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Abstract

Recent works successfully leveraged Large Lan-
guage Models’ (LLM) abilities to capture ab-
stract knowledge about world’s physics to solve
decision-making problems. Yet, the alignment
between LLMs’ knowledge and the environment
can be wrong and limit functional competence
due to lack of grounding. In this paper, we study
an approach (named GLAM) to achieve this align-
ment through functional grounding: we consider
an agent using an LLM as a policy that is progres-
sively updated as the agent interacts with the envi-
ronment, leveraging online Reinforcement Learn-
ing to improve its performance to solve goals. Us-
ing an interactive textual environment designed to
study higher-level forms of functional grounding,
and a set of spatial and navigation tasks, we study
several scientific questions: 1) Can LLMs boost
sample efficiency for online learning of various
RL tasks? 2) How can it boost different forms of
generalization? 3) What is the impact of online
learning? We study these questions by function-
ally grounding several variants (size, architecture)
of FLAN-T5.

1. Introduction
The recent rise of Transformer-based Large Language Mod-
els (LLMs) trained on massive text datasets in Natural Lan-
guage Processing has led to models exhibiting impressive ca-
pabilities (e.g. natural language generation, question answer-
ing, reasoning, translation...) (Devlin et al., 2019; Brown
et al., 2020; Rae et al., 2021; Chowdhery et al., 2022; Scao
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et al., 2022). Recently, LLMs were shown to capture aspects
of the physical rules in our world, e.g. about space (Patel
& Pavlick, 2022), colors (Abdou et al., 2021) or even affor-
dances between bodies and objects (Ahn et al., 2022). This
form of prior knowledge was exploited to suggest plans of
action to solve goals in robotics (Huang et al., 2022b; Ahn
et al., 2022; Liang et al., 2022). However, LLMs are known
to suffer from a lack of grounding which prevents them from
properly dealing with the meaning of inter-related concepts
and their use for functional competence in interactive envi-
ronments (Mahowald et al., 2023). Indeed, alignment be-
tween statistical structures in such LLMs and environments
can be very limited, or even sometimes entirely wrong. This
is partly due to 1) a training process (predicting next words)
that is not directly incentivized to solve problems in an envi-
ronment, 2) lack of abilities to intervene in the environment
to identify causal structures; 3) lack in abilities to learn
based on data collected as a result of interacting with the
environment (Bender & Koller, 2020; Bisk et al., 2020).

In the literature, language grounding has referred to var-
ious related objectives (Thill et al., 2014). First, symbol
grounding can be formulated as the general problem of
connecting a symbol system (Harnad, 1990), internal to
an agent, to the environment, in such a way that internal
processing of these symbols can be used to to act appropri-
ately in this environment. One dimension of this problem
is associating ”elementary” symbols, such as the names of
objects, with invariant structures in high-dimensional per-
ceptual modalities such as vision (Cangelosi et al., 2010;
Wiriyathammabhum et al., 2016). Such a grounding, called
”direct grounding”, has been extensively studied in the past
leading to various efficient methods (Alayrac et al., 2022;
Radford et al., 2021; Lu et al., 2023), included in the con-
text of robotic bodies (Cangelosi & Stramandinoli, 2018).
Another dimension is how to ground higher-order symbolic
tokens, or abstract concepts, into elementary symbols, often
through approaches such as distributional semantics (Har-
ris, 1981; Boleda, 2019). This has been called ”grounding
transfer” (Cangelosi & Stramandinoli, 2018). Beyond such
mere associations, a key question about grounding is how
internal processes that manipulate symbols can model, pre-
dict and control external physical and social processes: they
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need to be aligned on and constrained by these external
dynamics and relational structures (at various levels of ab-
straction). This last notion of grounding, which we refer
here as ”functional grounding”, is relative to a particular
environment which may be the human physical environment
but also more abstract interactive environments simulated in
computers (where abstract physics can differ from human
environments).

In this paper, we consider interactive textual worlds (Côté
et al., 2018; Jansen, 2021), which are precisely designed to
focus on these higher-level forms of functional grounding.
In textual worlds, environments can encode rich forms of
physical structures inspired by the ones in the human world,
e.g. (Wang et al., 2022), yet agents act and perceive in these
environments only through the textual modality. In this con-
text, this paper aims to make progress towards the following
largely open question: how could LLMs be used as agent
policies producing actions towards goals in interactive en-
vironments, perceiving the outcome of these actions, and
incrementally grounding and updating their knowledge with
the new observations they collect?

Building on recent works successfully using Reinforcement
Learning (RL) to finetune LLMs for natural language gen-
eration tasks (Stiennon et al., 2020; Ouyang et al., 2022;
Ramamurthy et al., 2022), we propose the first study about
functional grounding of LLMs through incremental online
RL. In particular, we aim at empirically answering the fol-
lowing open scientific questions:

• Q1. Sample efficiency How fast can an LLM adapt
and learn to solve various spatial and navigation problems
specified in natural language? How does the use of pre-
trained knowledge from LLM boosts sample efficiency?

• Q2. Generalization to new objects: Once functionally
grounded, how can an LLM generalize to various kinds of
changes about objects, yet staying in trained tasks?

• Q3. Generalization to new tasks: How can such an
interactively trained LLM perform zero-shot generalization
to new tasks? How does generalization depend on the kind
of new tasks?

• Q4. Impact of online interventions: What is the empiri-
cal impact of grounding using online RL with incremental
interactions in comparison with offline Behavioral Cloning
from a dataset of expert trajectories?

To answer these scientific questions in Section 4, we present
a functional grounding method for LLMs (see Figure 1
and Section 3), and transpose the BabyAI environment
(Chevalier-Boisvert et al., 2019) into a textual version. Addi-
tionally, we aim to help the RL community further develop
grounding techniques for LLMs in interactive environments

by releasing, in addition of the code of this paper1, a Python
library named Lamorel2 facilitating the use of LLMs at
scale for RL practitioners. While many tools already exist
for LLMs and NLP tasks, moving to an RL setting with
interactive environments requires adaptations (e.g. very fre-
quent need of fast inference to compute action probabilities)
making previous tools not well suited for RL practitioners
(see Section 3.4).

2. Related work
Language-conditioned RL We position our work in the
Language-conditioned RL setting, where an instruction-
following agent learns a policy that executes actions in an
interactive environment in order to fulfill a language instruc-
tion (Luketina et al., 2019). While several works studied
this setting for various tasks in 2D or 3D environments
(Hermann et al., 2017; Misra et al., 2017; Bahdanau et al.,
2018; Colas et al., 2020; Chevalier-Boisvert et al., 2019),
we here focus on text-only interactions (i.e. performing
textual commands given textual observations) as in Shridhar
et al. (2020). However, our work studies how LLMs can not
only encode this instruction (Hill et al., 2020) but also be
directly used as agent policies choosing actions given the
observation.

Textual environments for RL Many text-only environ-
ments have been used and developed (Jansen, 2021; Wang
et al., 2022). They usually implement high-level text com-
mands along with very large action spaces and complex
dynamics between entities, often aiming to study functional
grounding of abstract policies. While these environments
offer interesting properties, we had to introduce a new one
given the purpose and constraints of our study. Dealing here
with computationally expensive LLMs, we chose to trade
complex action spaces for systematic experiments study-
ing the questions of the introduction. Second, to perform
an in-depth analysis of our functional grounding method,
we focused on lower-level navigation skills in spatial envi-
ronments (which lacks in most textual environments as the
agent can usually just change room and has direct access
to objects in a room). Moreover, several ablation studies
shown in Appendix B.5 required precise control over the
procedural generation (usually not offered by textual en-
vironments). For these reasons, we adapted the BabyAI
platform (Chevalier-Boisvert et al., 2019) into a procedu-
ral text-only version that enables decoupling exploration
challenges from perception challenges. Additionally, we
are still able to use BabyAI’s visualization tools to analyze
trajectories (see Figure 1).

1https://github.com/flowersteam/
Grounding_LLMs_with_online_RL

2https://github.com/flowersteam/lamorel
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Figure 1. The GLAM method: we use an LLM as agent policy in an interactive textual RL environment (BabyAI-Text) where the
LLM is trained to achieve language goals using online RL (PPO), enabling functional grounding. (a) BabyAI-Text provides a goal
description for the current episode as well as a description of the agent observation and a scalar reward for the current step. (b) At each
step, we gather the goal description and the observation in a prompt sent to our LLM. (c) For each possible action, we use the encoder to
generate a representation of the prompt and compute the conditional probability of tokens composing the action given the prompt. Once
the probability of each action is estimated, we compute a softmax function over these probabilities and sample an action according to this
distribution. That is, the LLM is our agent policy. (d) We use the reward returned by the environment to finetune the LLM using PPO. For
this, we estimate the value of the current observation by adding a value head on top of our LLM. Finally, we backpropagate the gradient
through the LLM (and its value head).

Foundation Models for decision making Foundation
models trained on massive datasets were shown to exhibit
impressive abilities along with fast adaptation to a wide
range of downstream tasks in vision (Yuan et al., 2021),
language (Devlin et al., 2019; Brown et al., 2020) and cross-
modalities (Ramesh et al., 2021; Jiang et al., 2022; Alayrac
et al., 2022). While such abilities have been leveraged
to provide reward to RL agents (Gupta et al., 2022; Fan
et al., 2022), a recent line of work started focusing on using
Foundation Models (and in particular LLMs) to guide agents
policy.

First, SayCan (Ahn et al., 2022), Code as Policies (Liang
et al., 2022) and Inner Monologue (Huang et al., 2022b)
used LLMs as high-level planners in robotics setups. Be-
cause their LLM is not directly used as agent policy for
low-level actions and is not grounded using its interactions
with the environment, Ahn et al. (2022) had to use an ex-
ternal affordance function to re-rank the actions proposed
by the LLM. Similarly, Yao et al. (2022) also featured a
closed-loop feedback between an LLM that is the planner
and an agent that is the actor but this time in a textual envi-
ronment. Expanding on this, Dasgupta et al. (2022) added
a reporter observing the environment and reporting useful
information to the planner. While hinting at the usefulness
of prior knowledge contained in LLMs for embodied tasks,
these works are limited by the absence of grounding.

