang Yao 1 Yurong Chen 1

Abstract

This paper presents Ske2Grid, a new representa-
tion learning framework for improved skeleton-
based action recognition. In Ske2Grid, we de-
fine a regular convolution operation upon a novel
grid representation of human skeleton, which is
a compact image-like grid patch constructed and
learned through three novel designs. Specifically,
we propose a graph-node index transform (GIT)
to construct a regular grid patch through assigning
the nodes in the skeleton graph one by one to the
desired grid cells. To ensure that GIT is a bijection
and enrich the expressiveness of the grid represen-
tation, an up-sampling transform (UPT) is learned
to interpolate the skeleton graph nodes for filling
the grid patch to the full. To resolve the problem
when the one-step UPT is aggressive and further
exploit the representation capability of the grid
patch with increasing spatial size, a progressive
learning strategy (PLS) is proposed which decou-
ples the UPT into multiple steps and aligns them
to multiple paired GITs through a compact cas-
caded design learned progressively. We construct
networks upon prevailing graph convolution net-
works and conduct experiments on six mainstream
skeleton-based action recognition datasets. Exper-
iments show that our Ske2Grid significantly out-
performs existing GCN-based solutions under dif-
ferent benchmark settings, without bells and whis-
tles. Code and models are available at https:
//github.com/OSVAI/Ske2Grid.

1. Introduction
With the rapid development of 3D motion capturing sys-
tems and advanced real-time 2D/3D pose estimation al-
gorithms, skeleton-based action recognition has attracted
increasing attention from both industry and academia. The

1Intel Labs China. Correspondence to: Anbang Yao <an-
bang.yao@intel.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

𝑤2 𝑤3 𝑤4

𝑤5 𝑤1 𝑤6

𝑤7 𝑤8 𝑤9

𝑤𝑖1

𝑤𝑖2

𝑤𝑖3

𝑤2

𝑤8

𝑤4

𝑤7

𝑤3

𝑤5

𝑤9

𝑤6

GIT

Up-sampled
Convolution kernel of size 3×3

Convolution operation in GCNs

𝑣𝑖

𝑣𝑗

𝑣𝑖

𝑣𝑗

𝑤𝑗1

𝑤𝑗2

𝑤2

𝑤3

𝑤4,6,7,8,9
𝑤5

𝑣𝑖

𝑣𝑗

𝑤2 𝑤3 𝑤4

𝑤5 𝑤1 𝑤6

𝑤7 𝑤8 𝑤9

Convolution operation in our Ske2Grid

Grid patch 𝐷5×5

Padded

Padded

𝑤1

𝑤1

UPT

Figure 1. Comparison of convolution operations in GCNs and in
our Ske2Grid. Graph convolution (top-left) typically convolves
every node with their neighboring nodes using specific kernels.
In Ske2Grid, we construct a regular grid patch for skeleton repre-
sentation via up-sampling transform (UPT) and graph-node index
transform (GIT). Convolution operation upon this grid patch con-
volves every grid cell using a shared regular kernel. It operates
on a set of grid cells within a squared sub-patch which may be
filled by a set of nodes distributed remotely on the graph, achiev-
ing a learnable receptive field on the skeleton for action feature
modeling (top-right). In the figure, the up-sampled skeleton graph
is visualized assuming the locations of the original graph nodes
being unchanged for a better illustration.

performance of a skeleton-based action recognition sys-
tem depends on how well it can model the discriminative
skeleton feature interactions among the active coordinat-
ed human joints when performing an action. Traditional
methods (Ke et al., 2017; Hu et al., 2019; Qin et al., 2021)
focus on designing hand-crafted features to model spatial
structure and temporal dynamics of skeleton sequences, and
use well-designed classifiers to recognize human actions.
Early deep learning based methods (Du et al., 2015; Song
et al., 2017; Li et al., 2018a) consider skeletons in videos as
temporal vector sequences and use deep recurrent networks
such as RNN and LSTM to model the skeleton dynamic-

1

https://github.com/OSVAI/Ske2Grid
https://github.com/OSVAI/Ske2Grid

Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

s. In recent years, convolutional neural networks (CNNs)
and graph convolution networks (GCNs) have become the
mainstream learning models in skeleton-based action recog-
nition research. CNN-based methods (Liu et al., 2017; Yan
et al., 2019; Duan et al., 2022c) usually convert skeleton to
image-like input and use 2D or 3D CNNs for end-to-end
feature extraction. GCN-based methods (Yan et al., 2018;
Li et al., 2019; Peng et al., 2020) treat skeleton as an irreg-
ular graph and learn to aggregate the skeleton features in
terms of the pre-defined topology of graph. More recently,
hypergraph-based models, such as Hao et al. (2021), also
adopt a skeleton graph structure. Unlike conventional graph-
based models that usually ignore non-physical dependencies
among joints of the human body, hypergraph-based models
address this gap by introducing local and global hyperedges
to encode higher-order feature dependencies. Besides, new-
ly emerging transformer-based models, such as Zhang et al.
(2021), Plizzari et al. (2021) and Zhou et al. (2022), still
retain a skeleton graph structure and treat each joint of the
human body as a token, and then use spatial and temporal
self-attention operators to capture feature dependencies.

Despite the prevalence of CNNs and GCNs based solutions,
improved representation learning for skeleton-based action
recognition is still a challenging problem. On the one side,
CNN-based solutions benefit from the regular convolution
for efficient feature modeling. However, they are restricted
to image-like input, to which the conversion from skeleton
typically ignores the critical topological information of hu-
man joints and would sacrifice the compactness of skeleton
data to some extent. For example, Luvizon et al. (2018)
directly encodes the temporal dimension, the joints and the
coordinates as different axis of the image-like tensor. In
the recent work of Duan et al. (2022c), skeleton is repre-
sented as the stacked heatmaps of joints obtained by 2D
pose estimators. Besides, the image-like input may then be
fixed during training, reducing the flexibility of skeleton in
representing action patterns. On the other side, GCN-based
solutions benefit from the utilization of topological relations
among skeleton joints for feature modeling. However, they
rely on the irregular topological structure and are forced to
learn different shaped and separate convolution kernels node
by node, lacking similar properties of feature aggregation
in formulation. Furthermore, the receptive field of graph
convolution usually covers a set of adjacent nodes with pre-
defined distances to the target node, degrading the efficiency
for modeling feature interactions especially among human
joints that are actively coordinated yet topologically remote.

