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Abstract
Algorithms for safely improving policies are
important to deploy reinforcement learning ap-
proaches in real-world scenarios. In this work, we
propose an algorithm, called MCTS-SPIBB, that
computes safe policy improvement online using
a Monte Carlo Tree Search based strategy. We
theoretically prove that the policy generated by
MCTS-SPIBB converges, as the number of simu-
lations grows, to the optimal safely improved pol-
icy generated by Safe Policy Improvement with
Baseline Bootstrapping (SPIBB), a popular algo-
rithm based on policy iteration. Moreover, our
empirical analysis performed on three standard
benchmark domains shows that MCTS-SPIBB
scales to significantly larger problems than SPIBB
because it computes the policy online and locally,
i.e., only in the states actually visited by the agent.

1. Introduction
Safety is a paramount requirement for the deployment of
reinforcement learning (RL; Sutton & Barto, 2018). In envi-
ronments where humans interact with robots or other kinds
of autonomous agents (e.g., autonomous cars, drones, or in-
dustrial plants) safety, robustness, and reliability of control
policies are crucial issues. Safe RL investigates how these
issues can be addressed by learning policies that maximize
expected return while ensuring minimal performance level
or respecting safety constraints during learning (Garcı́a &
Fernández, 2015). In this work, we focus on Safe Policy
Improvement (SPI; Thomas et al., 2015; Petrik et al., 2016)
for Markov Decision Processes (MDPs; Puterman, 2014;
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Russell & Norvig, 2020) where the agent is provided with
a baseline policy and data is collected running this policy
in the real environment. The goal of SPI is to use this data
and the baseline policy to compute a new policy with better
performance than the baseline. The method is considered
safe if it is guaranteed to return an improved policy with
high probability.

One of the most popular algorithms for SPI is Safe Policy
Improvement with Baseline Bootstrapping (SPIBB; Laroche
et al., 2019). It is an extension of policy iteration which com-
putes a policy that safely improves a baseline given a dataset
of trajectories produced by executing such baseline in the
environment. SPIBB considers a percentile criterion that
optimizes the policy in the worst-case scenario (Petrik et al.,
2016). The safe improvement is achieved by bootstrapping
the policy trained from data with the baseline policy in the
state-action pairs not executed enough times in the avail-
able trajectories. In practice, SPIBB searches the improved
policy in the constrained space of policies that are equal to
the baseline in the state-action pairs not observed enough
times in the dataset of trajectories (SPIBB constraint). This
strategy is proven to produce a safe improvement. SPIBB’s
derivation from policy iteration, however, limits its appli-
cability to small domains, since the running time of this
algorithm depends cubically (if the Bellman equation is
solved by matrix inversion) or quadratically (if it is solved
by dynamic programming) on the size of the state space
(Sutton & Barto, 2018). We investigate how to develop SPI
algorithms for large problems.

Several approaches have been proposed to scale reinforce-
ment learning to large state spaces (Kearns et al., 2002).
Among the most promising techniques, there is Monte Carlo
Tree Search (MCTS; Coulom, 2007; Browne et al., 2012),
an online sampling-based lookahead-search method that effi-
ciently computes policies converging to optimality and hav-
ing a small error probability if stopped before convergence.
In MCTS, Upper Confidence Bound applied to Trees (UCT;
Kocsis & Szepesvári, 2006) is used as an action selection
strategy to deal with the exploration-exploitation dilemma.
UCT extends the Upper Confidence Bound algorithm (UCB;
Auer et al., 2002), originally defined for multi-armed bandit
problems. The per-state running time of MCTS has no de-
pendence on the number of states but only on the number of
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simulations, hence the approach is suitable for domains with
large state spaces, e.g., the game of Go where the popular
AlphaGo reached superhuman performance using MCTS
(Silver et al., 2016). However, using MCTS in the context of
SPI is not trivial because the approach is online, i.e., it does
not compute the policy for all states. Furthermore, MCTS
performs simulations to approximate action Q-values con-
sidering future rewards. Simulations addressed by UCT and
rollout policies are used to search for the optimal policy.
These elements are not present in SPIBB which is based on
a different RL paradigm.