Second, several works proposed to first finetune LLMs on
expert trajectories before using them in the environment.
Using their ScienceWorld benchmark, Wang et al. (2022)
showed that LLMs finetuned using Behavioral Cloning per-
formed worse than a much smaller and randomly initialized
Deep Q-Network trained using RL supporting the hypothe-
sis that grounding in the environment through direct interac-
tions is crucial. Finally, Reid et al. (2022) reused LLMs to
perform offline RL in non-linguistic environments leverag-
ing the internal structures learned by LLMs but no longer
using words or symbols they were trained to manipulate
(Takagi (2022) investigated how these internal structures
can be relevant for unrelated tasks).

Finally, one may also pretrain a policy using Behavioral
Cloning or offline RL from expert trajectories before fine-
tuning it with interactions with an environment. Related to
our work, the Online Decision Transformer (Zheng et al.,
2022) first uses offline RL to pretrain a transformer model
and eventually finetunes it with online RL. But compared
to our study, it did not use a general Language Modeling
pretraining objective and therefore did not study functional
grounding of language symbols.

Finetuning LLMs with RL Recent works successfully
leveraged RL to finetune LLMs. RL was used in particular
to improve alignment between generated text and human
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preferences (Stiennon et al., 2020; Ouyang et al., 2022; Ra-
mamurthy et al., 2022). In this Reinforcement Learning
from Human Feedback (RLHF) framework, text generation
is viewed as a sequential decision-making problem where
each ”action” of the LLM is a new token and the ”state”
corresponds to the prompt. Most of these methods used
PPO (Schulman et al., 2017) to finetune their LLMs using
a reward function learned on a dataset of collected human
interactions. With this technique, Ouyang et al. (2022)
managed to generate more human-aligned outputs despite
having a model (InstructGPT) with 100 times fewer parame-
ters than GPT-3 (Brown et al., 2020). While our work shares
the PPO-based finetuning with RLHF, our setup diverges
from it in multiple aspects. First, our LLM is functionally
grounded using an external task-conditioned reward from
the environment (which happens to be sparse in our BabyAI-
Text environment) and not a learned reward model. Second,
the RLHF setup has no external environment dynamics con-
trolling the next state given a previous state and an action
(the next state in RLHF is just the previous state with the
last generated token appended). In comparison, our work
exposes an outer loop controlled by the environment whose
dynamics, providing the next state and reward, are unknown
to the LLM (in comparison to RLHF where the RL loop is
an inner loop in the token generation process). We believe
using RL to finetune LLMs can be taken from a broader
perspective in which both our framework and RLHF are
particular applications.

3. GLAM: Grounding LLMs with online RL
We introduce the GLAM method (for Grounded LAnguage
Models) where an LLM is used as agent policy and is func-
tionally grounded in an interactive environment using online
RL, leveraging collected observations and rewards to im-
prove itself towards achieving goals formulated in language.
We detail this method in the following paragraphs and redi-
rect the reader to Figure 1 for a schematic view. We first
formalize the textual RL problem we tackle (a). Then, we
detail how we use an LLM as agent policy to interact with
BabyAI-Text (b, c). Finally, we explain how online RL
finetuning is used to ground the LLM in BabyAI-Text (d).

3.1. Problem statement

We assume a textual RL setting where, given a language
vocabulary V , our environment returns an observation
o ∈ VN and a reward r ∈ R following an action a ∈
A ⊂ VN (i.e. actions are sequences of tokens). We
also assume a task or goal description g ∈ G ⊂ VN

which conditions the reward. Such an environment can be
framed as a goal-augmented Partially Observable Markov
Decision Process M = (S,V,A, T ,R,G,O, γ) with S
the state space, A ⊂ VN the action space, G ⊂ VN

the goal space, T : S ×A 7→ S the transition function,
R : S ×A× G 7→ R the goal-conditioned reward function,
O : S 7→ VN the observation function mapping a state to a
textual description and finally γ the discount factor.

In this work, we extend the BabyAI platform (Chevalier-
Boisvert et al., 2019) initially designed for grounded lan-
guage learning and propose a text-only extension named
BabyAI-Text. We leverage BabyAI’s inner procedurally
generated minigrid environment where an agent navigates
and interacts with objects through 6 text commands: turn
left, turn right, go forward, pick up, drop and toggle. We
also reuse the set of tasks introduced in BabyAI as well as
their associated description along with the sparse scalar re-
ward. Our key difference is the textual description o ∈ VN

of the agent’s partial observation returned by BabyAI-Text
instead of the symbolic representation initially returned by
BabyAI (see Appendix A.2). We leverage BabyAI-Text in
Section 4 to assess our grounding method.

3.2. LLMs as policies in interactive environments

In order to use the LLM as the policy in such a textual
interactive environment, we gather the task description, the
textual description of the current observation and the set of
possible actions in a prompt used to feed the LLM. We chose
a single arbitrary and simple prompt template (see Appendix
C for examples) and did not perform any intensive prompt
engineering. Indeed, as we finetune the LLM, we expect
it to adapt to the chosen prompt template. Nonetheless, a
more careful design of prompts could improve the results
shown in Section 4.

Given this prompt, we now need the LLM to output a prob-
ability distribution over the possible actions P(A). For this,
Huang et al. (2022a); Li et al. (2022); Wang et al. (2022)
used the LLM to generate text. If the generated sequence
of characters corresponds to one of the possible actions
(i.e. s ∈ A), this action is chosen by the agent. Otherwise,
an ad-hoc mapping must be performed to select an action
ai ∈ A given s. As an alternative method, one could also
use more standard RL practices by adding action heads - a
Multi-Layer Perceptron (MLP) with |A| outputs - on top
of the LLM. Finally, Ahn et al. (2022) proposed to directly
use the LLM to compute the (log) probability of each action
ai ∈ A by computing the conditional probability of each
token in action ai = {w0, ..., w|ai|} given the prompt p:

PLLM (ai|p) =
|ai|∏
j=0

PLLM (wj |p, w<j) (1)

with PLLM (wj |p, w<j) the probability computed by the
LLM of token wj given prompt p and previous tokens w<j

(see (c) from Figure 1). This method suffers from requiring
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a forward pass on the LLM for each action to compute the
probability of its sequence of tokens (especially in compari-
son to new action heads that require a single forward pass on
the prompt to compute all actions’ probability). However,
it also has several advantages, in particular, 1) there is no
need of potential ad-hoc mapping as when text is generated,
2) we use only pretrained operations from the LLM and
leverage language modeling heads’ prior and 3) this method
is robust to any action space and can thus be used on any
textual environment with no change.

For these reasons, we chose the latter method. We first
use log probabilities instead of normalized probabilities
using LPLLM (ai|p) =

∑|ai|
j=0 log PLLM (wj |p, w<j) in re-

placement of PLLM (ai|p) to avoid multiple normalization
operations. We eventually normalize all the log probabilities
to obtain a distribution over A using a softmax function:

P(ai|p) =
eLPLLM (ai|p)∑

aj∈A ePLLM (aj |p)
. (2)

3.3. PPO finetuning

We now propose to leverage experiences gathered by the
LLM to perform functional grounding. More formally, we
aim to learn a policy π : O × G 7→ P(A) that maximizes
the expected discounted sum of rewards for any given goal
g ∈ G. We use for this the PPO algorithm (Schulman et al.,
2017) that both learns a policy π̂ : O × G 7→ P(A) and a
value function V̂ : O×G 7→ R approximating the true value
V (s, g) = Ea∼π̂(O(s),g)

[
R(s, g, a) + γV (T (s, a), g)

]
.

As mentioned in Section 3.2, we compute the probability of
each action ai ∈ A using the likelihood computed by the
LLM as π̂(ai|o, g) = P(ai|p).

For value approximation, we we add an MLP with a single
output for the value on top of the last layer of the first
Decoder block (i.e. in place of the language modeling heads)
in order to compute V̂ (o|g) = V̂ (p) (see (d) from Figure 1).
This position is explained by the fact that we use Encoder-
Decoder LLMs in our experiments but our method could
easily be used with Decoder-only models by attaching the
value head to the Decoder block encoding the last token of
the prompt.

3.4. Distributed LLM policies using Lamorel

Using LLMs to compute probabilities over action space
is computationally expensive as it requires comput-
ing

∏|ai|
j=0 PLLM (wj |p, w<j) for each action ai =

{w0, ..., w|ai|}. When one uses very large LLMs (i.e. more
than hundreds of million parameters), computing the prob-
ability of a single action already means performing a long
forward pass over the whole network. As a result, com-
puting the probability of each possible action at every step

becomes very slow. Considering the number of interactions
usually required to solve tasks in BabyAI (and by extension
BabyAI-Text), performing online RL finetuning of LLMs
easily became intractable with a single LLM distributed
over multiple GPUs. To overcome this, we deployed N
LLM workers each handling a subset of actions to score
in parallel (allowing a quasi-linear time decrease with N ).
We add to this distributed inference the possibility to also
perform distributed training (i.e. compute the gradient of
minibatches in parallel and gather gradients before updat-
ing models). We wrap all this in a Python library named
Lamorel designed for RL practitioners eager to use LLMs.
It allows one to use LLMs as black-box but also to perform
more advanced methods such as adding new heads on top
of them. See Appendix E for more details.

