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Abstract
Resource-constrained perception systems such as
edge computing and vision-for-robotics require
vision models to be both accurate and lightweight
in computation and memory usage. While knowl-
edge distillation is a proven strategy to enhance
the performance of lightweight classification mod-
els, its application to structured outputs like ob-
ject detection and instance segmentation remains
a complicated task, due to the variability in out-
puts and complex internal network modules in-
volved in the distillation process. In this paper,
we propose a simple yet surprisingly effective se-
quential approach to knowledge distillation that
progressively transfers the knowledge of a set of
teacher detectors to a given lightweight student.
To distill knowledge from a highly accurate but
complex teacher model, we construct a sequence
of teachers to help the student gradually adapt.
Our progressive strategy can be easily combined
with existing detection distillation mechanisms
to consistently maximize student performance
in various settings. To the best of our knowl-
edge, we are the first to successfully distill knowl-
edge from Transformer-based teacher detectors
to convolution-based students, and unprecedent-
edly boost the performance of ResNet-50 based
RetinaNet from 36.5% to 42.0% AP and Mask
R-CNN from 38.2% to 42.5% AP on the MS
COCO benchmark. Code available at https:
//github.com/Shengcao-Cao/MTPD.

1. Introduction
Deploying deep neural models in safety-critical real-time
applications is challenging, especially on devices with lim-
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Figure 1. Our proposed Multi-Teacher Progressive Distillation
(MTPD) leads to state-of-the-art student detection perfor-
mance. When switching the teacher model from a convolution-
based detector to a Transformer-based one with stronger detection
performance, the student does not become more accurate, due to
the architectural difference between the teacher-student pair. Pro-
gressively distilling knowledge from multiple teacher detectors can
mitigate the capacity gap and result in the best student detection
performance.

ited resources such as self-driving cars or virtual/augmented
reality headsets. This is mainly due to the huge computa-
tional complexity and massive memory/storage demands.
One effective strategy is to train lightweight architectures
that have already been carefully engineered for efficient
memory access, via knowledge distillation (Buciluǎ et al.,
2006; Hinton et al., 2014) which is able to compress learned
information from a large model into a small one.

Implementing knowledge distillation in the realm of object
detection, despite existing efforts, presents its unique chal-
lenges stemming from the complex task outputs (Chen et al.,
2017): Detectors operate with multi-task heads (for classifi-
cation and box/mask regression) producing variable-length
outputs, which differentiates detection from the single-
output classification task. Therefore, distillation methods
developed for classification are often not directly applica-
ble to detection, and dedicated methods (Chen et al., 2017)
need to be developed for detection in the literature (detailed
discussion in Appendix E, Table 16).

Recent work (Zhang & Ma, 2021; Shu et al., 2021; Yang
et al., 2022b) on detector distillation mainly considers de-
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signing advanced distillation loss functions for transferring
features from teachers to students. However, there are two
unsolved challenges: 1) The capacity gap (Cho & Hariharan,
2019; Mirzadeh et al., 2020) between models can result in
a sub-optimal distilled student even if the strongest teacher
has been employed, which is undesired when optimizing
the accuracy-efficiency trade-off of the student. Moreover,
when distilling knowledge from Transformer-based teach-
ers (Dosovitskiy et al., 2020; Liu et al., 2021) to classical
convolution-based students, this architectural difference can
enlarge the teacher-student gap (Figure 1). 2) Current meth-
ods assume that one target teacher has been selected. How-
ever, this meta-level optimization of teacher selection is
neglected in the existing literature of detector distillation.
In fact, finding a pool of strong teacher candidates is easy,
but trial-and-error may be necessary before determining the
most compatible teacher for a specific student.

To address these challenges, we propose a framework that
learns a lightweight detector via Multi-Teacher Progres-
sive Distillation (MTPD): 1) We find sequential distilla-
tion from multiple teachers arranged into a curriculum
significantly improves knowledge distillation and bridges
the teacher-student capacity gap caused by different archi-
tectures. As shown in Figure 1, even with huge architectural
difference, MTPD can effectively transfer knowledge from
Transformer-based teachers to convolution-based students,
while previous methods cannot. 2) For the teacher selection
problem, we design a heuristic algorithm for a given student
and a pool of teacher candidates, to automatically determine
the order of teachers to use in the distillation procedure.
This algorithm is based on the analysis of the representation
similarity between models, which does not require prior
knowledge of the specific distillation mechanism.

To summarize, our main contributions are:

• We propose a framework for learning lightweight de-
tectors through Multi-Teacher Progressive Distillation
(MTPD), which is simple yet effective and general. We
develop a principled method to automatically design a
sequence of teachers appropriate for a given student and
progressively distill it.

• MTPD is a meta-level strategy that can be easily com-
bined with previous efforts in detection distillation. We
perform comprehensive empirical evaluation on the chal-
lenging MS COCO dataset and observe consistent gains,
regardless of the distillation loss complexity (from a sim-
ple feature-matching loss in Table 3 to the most advanced,
sophisticated losses in Figure 4).

• MTPD learns lightweight RetinaNet and Mask R-CNN
with state-of-the-art accuracy, even in heterogeneous back-
bone and input resolution settings. Perhaps most impres-
sively, for the first time, we investigate heterogeneous
distillation from Transformer-based teacher detectors to a
convolution-based student, and find progressive distilla-

tion is the key to bridge their gap (Figure 1, Table 5).
• We empirically show that the improvement comes from

better generalization rather than better optimization. The
knowledge transferred from multiple teachers leads the
student to a more flat minimum, and thus help the student
generalize better (Figure 5).

2. Related Work
Knowledge distillation for classification: The idea of
training a shallow student network with supervision from
a deep teacher was originally proposed by Buciluǎ et al.
(2006), and later formally popularized by Hinton et al.
(2014). Different knowledge can be used, such as response-
based knowledge (Hinton et al., 2014), and feature-based
knowledge (Romero et al., 2015; Ahn et al., 2019). Sev-
eral multi-teacher knowledge distillation methods have been
proposed (Vongkulbhisal et al., 2019; Sau & Balasubrama-
nian, 2016), which usually use the average of logits and
feature representations as the knowledge (You et al., 2017;
Fukuda et al., 2017). Mirzadeh et al. (2020) show that an
intermediate teacher assistant, decided by architectural sim-
ilarities, can bridge the gap between the student and the
teacher. We find: 1) Extending Mirzadeh et al. (2020) to
detection where teacher architectures are diverse is challeng-
ing. 2) Classification-oriented distillation (Romero et al.,
2015; Ahn et al., 2019) is not directly applicable to de-
tection. 3) Using a sequence of teachers, instead of their
ensemble (You et al., 2017; Fukuda et al., 2017), is more
effective. A more detailed discussion that compares our
approach with prior work on progressive distillation, multi-
teacher distillation, online distillation, deep mutual learning,
and other distillation mechanisms is in Appendix E.

Object detection and instance segmentation: A variety
of convolutional neural network (CNN) based object detec-
tion frameworks have been proposed, and can be generally
divided into single-stage and two-stage detectors. Typical
single-stage methods include YOLO (Redmon et al., 2016;
Redmon & Farhadi, 2018) and RetinaNet (Lin et al., 2017b),
and two-stage methods include Faster R-CNN (Ren et al.,
2014) and Mask R-CNN (He et al., 2017). Recently, several
multi-stage models are proposed, such as HTC (Chen et al.,
2019a) and DetectoRS (Qiao et al., 2021). These detection
frameworks achieve better detection accuracy with better
feature extraction backbones and more complicated heads,
which are more computationally expensive.

Knowledge distillation for detection and segmentation:
Dedicated distillation methods are proposed to train efficient
object detectors for this task different from classification.
Chen et al. (2017) first use knowledge distillation to enforce
the student detector to mimic the teacher’s predictions. More
recent efforts usually focus on learning from the teacher’s
features, rather than final predictions. Various distillation
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mechanisms have been proposed to leverage the impact of
foreground and background objects (Wang et al., 2019; Guo
et al., 2021a), relation between individual objects (Zhang &
Ma, 2021; Dai et al., 2021), or relation between local and
global information (Yang et al., 2022a;b). Different from the
methods that distill from a single teacher, we study multi-
teacher distillation where an ordered sequence of teachers
is required, and we find that a simple feature-matching loss
is adequate to significantly boost student accuracy.

3. Approach
In Multi-Teacher Progressive Distillation (MTPD), we
propose to progressively distill a student model S with a
pool of N teachers P = {Ti}Ni=1. Typical object detectors
consist of four modules: (1) backbone, which extracts visual
features, such as ResNet (He et al., 2016) and ResNeXt (Xie
et al., 2017); (2) neck, which extracts multi-level feature
maps from various stages of the backbone, such as FPN (Lin
et al., 2017a) and Bi-FPN (Tan et al., 2020); (3) optional
region proposal network (RPN) used in two-stage detectors;
and (4) head, which generates final predictions for object
detection and segmentation. We denote the output feature
maps of the neck as FNet, where Net can be either the student
model S or one of the teachers Ti ∈ P . With neck modules
like FPN, the feature maps can be multi-level.

MTPD is a general meta-strategy for detector distillation
that progressively learns a student using a sequence of teach-
ers. Here, to examine this meta-strategy without involving
sophisticated distillation mechanisms, we introduce a sim-
ple feature-matching distillation for a single teacher Ti in
Section 3.1. Then we discuss progressive distillation with
multiple teachers from P in Section 3.2.

3.1. Preliminary: Single Teacher Distillation via Simple
Feature Matching

In order to learn an efficient student detector S through
distillation, we encourage the feature representation of a
student to be similar to that of the teacher (Chen et al., 2017;
Yang et al., 2021). To this end, we minimize the discrepancy
between the feature representations of the teacher and the
student. Without bells and whistles, we simply minimize
the L2 distance between FTi and FS :

Ldistill =
∥∥FTi − r(FS)∥∥2

2
, (1)

where r(·) is a function used to match the feature map
dimensions of the teacher and the student.

We define r(·) as follows:

• (Homogeneous case) If the numbers of channels and the
spatial resolutions are both the same between Ti and S,
r(·) is an identity function.

• (Heterogeneous case) If the numbers of channels are dif-

ferent but the spatial resolutions are the same, we use 1×1
convolutional filters as r(·). If the spatial resolutions are
different but the numbers of channels are the same, we
use an upsampling layer as r(·). If both the numbers of
channels and spatial resolutions are different, we compose
the convolutional and upsampling layers as r(·).