Motivated by these two observations, we formulate a new
skeleton representation called Ske2Grid for action recogni-
tion with the expectation to inherit the non-Euclidean spatial
layout of the graph skeleton while enabling the use of reg-
ular convolution as in the Euclidean image space but with
a compact shape. Specifically, we investigate the problem

from two technical perspectives. (1) from representation
perspective, how to convert the skeleton from an irregular
graph to a regular image-like grid patch while maintaining it-
s critical topological representation capability and compact-
ness for action recognition? (2) from network perspective,
how to guarantee that the learned grid patch has improved
representation abilities over the skeleton graph for action
representation? To the first question, we design a novel grid
representation of skeleton constructed and learned through
three novel designs. Specifically, we construct a regular grid
patch through allocating the nodes in the skeleton graph one
by one to the desired grid cells using a graph-node index
transform (GIT), inspired by the recent work (Kang et al.,
2023) for 3D human pose estimation. To ensure that GIT is
a bijection and enrich the expressiveness of the grid repre-
sentation, we propose an up-sampling transform (UPT) with
regulation of the graph topology to interpolate the skeleton
graph nodes for filling the grid patch to the full. To further
exploit the representation capability of the grid patch with
increasing spatial size under which the one-step UPT is ag-
gressive and tends to lose its effectiveness, a progressive
learning strategy (PLS) is proposed for decoupling the UPT
into multiple steps and aligning them to multiple paired GIT-
s through a compact cascaded design learned progressively.
The resulting grid representation differs from the existing
image-like skeleton inputs in the following ways: (1) the
grid patch is filled by up-sampled graph nodes with its layout
reflecting the topological relations of skeleton features for
action modeling; (2) the grid patch representation is much
more compact in size compared with images (e.g. 5×5×3).
Instead of being down-sampled as in CNNs, the spatial size
of our grid patch is fixed during representation learning to
maintain the compact skeleton semantics; (3) the GIT and
UPT can be jointly learned with the Ske2Grid convolution
network in an end-to-end manner, enabling the enriched
topological connections on the skeleton being automatically
learned conditioned on the target action recognition dataset.
To the second question, we define a regular convolution
operation upon our grid patch for efficiently modeling the
skeleton feature interactions. As shown in Figure 1, with
the above novel designs for Ske2Grid, we can readily use
the regular convolution with the square-shaped convolution
kernel to learn discriminative feature interactions by natu-
rally sharing the kernel to all grid nodes. Benefiting from
the cascaded structure of multiple UPT and GIT pairs facili-
tated by the PLS, the resulting grid patch incorporates extra
nodes interpolated from the original graph nodes, which
further enables the regular convolution to capture various
ordered topological relations, significantly strengthening the
learning ability of the regular convolution on the grid patch.

Our Ske2Grid could be readily applicable to popular GCN
architectures for improved skeleton-based action recogni-
tion, without modifying their built-in temporal modules. We

2

Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

construct networks through replacing spatial graph convolu-
tion in prevailing GCNs with regular 2D convolution upon
our grid patch representation, and conduct experiments on
six mainstream skeleton-based action recognition dataset-
s. Experiments show that our method significantly outper-
forms many existing GCN-based solutions under different
settings, demonstrating the effectiveness of our method in
learning improved skeleton features for action recognition.

2. Related Works
Skeleton-based action recognition with CNNs. Inspired
by the research progress in image-based tasks, it is natural to
convert the graph-structured skeleton into regular image-like
input and take the advantage of image recognition pipelines
to handle skeleton-based action recognition task. This line
of works obtains a sequence of 2D array via combining
skeleton features spatially and temporally, and then directly
transforms the 2D arrays to gray images. For example, Ke
et al. (2017) transforms skeleton into three clips consisting
of several frames represented by computed spatial temporal
features, and uses a deep CNN to model long-term tem-
poral dynamics of skeleton. Luvizon et al. (2018) directly
encodes the temporal dimension, the joints and the coor-
dinates to be different axis of a pseudo image, and uses a
CNN-based multitask framework for pose estimation and
action recognition. Duan et al. (2022c) takes the stacked
heatmaps of skeleton joints obtained by 2D pose estimators
as input, and utilizes 3D convolutional neural networks to
recognize actions, which refreshes the state-of-the-art on
many skeleton-based action recognition benchmarks. These
solutions benefit from the regular 2D/3D convolution for
efficient image feature modeling. However, the conversion
from skeleton to image-like input usually ignores the critical
topological information of human joints and would sacrifice
the compactness of skeleton data to some extent. Besides,
the image-like input is usually fixed during training. Unlike
them, we construct and learn a compact grid representation
for skeleton, and its layout reflects the topological relations
of human joints for action modeling.

Skeleton-based action recognition with GCNs. Skeleton
can be naturally represented by an irregular graph, in which
nodes represent joint coordinates and edges naturally con-
nect joints in human bodies. GCNs generalize CNNs to
graphs of arbitrary structures which are mainstream learn-
ing models to handle graph-structured skeleton data. ST-
GCN (Yan et al., 2018) extends GCNs to a spatial-temporal
graph model and designs convolution kernels for skeleton
modeling, which is the first work that achieves satisfactory
performance on large-scale skeleton-based action recogni-
tion benchmarks. However, it uses a pre-defined topology
according to human body structure, which is fixed during
both training and testing phases. A lot of following methods

improve ST-GCN through constructing skeleton graph with
dynamic topologies (Duan et al., 2022a; Shi et al., 2019;
2020). Many recent methods improve the receptive field of
graph convolution through incorporating extra contextual
information. AS-GCN (Li et al., 2019) introduces an A-link
module to capture action-specific latent dependencies and an
S-link module to represent higher-order node dependencies
of skeleton graph. CA-GCN (Zhang et al., 2020) introduces
a context term for each vertex by integrating information
from the entire skeleton graph to enlarge the receptive field
of graph convolution. Shift-GCN (Cheng et al., 2020) pro-
poses local shift graph operation and non-local shift graph
operation to provide flexible receptive fields for spatial and
temporal graphs. CTR-GCN (Chen et al., 2021) proposes
to learn a shared topology and channel-specific correlations
simultaneously, obtaining channel-wise topologies which
improve feature aggregations in graph convolution. Despite
the advancement of these solutions, they still model the ir-
regular skeleton graph using standard graph convolution. As
discussed in the previous section, we define a regular convo-
lution operation upon our learnable grid patch for efficiently
modeling the skeleton feature interactions.