4. Experiments
We design a set of experiments in BabyAI-Text aiming to
provide answers for the scientific questions introduced in
Section 1. In these experiments, we use Flan-T5 780M
(Rae et al., 2021) for 1) the close link between its training
corpus (containing instruction-following documents) and
our language-conditioned interactive environment, and 2)
its simple open-source access through the Hugging Face
tools3. We apply our GLAM method to Flan-T5 (which
we name GFlan-T5 in experiments below for Grounded
Flan-T5) and compare it with three baselines. First, we
also train a non-pretrained Flan-T5 where we only reuse
the pretrained embedding layer and add action heads on top
of it (see Figure 9 in appendices). As for GFlan-T5, we
propagate the gradient through the entire graph (included
the action heads here). We call this baseline NPAE-Flan-T5
(Non-Pretrained with Action heads and Embedding Flan-
T5). We show in Appendix B.3 that using a non-pretrained
Flan-T5 while keeping the scoring method fails. We also
provide as a more classic RL baseline a DRRN (He et al.,
2016) agent of approximately 1M parameters which is often
used for TextWorlds. We especially reuse the implementa-
tion from Wang et al. (2022) which gave SOTA results and
outperformed LLMs. At each step, we feed our 3 agents
above with the following prompt template filled using the
information returned by BabyAI-Text (see Appendix C for
examples):

• A header listing what actions are accessible (but not nec-
essarily useful) in the environment in the form of:
Possible action of the agent: <list of actions>

• The goal of the agent: Goal of the agent: <goal>

• The 3 previous observations and last 2 actions, used as a

3https://huggingface.co/docs/
transformers/model_doc/flan-t5
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short-term memory required to complete BabyAI-Text tasks
(in comparison, the DRRN uses recurrent layers to deal with
short-term memory requirements):
Obs. 0: <description from BabyAI-Text at step t− 2 >
Action 0:<action chosen by the agent at step t− 2 >
Obs. 1: <description from BabyAI-Text at step t− 1 >
Action 1: <action chosen by the agent at step t− 1 >
Obs. 2: <description from BabyAI-Text at step t >
Action 2: <the next action to be chosen by the agent>

Finally, as BabyAI-Text simply provides an alternative map-
ping of observations, we add as an indication the perfor-
mance of the PPO agent used in (Chevalier-Boisvert et al.,
2019) that runs on BabyAI rather than BabyAI-Text (i.e.
using symbolic observations instead of textual descriptions)
and name this agent Symbolic-PPO in results below. In
Appendix B.2, we show that symbolic observations pro-
vided by BabyAI encode biases that ease learning compared
to text descriptions. However, even with this advantage,
GFlan-T5 outperforms Symbolic-PPO in all our setups.

We first study Q1 by training the different agents in a multi-
task setting assessing their efficiency at learning the different
tasks. We then address questions Q2, Q3 and Q4 using a set
of generalization experiments (Figure 3) on the zero-shot
abilities of the resulted trained agents mostly inspired from
(Colas et al., 2020) and (Valmeekam et al., 2022). We report
their average success rate as well as standard deviation.
We compare the results of GFlan-T5, DRRN as well as
Flan-T5 (i.e. the LLM used in GFlan-T5 but before our
finetuning) to show how our grounding method impacted
it. All results below are given with their 99% confidence
interval (mathematical details are given in Appendix G).

4.1. How fast can an LLM adapt and learn to solve
tasks? (Q1)

In order to study question Q1, we train our agents for 1.5
million steps in BabyAI-Text where each episode is a task
randomly sampled from the following:

• Go to <object>, a simple navigation task that requires
reasoning abilities to choose the right plan given ob-
jects’ position;

• Pick up <object>, a reasoning task that combines
navigation tasks;

• Put <object A> next to <object B>, which requires
first reaching <object A>, picking it up, reaching
<object B> and finally dropping <object A> next
to <object B>;

• Pick up <object A> then go to <object B> and Go
to <object B> after pick up <object A>, both serv-
ing to test reasoning abilities on temporal sequences;

• Unlock <door>, a task that includes inferring that a
key is needed to unlock the door, finding the right key
(i.e. the one colored as the door) and eventually using
the toggle action with the key on the door.

In each task, the agent must navigate in one procedurally
generated room with 8 distractors (i.e. useless objects for
the completion of the task).

We plot the mean and standard deviation of the success rate
(i.e. 1 if the goal has been reached, 0 otherwise) over 2 seeds
of GFlan-T5, NPAE-Flan-T5, DRRN and Symbolic-PPO
in Figure 2. In addition, we also monitor the evolution of
probability of each possible action on a set of 11 evaluation
prompts to assess agents’ abilities to solve each task in
Appendix C. By plotting the evolution of the distribution
over possible actions in Figure 19, we better grasp how and
when the agents learn skills (e.g. navigation skills).

Figure 2. Q1. Sample efficiency: Evolution over 4 seeds of the
average success rate and standard deviation on all Q1 tasks.

Looking at the evolution of the average success rate, GFlan-
T5 quickly reaches 0.8 after only 250.000 steps (and 0.9
after approximately 600.000 steps). In comparison, both
DRRN and NPAE-Flan-T5 are still under 0.2 after 1.5 mil-
lion steps. Even when compared to Symbolic-PPO, which
uses symbolic observations (easier to process than language
as shown in Appendix 6), GFlan-T5 exhibits a drastically
better sample efficiency with Symbolic-PPO almost reach-
ing 0.4 after 1.5 million steps. Figure 19 and Table 2 high-
light how GFlan-T5 leverages its knowledge about the rela-
tionships between entities to learn navigation tasks in less
than a hundred updates.

The failure of NPAE-Flan-T5 both highlights how GFlan-T5
leverages the LLM’s pretrained knowledge to deal with the
proposed tasks and how the finetuning method helps achieve
the grounding objective. Furthermore, the fact that GFlan-
T5 strongly outperforms Symbolic-PPO and the latter is
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better than NPAE demonstrates how language can be used
as a tool to scaffold learning if already acquired. It also
exaplins how counterproductive it can be if one asks an
agent to both learn a task and language at the same time (see
Appendix B.2 for further results).

We also provide in Appendix B additional ablations to un-
derstand the impact of LLM size B.4, action space size B.5.1
and the number of distractors B.5.2 on the learning process.
These results highlight that the number of parameters has
a high impact on the learning process. Moreover, GFlan-
T5-large appears very robust when one increases the action
space size (from 3 to 9 actions with only 3 useful ones) or
the number of distractors (from 4 to 16).

4.2. Q2. Generalization to new objects

In this section, we analyze how a functionally grounded
agent can generalize its skills to new objects. Indeed, we
expect our agents to focus on the the geometry of the en-
vironment (how objects are positioned and how their posi-
tioning is described), but not on the identity of the objects
themselves (e.g. Go to <object> should be achieved even
if the object has not been seen during training). We test
if this property is present in our trained agents by measur-
ing their zero-shot performance in two environments. First,
an environment with nouns not in the training vocabulary
(e.g. ”tree”)4 and second, an environment with invented
objects (made of an invented adjectives and an invented
nouns such as faze dax).5 We use the environment the agent
has been finetuned on (i.e. without any word substitutions)
as a control environment. Results in Figure 3 (Q2 part)
indicate that GFlan-T5 is not affected when tasks contain
out-of-vocabulary nouns. Moreover, even if the GFlan-T5’s
success rate decreases by 13% when it is in an environment
with invented objects, it still retains strong performances
compared to baselines. These results support the hypothe-
sis that GFlan-T5 has functionally grounded the symbols
that describe the geometry of the environment and the in-
structions (e.g. words such as ”in front”, or the meaning of
”steps” as a distance measure)6.

4.3. Q3. Generalization to new tasks

In this Section, we perform generalization tests as in Section
4.2, but with new unseen tasks. Using these, we verify to
what extent an agent is able to compose and generalize over
the symbols it has grounded during finetuning.

New composition of learned tasks: Pick up <object A>
then/after pick up <object B> During finetuning, agents
learn to do both 1) Pick up <object A> and 2) Pick up

4The out-of-vocabulary nouns are given in Appendix H.1.
5The invented objects are given in Appendix H.2.
6See Section A.2 for more details on the geometry.

<object A> then go to <object B> or Go to <object B>
after pick up <object A> tasks. We test in this experiment
if an agent can compose grounded symbols to solve the new
tasks Pick up <object A> <then/after> pick up <object
B>. Results in Figure 3 (Q3 part) hint that, while all agents
fail to solve these new tasks, GFlan-T5 outperforms other
baselines by reaching an 0.12 success rate compared to
Flan-T5 (0.07) or Random (0.05). These low results can be
explained by the fact that none of the agents managed to
master the Pick up <object A> then go to <object B> or
Go to <object B> after pick up <object A> tasks during
training (see Appendix C). More details about the grounding
of ”then” and ”after” are given in the Appendix D.4.

Seen tasks with synonym actions In this task, we test
the robustness of our agents to actions by replacing the
actions used during training by synonyms. For instance,
”go forward” is replaced with ”move ahead”7. We expect
LLMs, which already learned to map words to an embedding
space, to also ground synonyms as they ground words of
the environment. In this environment (see Figure 3 Q3
part), the success rate of GFlan-T5 is 0.12 vs 0.01 for Flan-
T5. Thus the grounding of some words (here the actions)
also improves the grounding of their synonyms. However,
we observe an 87% drop in performance compared to the
original settings, which we assume is due to an over-fitting
of the actions’ vocabulary.

New language In order to understand how far agents can
generalize, we test them with a language not seen during
training (French). Knowing that Flan-T5 has been pretrained
with a multilingual corpus and is able to translate simple
sentences, we test whether grounding in GFlan-T5 has also
impacted its manipulation of other languages. However,
we observe that even only for a simple navigation task (i.e.
Go To), the model fails to generalize to a new language
with a success rate (0.02) worse than random (0.30). We
hypothesize that when too many grounded symbols are mod-
ified at once, functional grounding fails to be transferred
to this new subsystem of symbols. Complementary experi-
ments that confirm and reinforce this result are presented in
appendices D.2 and D.3.