Note that the mapping r(·) is only required at training time
and thus does not add any overhead to the inference. Over-
all, our loss function can be written as:

L = λLdistill + Ldetect, (2)

where λ is a balancing hyper-parameter and Ldetect is the de-
tection loss based on the ground truth labels. Compared with
state-of-the-art detection distillation approaches (Zhang &
Ma, 2021; Shu et al., 2021; Yang et al., 2022a;b), which
introduce more complex designs of the distillation loss, this
feature-matching distillation is simpler and does not require
running the heads of the teacher model. Our distillation loss
is illustrated in Figure 2-Left.

3.2. Progressive Distillation with Multiple Teachers

The overall aim of knowledge distillation is to make a stu-
dent mimic a teacher’s output, so that the student is able
to obtain similar performance to teacher’s. However, the
capacity of the student model is limited, making it hard for
the student to learn from a highly complex teacher (Cho &
Hariharan, 2019). To address this issue, multiple teacher
networks are used to provide more supervision to a stu-
dent (Sau & Balasubramanian, 2016; You et al., 2017). Un-
like previous methods which distill knowledge from the
ensemble of logits or features simultaneously, we propose
to distill feature-based knowledge from multiple teachers
sequentially. Our key insight is that instead of mimicking
the ensemble of all feature information together, the stu-
dent can be distilled more effectively by the knowledge
provided by one teacher each time. This progressive knowl-
edge distillation approach can be considered as designing a
curriculum (Bengio et al., 2009) offered by a sequence of
teachers, as illustrated in Figure 2-Right.

The crucial question is: What is the optimal order O of
the teachers when distilling the student? A brute-force
approach might search over all orders and pick the best
(that produces a distilled student with the highest validation
accuracy). However, the space of permutation orders grows
exponentially with the number of teachers, making this
impractical to scale. Therefore, we propose a principled and
efficient approach based on a correlation analysis of each
model’s learned feature representation.

First, we quantify the dissimilarity between each pair of
models’ representations, as a proxy for their capacity gap.
Representation (dis)similarity (Raghu et al., 2017; Wang
et al., 2018; Kornblith et al., 2019) has been studied to under-
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Figure 2. Multi-Teacher Progressive Distillation (MTPD) for object detectors. Left: For each teacher-student pair, the training target
consists of two parts: Ldistill minimizes the discrepancy between the neck feature maps of the student and the current teacher, and Ldetect

is the original detection loss based on the ground truth. Right: We use a sequence of teacher models to distill the lightweight student
detector. The sequence of teachers forms a curriculum. Using a suitable sequence of teachers can significantly boost the student model’s
performance. The representative performance curve illustrates that MTPD improves the COCO validation AP of ResNet-50 backboned
RetinaNet student first from 36.5% to 37.9% using HTC (Teacher 1), and then from 37.9% to 39.9% using DetectoRS (Teacher 2).

stand the learning capacity of neural models. In our setting,
we find a linear regression model is adequate for measuring
the representation dissimilarity. Given two trained detectors
A and B, we freeze their parameters, and thus fixing the fea-
ture representations. Then we learn a linear mapping r(·),
implemented by a 1× 1 convolutional layer at each feature
level, as specified in the heterogeneous case in Section 3.1.
r(·) is trained to minimize Ldistill, so it can transform A’s
features to approximate B’s features. After training r(·), we
evaluate it by Ldistill on the validation set, and denote the val-
idation loss as the adaptation cost C(A,B). This metric can
be a proxy of the capacity gap between two models: When
C(A,B) is zero, a linear mapping can transform A’s features
to B’s, and there is no additional knowledge from B. When
C(A,B) is large, it is more difficult to adapt A’s representa-
tion to B’s. Note that the adaptation cost is non-symmetric –
it is relatively easier to adapt a high-capacity model’s repre-
sentations to a low-capacity model’s representations, than
the other way around.

We design a heuristic algorithm, Backward Greedy Selec-
tion (BGS), to acquire a near-optimal distillation order O
automatically (see pseudo-code in Algorithm 1 and illustra-
tion in Figure 3). Suppose the maximum number of teachers
to be selected is limited by k (which can be arbitrarily de-
cided according to desired training time), and we aim to find
a teacher index sequence α no longer than k. We construct
the teacher order backwards: The best performing teacher
is set as the final target Tαk ; before the final teacher, we
use another teacher, which has the smallest adaptation cost
C(·, Tαk) to that final teacher, as the penultimate teacher
Tαk−1

. We repeat this procedure to find preceding teachers,
until: 1) when trying to select Tαj , we find the transfer costs
from remaining teachers to the next teacher C(·, Tαj+1

) are
all larger than the transfer cost from the trained student
to the next teacher C(S, Tαj+1); or 2) we reach the given
maximum step limit k. Intuitively, the resulting sequence
of teachers bridges the gap between the student model and
the teacher, with an increasingly difficult curriculum. Sec-

tion 4.1 and Appendix A demonstrate the efficacy of BGS.

Our teacher order design approach is efficient and scalable.
In fact, the main computation overhead is the optimization of
a set of tiny linear mappings (R256 7→ R256 for FPN-based
detectors). In our setting, this process requires about 3 GPU
hours per student model, a fraction of the hundreds of GPU
hours needed for distillation. If more teacher candidates
are added, we can first generate feature maps only once for
each teacher. Then we optimize pair-wise linear mappings
using only 10%-20% GPU hours, ensuring a near-linear time
consumption increase relative to the number of teachers.

Since MTPD is a meta-level strategy, it can be integrated
with previous designs of distillation mechanisms, without
much efforts. Starting with a student detector and a pool of
candidate teachers, we can first select a subset of teachers
and design their distillation order. In place of the simple
feature matching loss, we then apply a more advanced dis-
tillation mechanism with each teacher sequentially to train
the student detector.

4. Experiments
We study the efficacy and generalizability of our proposed
MTPD from multiple perspectives. First of all in Section 4.1,
we use a controlled experiment to demonstrate that BGS
consistently produces teacher orders that are near-optimal
compared with all possibilities. Then in Sections 4.2 and 4.3,
we apply MTPD along with the simple feature-matching
loss (Section 3.1) to show that this strategy alone brings
significant gains to knowledge distillation. Since our contri-
bution of progressive distillation is orthogonal to previous
efforts in designing distillation mechanisms, in Section 4.4
we then combine MTPD with state-of-the-art distillation
mechanisms to maximize the student performance, and we
show that MTPD is the key to the success of distillation from
Transformer-based teachers to convolution-based students.
Finally in Section 4.5, we understand the performance gain

4



Learning Lightweight Object Detectors via Multi-Teacher Progressive Distillation

Table 1. Configuration and COCO performance of the teacher
and student detectors. We investigate a variety of models with
heterogeneous input resolutions, backbones, necks, and head struc-
tures. ‘1×’ input resolution refers to the standard 1333 × 800
resolution, and ‘0.25×’ means 333× 200 resolution. ‘R-’ back-
bones are ResNets with different number of layers.

Model Input Backbone Neck Head AP Runtime
Res. Box Mask (ms)

Teachers

I 1× R50 FPN Mask R-CNN 38.2 34.7 51
II 1× R50 FPN FCOS 38.7 - 36
III 1× R50 FPN HTC 42.3 37.4 181
IV 1× R50+SAC RFP HTC (DetectoRS) 49.1 42.6 223
V 1× R50+SAC RFP Mask R-CNN 45.1 40.1 142

Students

I 1× R50 FPN RetinaNet 36.5 - 43
II 1× R50 FPN Mask R-CNN 38.2 34.7 51
III 1× R18 FPN Mask R-CNN 33.3 30.5 29
IV 0.25× R50 FPN Mask R-CNN 25.8 23.0 17

S : RetinaNet
TI : Mask R-CNN
TII : FCOS
TIII : HTC
TIV : DetectoRS

S

TI

TII

TIII TIV
0.060

0.939

1.181 0.070

0.934

1.94

0.89

0.963

1.401

Figure 3. Adaptation costs among models. The number on each
directed edge is the adaptation cost metric described in Section 3.2.
Some edges are not shown for visual clarity. The red path is
suggested by BGS when k = 3 teachers are selected: 1) We use
the best performing Teacher IV as the final teacher in the sequence;
2) use the teacher closest to Teacher IV, which is Teacher III, as
the second teacher; and 3) use the teacher closest to Teacher III,
which is Teacher I, as the first teacher.

of MTPD by analyzing the training loss dynamics.

Student and teacher models: To investigate the impact of
different teacher models and their combinations, as shown
in Table 1, we construct a variety of teacher-student pairs
from a set of widely-used object detection and instance
segmentation networks, including RetinaNet (Lin et al.,
2017b), Mask R-CNN (He et al., 2017), FCOS (Tian et al.,
2019), HTC (Chen et al., 2019a), and DetectoRS (Qiao et al.,
2021). They have a wide range of runtime and detection
performance. We select ResNet-50 backboned RetinaNet
and Mask R-CNN as the student models (Students I & II),
due to their low latency, simple structure, and wide ap-
plication, for single-stage and two-stage object detection
respectively. More advanced models such as DetectoRS
have better detection performance, but require much more
training/inference time, so we use them as teachers. We also
consider lightweight variants of Mask R-CNN as students,
which have a smaller backbone (Student III) or a reduced
input resolution (Student IV).

Table 2. Comparison of the teacher order suggested by BGS
with all other orders under limited training budgets (Li et al.,
2020b). k denotes the maximum number of used teachers. Top:
We show some statistics of all possible student AP performance
and the ranking of the student using our distillation order. Bottom:
We visualize the comparative advantage of our teacher orders (red
dots) over all other orders (black dots). Some black scatter points
overlap due to the same student AP. BGS consistently produces
highly competitive distillation orders of teachers.

k
Suggested Student All student Ranking in

teacher order AP AP range all orders

1 IV 36.7 [36.2, 36.8] 2 / 4
2 III→IV 37.6 [36.2, 37.6] 1 / 16
3 I→III→IV 37.9 [36.2, 38.0] 2 / 40
4 I→III→IV 37.9 [36.2, 38.2] 7 / 64
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Datasets and evaluation metrics: We mainly evaluate
on the challenging object detection dataset MS COCO
2017 (Lin et al., 2014), which contains bounding boxes
and segmentation masks for 80 common object categories.
We train our models on the split of train2017 (118k
images) and report results on val2017 (5k images). We
report the standard COCO-style Average Precision (AP)
metric and end-to-end latency (from images to predictions)
as the runtime. We also evaluate on another object detec-
tion dataset Argoverse-HD (Chang et al., 2019), and a more
challenging evaluation protocol in streaming perception (Li
et al., 2020a). These results are in Appendix D.