3. Method
In this section, we first revisit the graph convolution from
a general perspective, then define the convolution opera-
tion upon our grid patch along with three core designs in
Ske2Grid, and finally introduce the construction of network.

3.1. Graph Convolution

Considering a skeleton graph G = {V,E,A}, which con-
sists of a set of nodes V with |V | = N , a set of edges E
with |E| = M and the adjacency matrix A ∈ {0, 1}N×N .
If there is an edge between nodes vi and vj , the entry
A(i, j) = 1; otherwise, A(i, j) = 0. We represent the cor-
responding feature of the graph as X ∈ RN×C , where C
denotes the skeleton feature dimension, and xi ∈ RC×1

denotes the feature vector for node i. The output value of
graph convolution operation for a single channel at the node
i can be written as

fout(vi) =
∑

vj∈B(vi)

wi,jxj , (1)

where B(vi)={vj |d(vj , vi) ≤ D} denotes the neighbor set
of node i; d(vj , vi) is the minimum length of any path from
node j to node i, and normally D is set to 1; wi,j ∈ R1×C

is a weight vector specific to node i for computing the inner
product with the corresponding input feature xj , which is
indexed within the neighbor set B(vi). This convolution
operation models the feature interactions among a set of
neighboring nodes defined by the graph topology. However,

3

Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

(a)

(b)

UP-sampling
Transform (UPT)

Graph-node Index
Transform (GIT)

Ske2Grid
Convolution Network

Input
skeleton graph

Output
predicted action

Reshape ∙

𝐷𝐻×𝑊

𝑁 joints 𝐻𝑊 nodes

UPT GIT UPT2 GIT2
𝐷𝐻′×𝑊′

Reshape ∙Input
skeleton graph

𝑁 joints 𝐻𝑊 nodes 𝐻𝑊 nodes 𝐻′𝑊′ nodes Output
predicted action

First-stage transforms Second-stage transforms

Ske2Grid
Convolution Network

Figure 2. (a) The overall framework of Ske2Grid: the input skeleton graph with N joints is converted to a grid patch of size H×W using a
pair of up-sampling transform (UPT) and graph-node index transform (GIT), which is then fed into the Ske2Grid convolution network
for action recognition. (b) Ske2Grid with progressive learning strategy (PLS): the input skeleton is converted to a larger grid patch
(H′ >H,W′ >W) using two-stage UPT plus GIT pairs. The well-trained Ske2Grid convolution network for the first-stage grid patch as
in (a) is re-used to initialize the network for the second-stage grid patch as in (b), and the first-stage UPT plus GIT pair is fixed during
training. PLS is used in a cascaded way to boost the performance of our Ske2Grid convolution network with increasing grid patch size.

the improved expressiveness of the skeleton action represen-
tation lies in its capability of modeling the discriminative
feature interactions among a set of actively coordinated
joints when performing an action, which may require the
neighbor set activated in convolution operation to be flexible
and expressive.

3.2. Convolution in Ske2Grid

It is intuitive to make the neighbor set in graph convolution
be learnable to achieve improved expressiveness for action
representation. However, the convolution kernel is specific
to the target node and is difficult to model the correlations
among a changing set of nodes. To solve this problem, we
define a regular convolution operation in Ske2Grid.

Inspired by the recent progress in 3D human pose estima-
tion (Kang et al., 2023), we construct a regular grid patch
DH×W with H and W being the spatial height and width,
respectively. It consists of a set of grid cells di,j filled by
specific nodes from the skeleton graph. The feature of the
grid patch is denoted as Y ∈ RH×W×C , and yi,j ∈ RC×1

is the feature vector at the spatial location (i, j). Denote the
size of a regular convolution kernel as K×K. Similar to
Equation (1), the output value of our convolution operation
upon a grid cell at the spatial location (i, j) for a single
channel is defined as

fout(di,j) =
∑

dm,n∈BD(di,j)

wkym,n, (2)

where BD(di,j) is the neighbor set of the grid cell di,j ,
which is the K×K sub-patch centered on di,j containing K2

grid cells; the set {wk ∈ R1×C |k=1, ...,K2} constitutes a
squared-shaped convolution kernel for computing the inner
product with features in the neighbor set of the grid cell di,j
as shown in Figure 1. In sharp contrast to graph convolution,

the square-shaped convolution kernel in our Ske2Grid is
shared everywhere on the grid patch, which is key to model
a learnable set of grid cells within a regular neighbor set.
Now, the question is how to learn a decent layout of the grid
patch, making the neighboring grid cells be expressive for
action representation.

3.3. Graph-node Index Transform

As mentioned above, a grid patch is constructed through
assigning the nodes in the graph one by one to the grid cells.
The problem is how to fill each grid cell with an appropriate
graph node for improved feature interaction modeling. We
propose to learn a mapping from the indexes of nodes in G
to the spatial indexes of grid cells in DH×W , which is called
graph-node index transform (GIT).

The GIT from N graph nodes to the grid patch DH×W is
defined by a binary matrix Φ ∈ {0, 1}HW×N , in which
each row φi ∈ {0, 1}N is a one-hot vector indicating the
index of the one selected node in the graph. That is, a grid
cell di is filled with a specific graph node vj only if φi,j= 1.
With this definition, the feature of the grid patch DH×W can
be obtained by

Y = reshape(Φ ·X), (3)

where “·” is a row-by-column multiplication, with each row
of the product matrix being the selected graph node feature.
The reshape(·) operation rearranges the output of Φ·X into
an H×W grid patch representation. Thus, the layout of the
grid patch can be learned along with Φ.