4.4. What is the impact of using RL vs Behavioral
Cloning for grounding? (Q4)

Finally, we study how online interactions with an environ-
ment, enabling learning through interventions and trial-and-
error, improves grounding in comparison to pure Behav-
ioral Cloning (BC). We compare a GFlan-T5 trained on the
Go To task over 400000 steps with two baselines trained
with Behavioral Cloning using 400000 transitions (see Ap-
pendix F.2). For the baseline called BC-GFlan-T5, transi-

7A table giving all the used synonyms is given in Appendix H.3
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Figure 3. Generalization tests: We train all agents on a mix of 5 different tasks and evaluate their generalization abilities on 1000
test episodes (also containing a mix of these 5 tasks) (a). We compare them to two baselines: an agent choosing actions randomly
(Random) and the zero-shot Flan-T5 (without any finetuning). We then perform several generalization studies to answer Q2 and Q3 by (b)
substituting object names out-of-vocabulary names, (c) substituting objects and colors by invented words, (d) testing a new composition
of tasks, (e) substituting actions by synonyms and (f) translating the whole environment to French for the Go To task. For each agent, we
plot its mean success rate over 2 seeds along with the confidence interval and the delta with performance on the same task without any
change (except for (d), on which no baseline result can be provided as this task is completely new).

Table 1. Generalization tests for Behavioral Cloning

Environments GFlan-T5 BC-GFlan-T5 BC-Bot Random

Q4 Go To task no change 0.82± 0.02 0.69± 0.08 0.73± 0.07
0.30± 0.05Go To task with invented words 0.74± 0.004 0.7± 0.07 0.63± 0.08

tions are collected from GFlan-T5 finetuned on the Go To
task. For BC-Bot, transitions are collected using the BabyAI
procedural bot achieving a success rate of 1.

In Table 1, we measure the success rate of GFlan-T5 and
the baselines on two tasks: Go To and Go To with invented
nouns and adjectives. First, once can see that GFlan-T5 out-
performs all baselines in both tasks. Second, as GFlan-T5
does not achieve a success rate of 1 on the Go To task, its
collected trajectories for BC can contain deceptive transi-
tions in comparison to the ones collected by the bot. Hence,
we obtain the expected result that BC-Bot outperforms BC-
GFlan-T5. Finally, we expect our agents not to be affected
by an environment where nouns and adjectives are replaced
by invented ones in such navigation tasks. Experiments
show that GFlan-T5 is less affected (0.82 → 0.74) than the
BC-Bot (0.73 → 0.63). GFlan-T5 also performs better in

the invented words task than the BC-GFlan-T5 (success rate
of 0.7)

5. Conclusion
In this paper, we proposed the GLAM method for functional
grounding (i.e. aligning internal symbols to external dynam-
ics so that the agent can use them to solve tasks in the envi-
ronment) of LLMs in interactive textual environments based
on online RL. Using our new BabyAI-Text environment, we
performed several experiments studying 4 scientific ques-
tions. We showed how GLAM, which requires almost no
environment-specific modifications on the LLM, enables to
drastically improve performances to solve RL tasks in this
environment as compared to zero-shot use the LLM, to su-
pervised finetuning and to RL finetuning of non-pretrained
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LLMs. We showed how it boosts both sample efficiency and
generalization abilities in zero-shot tests (both to new ob-
jects and several new tasks). In addition to these key results,
we provided in-depth ablations showing the effect of several
parameters (e.g. size) on grounding. We believe this method
can act as a milestone towards grounding and using LLMs
in interaction with our world. However, this study still suf-
fers several limitations, in particular the fact that current
experiments are limited to a textual environment, and the
computational inefficiency when scaling up the action space
and the size of the LLM. This computational inefficiency
constrained this paper to using a single environment and
rather small LLMs. Yet, improving computational efficiency
(or access to more computational resources) could enable
to leverage recent multi-modal Foundation models (Alayrac
et al., 2022)) for grounding LLMs in broader environments
(e.g. to robotics setups (Lu et al., 2021; Ahn et al., 2022)).
Parallel to this, a future direction would be to study how
functionally grounding an LLM on a specific environment
affects its zero-shot abilities but also its plasticity and ability
to acquire new skills in other environments. Moreover, these
results hint that using LLMs as agent policies opens an av-
enue for escaping the Tabula-Rasa RL setting and creating
much more sample efficient RL agents.

Finally, the recent rise of real-world deployed applications
using LLMs highlighted the various societal and ethical chal-
lenges of using such models in real-world scenarios. Similar
to RLHF, our work studies how to better align LLMs (but
this time to environments in which tasks must be solved).
While our approach stands as a first important building
block for future works making LLMs more in line with their
environment, it is not designed to be ready for real-world
deployment and thus we do not recommend to use it in such
an applicative context.
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and Hiż, H. (eds.), Papers on Syntax, Synthese Lan-
guage Library, pp. 3–22. Springer Netherlands, Dor-
drecht, 1981. ISBN 978-94-009-8467-7. doi: 10.1007/
978-94-009-8467-7 1.

He, J., Ostendorf, M., He, X., Chen, J., Gao, J., Li, L., and
Deng, L. Deep Reinforcement Learning with a Com-
binatorial Action Space for Predicting Popular Reddit
Threads. arXiv:1606.03667 [cs], September 2016. URL
http://arxiv.org/abs/1606.03667. arXiv:
1606.03667.

Hermann, K. M., Hill, F., Green, S., Wang, F., Faulkner, R.,
Soyer, H., Szepesvari, D., Czarnecki, W. M., Jaderberg,
M., Teplyashin, D., Wainwright, M., Apps, C., Hassabis,
D., and Blunsom, P. Grounded language learning in a
simulated 3d world. ArXiv, abs/1706.06551, 2017.

Hill, F., Mokra, S., Wong, N., and Harley, T. Human
Instruction-Following with Deep Reinforcement Learn-
ing via Transfer-Learning from Text. arXiv:2005.09382
[cs], May 2020. arXiv: 2005.09382.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I.
Language models as zero-shot planners: Extracting
actionable knowledge for embodied agents. ArXiv,
abs/2201.07207, 2022a.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence,
P. R., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y.,
Sermanet, P., Brown, N., Jackson, T., Luu, L., Levine, S.,
Hausman, K., and Ichter, B. Inner monologue: Embodied
reasoning through planning with language models. ArXiv,
abs/2207.05608, 2022b.

Jansen, P. A. A Systematic Survey of Text Worlds as Embod-
ied Natural Language Environments. arXiv:2107.04132
[cs], July 2021. arXiv: 2107.04132.

Jiang, Y., Gupta, A., Zhang, Z., Wang, G., Dou, Y., Chen, Y.,
Fei-Fei, L., Anandkumar, A., Zhu, Y., and Fan, L. J. Vima:
General robot manipulation with multimodal prompts.
ArXiv, abs/2210.03094, 2022.

10

http://arxiv.org/abs/1606.03667


Grounding LLMs in Interactive Environments with Online RL

Kaplan, J., McCandlish, S., Henighan, T. J., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
ArXiv, abs/2001.08361, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

Li, S., Puig, X., Du, Y., Wang, C. J., Akyürek, E., Tor-
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Appendices
This supplementary material provides additional results and discussion, as well as implementation details.

• Section A presents the BabyAI and BabyAI-Text environments.

• Section B, contains several additional results. We report the per-task success rate at the end of the training (B.1). We
also analyze the influence of the observation’s structure (i.e. either a symbolic image for the Symbolic-PPO agent or
text for LLM based agents) in B.2. We then study the influence of pretraining in B.3 and conduct several ablation tests
to understand the influence of the size of the LLM (B.4), the impact of the size of the action space (B.5.1), and the
effect of the number of distractors (B.5.2). Eventually, we verify in B.6 the robustness of our method to domain-specific
vocabulary.

• Section C is a qualitative analysis of GFlan-T5 during its training on the environment with a mix of tasks. We plot the
evolution of the distribution of actions during training for 11 prompts.

• In Section D, we detail complementary tests for questions Q2 (D.2) and Q3 (D.3). We also analyze the functional
grounding of temporal symbols ”then” and ”after” (D.4).

• Section E gives details related to the distributed experimental setup.

• Section F reports hyperparameters and implementation details used to finetune the models using PPO or Behavioral
Cloning.

• In Section G, we detail how the confidence intervals given in Figure 3 and Appendix D are obtained.

• In Section H, we give the word substitutions used in our generalization experiments from sections 4.2 and 4.3.

A. Environments
We extend the BabyAI platform (Chevalier-Boisvert et al., 2019) and create a text-only version named BabyAI-Text that
encapsulates BabyAI and returns linguistic observations. Figure 4 explains our environment.

A.1. BabyAI

BabyAI (Chevalier-Boisvert et al., 2019) is a language-conditioned environment where the agent has a limited number of
steps to complete a language goal. This platform relies on a gridworld environment (MiniGrid) to generate a set of complex
instructions-following environments. It has been specifically designed for research on grounded language learning and
related sample efficiency problems. The gridworld environment is populated with the agent and objects (of 6 possible
colors): boxes, balls, doors, and keys. These entities are placed in rooms of 8× 8 tiles that are connected by doors that can
be locked or closed. The grid is procedurally generated (i.e. objects populating an episode are randomly chosen and their
position, as well as the agent’s position, are also random). Some of the objects are useful for the task to achieve, while others
are considered as distractors (objects can’t be crossed, the agent has to either bypass them or move them). The agent can do
6 primitive actions: turn left, turn right, go forward, toggle, pick up to solve the language instruction
(for instance Pick up the red box). To observe its environment, the agent has access to a partial view (i.e. it only
sees the objects that belong to the 6× 6 grid in front of it). BabyAI proposed to access this partial view through a symbolic
mapping that returns 3 matrices of size 6× 6. The first matrix contains which object is in the observed cells, the second
gives the color of these objects, and the last one their state (e.g. locked, open). When the agent completes the task after N
steps, it receives the reward rN = 1− 0.9N

H , where H is the maximum number of steps. During training, we multiply all
rewards by 20 to ensure a good propagation of the rewards as per (Mirchandani et al., 2021). If the agent has not completed
the task in the current step, the reward is 0. Additionally, BabyAI also provides visualization tools for experimenters to
observe the grid and better grasp agents’ behaviors.