Baselines: Our main contribution is orthogonal to previous
methods: We leverage a sequence of teachers to distill the
student, instead of designing a sophisticated distillation loss
to better transfer knowledge from one single teacher. Since
we are studying a new setting where multiple teachers are
available, which is missing in previous literature, we mainly
focus on the absolute improvements – the performance of
our distilled student models compared with the original
student models and with the performance upper-bound of
the teacher models.

4.1. Searching for Near-Optimal Teacher Orders

As we have discussed in Section 3.2, finding the optimal
order of teachers for MTPD takes factorial time complex-
ity. To acquire a near-optimal teacher order, we propose
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Table 3. Homogeneous distillation of COCO detectors, where students with ResNet-50 backbones are distilled from teachers with
ResNet-50 backbones. We report the detection (‘Box’) and segmentation (‘Mask’) APs, and we compare our student produced by MTPD
with the off-the-shelf (‘OTS’) student and the student trained longer. MTPD significantly improves the detection AP over the ‘OTS’
student by 3.4% for RetinaNet and 3.2% for Mask R-CNN, and outperforms the baselines.

ID Model Method Box Mask
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

1
RetinaNet
(Student I)

OTS 36.5 55.4 39.1 20.4 40.3 48.1 - - - - - -
2 Longer 3× training schedule 39.5 58.8 42.2 23.8 43.2 50.3 - - - - - -
3 Directly distilled by Teacher IV 39.5 58.6 41.9 21.0 42.8 54.0 - - - - - -
4 MTPD: Teachers III→IV 39.9 59.2 42.7 21.7 43.3 54.1 - - - - - -

5

Mask R-CNN
(Student II)

OTS 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2
6 Longer 3× training schedule 40.9 61.3 44.8 24.4 44.6 52.3 37.1 58.3 39.9 18.4 39.8 51.9
7 Directly distilled by Teacher IV 41.0 61.6 45.0 23.5 44.5 54.0 37.0 58.5 39.8 17.5 39.9 51.3
8 Distilled by ensemble V+IV 39.8 60.3 43.4 22.1 43.3 52.9 35.9 57.1 38.1 18.3 39.0 49.8
9 MTPD: Teachers V→IV 41.4 61.9 45.1 23.3 45.0 55.4 37.3 58.8 39.8 19.4 40.4 52.1

the heuristic algorithm Backward Greedy Selection (BGS,
pseudo-code shown in Algorithm 1). In this section, we
validate that BGS is near-optimal. To achieve this compre-
hensive comparison, we distill Student I with all orders of
teachers from the pool of Teachers I-IV. We use a reduced
training budget: For each teacher, we only train the student
for 3 epochs on MS COCO. We use the linear learning rate
schedule, which has been shown comparably effective in a
limited budget setting by Li et al. (2020b).

We first measure the adaptation costs among the student
and teacher models. A visualization of the cost graph is
shown in Figure 3. Following BGS, we can construct a
sequence of teachers. We compare the teacher orders given
by BGS against all other orders, via the distilled students’
performance. As shown in Table 2, teacher orders suggested
by BGS are consistently near-optimal in this setting. In
the following sections, we use the order provided by BGS,
without brute-force iterating over all possible orders. One
might argue that the greedy path selection of BGS, as shown
in Figure 3, is inferior to a global optimization algorithm.
However, we find that BGS consistently outperforms other
heuristics including global optimization algorithms (see de-
tails in Appendix A). In fact, the later teachers impact the
student performance more profoundly, so we need to greed-
ily select teachers from the sequence tail.

4.2. Distillation with Homogeneous Teachers

We start by distilling RetinaNet and Mask R-CNN with a
ResNet-50 backbone (Students I & II). Here we consider ho-
mogeneous teachers where the numbers of channels and the
spatial resolutions of feature maps are consistent between
the student and teacher. For the RetinaNet student, we still
consider the pool of Teachers I-IV, the same as Section 4.1.
For the Mask R-CNN student, we should no longer use
Teacher I (the student itself) or Teacher II (the single-stage
teacher does not outperform the student by a large margin).
To compensate for that, we include Teacher V, which can

be considered as a hybrid model of the DetectoRS back-
bone/neck and Mask R-CNN head. Thus, the teacher pool
for Mask R-CNN includes Teachers III-V. To control the
total training time, we limit the number of teachers to be
2. We initialize from an off-the-shelf (‘OTS’) student, and
sequentially distill it using 2 teachers, each with a 1× train-
ing schedule. In total, the student is distilled for 24 epochs,
and the training time is equivalent to a 2× training schedule.
In addition to the OTS student, we also compare with three
other baselines: 1) the student trained with a longer 3×
training schedule, which is commonly supported in object
detection libraries and stronger than 1×, 2× training; 2) the
student directly distilled by the final target teacher, using
a 2× training schedule; and 3) the student distilled by the
ensemble of teachers’ feature maps. Detector details are
listed in Table 1.

Following Section 4.1, we use BGS to determine the se-
quence of teachers to use for each student. For the Reti-
naNet student, BGS suggests teacher sequence III→IV. For
the Mask R-CNN student, BGS suggests teacher sequence
V→IV. Table 3 shows the distillation results on COCO.
Additional results, analysis, and ablation studies of Mask
R-CNN distillation are in Appendix B.

Overall performance: Our distilled student models (rows
4&9) significantly improves over the ‘OTS’ students (rows
1&5). The box AP of RetinaNet is improved from 36.5% to
39.9% (+3.4%). The box AP of Mask R-CNN is improved
from 38.2% to 41.4% (+3.2%) and the mask AP of Mask
R-CNN is improved from 34.7% to 37.3% (+2.6%). After
progressive distillation, our resulting Mask R-CNN detector
has comparable performance with HTC teacher, but much
less runtime (51ms vs. 181ms).

Comparison with baselines: First, the performance gain
is not merely from a longer training schedule. Our distilled
student models (rows 4&9) consistently outperform original
students trained with a 3× schedule (rows 2&6). Second,
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Table 4. Heterogeneous distillation of COCO detectors, where
students with smaller backbones (ResNet-18 vs. ResNet-50) or
input resolutions (333 × 200 vs. 1333 × 800) are distilled with
heterogeneous teachers, requiring an additional feature adaptor
(Section 3.1). We report the detection (‘Box’) and segmentation
(‘Mask’) APs, and compare our distilled student with its teachers
(see Table 1), the off-the-shelf (‘OTS’) student, and the student
distilled from an ensemble of the teachers. MTPD significantly
improves the ‘OTS’ students by over 3% AP.

ID Model Backbone Resolution AP
Box Mask

1 Student III, OTS R18 1× 33.3 30.5
2 Student III, Teacher Ensemble R18 1× 36.0 32.1
3 Student III, MTPD R18 1× 37.0 33.7

4 Student IV, OTS R50 0.25× 25.8 23.0
5 Student IV, MTPD R50 0.25× 31.5 28.2

progressive distillation using a curriculum of teachers (rows
4&9) is better than direct distillation from a strong teacher
(rows 3&7), even if the total training time is the same. Ad-
ditionally, we find that using a sequence of teachers (row
9), instead of their ensemble (row 8), is more effective.
This shows that integrating different types of knowledge
from multiple teachers is non-trivial, and our progressive
approach is better than simultaneously distilling from multi-
ple teachers. Notably, our detection performance for large
objects receives the most gain (about 6% APL improve-
ment for both models). We emphasize APL because in an
efficiency-centric real-world application (e.g., autonomous
driving, robot navigation), detecting nearby larger objects is
more crucial than others. From a realistic perspective, better
APL shows better applicability of our approach.

4.3. Distillation with Heterogeneous Teachers

To validate that MTPD is general, we now consider a
more challenging heterogeneous scenario, where students
and teachers have different backbones or input resolutions.
Specifically, Student III, a ResNet-18 Mask R-CNN, is dis-
tilled with ResNet-50 teachers; Student IV, a model with
reduced input resolution, is distilled with teachers trained
with larger input resolutions. The results are summarized in
Table 4, and additional results are included in Appendix C.

Heterogeneous backbones: Student III has a ResNet-18
backbone and about half runtime as its ResNet-50 counter-
part (Teacher I). We find that the proper distillation scheme
for Student III is to use the sequence of (rather than ensem-
bling) Teachers I→V→IV, which significantly improves
Student III over the ‘OTS’ model. The box AP of Student
III is improved from 33.3% to 37.0% (+3.7%); and espe-
cially for large objects, APL is improved from 43.6% to
50.0% (+6.4%).

Heterogeneous input resolutions: Although inputs with
varying resolutions can be fed into most object detectors

without changing the architecture, the performance often
degenerates when there is a resolution mismatch between
training and evaluation (Tan et al., 2020; Li et al., 2020a).
If ultimately we want to apply a detector to low-resolution
inputs for fast inference, it is better to use low-resolution
inputs during training. On the other hand, we conjecture
that teachers with high-resolution inputs may provide finer
details that can assist the student. With MTPD, we investi-
gate the improvement of a low-resolution student distilled
by a sequence of teachers with high-resolution inputs. We
denote the standard input resolution 1333× 800 as 1×, and
a reduced resolution 333 × 200 as 0.25×. We distill Stu-
dent IV (with 0.25× resolution) by a sequence of Teacher I
variants (0.5× → 0.75× → 1×). From Table 4, we can see
substantial improvement brought by MTPD: The box AP is
improved from 25.8% to 31.5% (+5.7%), and the mask AP
is improved from 23.0% to 28.2% (+5.2%).

4.4. Generalizability to State-of-the-Art Distillation
Mechanisms

Our meta-level strategy of using a sequence of teachers to
progressively distill a student is independent of the choice
of distillation mechanism for each teacher. We have shown
MTPD can boost the simple feature-matching distillation,
and in this section, we will combine MTPD with state-of-
the-art distillation mechanisms for object detection to
further improve student accuracy.

Distillation protocol: We evaluate MTPD with three most
recent methods on detector distillation: CWD (Shu et al.,
2021), FGD (Yang et al., 2022a), and MGD (Yang et al.,
2022b). In Appendix E, we show that classification-
oriented distillation is inferior to methods delicately de-
signed for detectors. For a fair comparison, we use the
same teacher-student pairs as them: RetinaNet/ResNet-
50 and RetinaNet/ResNeXt-101 (Lin et al., 2017b) are the
single-stage student and final teacher. RepPoints/ResNet-
50 and RepPoints/ResNeXt-101 (Yang et al., 2019b) are
the two-stage, anchor-free student and final teacher. Mask
R-CNN/ResNet-50 and Cascade Mask R-CNN/ResNeXt-
101-DCN (He et al., 2017) are the two-stage, anchor-based
student and final teacher. Between them, we insert one
medium-capacity teacher to progressively distill the student:
RetinaNet/ResNet-101 for the first pair, RepPoints/ResNet-
101 for the second, and Cascade Mask R-CNN/ResNet50-
DCN for the third. Also for fairness, we keep the total
training epochs the same. We set “1×” training schedule
for each teacher, so that the total training time is equivalent
to “2×,” the same as previous work.