However, directly learning a binary matrix will cut off the
backward gradient flow, which makes the training non-
differentiable. To address this problem, we use straight-
through estimator (STE) (Courbariaux et al., 2015) for pa-
rameter update. Specifically, we introduce a real-value

4

Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

matrix Ψ ∈ RHW×N to assist the learning of Φ. During
training, we obtain Φ through binarizing Ψ row by row
according to

φi,j =

{
1 if ψi,j = max(ψi,·),

0 otherwise.
(4)

Specifically, only one element in each row of Φ is set to one,
at its position where the maximum value in the correspond-
ing row of Ψ appears. In the backward, continuous gradient
is used to update the real-value matrix Ψ, instead of Φ. In
principle, by introducing Ψ as a continuous approximation
of Φ, it enables the searching for a decent layout of grid
patch for improved action expressiveness.

3.4. Up-sampling Transform

To avoid information loss during the conversion from skele-
ton to grid representation, the number of grid cells should
be set to no less than the number of skeleton joints. Then all
the skeleton joints can be assigned to the grid patch through
making the GIT a surjection. However, the number of grid
cells in the target grid patch is typically larger than the num-
ber of graph nodes, which means there exist some extra grid
cells need to be filled. When filling these grid cells with
duplicated graph nodes, such an optimization problem is not
trivial, potentially degrading the expressiveness of the grid
representation. To further guarantee that GIT is a bijection,
we introduce an up-sampling transform (UPT) to interpolate
skeleton graph nodes to fill the grid patch to the full. The
feature map of the up-sampled graph is obtained by

X ′ = Λ ·X, (5)

where Λ ∈ RHW×N denotes the up-sampling matrix and
X ′∈RHW×C is the up-sampled feature. Considering that
the original topology of skeleton graph reveals intuitive
coordinated movements of joints when performing an action,
we further propose to incorporate the prior adjacency matrix
into Equation (5) to regulate the up-sampling process

X ′ = (Λ ·A) ·X. (6)

The utilization of the adjacency matrix A encourages the
UPT to interpolate new nodes using adjacent nodes along
existing edges, which facilitates our skeleton-to-grid rep-
resentation with the association of topological priors for
improved action representation.

After the UPT, our grid representation can be obtained using
Equation (3) with the up-sampled feature and one-to-one
index mapping. In principle, the main idea behind the UPT
is learning to interpolate the skeleton graph nodes for the

improved expressiveness meanwhile ensuring that the fol-
lowing GIT for constructing our grid patch is a bijection.
Generally, GIT can be made as a bijection in various ways.
In our case, we simply add a non-repetitive constraint to the
binarization process in Equation (4) through binarizing Ψ
row by row with a simple greedy search.

3.5. Progressive Learning Strategy

With the GIT and UPT, the skeleton input can be converted
into a grid patch of any size. In image-based tasks, a CNN
model tends to show improved performance when increas-
ing the resolution of the input. However, the performance
improvement is marginal when directly increasing the size
of grid patch in our method. We conjecture that there exists
a mismatch between the one-step transform pair of UPT and
GIT and the straightforward learning strategy, leading to
slightly worse performance than the original skeleton graph
when the one-step UPT is aggressive.

To solve this problem, we propose progressive learning strat-
egy (PLS), a novel optimization scheme, which decouples
the aggressive one-step UPT into multiple steps and aligns
them to multiple paired GITs through a compact cascaded
design learned in a progressive manner. In this way, the grid
representation is gradually enriched through increasing the
size of grid patch progressively.

Specifically, we first learn to convert the skeleton graph to a
base grid patch DH×W . Then, the previous-stage transform
pair of UPT and GIT for the base grid patch is reused to
convert the skeleton to a larger grid patch DH′×W ′ where
H ′>H,W ′>W . This process can be formally defined as

Y = reshape(Φ2 · (Λ2 · (Φ · ((Λ ·A) ·X)))), (7)

where Φ ·((Λ ·A) ·X) constructs the base grid path DH×W
using the first-stage transform pair of UPT and GIT as de-
fined by Equation (6) and Equation (3); Λ2∈RH′W ′×HW is
the second-stage UPT for up-sampling the grid patch from
the base size of H×W to the target size of H ′×W ′, and
Φ2 ∈RH′W ′×H′W ′

is the second-stage GIT for allocating
the up-sampled features to the target grid patch.

The transform pair of UPT and GIT learned in the first stage
is fixed when learning the second-stage transform pair of
UPT and GIT. Furthermore, the Ske2Grid convolution net-
work maintains the same structure during different training
stages, and thus the network trained for the first-stage grid
patch is also used as a pre-trained model to initialize the
network training in the second stage. These two aspects
constitute the PLS, which can be naturally used in a cascad-
ed way consisting of multiple transform pairs of UPT and
GIT to boost the performance of the Ske2Grid convolution
network. Thanks to the lightweight designs of UPT and

5

Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

GIT, they introduce negligible extra computation cost to
the Ske2Grid convolution network during inference. The
cascaded structure of multiple UPT and GIT pairs facilitated
by the PLS incorporates extra nodes interpolated from the
original graph nodes and enables the regular convolution to
capture various ordered topological relations, strengthening
the representation learning ability of our grid patch.

3.6. Network Construction

With the above designs for grid representation learning, con-
volution operation in our Ske2Grid can model a learnable
set of enriched grid cells for improved action representa-
tion. The grid patch is fed into a Ske2Grid convolutional
network for action recognition, as shown in Figure 2. By
jointly training the UPT, GIT and the Ske2Grid convolution
network in an end-to-end manner facilitated with the PLS,
the enriched topological connections on the skeleton can be
automatically learned conditioned on a target action recogni-
tion dataset. To make our Ske2Grid be applicable to popular
GCN architectures without modifying their built-in temporal
modules, we construct the Ske2Grid convolution network
upon prevailing GCNs through simply replacing the spatial
graph convolution with the convolution operation upon our
learnable grid patch, without changing the structure of the
backbone network and their temporal modules.

4. Experiments
4.1. Datasets

Six mainstream datasets are considered in the experiments.

NTU-60 (Shahroudy et al., 2016) is the first large-scale
multi-modality skeleton-based action recognition dataset. It
contains 56,880 skeleton action sequences which are per-
formed by 40 volunteers and categorized into 60 classes.
There are two popular validation protocols for this dataset:
cross-subject (XSub) and cross-view (XView).

NTU-120 (Liu et al., 2019) is the extended version of NTU-
60. It contains extra 57,367 skeleton sequences from 60 ex-
tra action classes. Two popular validation protocols for this
dataset are: cross-subject(XSub) and cross-setup (XSet).