A.2. BabyAI-Text

BabyAI-Text is a textual environment that encapsulates BabyAI and provides a description of each observation instead of a
symbolic representation. A textual description consists of a list of template descriptions with the following structure:
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Figure 4. An illustration of how our BabyAI-Text environment encapsulates BabyAI. We keep the inner minigrid environment as well as
task descriptions and reward but map the partial view of the agent to a text description.

• ”You see a <object> <location>” if the object is a key, a ball, a box or a wall.

• ”You see a(n) open/closed door <location>” , if the agent sees a door.

• ”You carry a <object>”, if the agent carries an object.

The <object>, is composed of an adjective (among 6 possible colours: red, blue, green, yellow, grey, purple) and a noun
(among 4 possible: key, door, box, ball). The <location> is given as the number of steps right, left, and or forward from
the agent to the object. We illustrate this in the leftmost observation of Figure 4 where the ”yellow box” is ”2 steps left
and 1 step forward” from the agent (the red triangle). Thus an object described as ”1 step forward” is right in front of the
agent that does not need to go forward if it wants to pick that object. Walls of the room are the only spatially extended
objects in BabyAI-Text. We give their location at the closest distance to the agent. See the leftmost image of Figure 4 for an
example where the agent sees a wall ”2 steps forward” and another wall ”2 steps left”. All of the choices for describing the
environment constitute what we call the geometry of the environment, that the agent has to ground in order to succeed in
the task. The presence of a fine grained geometry (with distances in steps to the different object in the room) is one of the
main differences from other textual games such as TextWorld or ScienceWorld where all objects in a room are not spatially
described.

Thanks to this extension, BabyAI-Text resembles a TextWorld (i.e. provides text descriptions of the observation and executes
text commands) while keeping the inner minigrid environment along with BabyAI’s tasks and visualization tools. Moreover,
as our extension simply provides an alternative mapping of observations, one can both use and compare agents that either
expect text-only observations (with BabyAI-Text) or symbolic observations (with BabyAI).
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B. Additional results
B.1. Per-task success rate

In order to get a better understanding of our agent’s capabilities, we report in Figure 5 the success rate on each task
from our “no-change” evaluation in Figure 3 (assessing the post-training performance of agents on 1000 test episodes of
our mixed setup) of Flan-T5 and GFlan-T5. These results (with 4 seeds after 1.5 million training steps) show that our
functional grounding leads GFlan-T5 to master the GoTo and PickUp tasks while improving results on PutNextTo and
PickupThen/AfterPickup. However, GFlan-T5 has not found yet any robust strategy for the OpenDoor task (being the hardest
as the agent must find the right key and discover that the action “toggle” opens the door) in the relatively short allocated
time.

Figure 5. Per-task success rate for the 1000 evaluation trajectories performed in Figure 3.

B.2. Textual vs symbolic representation

In order to understand how the structure of the observation (i.e. either symbolic image using 3 matrices containing integers
defining respectively the object seen, its color and property if any or text) influences the success rate of an RL agent, we
compare the DRRN and Symbolic-PPO respectively trained on BabyAI-Text and BabyAI on the Go To Red Ball task.
In this task, the agent has to go in front of a red ball in 1 room without any distractor (i.e. the task never changes, only the
position of agent and red ball do). The task has been voluntarily chosen as trivial so that the main difference only comes
from the way the information is given to the agent. Both the DRRN and Symbolic-PPO agents have a similar number of
parameters ( 1M), they both use recurrent layers to deal with partial observability and use the canonical action space.
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Figure 6. Average success rate for DRRN and Symbolic-PPO on the Go To Red Ball task with standard deviation over two random seeds.
The PPO receives symbolic information and the DRRN gets textual observations.

Contrary to what one might assume in Figure 6 the PPO agent converges faster than the DRRN agent on this trivial task.
Thus, symbolic observations make the learning easier for the agent. We conclude that even if language contains high-level
information, understanding the link between spatial information and language is far more difficult than using symbolic
information given in a matrix. Indeed, the matrix already contains a geometric bias favorable to the agent. We also want
to point out that the DRRN is an off-policy RL method compared to PPO (which is on-policy) and that consequently, the
DRRN was expected to be, by-design, more sample efficient.

B.3. Impact of pretraining

We test how pretraining structured our LLM allowing for efficient finetuning. We vary which weights of Flan-T5 are kept
pretrained as well as how we compute actions’ probability (i.e. either using our method reusing language modeling heads or
using new action heads with an MLP). We evaluate the performance of 5 models:

• The full LLM is pretrained and language modeling heads are used for actions probability: GFlan-T5 (Figure 7)

• The full LLM is pretrained and new action heads are used: AFlan-T5 (Figure 8)

• Only the embedding layer’s weights are kept pretrained (the rest of the LLM is randomly initialized) and new action heads
are used: NPAE-Flan-T5 (Figure 9)

• Only the embedding layer’s weights are kept pretrained (the rest of the LLM is randomly initialized) and the (randomly
initialized) language modeling heads are used for actions’ probability: NPE-FlanT5 (Figure 10)

• All LLM’s weights are randomly initialized and action heads are used: NPA-Flan-T5 (Figure 11)
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Figure 7. GFlan-T5: We use the Flan-T5 architecture and add a value head. We initialize the agent with the pretrained weights (framed in
green in the diagram) including its language modeling heads to compute action probabilities. The weights of the value head are randomly
initialized. GFlan-T5 stands for grounded Flan-T5.

Figure 8. AFlan-T5: We use the Flan-T5 architecture but replace the language modeling heads with action heads (that return the probability
for each action) and add a value head. We initialize the embedding, the encoder and decoder parts of the agent with the pretrained weights
(framed in green in the diagram) and the other weights randomly. AFlan-T5 stands for action heads Flan-T5.

Figure 9. NPAE-Flan-T5: We use the Flan-T5 architecture but replace the language modeling heads with action heads and add a value head.
We initialize the embedding with the pretrained weights (framed in green in the diagram) and the other weights randomly. NPAE-Flan-T5
stands for non-pretrained with action heads and pretrained embedding Flan-T5.
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Figure 10. NPE-Flan-T5: We use the Flan-T5 architecture and add a value head. We initialize the embedding with the pretrained weights
(framed in green in the diagram) and the other weights randomly. NPE-Flan-T5 stands for non-pretrained with pretrained embedding
Flan-T5.

Figure 11. NPA-Flan-T5: We use the Flan-T5 architecture but replace the language modeling heads with action heads and add a value
head. We initialize all the weights randomly. NPA-Flan-T5 stands for non-pretrained with action heads Flan-T5.

Figure 12 compares the training curves of the agents above on the task Go To <object>. GFlan-T5 has unsurprisingly
the best results as it is fully pretrained. More surprisingly, AFlan-T5 takes more steps than expected to perform better
than the non-pretrained networks (250000 frames). We hypothesize that during the pertaining, the last transformer layer
encodes information in a space designed for language modeling heads (≈ 32000 heads) which is not convenient for the
non-pretrained 6 actions heads. Indeed, AFlan-T5 has to make sense of this space before getting the benefits of having the
rest of the network trained. This could explain why it suddenly performs better after 250000 steps. Comparing NPAE, NPA
and NPE Flan-T5, we see that the presence of an action head is crucial for non-pretrained networks. Indeed, the NPE fails to
learn in the given number of steps compared to NPAE and NPA that have similar learning curves. A possible explanation
is that for NPE, the information flow that is backpropagated through the gradient is really small due to the huge number
of language modeling heads and the few number of tokens updated (< 100). On the opposite, GFlan-T5, that also uses
language modeling heads but is fully pretrained, only needs a light finetuning for the necessary tokens explaining its high
success rate and sample efficiency.
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Figure 12. Average success rate of varying pretrained weights and scoring method with standard deviation over two random seeds. We
train all LLMs on the Go to <object> task in 1 room, with 8 distractors, the 6 canonical actions and using Flan-T5 large (780 million
parameters) as architecture.

B.4. Impact of the size of the LLM

The capacities of LLMs depend strongly on their size (Kaplan et al., 2020) and many properties of these networks only
appear when they are large enough (Wei et al., 2022). We consequently test the influence of the size of the LLM on our
results by training 3 different GFlan-T5 (as well as the DRRN and Symbolic-PPO baselines) on the Go to <object> task for
400.000 steps: GFlan-T5 small (80 million parameters), GFlan-T5 large (780 million parameters) and GFlan-T5 XL (3
billion parameters).

We show the evolution of average success rate over 2 seeds in Figure 13 highlighting that pretraining prior knowledge only
looks impactful when the network is large enough. The difference between the learning properties of small and large models
relates to the definition of an emergent behavior given by Wei et al. (2022): ”an ability is emergent if it is not present in
smaller models but is present in larger models”. Beyond the data on which a model has been trained, the size of this model
seems crucial for the acquisition of new knowledge about relations between entities during the finetuning phase.
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Figure 13. Impact of the size of the LLM on online RL finetuning. We conduct the tests with the Go to <object> task in 1 room, with
8 distractors. We measure the evolution of average success rate over 2 seeds with standard deviation for GFlan-T5 small (80 million
parameters), GFlan-T5 large (780 million parameters) and GFlan-T5 XL (3 billion parameters). DRRN, NPAE-Flan-T5-large and
Symbolic-PPO are given as baselines.