Figure 4 shows that MTPD consistently improves students’
final accuracy. For example, the performance of FGD-
distilled RetinaNet/ResNet-50 improves from 40.7% to
41.5% AP (+0.8%), and this gain is larger than mechanism
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Figure 4. MTPD consistently benefits state-of-the-art distillation mechanisms. Using an intermediate RetinaNet/ResNet-101 teacher
between RetinaNet/ResNet-50 student and RetinaNet/ResNeXt-101 teacher (a), RepPoints/ResNet-101 teacher between RepPoints/ResNet-
50 student and RepPoints/ResNeXt-101 teacher (b), or Cascade Mask R-CNN/ResNet50-DCN teacher between Mask R-CNN/ResNet-50
student and Cascade Mask R-CNN/ResNeXt-101-DCN teacher (c for Box AP and d for Mask AP), we improve the direct distillation
baselines by 0.2% to 0.8% AP, without increasing training time.

Table 5. Distillation from Transformer-based teachers (Liu
et al., 2021) to convolution-based students. Due to the archi-
tectural difference and capacity gap, directly distilling from a
stronger teacher with Swin-S backbone does not yield better stu-
dents than convolution-based teachers in Figure 4. An intermediate
Swin-T teacher and progressive distillation solve this issue without
increasing training time. Compared to off-the-shelf models, our
RetinaNet and Mask R-CNN students improve by 5.5% AP and
4.3% box AP, respectively.

ID Model Distillation AP
Box Mask

1 RetinaNet
(Student I)

Direct RetinaNet/Swin-S 41.0 -
2 MTPD: RetinaNet/Swin-T→S 42.0 -

3 Mask R-CNN
(Student II)

Direct MRCNN/Swin-S 42.0 37.7
4 MTPD: MRCNN/Swin-T→S 42.5 38.4

advance from FGD to MGD (+0.3%). We bring perfor-
mance gains to state-of-the-art detection distillation almost
for free.

Next, we investigate how to further maximize the stu-
dent performance. Due to better computation efficiency, a
convolution-based (rather than Transformer-based) student
is preferred. Meanwhile, Swin Transformer (Liu et al., 2021)
can act as an even stronger teacher than the convolution-
based teachers used in previous work. However, compared
with convolution-based teachers, direct distillation from
such a teacher cannot improve the student performance,
even if we use the state-of-the-art method MGD. For exam-
ple, RetinaNet/Swin-Small (47.1% AP) is much stronger
than RetinaNet/ResNeXt-101(41.6% AP), but direct distilla-
tion from both yields the same student performance (41.0%
AP). To bridge the architectural difference and capacity gap
between the ResNet-50 student and Swin-Small teacher, we
can utilize an intermediate Swin-Tiny teacher. As shown in
Table 5, MTPD brings the best students: the performance
of ResNet-50 based RetinaNet increases to 42.0% AP, and
Mask R-CNN increases to 42.5% AP. We also successfully
distill a Transformer-based student from convolution-based
teachers in Appendix F.

4.5. Unpacking the Performance Gain: Generalization
or Optimization?

We have shown that our distilled students significantly im-
prove the accuracy on the validation data over off-the-shelf
students. As further demonstrated in Figure 5a, the vali-
dation accuracy of the distilled student gradually increases
during distillation, and achieves a higher value compared
with the student trained without teachers. A natural ques-
tion then arises – why is distillation helping? There are two
possible hypotheses: (1) improved optimization: distillation
facilitates the optimization procedure, leading to a better lo-
cal minimum; and (2) improved generalization: distillation
helps the student generalize to unseen data.

Improved optimization is typically manifested through a
better model, a lower training loss, and a higher valida-
tion accuracy, which is exactly the case for Mask R-CNN,
HTC, and DetectoRS. Consequently, one might think that
distillation works in the same way. However, our inves-
tigation suggests the opposite – MTPD increases both the
validation accuracy and the training loss, and therefore effec-
tively reduces the generalization gap. In Figure 5, we com-
pare the original RetinaNet model and the distilled student,
which have the same architecture, the same latency, and
are trained on the same data, but with different supervision
(only ground-truth labels vs. additional knowledge distilla-
tion). To eliminate the influence of learning rate changes,
we train the original student with a 3× schedule and restart
the learning rate at the same time with the distilled student.
Interestingly, although distillation can improve the student’s
validation performance, the training detection loss of the
distilled student is higher than the original student. This
suggests that distillation does not help the optimization pro-
cess to find a local minimum with a lower training loss, but
rather strengthens the generalizability of the student model.

To further support this observation, we also visualize the
local loss landscape (Li et al., 2018). The distilled stu-
dent has a flatter loss landscape (Figure 5d) compared with
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Figure 5. Comparison of student models trained with and without teacher distillation. We train a ResNet-50 backboned RetinaNet
(Student I) with (A) a prolonged 3× training schedule (curves in blue), or (B) MTPD from HTC (Teacher III) and then DetectoRS
(Teacher IV) (curves in orange-green-red). We compare the validation AP (a) and the training detection loss Ldetect (b) of the two students
during the training process. Despite its worse training loss, the distilled student can generalize better on the validation set. We also
compare the loss landscapes (Li et al., 2018) of the original student (c) and the distilled student (d). Distillation can guide the student to
converge to a flatter local minimum. These observations suggest that distillation helps generalization rather than optimization.

the original one (Figure 5c). As widely believed in the
machine learning literature, flat minima lead to better gener-
alization (Hochreiter & Schmidhuber, 1997; Keskar et al.,
2017). The observation shown in Figure 5 is illustrated for
RetinaNet, but we also have a similar observation in other
students. As a conclusion, knowledge distillation, which
enforces the student to mimic the teachers’ features, can be
considered as an implicit regularization, and helps the stu-
dent combat overfitting and achieve better generalization.

5. Conclusion
We present a simple yet effective approach to knowledge
distillation, which progressively transfers the knowledge of
a sequence of teachers to learn a lightweight object detector.
Our approach automatically arranges multiple teachers into
a curriculum, thus effectively mitigating the capacity gap
between the teacher and student. We successfully distill
knowledge from Transformer-based teachers to convolution-
based students, and achieve state-of-the-art performance on

the challenging COCO dataset. We also find that distillation
improves generalization rather than optimization.

Limitation and future work: This work has mainly fo-
cused on empirical results and analysis. Due to the complex-
ity of the detection task and models, we have not included
theoretical understanding of the representation-based adap-
tation cost and better generalization resulted by distillation,
but they will be our future direction. As a general approach
to object detection, this work shares similar concerns with
other detection techniques, such as potential misuse in en-
hancing surveillance systems, infringing upon privacy rights,
or contributing to biased outcomes.
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Appendix
In this appendix, we include additional contents to discuss the experimental results and details of our proposed approach,
Multi-Teacher Progressive Distillation (MTPD). Section A includes additional results and analysis of our proposed algorithm
for teacher order selection. Sections B and C provide additional ablation study on distillation with homogeneous teachers and
heterogeneous teachers, respectively. Section D shows the generalizability of MTPD, using demonstrate the experimental
results on the Argoverse-HD dataset with streaming accuracy metric. Section E compares MTPD with prior knowledge
distillation methods in detail. Section F provides some additional experiments on generalizing MTPD to state-of-the-art
distillation mechanisms. Section G lists our implementation details.

A. Additional Results on Searching for Near-Optimal Teacher Orders
In this section, we show more detailed results about searching a proper teacher order for progressive knowledge distillation,
and validate the Backward Greedy Selection (BGS) algorithm we propose in the main paper. As described in Section 3.2,
we first quantify the adaptation cost C(·, ·) between every pair of models in our pool, and then use a heuristic method BGS
(Algorithm 1) to construct a sequence of teachers. We have shown that the teacher order suggested by BGS is highly
competitive in Table 2. One might think that there should be better choices than a greedy algorithm on a directed graph,
such as a shortest-path algorithm. To validate our algorithm design, we empirically compare BGS against several other
algorithms.

Algorithm 1: Backward Greedy Selection (BGS) for determining the teacher order.

Input: Trained student model S, pool of trained teacher models P = {Ti}Ni=1, teacher models’ performance
{Q(Ti)}Ni=1, maximum number of selected teachers k

Output: Sequence of teachers O, len(O) ≤ k
1 Pick the best performing teacher: Tαk ← argmaxTu∈P Q(Tu), O ← [Tαk ]
2 Exclude from pool: P ← P \ {Tαk}
3 for j ← k − 1 to 1 do
4 Get candidate sub-pool: Pj = {Tu | Tu ∈ P, C(Tu, Tαj+1

) < C(S, Tαj+1
)}

5 if Pj 6= ∅ then
6 Pick the teacher closest to Tαj+1 : Tαj ← argminTu∈Pj C(Tu, Tαj+1)
7 Prepend Tαj to O
8 Exclude from pool: P ← P \ {Tαj}
9 else Break

10 return O

To begin with, we include the detailed adaptation costs C(·, ·) among RetinaNet (Student I) and its teachers (Teachers I-IV)
in Table 6. As described in Section 4.1, we have distilled Student I with all possible teacher orders in the pool, using a
reduced training budget of 3 epochs for each teacher. The results of these mini-budget distillation are summarized in Table 7.

Table 6. Adaptation costs among Student I (RetinaNet) and Teachers I-IV (Mask R-CNN, FCOS, HTC, DetectoRS). The adaptation cost
is computed pair-wise as described in Section 3.2 of the main paper.

From
To

Student I Teacher I Teacher II Teacher III Teacher IV

Student I - 0.939 0.060 1.568 1.254
Teacher I 0.183 - 0.070 0.934 0.963
Teacher II 0.339 1.181 - 1.940 1.401
Teacher III 0.191 0.484 0.082 - 0.890
Teacher IV 0.232 0.767 0.077 1.248 -
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Table 7. Performance of Student I (RetinaNet) distilled with different teacher sequences, under reduced training budgets. For each teacher
in the sequence, the student is trained for 3 epochs on COCO. After progressive knowledge distillation, the student is evaluated on
the COCO validation set. The teacher orders suggested by BGS are marked bold. No teacher order is highlighted in k = 4, as BGS
determines that the adaptation cost from Teacher II to Teacher I is already higher than that from the student to Teacher I, so only three
teachers (I→III→IV) should be used.