FineGym99 (Shao et al., 2020) is a newly released fine-
grained action recognition dataset with 29,000 videos of 99
gymnastic action classes. HMDB51 (Kuehne et al., 2011)
and UCF101 (Soomro et al., 2012) are two early popular ac-
tion recognition datasets collected from the web. HMDB51
contains 6,700 videos from 51 classes and UCF101 contains
13,000 videos from 101 classes. Diving48 (Li et al., 2018b)
contains over 18,000 video clips of competitive diving ac-
tions, spanning 48 fine-grained dive classes.

Skeletons for all datasets. Regarding the experiments us-
ing 2D estimated skeleton, we use the 2D poses on these

Graph Convolution

Temporal Convolution

x

(a)

Ske2Grid Convolution

Temporal Convolution

x

(b)

Figure 3. The difference between the ST-GCN block (a) and our
ST-GCN? block (b).

datasets provided by PYSKL (Duan et al., 2022b) for fair
comparison, which are detected by HRNet (Sun et al., 2019)
pre-trained on COCO (Lin et al., 2014). While there’re
ground-truth (GT) human bounding boxes on FineGym99,
the human detector for all the other datasets is Faster-RCNN
(Ren et al., 2015) with ResNet50 (He et al., 2016) as back-
bone. For the experiments on NTU-60 and NTU-120 using
3D GT skeleton, we also use the preprocessed 3D poses on
these datasets provided by PYSKL for fair comparison.

4.2. Implementation Details

Regarding skeleton input, we use 2D joint coordinates plus
the estimated scores as joint features for 2D skeleton input,
and use 3D joint coordinates for GT 3D skeleton input,
and thus C = 3 in both cases. For the initialization of the
skeleton to grid representation transforms, we use random
initialization for Ψ in the GIT. To better enjoy the regulation
from the adjacency matrix in the UPT, Λ is initialized as an
identity matrix of size N×N cascaded by a random matrix.

Regarding network construction, we choose the prevailing
ST-GCN (Yan et al., 2018) as backbone network and modify
the basic block through replacing the spatial graph convo-
lution with regular 2D convolution upon our grid patch, as
shown in Figure 3. We denote this modified network as
ST-GCN?. The kernel size is 3×3, unless otherwise stated.
The transform pair of UPT and GIT for DH×W is added be-
fore the action recognition network, formulating our basic
Ske2GridH×W framework.

For fair comparisons, we use the popular comprehensive
skeleton-based action recognition toolbox PYSKL (Duan
et al., 2022b) to implement all the experiments. There are
mainly two training settings. For the experiments conducted
to explore the effects of our core designs, we use the vanil-
la training strategy of PYSKL as in ST-GCN (Yan et al.,
2018) for fair and clean comparisons, in which each model
is trained for 80 epochs with the learning rate decayed by
10 at 10th and 50th epochs respectively. For the main ex-
periments to explore the capability of Ske2Grid as shown in
Table 2,Table 3, Table 7 and Table 8, we use the latest com-
mon experimental setups in PYSKL, in which each model
is trained for 80 epochs with the cosine schedule of learning
rate. In both settings, the initial learning rate is set to 0.1,
the batch size is 128, the momentum is set to 0.9, the weight

6

Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

Table 1. Effects of the three key designs for learning the grid rep-
resentation in our Ske2Grid using NTU-60 XSub benchmark.

METHOD GIT UPT PLS TOP-1 ACC.(%)

ST-GCN − − − 85.25

SKE2GRID5×5

√
× × 84.70√ √

× 86.20

SKE2GRID6×6

√
× × 84.04√ √

× 85.29√
×

√
85.61√ √ √
87.87

SKE2GRID7×7

√
× × 85.93√ √

× 86.35√
×

√
85.96√ √ √
88.26

SKE2GRID8×8

√
× × 84.81√ √

× 85.81√
×

√
86.11√ √ √
88.55

SKE2GRID9×9

√
× × 84.10√ √

× 84.95√
×

√
86.60√ √ √
88.37

decay is 5×10−4, and the Nesterov momentum is used for
the optimizer. We report the validation top-1 accuracy in
all the experiments except for Table 8. When comparing
with state-of-the-art methods, we also follow the common
practice as in Duan et al. (2022c) to report the testing top-1
accuracy for fair comparison, which is slightly better than
the validation performance due to data augmentation.

4.3. Effects of Core Designs in Ske2Grid

We first conduct experiments to analyze the effects of our
three core designs for learning our grid representation, in-
cluding the UPT, GIT and PLS. We compare the perfor-
mance of ST-GCN? using different combinations of these
three designs for learning the grid patch, as shown in Table 1.
The “PLS” setting indicates training the Ske2GridH×W pro-
gressively from Ske2Grid(H−1)×(W−1) in a cascaded manner.

Ske2Grid of “GIT-only” fills the grid cells with all the dis-
tinct graph nodes and the remaining grid cells without the
repetitive constraint. As shown, there is no obvious correla-
tion between the performance and grid patch size. Together
with “PLS”, the performance improves progressively with
the increase of the grid patch size, but the performance gain
is not significant. This is probably due to the uncertainty
brought by the redundant grid cells.

With the “GIT & UPT” setting, the performance of Ske2Grid
becomes stably improved over the baseline. However, when
the grid patch grows to D9×9, the performance drops below
the baseline. In this case, the number of grid cells is about 5
times the number of joints in the skeleton input. It becomes
challenging to interpolate the skeleton graph for satisfactory
expressiveness using only one-step UPT.

Combining all the three designs, our Ske2Grid consistent-
ly outperforms the baseline with significant performance

Table 2. Main results of our Ske2Grid on six datasets using 2D es-
timated skeletons. We report the performance of our Ske2Grid8×8.

METHOD DATASET TOP-1 ACC.(%) ∆TOP-1(%)

ST-GCN

NTU-60
XSUB

88.23 +3.70OURS 91.93
ST-GCN XVIEW

96.63 +1.12OURS 97.75
ST-GCN

NTU-120
XSUB

83.56 +1.24OURS 84.80
ST-GCN XSET

83.84 +3.69OURS 87.53
ST-GCN FINEGYM99 91.17 +0.65OURS 91.82
ST-GCN UCF101 69.23 +3.83OURS 73.06
ST-GCN HMDB51 47.25 +1.12OURS 48.37
ST-GCN DIVING48 38.32 +5.79OURS 44.11

Table 3. Performance comparison of our Ske2Grid using 3D GT
skeleton inputs. We report the performance of Ske2Grid9×9.