B.5. Impact of varying action space and distractors

In this section, we study the impact of varying the action space and the number of distractors. We provide both the evolution
of success rate and a sample efficiency measure SE:

SE =
1

T

T∑
t=0

SRt (3)

where T is the number of steps or frames seen and SR the success rate at frame t.

B.5.1. IMPACT OF THE DIMENSION OF THE ACTION SPACE

One of the expected advantages of pretrained LLMs in RL is that they avoid the Tabula-Rasa paradigm and already have
useful biases. In this experiment, we test the sensibility of LLMs to the size of the action space by using 3 different action
spaces when trained on the Go to <object> task.

• The restricted action space composed of the only 3 useful actions: turn left, turn right, go forward.

• The canonical action space composed of the 6 action that can be performed in the environment with 3 useful and 3 useless
actions that are pick up, drop and, toggle (they are useless here as the agent is only navigating).

• The augmented action space composed of 9 actions (3 useful and 6 useless with pick up, drop, toggle, sleep, do
nothing and think). The last three actions have been chosen such that they clearly have no use for the Go To <object>
task and consequently should not impact an agent that has knowledge about the world.

We conduct the tests in an environment with 1 room, 8 distractors and in Figure 15 report full learning curves used to draw
Figure 14. We show that GFlan-T5 efficiently handles the different action spaces compared to the other agents. Its initial
biases are particularly helpful when the action space is large. Indeed, when we look at the difference of sucess rate between
GFlan-T5 and the second best-performing agent after the 50000 first steps, there is almost no difference in the restricted
settings and 0.35 in the augmented settings. That supports the hypothesis that the results are due to LLMs’ ability to discard
useless action quickly at the beginning of finetuning.
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Figure 14. We measure the impact of the action space size (3, 6 or 9 actions with always only 3 useful actions) on the sample efficiency
measure (Equation (3)). We report results averaged over 2 seeds for training on the Go To task.
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Figure 15. Learning curves for the agents on the Go To task for different sizes of action space (Restricted: 3 actions, Canonical: 6,
Augmented: 9, with only the 3 actions that are useful). The success rate is given over 2 seeds along with standard deviation.

B.5.2. IMPACT OF THE NUMBER OF DISTRACTORS

Similarly, we expect LLMs to be less sensitive to variations in task complexity. We assess this by plotting the evolution
of sample efficiency (Equation (3)) for 4, 8 and 16 distractors. We conduct these tests in an environment with 1 room
and observe a slight performance loss from GFlan-T5 when the number of distractors increases (figures 16 and 17). In
comparison, Symbolic-PPO degrades as the number of distractors increases with a success rate decreasing by 38% from 4 to
16 distractors whereas the GFlan-T5 success rate only decreases by 14%. We hypothesize that the LLM manages to focus
on the relevant aspect of the environment quickly.
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Figure 16. We measure the impact of the number of distractors on the sample efficiency measure (Equation (3)). We report results averaged
over 2 seeds for training on the Go To task.
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Figure 17. Learning curves for the agents on the Go To task for different number of distractors (4, 8, 16). The success rate is given over 2
seeds with standard deviation.

B.6. Robustness to domain-specific vocabulary

In Section 4.1, we have shown the robustness of our method to random vocabulary for words that do not influence the
grounding of actions (in our case, the objects and their colors). Nonetheless, one can imagine an environment with a specific
vocabulary where common words are used to describe particular technical terms with possibly very different meanings. To
verify the impact of such environment on our training process, we trained GFlan-T5 on the GoTo task where the actions
“turn left” and “turn right” are flipped (i.e. using “turn left” makes the agent rotate to the right, and the opposite for “turn
right”). Figure 18 shows that, while the prior knowledge of the LLM leads to poorer performance at the very beginning
of training (as the LLM must learn to rotate left and right), GFlan-T5 converges at a similar speed than in the non-flipped
environment. This result hints robustness that our grounding method for LLMs can adapt to domain-specific vocabularies.
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Figure 18. Comparison of the average success rate over training for GFlan-T5 on the Go To when the actions “turn left” and “turn right”
are flipped (”-reverse”). The success rate is given over 2 seeds with standard deviation.
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C. Evolution of actions distribution on evaluation prompts
To better grasp the skill acquisition dynamics when performing online RL grounding on GFlan-T5 in the multi-task setting
of Section 4.1, we test at each update the LLM on 11 prompts listed in Table 2. We plot in Figure 19 the evolution of
action probabilities outputted by our LLM aiming to partially decipher the changes in the LLM and visualize which skill is
acquired when.

Prompts 0 and 1 are simple navigation tasks. The agent has to move in the direction given in the prompt. Looking at the
corresponding plots we observe two things: first, the optimal behavior is learned in less than a hundred of updates, even for
prompt 1 for which the bias at the beginning is both wrong and high. Second, from the beginning, only the navigation actions
(turn left, turn right, go forward) relevant for the Go To <object> task have a high probability. Therefore,
the Flan-T5 780M seems to already have useful biases for navigation and is able to quickly update or correct them through
interactions.

We observe similar useful biases with the Pick Up <object> task (using prompts 5 and 6). Indeed, at the beginning, both
the pick up action and navigation actions already have a high probability.

We can see that the agent struggles to ground the geometry of the environment with prompts 6 and 7. Indeed, it has to
understand that an object described at ”1 step forward” is in front of it such that it can pick it up or drop it directly without
moving further. While GFlan-T5 eventually seems to understand it, it still shows some hesitation as proven by the fact that it
gives almost the same probability to go forward and pick up or drop for the prompt 7 at the end of training (see
Figure 19).

We also verify how GFlan-T5 understands temporal constructions such as doing an action A then an action B (prompt 8)
or doing an action A after doing an action B (prompt 9). These two test prompts are exactly the same except for the goal
where prompt 8 uses ”then” and prompt 9 uses ”after” to link the two actions. We observe that when the order of actions
in the task specification is the same as the one the agent has to do (i.e. prompt 8), the LLM quickly and learns to choose
the right action even if during the learning it loses its ability (with turn left and turn right that are almost at the
same probability. However, when the order of actions mentioned in the goal specification is reversed (prompt 9), the LLM
ends up favoring the wrong direction and exhibits much more hesitation from the begining of the training. This qualitative
observation concurs with the measure of success rate given in Appendix D.4.

The prompts 2, 3 and 4 show that the agent has difficulties with the task Open <door>. This task is fairly complex since the
agent has to infer that a key of the same color as the closed door is required to open it. In the given training budget, the
agent fails to associate the need of a key with the task.

Finally we test the agent on a task that is not seen during training. It is the generalization task Pick up <object A> then/after
Pick up <object B> from Q3 Section 4.3, composed from two tasks seen during training Pick up and Pick up then Go To
(prompt 10). The prompt is built such that the agent has accomplished half of the instruction and has to drop the object it
carries in order to pick another one. The action drop is the optimal one because it is the only one that allows the agent
to complete the goal in a minimum number of steps. Between the updates 400 and 600 the agent begins to increase the
probability of the drop action. This change is correlated to the change of distribution in prompt 7. It can be interpreted as
the fact that the action drop begins to be grounded after 800 updates.
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Table 2: Test prompts. The prompts’ header (Possible action of the agent: turn left, turn right, go forward, pick up, drop,
toggle) is not shown below as it remains the same for all prompts

Id Task Prompt Comment

Goal of the agent: go to the green ball Simple navigation
Observation 0: You see a wall 2 step left, You see a purple key 1 step left task.
and 2 steps forward, You see a yellow key 1 step left and 1 step forward,
You see a green ball 3 steps forward, You see a grey ball 1 step right and

0 Go To 5 steps forward, You see a green key 1 step right and 2 steps forward,
<object> You see a grey ball 1 step right and 1 step forward, You see a green key

2 steps right and 4 steps forward, You see a red box 2 steps right and
2 steps forward,
Action 0:
Expected answer: go forward
Goal of the agent: go to the green ball Simple navigation
Observation 0: You see a wall 2 step left, You see a purple key 1 step left task.
and 2 steps forward, You see a yellow key 1 step left and 1 step forward,
You see a green ball 3 steps forward, You see a grey ball 1 step right and
5 steps forward, You see a green key 1 step right and 2 steps forward,
You see a grey ball 1 step right and 1 step forward, You see a green key
2 steps right and 4 steps forward, You see a red box 2 steps right and
2 steps forward,
Action 0: go forward
Observation 1: You see a purple key 1 step left and 1 step forward,

1 Go To You see a yellow key 1 step left, You see a green ball 2 steps forward,
<object> You see a grey ball 1 step right and 4 steps forward, You see a green key

1 step right and 1 step forward, You see a grey ball 1 step right, You see
a green key 2 steps right and 3 steps forward, You see a red box 2 steps
right and 1 step forward,
Action 1: turn right
Observation 2: You see a wall 2 step right, You see a green key 3 steps
left and 2 steps forward, You see a green ball 2 steps left, You see a red
box 1 step left and 2 steps forward, You see a green key 1 step left and
1 step forward, You see a grey ball 1 step forward,
Action 2:
Expected answer: turn left
Goal of the agent: open the purple door Inference task:
Observation 0: You see a wall 3 steps forward, You see a wall 3 steps left, The agent has to
You see a yellow key 1 step right and 1 step forward, You see a locked infer that a key of
purple door 2 steps right and 3 steps forward, You see a purple ball 3 steps the same color

2 Open right and 1 step forward, You see a green box 3 steps right, is needed and
<adj> door You see a purple key2 steps left, move toward it.