Against this background, we propose a novel algorithm that,
given a baseline policy, guarantees SPI using MCTS as a
solution strategy. This is, to the best of our knowledge, the
first use of MCTS to improve the scalability on SPI. The pro-
posed methodology, called MCTS-SPIBB, extends MCTS
by considering the SPIBB constraint. The policies gener-
ated by MCTS-SPIBB converge to the improved policies
generated by SPIBB as the number of MCTS simulations
increases. This is achieved by suitably merging UCT with
the baseline policy inside MCTS. We prove this result by
a full theoretical analysis of our approach. We also empiri-
cally evaluate the proposed algorithm on three domains, i.e.,
GridWorld (Russell & Norvig, 2020), SysAdmin (Guestrin
et al., 2003) and WetChicken (Scholl et al., 2022b) showing
three key points: the policy generated by MCTS-SPIBB
converges to an optimal policy satisfying the SPIBB con-
straint; MCTS-SPIBB produces a safe policy improvement;
MCTS-SPIBB scales better than SPIBB to large domains.

In summary, this work proposes four main contributions
to the state-of-the-art: i) a formalization of the problem of
SPI in the MCTS framework; ii) an online sampling-based
algorithm for SPI on MDPs, called MCTS-SPIBB; iii) a
theoretical proof that the policy generated by MCTS-SPIBB
converges to the SPIBB policy as the number of simulations
increases; iv) an empirical evaluation of convergence, safety,
and scalability of MCTS-SPIBB on benchmark domains.

2. Related Work
The main research topics related to our work are offline RL,
safe policy improvement, and MCTS-based planning/RL.

Offline RL develops reinforcement learning algorithms that
generate control policies using data previously collected by a
behaviour policy, without collecting additional data (Levine
et al., 2020). Ernst et al. (2005) use regression tree ap-
proximations to generate the Q-function from a batch of
trajectories. Other methods using low dimensional or linear
parametrizations of the Q-function are described by Lange
et al. (2012). Fujimoto et al. (2019) use a policy similar
to the baseline to create the dataset. Kumar et al. (2019)
minimize the bootstrapping error using actions within the

support of the dataset. Furthermore, Kumar et al. (2020);
Yu et al. (2020); Kidambi et al. (2020) tackle the problem of
the distributional shift between offline training data and the
states visited by the learned policy. However, none of these
methods considers the behaviour policy as an explicit input,
and none of them provides guarantees on the improvement
with respect to that policy.

Safe Policy Improvement is a specialization of offline RL
for safety-critical applications in which a behaviour policy
must be improved with guarantees on the performance of the
new policy w.r.t. the performance of the behaviour policy
(Levine et al., 2020). Delage & Mannor (2010) propose a
percentile criterion which maximizes the expected return
of the worst cases. Thomas et al. (2015) allow to compute
policies with performance below a bound with probability
higher than a predefined value. Some model-based methods
provide improved policies with guarantees on the perfor-
mance by searching in the estimated transition model with
guarantees on their error. Petrik et al. (2016) use a percentile
criterion defined by Delage & Mannor (2010) and Robust
MDPs to find a lower bound on the policy performance in
the worst-case scenario. Laroche et al. (2019) extend this
method allowing a constraint on the minimum number of
observations of a transition to be violated on some state-
action pairs. Extensions (Simão & Spaan, 2019b;a; Nadjahi
et al., 2019; Simão et al., 2020; Scholl et al., 2022a; Simão
et al., 2023; Wienhöft et al., 2023) and alternative strategies
(Abbasi-Yadkori et al., 2016; Cohen et al., 2018; Chandak
et al., 2020; Sarafian et al., 2020) are also available, but
none of them use MCTS to scale to large domains, making
MCTS-SPIBB the first algorithm that employs this strategy.

MCTS-based Planning/RL aims to scale sequential
decision-making based on MDP/POMDP to large domains,
such as real-world applications, via efficient Monte Carlo
sampling. Kearns et al. (2002) proposes a first online plan-
ning algorithm based on sparse sampling, which has no com-
plexity dependence on the state-space dimension. MCTS
(Chaslot et al., 2008; Browne et al., 2012) extends this
approach using the UCT algorithm (Kocsis & Szepesvári,
2006; Coulom, 2007) for balancing exploration and exploita-
tion. The technique converges to the optimal policy more ef-
ficiently than Monte Carlo sampling. UCT extends the UCB
strategy (Auer et al., 2002) to the case of non-stationary
bandit problems, in which the payoff sequences may drift as
actions are taken. MCTS was also applied to POMDPs (Sil-
ver & Veness, 2010) with extensions in several directions,
such as model learning (Katt et al., 2017; 2019) and prior
knowledge exploitation (Castellini et al., 2019; Mazzi et al.,
2021a;b; 2023). None of these algorithms, however, aim to
solve the SPI problem. The challenge in this context is to
consider the baseline policy inside the MCTS, which needs
to extend the action selection strategy (UCT and rollout) to
guarantee the safety of the improvement.
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3. Background
We describe MDPs, SPIBB and MCTS, and introduce the
mathematical notation used in the following sections.