Length Teacher Student Length Teacher Student Length Teacher Student
Sequence AP Sequence AP Sequence AP

1

III 36.8

3

III→II→IV 38.0

4

III→II→I→IV 38.2
IV 36.7 I→III→IV 37.9 III→I→II→IV 38.1
I 36.4 III→IV→II 37.9 I→III→II→IV 38.1
II 36.2 II→III→IV 37.9 II→III→I→IV 38.0

III→I→IV 37.8 I→III→IV→II 38.0

2

III→IV 37.6 I→II→IV 37.7 II→I→III→IV 37.9
IV→II 37.3 I→IV→II 37.6 III→I→IV→II 37.9
III→II 37.3 IV→II→III 37.5 I→II→III→IV 37.9
I→IV 37.3 IV→III→II 37.5 IV→I→III→II 37.7
IV→III 37.2 II→I→IV 37.5 II→I→IV→III 37.7
I→III 37.1 I→III→II 37.5 I→II→IV→III 37.7
IV→I 37.0 IV→I→III 37.4 IV→III→I→II 37.6
II→IV 37.0 II→IV→III 37.4 IV→I→II→III 37.6
III→I 37.0 III→IV→I 37.4 III→IV→II→I 37.6
II→I 36.9 III→I→II 37.4 III→IV→I→II 37.6
II→III 36.8 I→IV→III 37.4 III→II→IV→I 37.6
I→II 36.8 IV→II→I 37.3 I→IV→III→II 37.6

IV→III→I 37.3 IV→II→I→III 37.5
IV→I→II 37.3 IV→III→II→I 37.5
I→II→III 37.3 II→IV→I→III 37.5
II→IV→I 37.2 II→III→IV→I 37.5
II→I→III 37.2 I→IV→II→III 37.5
III→II→I 37.2 II→IV→III→I 37.4
II→III→I 37.1 IV→II→III→I 37.3

Table 8. Comparison of five heuristic algorithms for teacher order selection in the mini-budget and full-budget distillation settings. Our
BGS can consistently produce the best teacher order among all candidate algorithms.

k Algorithm Teacher Mini-Budget Full-Budget
k Algorithm Teacher Mini-Budget Full-Budget

Order Student AP Ranking Student AP Order Student AP Ranking Student AP

1

Shortest-path (sum) IV 36.7 2 / 4 39.2

3

Shortest-path (sum) II→I→IV 37.5 9 / 40 39.3
Shortest-path (max) IV 36.7 2 / 4 39.2 Shortest-path (max) I→III→IV 37.9 2 / 40 39.9
Forward construction II 36.2 4 / 4 36.8 Forward construction II→I→III 37.2 25 / 40 37.8
Top-k performance IV 36.7 2 / 4 39.2 Top-k performance II→III→IV 37.9 2 / 40 39.7
BGS (Ours) IV 36.7 2 / 4 39.2 BGS (Ours) I→III→IV 37.9 2 / 40 39.9

2

Shortest-path (sum) II→IV 37.0 7 / 16 39.3

4

Shortest-path (sum) II→I→III→IV 37.9 7 / 64 39.3
Shortest-path (max) I→IV 37.3 2 / 16 39.5 Shortest-path (max) II→I→III→IV 37.9 7 / 64 39.3
Forward construction II→I 36.9 10 / 16 37.5 Forward construction II→I→III→IV 37.9 7 / 64 39.3
Top-k performance III→IV 37.6 1 / 16 39.9 Top-k performance I→II→III→IV 37.9 7 / 64 39.7
BGS (Ours) III→IV 37.6 1 / 16 39.9 BGS (Ours) I→III→IV 37.9 7 / 64 39.9
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Given the adaptation costs in Table 6, we can construct a directed graph, part of which has been illustrated in Figure 3. On
the directed graph, we run several algorithms to select a path. In addition to BGS, one may also propose these algorithms:

• Shortest-path (sum): Set the student as the source node, and set the best performing teacher as the target node Tλk . Find
a path S → Tλ1

→ · · · → Tλk that minimizes the sum of adaptation costs along the path:
minTλ1 ,...,Tλk−1

C(S, Tλ1
) +

∑k−1
j=1 C(Tλj , Tλj+1

).
• Shortest-path (max): Set the student as the source node, and set the best performing teacher as the target node
Tλk . Find a path S → Tλ1

→ · · · → Tλk that minimizes the maximum of adaptation costs along the path:
minTλ1 ,...,Tλk−1

max{C(S, Tλ1
), C(Tλ1

, Tλ2
), . . . , C(Tλk−1

, Tλk)}.
• Forward construction: Contrary to BGS, we may start from the student and choose the nearest teacher from the current

one, to construct the sequence: Tλ1
← argminTu∈P C(S, Tu), Tλj+1

← argminTu∈P C(Tλj , Tu).
• Top-k performance: Find the best performing top-k teachers which satisfy Q(Tλ1

) ≤ · · · ≤ Q(Tλk), and set the path as
S → Tλ1 → · · · → Tλk .

The output teacher sequences and corresponding student performance of these four algorithms are summarized in Table 8.
In this setting, BGS can consistently produce a competitive teacher order that leads to a good performance of the distilled
student. The other four algorithms all propose teacher sequences that are worse than or equivalent to BGS. In other words,
these additional algorithm candidates fail to outperform BGS.

In addition to the mini-budget setting, we also verify that the superiority of BGS holds when using the full training schedule.
To this end, we perform progressive distillation with teacher orders suggested by various algorithms, this time using a
full-budget training schedule (12 epochs for each teacher). Due to limited computation resources, we cannot extensively
evaluate all possible teacher orders with full budgets, preventing us from obtaining their absolute ranking among all
possibilities. Nevertheless, we can still compare the teacher orders produced by different algorithms. The results are
presented in the last column in Table 8. Again, the teacher orders generated by BGS consistently outperform those from all
other heuristic algorithms when using a full distillation schedule.

We note that the top-k performance algorithm is the best among the four candidates and is comparable to BGS. Though
different teacher sequences are selected, they would lead to the same final student performance as BGS in the mini-budget
setting. Meanwhile, the full-budget results show that BGS outperforms the top-k performance algorithm. We believe that
such a performance ranking based algorithm is worse or on par with BGS when the teachers have similar architectures (e.g.,
all using ResNet backbones).

However, when we include more diverse teacher models in the pool, the top-k performance algorithm encounters a pitfall.
For example, in the experiment (see Table 5) where we distill Mask R-CNN students with both Transformer-based and
convolution-based teachers in the pool, the top-k performance algorithm would suggest Cascade MRCNN/ResNeXt-
101-DCN→Mask R-CNN/Swin-S, leading to a final student performance of 42.0 AP. In contrast, BGS suggests Mask
R-CNN/Swin-T→Mask R-CNN/Swin-S, achieving a higher student performance of 42.5 AP. This difference highlights that
merely relying on performance ranking can result in an ineffective curriculum of teachers, as it does not account for the
representation similarity between student and teacher models during distillation. In a successful distillation process, it is
crucial to have a degree of similarity between the student and teacher models to facilitate the transfer of knowledge. Our
similarity-based teacher sequence design, which incorporates feature-level measurements, ensures a more effective learning
process for the student. Consequently, BGS proves to be more effective than algorithms that solely focus on performance
ranking.

In summary, our greedy backward construction, BGS, works the best in our setting, outperforming globally optimized
shortest-path algorithms or a performance ranking based algorithm. The final target teacher has the most profound impact on
the distilled student’s performance. In order to fully assist the final teacher, we need to use another teacher with the minimal
adaptation cost to the final teacher before it, which is exactly the behavior of BGS.

B. Ablation Study on Distillation with Homogeneous Teachers
In this section, we provide more details about distillation with homogeneous teachers (Section 4.2). We investigate (1) the
impact of each individual teacher; and (2) distillation with teachers simultaneously vs. sequentially.

Impact of individual teachers: We first distill Student II with each of the three teachers individually: Teacher III has the
same backbone and neck but a more advanced head; Teacher IV has more advanced backbone, neck, and head; Teacher V
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Table 9. Homogeneous distillation of COCO detectors, where students with ResNet-50 backbones are distilled with teachers with ResNet-
50 backbones. We report the detection (‘Box’) and segmentation (‘Mask’) APs and runtime, and we compare our distilled student with its
teachers, and off-the-shelf (‘OTS’) student. Our distilled student significantly improves the APs over the ‘OTS’ student by around 3%.

ID Model Box Mask Runtime
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL (ms)

1 Teacher III 42.3 61.1 45.8 23.7 45.6 56.3 37.4 58.4 40.2 19.6 40.4 51.7 181
2 Teacher IV 49.1 67.7 53.4 29.9 53.0 65.2 42.6 65.1 46.0 24.1 46.4 58.6 223
3 Teacher V 45.1 66.3 49.3 27.8 49.0 59.3 40.1 63.1 42.8 22.9 43.8 54.8 142

4 Student II (OTS) 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2 51
5 Student II (Ours) 41.4 61.9 45.1 23.3 45.0 55.4 37.3 58.8 39.8 19.4 40.4 52.1 49

Table 10. Ablation study on homogeneous distillation of COCO detectors (models in Table 9). Our distillation strategy is consistently
effective irrespective of the types of teachers. Moreover, sequential distillation with two teachers outperforms both distillation with a
single teacher and simultaneous distillation with two teachers. Our best distilled student is obtained by MTPD, where Student II is first
distilled with Teacher V (a weaker, more similar teacher with the same head as Student II) and then distilled with Teacher IV (a stronger
teacher whose architecture is completely different from Student II).

ID Student II Box Mask
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

1 OTS 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2

2 Distilled by Teacher III 40.2 60.7 43.8 22.5 43.8 53.4 36.3 57.3 38.7 18.9 39.3 50.3
3 Distilled by Teacher IV 40.8 61.5 44.6 23.0 44.3 54.2 36.8 58.3 39.4 19.2 39.9 51.0
4 Distilled by Teacher V 40.8 61.4 44.5 22.9 44.3 54.2 36.6 58.1 39.1 19.2 39.6 51.0

5 Distilled by Teachers IV+V 39.8 60.3 43.4 22.1 43.3 52.9 35.9 57.1 38.1 18.3 39.0 49.8

6 Distilled by Teachers IV→V 41.0 61.7 44.8 23.0 44.3 54.9 36.8 58.3 39.2 19.5 39.9 51.3
7 Distilled by Teachers V→IV 41.4 61.9 45.1 23.3 45.0 55.4 37.3 58.8 39.8 19.4 40.4 52.1

has the same head but more advanced backbone and neck. Table 9 provides the performance of the three teachers, where
Teacher IV achieves the best performance (rows 1-3). From Table 10, we can see that our distilled students (rows 2-7)
significantly and consistently outperform the off-the-shelf student (row 1), demonstrating the effectiveness of our MTPD
strategy irrespective of the types of teachers. Moreover, the improvement of the student distilled with Teacher V (row 2) over
that with Teacher III (row 3) shows that a more powerful teacher generally leads to a better distilled student. Interestingly,
although Teacher IV is more powerful than Teacher V, Table 10 shows that their distilled students achieve quite similar
AP (row 2 vs. row 4). This indicates that an even more powerful teacher does not necessarily further improve the distilled
student; too large a capacity and structure gap between the teacher and student will limit the effectiveness of distillation.
Also, it is easier to distill from teachers with the same head.