Action 0:
Expected answer: turn left
Goal of the agent: open the purple door Inference task:
Observation 0: You see a wall 3 steps forward, You see a wall 3 steps left, The agent has to
You see a yellow key 1 step right and 1 step forward, You see a locked infer that a key of
purple door 2 steps right and 3 steps forward, You see a purple ball 3 steps the same color
right and 1 step forward, You see a green box 3 steps right, is needed and

3 Open You see a purple key 2 steps left, pick it up.
<adj> door Action 0: turn left

Observation 1: You see a wall 3 steps forward, You see a wall 3 steps right,
Continued on next page
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Table 2 – continued from previous page
Id Task Prompt Comments

You see a purple key 2 steps forward,
Action 1: go forward
Observation 2: You see a wall 2 steps forward, You see a wall 3 steps
right, You see a purple key 1 step forward
Action 2:
Expected answer: pick up
Goal of the agent: open the purple door Inference task:
Observation 0: You carry a purple key, You see a wall 3 steps forward, The agent has to
You see a wall 5 steps left, You see a yellow key 1 step left and 1 step infer that a
forward, You see a locked purple door 3 steps forward, You see a purple closed door
ball 1 step right and 1 step forward, You see a green box 1 step right, can be opened
Action 0: go forward by toggling while
Observation 1: You carry a purple key, You see a wall 2 steps forward, having a key

4 Open You see a wall 5 steps left, You see a yellow key 1 step left, You see a of the same color.
<adj> door locked purple door 2 steps forward, You see a purple ball 1 step right,

Action 1: go forward
Observation 2: You carry a purple key, You see a wall 1 step forward,
You see a wall 5 steps left, You see a locked purple door 1 step forward,
Action 2:
Expected answer: toggle
Goal of the agent: pick up green box The agent has to
Observation 0: You see a wall 2 steps forward, You see a wall 2 steps left, reuse knowledge

5 Pick up You see a yellow ball 1 step left and 1 step forward, You see a green box from navigation
<object> 2 steps right, tasks.

Action 0:
Expected answer: turn right
Goal of the agent: pick up green box The agent has to
Observation 0: You see a wall 2 steps forward, You see a wall 2 steps left, reuse knowledge
You see a yellow ball 1 step left and 1 step forward, You see a green box from navigation
2 steps right, tasks and
Action 0: turn right understand
Observation 1: You see a wall 2 steps left, You see a blue key 1 step right, the geometry

6 Pick up You see a red ball 2 steps right and 1 step forward, You see a green box of the room.
<object> 2 steps forward,

Action 1: go forward
Observation 2: You see a wall 2 steps left, You see a red ball 2 steps right,
You see a green box 1 step forward,
Action 2:
Expected answer: pick up
Goal of the agent: put blue ball next to red box The agent has to
Observation 0: You carry a blue ball, You see a wall 5 steps forward, reuse knowledge
You see a wall 2 steps left, You see a grey key 1 step right and 2 steps from navigation

Put forward, You see a red box 3 steps forward, tasks and
7 <object A> Action 0: go forward understand

next to Observation 1: You carry a blue ball, You see a wall 4 steps forward, the geometry
<object B> You see a wall 2 steps left, You see a grey key 1 step right and 1 step of the room.

forward, You see a red box 2 steps forward,
Action 1:
Expected answer: drop
Goal of the agent: pick up the blue ball then go to the red box Prompt 8 and 9

Continued on next page
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Table 2 – continued from previous page
Id Task Prompt Comments

8 Pick up Observation 0: You see a wall 3 steps forward, You see a wall 4 steps test the ability
<object A> right, You see a purple key 2 steps forward, You see a red box 2 steps of the agent to
then go to right, You see a blue ball 2 steps left, understand
<object B> Action 0: temporal

Expected answer: turn left concepts.
Goal of the agent: go to the red box after you pick up the blue ball Same as 8

Go to Observation 0: You see a wall 3 steps forward, You see a wall 4 steps but the
9 <object B> right, You see a purple key 2 steps forward, You see a red box 2 steps actions order

after you right, You see a blue ball 2 steps left, different from
pick up Action 0: execution order.
<object A> Expected answer: turn left

Goal of the agent: pick up the green key then pick up the red box Task never seen
Pick up Observation 0: You carry a green key, You see a wall 4 steps forward, in training

10 <object A> You see a wall 4 steps left, You see a red box 1 step left, You see a to analyze
then pick up purple ball 2 steps left and 1 step forward, generalization.
<object B> Action 0:

Expected answer: drop
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Figure 19. Evolution of actions’ probability over training for test prompts listed in Table 2.
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D. Generalization tests details
D.1. Recapitulating results table

In this section we summarize the numerical results shown in Figure 3 with the confidence intervals calculated as explained
in Appendix G.

Table 3. Generalization tests
Environments GFlan-T5 Flan-T5 NPAE DRRN Random

Q2

Mix - no change 0.89± 0.05 0.11± 0.03 0.17± 0.04 0.14± 0.02

0.15± 0.05
Mix - out-of-vocabulary

0.87± 0.05 0.09± 0.02 0.16± 0.05 0.15± 0.00nouns
Mix - invented nouns

0.88± 0.06 0.11± 0.03 0.16± 0.03 0.16± 0.00and adjectives

Q3

Pick up then/after
0.12± 0.06 0.02± 0.00 0.06± 0.01 0.06± 0.03 0.05± 0.05pick up

Mix - synonym actions 0.12± 0.12 0.02± 0.00 0.16± 0.04 0.17± 0.04 0.15± 0.05
Go To - English 0.99± 0.01 0.27± 0.03 0.31± 0.04 0.31± 0.03

0.30± 0.05Go To - French 0.02± 0.01 0.03± 0.00 0.30± 0.02 0.31± 0.02

D.2. Complementary tests for Q2

Table 4. Complementary tests for Q2

Environments GFlan-T5 Flan-T5 NPAE DRRN Random

Mix - no change 0.89± 0.05 0.11± 0.03 0.17± 0.02 0.14± 0.02

0.15± 0.05
Mix - unseen

0.87± 0.03 0.12± 0.03 0.16± 0.08 0.17± 0.09in-vocabulary objects
Mix - out-of-vocabulary

0.87± 0.07 0.16± 0.03 0.16± 0.02 0.16± 0.01adjectives

To further analyze results from in Section 4.2, we conduct more systematic tests on different aspects of the generalization to
new words. The results are given in Table 4.

Unseen in-vocabulary objects During training we remove tasks whose goal contain the following objects: yellow box,
red key, red door, green ball and, grey door. Nonetheless, the agent can have these objects as distractors and so have seen
them during training. We assess how our agents perform on the mix of tasks with goals using only these objects. The success
rate of 0.87 points out that GFlab-T5 is unaffected by the use of unseen in-vocabulary objects.

Unseen out-of-vocabulary adjectives We perform the same test as for out-of-vocabulary nouns in Section 4.2 but this
time with adjectives that do not belong to the BabyAI-Text vocabulary. We generate the prompt by exchanging the adjectives
with predefined synonyms (see Table 9). Similarly to the test with out-of-vocabulary nouns, the test with out-of-vocabulary
adjectives reveals that GFlan-T5 is unaffected by this change. Indeed, the success rate is of 0.87 compared to the one of mix
of tasks without change at 0.89.

D.3. Complementary tests for Q3

In Section 4.3, we observe that GFlan-T5 fails to generalize to an environment where we change the language. We
hypothesize that such a change modifies too many grounded symbols at once. To verify this hypothesis, we test a middle-
ground version, where we keep the environment in English but actions are in French. In this setting, Table 5 shows that the
success rate of the agent (0.15) is better than the fully french environment (0.02). This observation supports that finetuned
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Table 5. Complementary tests for Q3

Environments GFlan-T5 Flan-T5 NPAE DRRN Random

Go To - English 0.99± 0.01 0.27± 0.03 0.31± 0.04 0.31± 0.03

0.30± 0.05
Go To - French 0.02± 0.01 0.03± 0.00 0.30± 0.02 0.31± 0.02
Go To - English with

0.15± 0.04 0.26± 0.02 0.31± 0.01 0.33± 0.00actions in French

agents tend to generalize to related words in other languages. Nonetheless, this ability seems highly dependent on the
number of grounded words we modify.

D.4. LLM grounding of temporal symbols: ”then” and ”after”

In this experiment we observe the dynamics of functional grounding of instructions containing the temporal symbols ”then”
and ”after” using the tasks: Pick up <object A> then go to <object B> and Go to <object B> after pick up <object A>.
As the order of the action matters to have the task considered completed, a correct grounding of these symbols is crucial.
Table 6 shows that GFlan-T5 has a better grounding of these words than the original Flan-T5 agent. Moreover, we observe a
slight bias after finetuning: the agent has stronger performances for the tasks with ”then” (success rate of 0.22) compared to
the tasks with ”after” (success rate of 0.17). We hypothesize it is easier to ground the word ”then” because the order of the
actions the agent must do is the same as the order in which the actions appear in the instructions. A qualitative example of
this behavior is given in Appendix C (prompts 8, 9).

Table 6. Test on tasks with temporal components

Environments GFlan-T5 Flan-T5 NPAE DRRN Random

Mix of tasks then/after 0.23± 0.06 0.12± 0.01 0.09± 0.01 0.09± 0.02
0.04± 0.05Tasks with then only 0.22± 0.11 0.12± 0.01 0.10± 0.003 0.10± 0.02

Tasks with after only 0.17± 0.05 0.13± 0.05 0.10± 0.03 0.10± 0.01
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E. Distributed experimental setup
In order to accelerate our online RL finetuning, we first leverage a classic distributed data collection setup where 32 BabyAI-
Text environments are running in parallel (all on CPUs). Our environments are run in a synchronous way, meaning that at
every step, we get 32 current states and need to send 32 actions back to the environment. In very classic RL setups, policy
networks are usually small and we simply batch the 32 states, feed them to the network and obtain the 32 actions’ probability
before sampling from them and choosing one action per environment. However, as explained in Section 3.2, our method
requires |A| forward passes on a potentially very large and computationally expensive LLM in order to compute actions’
probability for a single environment. Hence, we now need 32× |A| forward passes for a single step in all environments,
which can easily become a huge bottleneck in our training process.