METHOD DATASET TOP-1 ACC.(%) ∆TOP-1(%)

ST-GCN

NTU-60
XSUB

87.62 +0.63OURS 88.25
ST-GCN XVIEW

95.08 +0.64OURS 95.72
ST-GCN

NTU-120
XSUB

81.13 +1.60OURS 82.73
ST-GCN XSET

83.63 +1.44OURS 85.07

margin. And the performance improves progressively with
the increase of the grid patch size, yielding 3.3% top-1 mar-
gin when using D8×8, well demonstrating the effectiveness
of our Ske2Grid in learning improved skeleton features
for action recognition. In the following main experiments,
we train our Ske2Grid models using all the three designs.
Considering the training overhead, we use the progressive
learning strategy cascaded up to 3 times (4 stages), e.g. from
D5×5 to D8×8 by a step of 1 for 2D estimated skeleton input.

4.4. Main Results

Table 2 shows the main results of our Ske2Grid on six action
recognition datasets using D8×8. As can be seen, our method
consistently outperforms the baseline on all datasets, show-
ing its good generalization ability for improved skeleton-
based action recognition. The performance margin on Fine-
Gym99 is relatively small among these datasets. This maybe
because the 2D estimated skeleton on this dataset is based
on GT human bounding boxes which is more accurate, com-
pared to the other datasets. The performance improvement
from our grid representation becomes marginal. This con-
jecture is further verified by the large top-1 accuracy margin
on Diving48. Since it contains challenging fine-grained
dive classes and relatively inaccurate 2D estimated skeleton
benefits the most from the enriched grid representation to
recognize the fine-grained actions.

7

Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

Table 4. Impacts of the convolution operation in our Ske2Grid
using NTU-60 XSub benchmark. We use ST-GCN to directly
model our grid patch obtained by the UPT and GIT. ST-GCN? is
with the convolution defined in our Ske2Grid. “�” denotes that the
transform is well-learned and fixed during training.

NETWORK UPT GIT D SIZE TOP-1 ACC.(%)

ST-GCN − − − 85.25

ST-GCN

√ √

5× 5

80.39
�

√
82.14√

� 81.94
� � 84.34

ST-GCN? √ √
86.20

ST-GCN

√ √

6× 6

80.63
�

√
79.71√

� 81.26
� � 84.53

ST-GCN? √ √
87.87

4.5. Ablative Studies

We further provide a number of ablative studies to have a
deep analysis of our Ske2Grid.

Ske2Grid using 3D skeleton input. In addition to 2D esti-
mated skeleton input, we use 3D GT skeleton consisting of
25 keypoints on NTU-60 and NTU-120 as input to conduct
experiments as shown in Table 3. Our Ske2Grid is trained
from D6×6 to D9×9 by a step of 1. As shown, our method
outperforms the baseline under different validation protocol-
s on both datasets, demonstrating the strong generalization
capability of our Ske2Grid for improved motion-captured
skeleton-based action recognition.

Impacts of the convolution operation. To analyze the im-
pacts of the convolution operation in our Ske2Grid, we use
graph convolution to directly model our grid representation
through treating the grid patch as a regular graph with verti-
cal and horizontal connections between adjacent grid cells.
The comparison is shown in Table 4.

Firstly, ST-GCN is used to model a grid patch with both
the UPT and GIT being learnable. Not surprisingly, the
performance drops significantly. As discussed before, graph
convolution convolves each grid cell with their adjacent grid
cells using its specific kernels. As the layout of our grid
patch is learned with the network, it is difficult to adapt the
graph convolution for modeling the changing topological
relationship of grid cells during training.

Further, we reuse the UPT and GIT well learned by our
Ske2Grid to train ST-GCN for modeling the grid patch. As
shown, the performance is relatively good when fixing both
the UPT and GIT, illustrating the capability of graph convo-
lution in modeling fixed graph. However the fixed regular
layout of grid patch still limits the expressiveness of skele-
ton for action representation. ST-GCN? with learnable grid
patch achieves the best performance under different size
settings, demonstrating the effectiveness of our convolu-

Table 5. Performance (%) comparison of different base grid patch-
es and progressive steps for the PLS setting in our Ske2Grid using
NTU-60 XSub benchmark. DK is short for DK×K .

START PLS1 ACC. PLS2 ACC. PLS3 ACC.

D5

D6 87.87 D7 88.26 D8 88.55
D7 87.98 D9 88.15 D11 88.47
D8 87.92 D11 87.82 − −

D6

D7 86.27 D8 86.41 D9 87.57
D8 86.23 D10 87.69 D12 88.49
D9 86.44 D12 87.59 − −

D7

D8 87.15 D9 87.30 D10 87.72
D9 86.85 D11 87.18 D13 87.20
D10 87.17 D13 87.59 − −

Table 6. Performance comparison when using other grid patch
sizes in our Ske2Grid using NTU-60 XSub benchmark.

GRID PATCH TOP-1 ACC.(%)

D5×5 86.20
D4×6 85.61
D4×7 84.64
D5×6 85.91
D5×7 84.25

tion operation in modeling the feature interactions among a
learnable set of grid cells for improved action recognition.

Impacts of different PLS settings. We exhaustively ex-
plore the starting size of grid patch and the progressive step
in the PLS, as shown in Table 5. The performance increases
progressively under all different settings. As shown, training
our Ske2Grid from a small grid patch with the number of
grid cells being close to the number of joints in the skeleton
input progressively with a step of 1 performs better.

Ske2Grid using other grid patch sizes. Table 6 shows
the performance of our Ske2Grid when using different grid
patch sizes without the PLS setting. We can see that the per-
formance of using squared grid patches is slightly better than
that of using rectangular grid patches. Therefore, we use
squared grid patches as default setting in the experiments.