3.1. Markov Decision Processes

A Markov Decision Process (MDP; Puterman, 2014) is a
tuple M = 〈S,A, T,R, γ〉, where S is a finite set of states,
A is a finite set of actions (we represent each action with
its index, i.e., A = {1, . . . , |A|}), T : S × A → P(S)
is a stochastic transition function, where P(E) denotes
the space of probability distributions over the finite set E,
therefore T (s, a, s′) indicates the probability of reaching the
state s′ ∈ S after executing a ∈ A in s ∈ S, R : S ×A→
[−Rmax, Rmax] is a bounded stochastic reward function,
and γ ∈ [0, 1) is a discount factor. The set of stochastic
policies for M is Π = {π : S → P(A)}.

Given an MDP M and a policy π we can compute state val-
ues V πM (s), s ∈ S, namely, the expected value acquired by π
from s; and action values QM (s, a), s ∈ S, a ∈ A, namely,
the expected value acquired by π when action a is performed
from state s. To evaluate the performance of a policy π in an
MDP M , i.e., ρ(π,M), we compute its expected return (i.e.,
its value) in the initial state s0, namely, ρ(π,M) = V πM (s0).
The goal of MDP solvers, such as value iteration and policy
iteration (Russell & Norvig, 2020; Sutton & Barto, 2018), is
to compute optimal policies, namely, policies having maxi-
mal values (i.e., expected return) in all their states. Given a
policy subset Π′ ⊆ Π, a policy π′ is said to be Π′-optimal
for an MDPM when it has maximal performance among the
policies in Π′, that is ρ(π′,M) = maxπ∈Π′ ρ(π,M). We
use Vmax to denote the known upper bound of the return’s
absolute value, i.e., Vmax ≤ Rmax

1−γ .

3.2. Safe Policy Improvement with Baseline
Bootstrapping

Let us represent the true environment by an MDP M∗ =
〈S,A, T ∗, R, γ〉 with unknown transition model T ∗ and
known reward function R. This is common in real-world
domains where the transition model must be estimated
or inferred from small amounts of data. Safe policy im-
provement (SPI) aims to compute a new policy πI that
outperforms a baseline policy π0 using a dataset of tra-
jectories D = 〈sj , aj , rj , s′j〉j∈[1,N ] collected using π0

in the true environment. The dataset is used to com-
pute the Maximum Likelihood Estimation (MLE) MDP
MD = 〈S,A, TD, R, γ〉 where TD is the transition statis-
tics observed in the dataset. The safety of the improvement
must be guaranteed, namely, πI must outperform π0 with an
admissible performance loss ζ ∈ R+ and confidence level
1− δ, with 0 ≤ δ ≤ 1 and loss ρ(π0,M)− ρ(πI ,M).

SPI was formalized on MDPs using different percentile

criteria (Delage & Mannor, 2010) (notice that a per-
centile criterion was first proposed in 2007 for ex-
ploration (Delage & Mannor, 2007) and in 2008 for
safety (Schneegass et al., 2008)). Safe Policy Im-
provement with Baseline Bootstrapping (SPIBB) con-
siders the worst-case scenario (Petrik et al., 2016)
namely, πI = arg maxπ∈Π minM∈Ξ(ρ(π,M)−ρ(π0,M)),
where Ξ is the set of admissible MDPs Ξ(MD, e) =
{M = 〈S,A,R, T, γ〉 | ∀(s, a) ∈ S × A, ‖T (s, a, ·) −
TD(s, a, ·)‖1 ≤ e(s, a)}. The MDPs in this set have transi-
tion model T withL1 distance from the transition model TD

estimated from data D smaller than the error e(s, a). The
error function e : S × A → R is an arbitrary function
representing the uncertainty over the estimated transition
model TD. The optimization of πI is, however, NP-hard.