Simultaneous vs. progressive distillation: We now distill Student II with the combination of teachers, and we choose the
top-performing Teacher IV and Teacher V. We investigate two types of combination – simultaneous distillation with a feature
matching loss between the student and the ensemble of the teachers (row 5), and sequential distillation with teachers one by
one (rows 6-7). First, we find that using both teachers simultaneously (row 5) is even worse than using a single teacher (rows
2-4). This shows that integrating different types of knowledge from multiple teachers is not a trivial task – simultaneously
using the features from multiple teachers might provide conflicting supervisions to the student model and thus hinder its
distillation process. By contrast, our sequential distillation overcomes this issue and improves the performance irrespective
of the order of the teachers (rows 6-7 vs. rows 1-4). Second, the sequential order of the teachers makes a difference. A
curriculum-like progression (row 7), where the teacher with a smaller adaptation cost is used first and that with a larger
adaptation cost and a higher performance is used later, leads to the best performance.

Overall performance: Our best distillation performance is achieved when we first distill Student II with a curriculum of
teachers (Teachers V→IV). Overall, the box AP is improved from 38.2% to 41.4%, and the mask AP is improved from
34.7% to 37.3%. Our resulting Mask R-CNN detector has comparable performance with HTC, but much smaller runtime.
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Table 11. Heterogenous distillation of COCO detectors, where students with ResNet-18 backbones are distilled with teachers with
ResNet-50 backbones. We report the detection (‘Box’) and segmentation (‘Mask’) APs and runtime, and we compare our distilled student
with its teachers and off-the-shelf (‘OTS’) student. Our distilled student significantly improves the APs over the ‘OTS’ student by over
3%.

ID Model Box Mask Runtime
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL (ms)

1 Teacher I 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2 51
2 Teacher III 42.3 61.1 45.8 23.7 45.6 56.3 37.4 58.4 40.2 19.6 40.4 51.7 181
3 Teacher IV 49.1 67.7 53.4 29.9 53.0 65.2 42.6 65.1 46.0 24.1 46.4 58.6 223
4 Teacher V 45.1 66.3 49.3 27.8 49.0 59.3 40.1 63.1 42.8 22.9 43.8 54.8 142

5 Student III (OTS) 33.3 52.9 35.9 18.2 35.9 43.6 30.5 50.0 32.1 15.5 32.9 41.8 29
6 Student III (Ours) 37.0 56.8 39.9 20.2 39.8 50.0 33.7 53.6 36.0 17.2 36.0 47.3 29

C. Ablation Study on Distillation with Heterogeneous Teachers
In this section, we provide more details about distillation with heterogeneous teachers (Section 11). We investigate the
heterogeneous cases where the backbones or input resolutions are different between the teachers and student.

Overall performance: Again, Tables 11 and 12 show that MTPD is consistently effective with respect to all the teachers
and their combinations, e.g., the box AP improves from 33.3% to 37.0%, and the mask AP improves from 30.5% to 33.7%.

Two key findings in heterogeneous distillation: Compared with the homogeneous case, we find that the capacity gap
between models is a more important factor, and to bridge this gap a proper teacher order plays a more critical role. Details
are explained as follows.

The student-teacher capacity gap is more pronounced in heterogeneous distillation. Among the four teachers, Teacher I
shares exactly the same neck and head structure with the student, and has a similar but larger backbone; Teacher V has the
same head with the student as well, but has different backbone and neck; Teacher III has similar backbone and neck, but
has a different head; and Teacher IV is the most powerful one with completely different architecture. Table 12 (rows 3-6)
summarizes the distillation results with single teachers. First, directly distilling from the strongest teacher (Teacher IV) does
not yield the largest improvement. Second, a relatively less powerful but more similar teacher (Teacher I) leads to the best
distillation performance, improving the APs by 2%, although Teachers V, III, and IV are all stronger than Teacher I. One
possible reason is that Teacher I has the same neck and head as Student III as well as a similar but deeper backbone, so the
capacity gap between Student III and Teacher I is the smallest. Finally, we find that Teacher III is a strong but not particularly
helpful teacher, achieving the worst distillation results. One possible reason is that Teacher III has a very different head
from Student III, while not as accurate as Teacher IV, making it unable to provide enough guidance to Student III. These
observations suggest that a smaller capacity gap between the student and the teacher may facilities knowledge transfer.

The sequential order of the teachers plays a more critical role in the heterogeneous setting. Table 12 (rows 7-12) presents
representative results with different orders or combinations of the teachers. Again, a proper progressive distillation (row 12)
outperforms simultaneous distillation (rows 7-9). Notably, it is necessary to start with Teacher I, since the capacity gap
between Student III and Teacher I is minimal, with difference only on the depth of their ResNet backbones. These results
confirm the importance of our curriculum-like progression to best benefit from multiple teachers.

Training a student longer vs. distilling a student: As another sanity check, Table 12 includes results of training Student
III with more epochs without distillation (rows 2-4). We can see that the first 12 additional epochs improve APs by 1%,
but there are no significant improvements even if we train for a longer period. This shows the effectiveness of detector
distillation.

Distillation with different model resolutions: In Table 12, we have performed distillation where the student and teacher
models operate on the same input image resolution (e.g., the standard resolution 1, 333× 800 on MS COCO). In practice,
one way to further reduce the latency/runtime of the student is to operate on lower-resolution images. However, this poses
additional challenges – with a teacher of high input resolution and a student of low input resolution, they become even more
heterogeneous. Moreover, image resolution substantially affects object detection performance (Ashraf et al., 2016). Here,
we are interested in performing distillation with models trained with images of different resolutions to further investigate
the generalizability of MTPD. More specifically, we use high-resolution models as teachers and low-resolution models as
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Table 12. Ablation study on heterogeneous COCO detector distillation (models in Table 11). Student III (Mask R-CNN with a ResNet-18
backbone) is distilled with teachers with different and larger ResNet-50 backbones. Training Student III for more epochs improves its
performance, but not as much as progressive distillation with teachers. Note that for each distillation we train 12 epochs. MTPD is
consistently effective irrespective of the types of teachers. Moreover, MTPD outperforms simultaneous distillation by ensembling multiple
teachers. Our best distilled student is obtained by MTPD, where Student III is first distilled with Teacher I (the most similar teacher with
the same head and neck as Student III and a deeper backbone), then distilled with Teacher V (the stronger teacher with the same head as
Student III), and finally distilled with Teacher IV (the strongest teacher whose architecture is completely different from Student III).

ID Model Box Mask
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

1 Student III (OTS) 33.3 52.9 35.9 18.2 35.9 43.6 30.5 50.0 32.1 15.5 32.9 41.8

2 +12 epochs 34.6 54.5 37.2 18.8 36.9 46.1 31.6 51.5 33.6 15.8 33.7 44.0
3 +24 epochs 34.5 54.2 37.2 18.8 36.5 45.8 31.5 51.2 33.8 16.0 33.4 43.7
4 +36 epochs 34.6 54.2 37.4 18.6 36.9 46.7 31.6 51.1 33.8 15.7 33.6 44.3

3 Distilled by Teacher I 35.8 55.8 38.8 19.3 38.8 47.9 32.6 52.7 34.8 16.0 35.3 45.5
4 Distilled by Teacher III 35.2 55.2 37.8 19.1 37.8 47.4 32.1 52.0 34.0 16.1 34.5 45.2
5 Distilled by Teacher IV 35.5 55.2 38.2 19.0 37.9 48.0 32.4 51.9 34.5 15.9 34.8 45.6
6 Distilled by Teacher V 35.4 55.2 38.3 19.4 37.9 48.4 32.2 52.2 34.3 15.4 34.4 45.8

7 Distilled by Teachers IV+V 34.8 54.9 37.2 19.0 37.2 47.0 31.6 51.7 33.9 15.7 33.8 44.2
8 Distilled by Teachers I+IV+V 36.0 55.4 39.1 18.2 38.1 48.3 32.1 53.0 34.7 15.8 34.7 46.1
9 Distilled by Teachers I+III+IV+V 36.1 55.2 39.0 18.4 38.2 48.0 31.7 52.9 34.3 15.1 34.2 46.3

10 Distilled by Teachers I→V 36.5 56.3 39.3 19.5 38.8 49.4 33.2 53.2 35.3 16.4 35.4 46.8
11 Distilled by Teachers V→IV 35.2 55.2 37.8 19.1 37.8 47.4 32.1 52.0 34.0 16.1 34.5 45.2
12 Distilled by Teachers I→V→IV 37.0 56.8 39.9 20.2 39.8 50.0 33.7 53.6 36.0 17.2 36.0 47.3

Table 13. Detectors trained with different input resolutions on the COCO dataset. We use a series of Teacher I variants: Teacher I-1 is
trained with the standard input resolution of 1, 333× 800; Teacher I-2 is trained with 1, 000× 600 input; Teacher I-3 is trained with
666× 400 input; and the student is trained with 333× 200 input. We report the detection (‘Box’) and segmentation (‘Mask’) APs and
runtime. We compare our distilled student with its teachers and off-the-shelf (‘OTS’) student. Our approach is effective with even more
heterogeneous teacher and student models of different input resolutions.

ID Model Input Box Mask Runtime
Resolution AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL (ms)

1 Teacher I-1 1333× 800 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2 31.5
2 Teacher I-2 1000× 600 37.2 57.7 40.5 19.1 40.9 50.4 33.6 54.3 35.9 15.6 37.0 47.7 24.9
3 Teacher I-3 666× 400 34.7 54.0 37.2 15.6 38.1 50.4 31.2 50.5 33.2 12.2 34.4 47.0 19.7

4 Student (OTS) 333× 200 25.8 41.9 27.1 7.0 27.8 44.3 23.0 38.7 23.7 5.0 23.7 41.3 16.9
5 Student (Ours) 333× 200 31.5 49.8 33.3 12.3 34.3 48.9 28.2 46.5 29.0 9.3 30.3 45.4 16.9

students, as shown in Table 13 (rows 1-4).