Ske2Grid applying to other GCNs. We construct a net-
work upon CTR-GCN (Chen et al., 2021) through replacing
the graph convolution in the basic block of spatial model-
ing with our convolution operation, and the performance is
shown in Table 7. Although CTR-GCN is a recent advanced
GCN-based solution, our Ske2Grid still achieves acceptable
performance gains under the same benchmark settings.

Visualization of the learnt layouts in Ske2Grid. The grid
patch in Ske2Grid is filled by the up-sampled graph nodes,
and its layout reflects the topological relations of joints on
the skeleton graph. We visualize the learnt connections
among graph nodes on the skeleton using the layouts of
progressively learnt grid patches in Ske2Grid8×8, as shown
in Figure 4, illustrating the capability of our method for
modeling learnable skeleton feature interactions.

8

Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

Table 8. Performance (%) comparison of our Ske2Grid with state-of-the-art methods on NTU-60 and NTU-120 using estimated 2D
skeletons. We report the performance of Ske2Grid8×8. The “J”, “B”, “JM” and “BM” represent the joint, bone, joint motion and bone
motion data modalities, respectively. The “�” denotes using the same human skeletons as that provided by Duan et al. (2022b). The “∗”
represents the average model fusion of our Ske2Grid from D5×5 to D8×8. Best results are bolded.

METHOD N60-XSUB N60-XVIEW N120-XSUB N120-XSET

2S-AGCN (SHI ET AL., 2019) (J+B) 88.5 95.1 − −
MS-AAGCN (SHI ET AL., 2020) (J+B+JM+BM) 90.0 96.2 − −

AS-GCN (LI ET AL., 2019) (J) 86.8 94.2 78.3 79.8
CA-GCN (ZHANG ET AL., 2020) (J) 83.5 91.4 − −

SHIFT-GCN (CHENG ET AL., 2020)(J+B+JM+BM) 90.7 96.5 85.9 87.6
MS-G3D (LIU ET AL., 2020)(J+B) 91.5 96.2 86.9 88.4

CTR-GCN (CHEN ET AL., 2021)(J+B+JM+BM) 92.4 96.8 88.9 90.6

HYPERGNN (HAO ET AL., 2021)(J+B+JM+BM) 89.5 95.7 − −
SYBIO-GNN (LI ET AL., 2021)(J+B) 90.1 96.4 − −

STST (ZHANG ET AL., 2021)(J+B+JM+BM) 91.9 96.8 − −
ST-TR (PLIZZARI ET AL., 2021)(J) 88.7 95.6 81.9 84.1

HYPERFORMER (ZHOU ET AL., 2022)(J) 90.7 95.1 86.5 88.1

POSECONV3D (DUAN ET AL., 2022C)(J) � 93.7 96.6 86.0 89.6

MS-G3D (J+B) � 92.2 96.6 87.2 89.0
ST-GCN (J) � 88.9 96.8 84.0 84.1

SKE2GRID (J) � 92.3 97.9 85.3 87.9
SKE2GRID∗ (J) � 93.0 98.2 85.9 88.7

SKE2GRID∗ (J+B+JM+BM) � 93.8 98.6 87.3 90.8

Figure 4. Visualization of the learnt topological relations on the
skeleton graph reflected by (a) D5×5; (b) D6×6; and (c) D7×7.

Table 7. Performance (%) comparison when constructing a net-
work upon CTR-GCN (Chen et al., 2021) by our Ske2Grid using
3D GT skeletons. We report the performance of Ske2Grid9×9.

METHOD
NTU-60 NTU-120

XSUB XVIEW XSUB XSET

CTR-GCN 89.62 94.83 84.57 85.95

OURS 90.08 95.09 84.79 86.04

Comparison of Ske2Grid with state-of-the-art methods.
Table 8 shows a performance comparison of our Ske2Grid
with a lot of state-of-the-art methods on NTU-60 and NTU-
120. We collect the best results reported in the original
papers of all the methods shown above PoseConv3D (Yan
et al., 2019). Prevailing GCN-based methods (the upper 7
solutions in Table 8) improve ST-GCN through constructing
skeleton graph with dynamic topologies and incorporating
extra contextual information to increase the receptive field
of graph convolution, as we discussed in Section 2. Recently
proposed hypergraph and transformer based methods (the
middle 5 solutions in Table 8) either introduce local and
global hyperedges to encode higher-order feature dependen-
cies, or treat each joint of the human body as a token and

use spatial and temporal self-attention operators to capture
feature dependencies. As shown, our Ske2Grid with sin-
gle “joint” modality outperforms or achieves comparable
performance with these existing solutions. PoseConv3D
(Yan et al., 2019) takes the stacked heatmaps (with the spa-
tial size of 56×56) of skeleton joints obtained by 2D pose
estimators as input and utilizes computationally intensive
3D CNN to recognize actions. Using much more compact
grid representation (spatial size of 8×8) and lightweight 2D
convolution network, our Ske2Grid achieves comparable
performance with PoseConv3D, which is promising. Taking
the advantage of our Ske2Grid with the progressive train-
ing, we ensemble the four models from D5×5 to D8×8 and
obtain a significant performance boost, showing the comple-
mentarity among different grid patch scales. When further
combining with the bone, joint motion and bone motion
modalities commonly used in other methods, our Ske2Grid
performs the best on three out of four benchmarks.

5. Conclusions
This paper presents Ske2Grid, a new representation learning
framework for improved skeleton-based action recognition.
In Ske2Grid, we define a regular convolution operation upon
a compact image-like grid patch constructed and learned
through three novel designs namely UPT, GIT and PLS.
The layout of the grid representation is learned with the
Ske2Grid convolution network, and convolution operation
upon the grid patch models a learnable set of grid cells,
which improves the modeling of feature interactions among
active coordinated human joints for effective action recog-
nition. The efficacy of our Ske2Grid is well validated by
thorough experiments on six public benchmarks.

9

Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

References
Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., and Hu, W.

Channel-wise topology refinement graph convolution for
skeleton-based action recognition. In Proceedings of the
IEEE international conference on computer vision, pp.
13359–13368, 2021.

Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., and Lu,
H. Skeleton-based action recognition with shift graph
convolutional network. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp.
183–192, 2020.

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-
nect: Training deep neural networks with binary weights
during propagations. In Proceedings of the advances in
neural information processing systems, 2015.

Du, Y., Wang, W., and Wang, L. Hierarchical recurrent
neural network for skeleton based action recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1110–1118, 2015.