To overcome this, we deploy for each of our experiments in Section 4 4 instances of our LLM all running in parallel. We
load and use LLMs through the Hugging Face Transformers Python library8. Our method relies on a simple client-server
architecture where the RL script acts as a client sending requests to LLMs. This client communicates with a master server
which dispatches the call over multiple servers (i.e. one per LLM). Once each LLM has computed its subset of the call, the
master gathers results and sends the response to the RL client. We use Pytorch Distributed9 with the GLOO backend for
communication (hence possible both on CPU-only and GPU setups). We wrap all these in a Python library called Lamorel
which can dispatch calls over the deployed LLMs from a single line of code in the RL loop asking for actions’ probability
for all environments. Using this method, we observe a quasi-linear scaling with the number of deployed LLMs.

Once transitions have been collected, we update our LLM using the PPO loss. For this, Lamorel helps parallelize the
gradients’ computation with a Distributed Data Parallelism10 setup where forward and backward passes over transitions are
also dispatched on the different instances of our LLMs. Then, Lamorel helps gather gradients and update each LLM (as well
as their value head) the same way. In addition, Lamorel also helps define a custom computational graph linked to the LLM.
We use this to add MLPs on top of our Flan-T5 model for the value head (see experiments with action heads in Section B.3).

When using Flan-T5 780M, each LLM instance is distributed (Vertical Model Parallelism11) 2 Nvidia A100 80GB GPUs
requiring thus a total of 8 Nvidia A100 80GB GPUs to run an experiment (2 GPUs ×4 LLM instances). For Flan-T5 80M
and Flan-T5 3B, we respectively use 1 Nvidia V100 32GB and 4 Nvidia A100 80GB per LLM instance.

In total, to conduct experiments and ablations we use 160 GPU.hours on the Nvidia V100 32G and 18880 GPU.hours on
Nvidia A100 80GB.

F. finetuning details
F.1. PPO finetuning details

We reused PPO’s hyperparameters from Ramamurthy et al. (2022) and did not perform any further tuning (see Table 7). We
used an Adam (Kingma & Ba, 2014) optimizer with the hyperparameters listed in Table 8). For additional heads, we used
MLPs with 3 hidden layers of 1024 units with Sigmoid activation.

8https://huggingface.co/docs/transformers/index
9https://pytorch.org/docs/stable/distributed.html

10https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
11Layers are spread across GPUs (https://huggingface.co/docs/transformers/v4.15.0/parallelism)
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Table 7. PPO hyperparameters

Variable Value

Number of transitions collected between two updates 1280 (32 environments ×40 steps in each environment)
Number of epochs per update 4
Batch size 64
Entropy loss coefficient 0.01
Value function loss coefficient 0.5
Discount factor 0.99
lr 1× 10−6

λ factor of the Generalized Advantage Estimator 0.99
Clipping parameter ϵ 0.2
Maximum gradient norm 0.5

Table 8. Adam hyperparameters

Variable Value

Learning rate 1× 10−6

ϵ 1× 10−5

β1 0.9
β2 0.999

During our experiments, we observe that the output of LLMs with the language modeling heads tend to be small
(PLLM (ai|p) < 10−9) as the vocabulary is large (32128 tokens) meaning that probability of tokens is very small and
therefore the product of tokens probability is even smaller. Thus, once the softmax step is performed as per Equation (2), the
probability distribution over the possible actions is close to uniform, preventing the pretrained LLM to use its useful bias
when interacting with the environment. To tackle this issue, we use a variable temperature τ in the softmax. τ is equal to the
maximum probability returned by the LLM over the action space. So the distribution over the possible actions is given by:

P(ai|p) =
ePLLM (ai|p)/τ∑

aj∈A ePLLM (aj |p)/τ

with τ = max
{aj∈A}

PLLM (aj |p).

F.2. Behavioral Cloning

In Section 4.4, we show how grounding using RL differs from BC. For this, we finetune Flan-T5 780M on 400.000
transitions collected on the Go To <object> task. As indicated in Table 5, GFlan-T5 obtains a 0.81 success rate on the 1000
test episodes of the Go To <object> task. Hence by finetuning Flan-T5 to imitate GFlan-T5, one could expect an on-par
performance (or worse, but not better). We therefore use GFlan-T5 to collect 400.000 transitions and finetune Flan-T5 using
them. However, the stochasticity in the GFlan-T5 policy leads to deceptive transitions in the dataset (potentially harmful for
BC). We thus also assess whether using optimal transitions to finetune Flan-T5 leads to better results than GFlan-T5. To
collect optimal trajectories, we use the bot provided by BabyAI and also gather 400.000 transitions on the Go To <object>
task.

For finetuning, we use Causal Language Modeling with the same prompt as the one given to our LLM agents in Section 4
as input and the performed action as label. We use the same learning rate as the one used by Rae et al. (2021) to generate
Flan-T5 (i.e. 5× 10−4) and perform a single epoch on the 400.000 examples.
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G. Confidence interval
In sections 4.2 and 4.3, we perform several generalization tests. For each test we report the success rate over 2 seeds tested
on 1000 episodes each. In the following, we explain how we get the 99% confidence interval.

G.1. Confidence intervals for GFlan-T5, Flan-T5 and DRRN

We model the success of an agent, trained with the seed i, on a task (i.e. episode with its associated task) using a Bernoulli
variable Xi ∼ B(pi), with pi the probability of success of the agent . The number of successes after doing n episodes is the
random variable Y i

n =
∑n

k=0 X
i
k which follows a binomial law B(n, pi). If n is large enough, the binomial distribution can

be approximated by a normal distribution12. Thus we have{
pi ∼ N (p, τ2)

Y i
n|pi ∼ N (n pi, n pi(1− pi))

(4)

where p is the mean success rate and τ the variance.

Moreover, one property of normal random variables is that if{
V ∼ N (V0,ΣV )

U |V ∼ N (U0 +XV,ΣU |V )
(5)

for any X ,then (
U
V

)
∼ N (

(
U0 +XV0

V0

)
,

(
XΣV X

T +ΣU |V XΣV

ΣV X
T ΣV

)
) (6)

Hence we obtain U ∼ N (U0 +XV0, XΣV X
T +ΣU |V ).

By identification with Equation 4, we have

Y i
n ∼ N (np, (nτ)2 + n pi(1− pi)) (7)

We can rewrite it using the random variable SRi the success rate of the the agent (trained with seed i) during the test time
(over n trajectories).

SRi =
Y i
n

n
∼ N (p, τ2 +

pi(1− pi)

n
) (8)

Because pi(1−pi)
n ≤ 0.25

n −−−−→
n→∞

0 and n is large, we can neglect this term with respect to τ in equation above (we verify at
the end that we rightfully neglected it) and obtain:

SRi ∼ N (p, τ2) (9)

Using the maximum likelihood estimation for normal random variables, we get with a 99% confidence interval:

p̂± 2.58
τ̂√
s

(10)

{
p̂ = 1

s

∑s
i=1 SRi

τ̂2 = 1
(s−1)

∑s
i=1(p̂− SRi)

2
(11)

with s the number of seeds used, p̂ the estimator for p and τ̂2 the unbiased sample variance.

12using the Berry-Essen theorem, the approximation is good enough if n > 9 p(1−p)
p

and n > 9 p
p(1−p)
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G.2. Confidence intervals for random agents

As previously mentioned, we model the success of an agent using a Bernoulli variable X ∼ B(p), with p the probability of
success. The measured success rate after doing n episodes is the random variable SRn = 1

n

∑n
k=0 Xk which also follows

Bernoulli’s law B(p). Following Hoffending’s inequality, we have:

P(|SRn − p| > ε) < 2 exp (−2nε2) = δ (12)

with δ the error.

Thus if we use n = 1000 episodes to measure the success rate and we want a confidence of 99% (δ = 0.01) with

ε =
√

| 1
2n ln δ

2 |, we get ε = 0.05.

H. Word substitutions for generalization tests
For the generalization tests given in the sections 4.2, 4.3, and D, we use the dictionaries given below to substitute some
words by others.

H.1. Out of vocabulary

To generate descriptions with out-of-vocabulary nouns and adjectives, we modify the prompt by substituting words as per
Table 9.

Table 9. Out-of-vocabulary substitutions for Nouns and adjectives

Original Word New Word

key chair
ball table
box car
red vermillion
green jade
blue cyan
purple violet
yellow golden
grey silver

H.2. Invented words

Similarly to Section H.1, we apply the substitutions indicated in Table 10.

Table 10. Invented substitutions for Nouns and adjectives

Original Word New Word

key dax
ball xolo
box azfe
red faze
green jatu
blue croh
purple vurst
yellow gakul
grey sil
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H.3. Synonym actions

In 11, we choose the synonym actions to avoid as much as possible to reuse already used words in the finetuning (only ”left”
and ”right” cannot be changed). To verify that Flan-T5-Large considers these words as synonyms we ask it: ”Answer the
following yes/no question by reasoning step-by-step. Are <original action> and <synonym action> synonymous?”. We
retain the synonym only if it considers that this is the case.

Table 11. Synonym actions

Original Words Synonyms

turn left rotate left
turn right rotate right
go forward move ahead
pick up take
drop release
toggle switch

H.4. Translation to French

We give in Table 12 the chosen translation for the french environment (the adjectives are given in the feminine form as all
the objects are feminine).

Table 12. French translation
English French

turn left tourner à gauche
turn right tourner à droite
go forward aller tout droit
pick up prendre
drop lâcher
toggle basculer
go to a/the adj n aller à une/la n adj
steps pas
You see a <object> <location> Tu vois une <objet><location>
You see a(n) open/closed door <location> Tu vois une porte ouverte/fermée <location>
You carry a <object> Tu portes un <objet>
key clef
ball balle
box boı̂te
red rouge
green verte
blue bleue
purple violette
yellow jaune
grey grise
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