In these experiments, the teacher and student feature maps have different spatial resolutions. To tackle this, we simply
upsample the spatial maps of the student and supervise the student with the teachers’ features. Again, Table 13 shows
that MTPD is effective in this more challenging scenario. Our best performance is achieved by progressively distilling the
student with its Teachers I-3, I-2, and I-1.

D. Generalizability to Other Datasets and Evaluation Protocols
In this section, we study the generalizability of MTPD. As an extension from the gold-standard COCO benchmark, we
evaluate our distilled student (trained on COCO) on another dataset, Argoverse-HD (Chang et al., 2019), and with another
metric, streaming accuracy (Li et al., 2020a), and perform distillation on Argoverse-HD directly.

Argoverse-HD is a more challenging dataset than COCO, due to higher resolution images and significantly more small
objects. Constructed from the autonomous driving dataset Argoverse 1.1 (Chang et al., 2019), Argoverse-HD contains
RGB video sequences and dense 2D bounding box annotations (1,260k boxes in total). It consists of 8 object categories,
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Table 14. Generalizability on Argoverse-HD. On the left, we report standard detection accuracy. ‘OTS’ and distilled students are trained
on COCO. We observe 2% AP gains through distillation, even on novel test sets. On the right, we report streaming detection accuracy as
defined in Li et al. (2020a), in the detection-only setting on a Tesla V100 GPU. The second column denotes the optimal input resolution
(that maximizes streaming accuracy). First, we discover that a lighter model and full-resolution input is much more helpful than having an
accurate but complex model that needs to downsize input resolution. Second, MTPD further improves over the lightweight model.

Model box AP AP50 AP75 APS APM APL

Stud. II OTS 32.7 52 34.5 14.7 35.8 52.8
Distilled 34.4 54.2 35.9 15.0 36.8 57.7

Stud. III OTS 28.9 48.8 30.0 12.8 31.3 49.2
Distilled 30.6 49.7 31.8 12.9 32.6 51.9

Detector Input AP AP50 AP75 APS APM APL

Cas. MRCNN50 (Li et al., 2020a) 0.5× 14.0 26.8 12.2 1.0 9.9 28.8
MRCNN18 (Ours) 1.0× 23.7 44.8 22.6 10.4 23.1 37.8
MRCNN18 (+ Distill) 1.0× 25.0 45.8 24.2 10.5 24.1 39.3

Table 15. Heterogenous distillation of Argoverse-HD detectors, where a student with a ResNet-18 backbone is distilled with teachers
with ResNet-50 backbones. We report the detection (‘Box’) APs and runtime. We compare our distilled student with its teachers and
off-the-shelf (‘OTS’) student. Our distilled student significantly improves the APs over the ‘OTS’ student by over 2%. Notably, our
distilled student achieves detection accuracy that is comparable with Teacher A but with only around third of the runtime.

ID Model Backbone Neck Detection Head Box Runtime
AP AP50 AP75 APS APM APL (ms)

1 Teacher A ResNet-50 FPN Faster R-CNN 29.6 48.2 30.5 16.4 33.1 45.1 79.2
2 Teacher B ResNet-50 FPN Cascade 32.3 50.4 35.0 16.4 37.1 47.7 89.0
3 Teacher C ResNet-50 + SAC RFP Faster R-CNN 32.9 51.0 35.5 17.6 33.7 52.9 230.8
4 Teacher D ResNet-50 + SAC RFP Cascade 34.5 52.0 37.7 17.9 37.0 52.8 241.2

5 Student (OTS) ResNet-18 FPN Faster R-CNN 27.1 48.1 27.5 14.4 31.2 40.0 29.3
6 Student (distilled) ResNet-18 FPN Faster R-CNN 29.2 49 30.9 15 31.7 45.6 29.5

which are a subset of 80 COCO classes and are directly relevant to autonomous driving: person, bicycle, car, motorcycle,
bus, truck, traffic light, and stop sign. There are 38k training images and 15k validation images. We report results on the
validation images. We test the distilled models trained on COCO on Argoverse-HD without re-training. Table 14-left shows
the generalizability of MTPD.

Streaming accuracy is a recently proposed metric that simultaneously evaluates both the accuracy and latency of algorithms
in an online real-time setting (Li et al., 2020a). The evaluator queries the state of the world at all time instants, forcing
algorithms to consider the amount of streaming data that must be ignored while processing the last frame. Following the
setup proposed in Li et al. (2020a), we evaluate streaming AP in the context of real-time object detection for autonomous
vehicles. Table 14-right shows MTPD outperforming the prior results from Li et al. (2020a) by a dramatic margin. We
find significant wins by using an exceedingly lightweight network (ResNet-18 based Mask R-CNN) that can process
full-resolution images without sacrificing latency. Due to much higher quantities of small objects, high-reslution processing
is more effective than deeper network structures. In addition, progressive distillation further improves performance.

Direct distillation on Argoverse-HD: Given the generalizability of the already-distilled models, now we directly distill
the student model on Argoverse-HD, using Faster R-CNN with a ResNet-18 backbone as the student model. As shown in
Table 15, we use four teachers with ResNet-50 backbones (rows 1-4), including Faster R-CNN (Ren et al., 2014) (Teacher
A), Cascade R-CNN (Cai & Vasconcelos, 2018) (Teacher B), and DetectoRS (Qiao et al., 2021) (Teachers C & D).

The results are summarized in Table 15. Our best distillation performance is achieved when we first distill the student with a
similar teacher (Teacher A), and then progressively distill with more powerful teachers (Teachers B, then C, and finally D).
Overall, the box AP is improved from 27.1% to 29.2%.

In addition, comparing with Table 14-left, the absolute performance of the teachers and students in Table 15 is lower. This
is because here we use weaker teachers and student models (Faster R-CNN for fast experiments) than the models used
in Table 14-left (Mask R-CNN). However, the relative improvement (between the distilled and OTS students) of box AP
(2.1%) is larger than that in Table 14-left (1.7%), indicating that learning distillation directly on Argoverse-HD further
improves the performance.
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E. Additional Related Work: Detailed Comparison with Prior Knowledge Distillation Methods
for Image Classification

The most profound difference between this work and most of the prior work on knowledge distillation is that prior work
mainly focuses on the image classification task, while we address the object detection task. The detection task (and the
associated model architectures) is much more complicated than the classification task. This makes the distillation methods
developed in the context of classification often not directly applicable to detection. That is why dedicated distillation
methods (Chen et al., 2017; Wang et al., 2019; Zhang & Ma, 2021; Guo et al., 2021a;b; Dai et al., 2021; Yang et al.,
2022a;b) need to be developed for the detection task in the literature. Here, we discuss the difference between our method,
Multi-Teacher Progressive Distillation (MTPD), and prior methods on knowledge distillation in detail:

Progressive distillation: Teacher Assistant Knowledge Distillation (TAKD) (Mirzadeh et al., 2020) is related to our method,
in the sense that this work progressively distills a student from multiple teachers (one teacher and several additional teacher
assistants (TAs)). With one TA, the distillation process in TAKD contains three steps: 1) The TA is first distilled from the
teacher; 2) The student is distilled from the TA; and 3) The student trained by the TA is further distilled from the teacher.
When there are multiple TAs, the shallower TAs are distilled from deeper ones, so that they form a distillation path. However,
our work is different from TAKD in three important ways:

• As mentioned above, TAKD focuses on image classification, while we study progressive distillation in the context of object
detection. In our case, the transferred knowledge is no longer classification logits but intermediate features or structured
predictions. This would require additional consideration and algorithmic designs to extend progressive distillation from
image classification to object detection.

• Our strategy to construct the teacher sequence is a novel contribution and is fundamentally different from TAKD. In our
work, we propose a heuristic algorithm BGS (Algorithm 1) based on the representation similarities between different
models (Section 3.2), which automatically generates the teacher order. In TAKD, a series of deep networks with increasing
depths act as the student, the TA(s), and the teacher. One can intuitively determine the distillation sequence of TA(s)
according to their increasing depths (which imply learning capacities). However in our case, there is a pool of teachers
with diverse architectures and their relative ordering is unknown. This challenge motivates us to design an algorithm to
automatically decide the teacher order based on their representation similarities; importantly, the strategy in TAKD is not
applicable in our task.

• TAKD is more cumbersome and time-consuming. An intermediate TA in TAKD needs to be first distilled from the teacher
or a deeper TA, so the TAs have to be trained one by one. By contrast, all of our teachers (including the intermediate
teachers and the final teacher) are trained independently. This makes the generation of our teachers parallelizable.

Multi-teacher distillation: The key difference lies in: These methods (You et al., 2017; Lan et al., 2018; Guo et al., 2020)
use an ensemble of multiple teachers simultaneously to guide the student learning, while our work distills from multiple
teachers sequentially, and we propose a novel method to construct the appropriate teacher order. Empirically, we compare
these strategies, and demonstrate that MTPD outperforms the simultaneous strategy (via teacher ensemble by taking the
average of teacher features) for object detection.

• This comparison is provided in Section B (Table 10) and Section C (Table 12). For example in Table 12, if we compare
experiments with IDs 7-9 (simultaneous distillation from teacher ensembles) and experiments with IDs 10-12 (progressive
distillation from teacher sequences), we find that progressive distillation is a better choice.

• Our performance superiority is because in the object detection task, the teacher’s knowledge is transferred from interme-
diate features, rather than from final classification predictions. Thus, the ensemble of multiple teachers might provide
conflicting supervision signals for the student, leading to performance interior to our progressive distillation.

Online distillation and deep mutual learning: Although the teacher model is also changing during online distillation and
deep mutual learning (Yang et al., 2019a; Guo et al., 2020; Yao & Sun, 2020; Li et al., 2022), the principle of our sequential
teachers is significantly different from online distillation for the following reasons:

• Strictly speaking, in online distillation, there is only one teacher – This teacher’s architecture is fixed, and its weights keep
updating in an online manner. By contrast, we have multiple teachers – These teachers have different architectures, and
their weights are first trained independently, and then frozen in the progressive distillation process; in our progressive
distillation, we switch the whole teacher model.

• The type of discrepancy between the student and the teacher is different for ours and online distillation. Online distillation
often uses similar or even the same architecture for both the teacher and student models. Consequently, their capacities

19



Learning Lightweight Object Detectors via Multi-Teacher Progressive Distillation

Table 16. Learning lightweight RetinaNet detectors with various distillation mechanisms. The classification-oriented distillation mecha-
nism VID fails to achieve comparable performance with detector-specific methods including CWD, FGD, and MGD, and much worse
than the combination of MGD and MTPD.