Duan, H., Wang, J., Chen, K., and Lin, D. Dg-stgcn: Dynam-
ic spatial-temporal modeling for skeleton-based action
recognition. arXiv preprint arXiv:2210.05895, 2022a.

Duan, H., Wang, J., Chen, K., and Lin, D. Pyskl: Towards
good practices for skeleton action recognition. arXiv
preprint arXiv:2205.09443, 2022b.

Duan, H., Zhao, Y., Chen, K., Lin, D., and Dai, B. Revis-
iting skeleton-based action recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 2969–2978, 2022c.

Hao, X., Li, J., Guo, Y., Jiang, T., and Yu, M. Hyper-
graph neural network for skeleton-based action recogni-
tion. IEEE Transactions on image processing, 30:2263–
2275, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hu, G., Cui, B., and Yu, S. Skeleton-based action recog-
nition with synchronous local and non-local spatio-
temporal learning and frequency attention. In Proceed-
ings of the IEEE international conference on multimedia
and expo, pp. 1216–1221, 2019.

Kang, Y., Liu, Y., Yao, A., Wang, S., and Wu, E. 3d human
pose lifting with grid convolution. In Proceedings of the
AAAI conference on artificial intelligence, 2023.

Ke, Q., Bennamoun, M., An, S., Sohel, F., and Boussaid, F.
A new representation of skeleton sequences for 3d action
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3288–3297,
2017.

Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., and Serre,
T. Hmdb: a large video database for human motion
recognition. In Proceedings of the IEEE international
conference on computer vision, pp. 2556–2563, 2011.

Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., and Tian,
Q. Actional-structural graph convolutional networks for
skeleton-based action recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pp. 3595–3603, 2019.

Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., and Tian,
Q. Symbiotic graph neural networks for 3d skeleton-
based human action recognition and motion prediction.
IEEE Transactions on pattern analysis and machine in-
telligence, 44(6):3316–3333, 2021.

Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y. Independently
recurrent neural network (indrnn): Building a longer and
deeper rnn. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5457–5466,
2018a.

Li, Y., Li, Y., and Vasconcelos, N. Resound: Towards action
recognition without representation bias. In Proceedings
of the European conference on computer vision, pp. 513–
528, 2018b.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft
coco: Common objects in context. In Proceedings of the
European conference on computer vision, pp. 740–755,
2014.

Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.-Y.,
and Kot, A. C. Ntu rgb+d 120: A large-scale benchmark
for 3d human activity understanding. IEEE transactions
on pattern analysis and machine intelligence, 42(10):
2684–2701, 2019.

Liu, M., Liu, H., and Chen, C. Enhanced skeleton visualiza-
tion for view invariant human action recognition. Pattern
recognition, 68:346–362, 2017.

Liu, Z., Zhang, H., Chen, Z., Wang, Z., and Ouyang, W. Dis-
entangling and unifying graph convolutions for skeleton-
based action recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 143–152, 2020.

10

Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

Luvizon, D. C., Picard, D., and Tabia, H. 2d/3d pose estima-
tion and action recognition using multitask deep learning.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 5137–5146, 2018.

Peng, W., Hong, X., Chen, H., and Zhao, G. Learning graph
convolutional network for skeleton-based human action
recognition by neural searching. In Proceedings of the
AAAI conference on artificial intelligence, pp. 2669–2676,
2020.

Plizzari, C., Cannici, M., and Matteucci, M. Skeleton-based
action recognition via spatial and temporal transformer
networks. Computer vision and image understanding,
208, 2021.

Qin, Z., Liu, Y., Ji, P., Kim, D., Wang, L., McKay, B., An-
war, S., and Gedeon, T. Fusing higher-order features in
graph neural networks for skeleton-based action recogni-
tion. arXiv preprint arXiv:2105.01563, 2021.

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:
Towards real-time object detection with region propos-
al networks. In Proceedings of the advances in neural
information processing systems, 2015.

Shahroudy, A., Liu, J., Ng, T.-T., and Wang, G. Ntu rgb+d:
A large scale dataset for 3d human activity analysis. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1010–1019, 2016.

Shao, D., Zhao, Y., Dai, B., and Lin, D. Finegym: A hierar-
chical video dataset for fine-grained action understanding.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 2616–2625, 2020.

Shi, L., Zhang, Y., Cheng, J., and Lu, H. Two-stream adap-
tive graph convolutional networks for skeleton-based ac-
tion recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 12026–
12035, 2019.

Shi, L., Zhang, Y., Cheng, J., and Lu, H. Skeleton-based
action recognition with multi-stream adaptive graph con-
volutional networks. IEEE Transactions on image pro-
cessing, 29:9532–9545, 2020.

Song, S., Lan, C., Xing, J., Zeng, W., and Liu, J. An end-
to-end spatio-temporal attention model for human action
recognition from skeleton data. In Proceedings of the
AAAI conference on artificial intelligence, 2017.

Soomro, K., Zamir, A. R., and Shah, M. Ucf101: A dataset
of 101 human actions classes from videos in the wild.
arXiv preprint arXiv:1212.0402, 2012.

Sun, K., Xiao, B., Liu, D., and Wang, J. Deep high-
resolution representation learning for human pose estima-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 5693–5703, 2019.

Yan, A., Wang, Y., Li, Z., and Qiao, Y. Pa3d: Pose-action
3d machine for video recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pp. 7922–7931, 2019.

Yan, S., Xiong, Y., and Lin, D. Spatial temporal graph
convolutional networks for skeleton-based action recogni-
tion. In Proceedings of the AAAI conference on artificial
intelligence, 2018.

Zhang, X., Xu, C., and Tao, D. Context aware graph con-
volution for skeleton-based action recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 14333–14342, 2020.

Zhang, Y., Wu, B., Li, W., Duan, L., and Gan, C. Stst:
Spatial-temporal specialized transformer for skeleton-
based action recognition. In Proceedings of the ACM
international conference on multimedia, pp. 3229–3237,
2021.

Zhou, Y., Li, C., Cheng, Z.-Q., Geng, Y., Xie, X., and
Keuper, M. Hypergraph transformer for skeleton-based
action recognition. arXiv preprint arXiv:2211.09590,
2022.

11