ID Student Distillation Teacher(s) AP

1 RetinaNet/ResNet-50 VID (Ahn et al., 2019) RetinaNet/ResNeXt-101 40.3

2
RetinaNet/ResNet-50

CWD (Shu et al., 2021) RetinaNet/ResNeXt-101 40.8
3 FGD (Yang et al., 2022a) RetinaNet/ResNeXt-101 40.7
4 MGD (Yang et al., 2022b) RetinaNet/ResNeXt-101 41.0

5 RetinaNet/ResNet-50 MGD (Yang et al., 2022b) RetinaNet/ResNet-101 41.4+ MTPD (Ours) →RetinaNet/ResNeXt-101

are at the same level, and they can evolve together. Our study is quite different: The key question we want to address is
the capacity gap between the student and the teacher (the capacity gap is due to the architectural difference between the
student and the teacher); and our solution is to progressively distill using other teachers with intermediate capacities.

Other distillation mechanisms for classification: These methods (Romero et al., 2015; Zagoruyko & Komodakis, 2017;
Ahn et al., 2019) introduce other types of distillation mechanisms, but they are not directly applicable to our setting of
multi-teacher detector distillation:

• They still consider the setting where only one single fixed teacher is involved. Different from these methods, we use
multiple teachers to progressively transfer knowledge from them to the student.

• We do share some similarities with Romero et al. (2015); Zagoruyko & Komodakis (2017); Ahn et al. (2019) in that
they are distilling knowledge from the activations of intermediate layers. The simple feature-matching loss (Section 3.1)
and other recent work in detector distillation (e.g., CWD (Shu et al., 2021), FGD (Yang et al., 2022a), and MGD (Yang
et al., 2022b)) are based on the “hint” distillation (learning from intermediate layers’ outputs) from Romero et al.
(2015). However, directly applying such distillation methods designed for classification to object detectors cannot lead to
satisfactory student performance, as compared with dedicated detector distillation methods.

• We take the best-performing method (among classification-oriented, feature-based distillation methods) Variational
Information Distillation (VID) (Ahn et al., 2019) as an example for comparison with detector distillation methods. The
results are shown in Table 16. In this distillation setting with RetinaNet object detectors, VID fails to achieve comparable
performance with detector-specific methods such as CWD, FGD, and MGD, and falls even farther behind MGD integrated
with MTPD. As discussed previously, we believe that object detection introduces additional complexity to this distillation
task, so it requires some customized mechanisms for successful knowledge transfer from the teacher detector to the
student. As a result, a distillation loss designed for classification (e.g., VID) is not the optimal solution.

F. Additional Results on Generalizability to State-of-the-Art Distillation Mechanisms
In this section, we include additional experimental results to discuss the generalizability of MTPD with a focus on
state-of-the-art distillation mechanisms.

Transformer-based students: In the main paper, we have shown that MTPD is the key to successful distillation from
Transformer-based teachers to convolution-based students. We prefer not to distill Transformer-based students from
convolution-based teachers for the following reasons:

• Consistency with practical scenarios: The end goal of this work and knowledge distillation in general is to develop high-
accuracy, lightweight object detectors. To this end, the student detectors are typically efficient detectors like RetinaNet
with a ResNet backbone. Although there has been some recent research focusing on designing computationally efficient
architectures for Transformers, the widely adopted vision Transformers (e.g., ViT and Swin Transformer) are still slower
than their convolution-based counterparts (e.g., ResNet and EfficientNet), because convolution operations are highly
optimized on GPUs. Therefore, ResNet-based students are more favored in developing lightweight object detectors and
are thus used in our evaluation.

• One may consider it more approachable to transfer knowledge from convolution-based teachers to Transformers as
CNNs are more matured. However, when developing lightweight object detectors, we usually care less about the training
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Table 17. Distillation with a Transformer-based student. In contrast to the Transformer-teacher, convolution-student setting in our main
paper, here ConvNeXt-backboned (Liu et al., 2022) teachers are employed to teach a Swin-backboned (Liu et al., 2021) student. Again,
MTPD (ID 3) leads to the best student accuracy.

ID Student Distillation Teacher(s) Training Schedule AP

1 RetinaNet/Swin-Tiny None None 2× 43.7
2 MGD (Yang et al., 2022b) Cascade Mask R-CNN/ConvNeXt-Small 2× 44.6

3 RetinaNet/Swin-Tiny MGD (Yang et al., 2022b) Mask R-CNN/ConvNeXt-Tiny
1× + 1× 45.2+ MTPD (Ours) →Cascade Mask R-CNN/ConvNeXt-Small

Table 18. Distillation of RetinaNet detectors. The capacity gap between the student (RetinaNet/ResNet-50) and the intermediate teacher
(RetinaNet/ResNet-101) is smaller. MTPD is better than both distillation schemes that keep using the intermediate teacher (ID 3) or the
final teacher (ID 2).

ID Student Distillation Teacher(s) Training Schedule AP

1 RetinaNet/ResNet-50 None None 2× 37.4

2
RetinaNet/ResNet-50 MGD (Yang et al., 2022b)

RetinaNet/ResNeXt-101 2× 41.0
3 RetinaNet/ResNet-101 2× 40.7
4 RetinaNet/ResNet-101 1× 40.2

5 RetinaNet/ResNet-50 MGD (Yang et al., 2022b) RetinaNet/ResNet-101
1× + 1× 41.4+ MTPD (Ours) →RetinaNet/ResNeXt-101

efforts of the teachers, as long as the students are computation-efficient and accurate at test time. The setting where
distillation happens from high-capacity Transformer teachers to low-capacity convolution-based students is thus more
challenging and more important for real-world applications, than the case of distillation from convolution-based teachers
to Transformer-based students.

• The key question we want to address is the capacity gap between the student and the teacher. Typically, commonly used
Transformer-based backbones (e.g., Swin-Small) have stronger performance than convolution-based backbones (e.g.,
ResNet-101), and thus possess a higher learning capacity. We study the more challenging case of distilling knowledge
from a high-capacity Transformer-based teacher (for better performance) to a low-capacity convolution-based student
(for better efficiency), so the capacity gap is unavoidable and must be mitigated. In such a scenario, MTPD is a helpful
solution. In fact, we have shown that progressive distillation is critical to the success of knowledge transfer from a Swin
Transformer teacher to a ResNet student in Table 5.

Nevertheless, to further test the generalizability of MTPD, we investigate distillation from convolution-based teachers into
a Transformer-based student. The student is a RetinaNet/Swin-Tiny detector. As for the teachers, we choose detectors
with the very recent, strong, convolution-based backbone: ConvNeXt (Liu et al., 2022). We use the state-of-the-art
distillation loss MGD as in the main paper. The comparison of the results are shown in Table 17. In this convolution-to-
Transformer distillation setting, MGD direct distillation using a strong ConvNeXt-Small backbone gives the Transformer-
based RetinaNet/Swin-Tiny student a 0.9% AP improvement. MTPD via an intermediate ConvNeXt-Tiny teacher further
boosts the student performance by 0.6% AP and leads to a high-accuracy student with 45.2% AP on COCO detection. This
experiment again demonstrates the effectiveness of MTPD across various teacher/student architectures, in addition to the
Transformer-teacher, convolution-student setting which we have shown in the main paper.

Keeping using the intermediate teacher: In the main paper, we have discussed the capacity gap between the teacher and
student and how to mitigate this gap via progressive distillation. One may question that, since the capacity gap between the
intermediate teacher and the student is smaller, keeping using this intermediate teacher throughout the distillation procedure
might also lead to a good student. Here we provide an exemplary experiment result (in addition to Figure 4a) as an answer
to this question: Only using the intermediate teacher is still suboptimal as compared with MTPD.

In this experiment, we use state-of-the-art distillation method MGD as the base method. We use RetinaNet/ResNet-50
(37.4 AP on COCO) as the student model, RetinaNet/ResNet-101 (38.9 AP) as the intermediate teacher model, and
RetinaNet/ResNeXt-101 (40.8 AP) as the final teacher model. The capacity gap between the intermediate teacher and the
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student is smaller than that between the final teacher and the student. Table 18 shows the results.

Keeping using the intermediate teacher (RetinaNet/ResNet-101) for a longer 2× training schedule indeed improves the
performance from 40.2% AP to 40.7%, but it is still not better than directly using the final teacher (RetinaNet/ResNeXt-101).
Our progressive distillation, which first uses the intermediate teacher and then the final teacher for distillation, outperforms
both direct distillation schemes and achieves 41.4% AP performance. As always, we use the same total training time (2×
training schedule) as direct distillation for a fair comparison. This experiment supports the conclusions that 1) employing an
intermediate teacher throughout the distillation process is not a good option; and 2) MTPD, which uses both the intermediate
teacher and the best performing teacher sequentially, leads to the best student performance.

G. Implementation Details
We implement detectors and their distillation using the MMDetection codebase (Chen et al., 2019b). We train on 8 GPUs for
12 epochs for each distillation. For MS COCO, we use the standard input resolution of 1, 333× 800, with each GPU hosting
2 images. For Argoverse-HD, we use its much higher native resolution as the input at 1, 920 × 1, 200, with each GPU
hosting 1 image. We use an initial learning rate of 0.01 (for RetinaNet students) or 0.02 (for Mask R-CNN students). We
use stochastic gradient descent and a momentum of 0.9. For the simple feature-matching loss (see Section 3.1), we perform
a grid search over the hyper-parameter λ. While the optimal values are dependent on the architectures of the teacher and
student models, we find that the performance is not very sensitive to λ between 0.3 and 0.8. We set λ = 0.5 for RetinaNet
students and λ = 0.8 for Mask R-CNN students.

When we integrate MTPD with state-of-the-art distillation mechanisms including CWD (Shu et al., 2021), FGD (Yang et al.,
2022a), and MGD (Yang et al., 2022b) (Section 4.4), we strictly follow the publicly available implementation from their
authors, and use an intermediate teacher (RetinaNet/ResNet-101 or Cascade Mask R-CNN/ResNet50-DCN) for progressive
distillation. In the original implementation of FGD and MGD, an inheriting strategy (Kang et al., 2021) is utilized, which
initializes the student with the teacher’s neck and head parameters to train the student when they have the same head
structure. In MTPD, we adopt this inheriting strategy only once for the first teacher.

For the Transformer-based teachers, we use the Swin Transformer backbone, which has a hierarchical architecture and
shares the “same feature map resolutions as those of typical convolutional networks (e.g., ResNet-50)” (Liu et al., 2021).
Following the original implementation of Swin Transformer, the backbone is equipped with an FPN neck, so the number of
neck feature channels is the same as the student. As a result, Swin Transformer based teachers can be used like some other
convolution-based teachers without the feature map matching function (r(·) in Section 3.1).
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