The main contribution of SPIBB (Laroche et al., 2019) is to
reformulate the percentile criterion to make the search of an
efficient and provably-safe policy tractable. Let ND(s, a) ∈
N be the number of occurrences of a state-action pair (s, a)
in D and N∧ ∈ N a related threshold. SPIBB splits state-
action pairs in two subsets: the bootstrapped subset B =
{(s, a) : ND(s, a) < N∧} is the set of state-action pairs
that occur less than N∧ times in D; the non-bootstrapped
set B = {(s, a) : ND(s, a) ≥ N∧} is the set of state-action
pairs that occur at least N∧ times in D. We also define boot-
strapped and non-bootstrapped action sets, for each state s,
as functions BA(s) = {a ∈ A : (s, a) ∈ B} and BA(s) =
{a ∈ A : (s, a) ∈ B}, respectively. SPIBB policies satisfy
the SPIBB constraint πspibb(s, a) = π0(s, a), if (s, a) ∈ B.
The approach guarantees that πspibb is a ζ-approximate safe
policy improvement of the baseline π0 with high proba-
bility 1−δ, where ζ depends on N∧ and δ. The search
is done in the subspace of policies equal to the baseline
in the state-action pairs not observed enough times in D,
namely, Π0= {π ∈ Π : π(s, a) = π0(s, a) : ∀(s, a) ∈ B}.
The SPIBB algorithm (Algorithm 1; Laroche et al., 2019)
performs policy iteration (Sutton & Barto, 2018) with tran-
sition model TD and constraining the policy to Π0 at each
policy improvement step.

3.3. Monte Carlo Tree Search

Given the current state of the agent, MCTS (Browne et al.,
2012) first generates a Monte Carlo tree rooted in the state
to estimate in a sample-efficient way the Q-values for that
state. Then, it uses these estimates to select the best action.
We perform m ∈ N simulations using, at each step, Upper
Confidence Bound applied to Trees (Kocsis & Szepesvári,
2006) (inside the tree) or a rollout policy (from a leaf to the
end of the simulation) to select the action, and the known
transition model (or an equivalent simulator) to perform
the step from one state to the next. Simulations allow to
update two node statistics, namely, the average discounted
return Q(s, a) obtained selecting action a and the number
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of times N(s, a) action a was selected from node (state) s.
UCT extends UCB1 (Auer et al., 2002) to sequential de-
cisions and allows to balance exploration and exploitation
in the simulation steps performed inside the tree, and to
find the optimal action as m tends to infinity. Given the
average return X̄a,Ta(t) of each action a ∈ A of a node,
where Ta(t) is the number of times action a has been se-
lected up to simulation t from that node, UCT selects the
action with the best upper confidence bound. In other words,
the index of the action selected at the t-th visit of a node is
It = argmaxa∈1,...,|A| X̄a,Ta(t) + 2Cp

√
ln(t−1)
Ta(t−1) , with ap-

propriate constant Cp > 0. When all m simulations are per-
formed the action a with maximum average return X̄a,Ta(t)

in the root is executed in the real environment.

4. Method
The MCTS-SPIBB algorithm is first presented from a high-
level perspective and then in detail.

4.1. MCTS-SPIBB: Overview

MCTS-SPIBB is a Monte Carlo Tree Search extension of
SPIBB (Laroche et al., 2019). As MCTS approximates opti-
mal policies generated by policy iteration, so MCTS-SPIBB
approximates Π0-optimal policies generated by SPIBB start-
ing from a baseline π0. The MCTS-SPIBB policy with
infinite simulations is Π0-optimal in the Maximum Like-
lihood Estimate (MLE) transition model TD (Theorem 1
by Laroche et al., 2019) and a ζ-approximate safe policy
improvement over π0 (Theorem 2 by Laroche et al., 2019).
Since MCTS-SPIBB computes the policy online and locally
it can scale to larger problems than SPIBB. The convergence
of MCTS-SPIBB to the optimal policy in Π0 w.r.t. MD and
the capability of MCTS-SPIBB to scale better than SPIBB
are two key contributions shown in Sections 5 (theoretical
analysis) and Section 6 (empirical analysis), respectively.

The main idea behind MCTS-SPIBB is to extend UCT con-
sidering the constraint on bootstrapped actions. This is
non-trivial for several reasons, e.g., UCT selects actions ac-
cording to Q-values and the constraint is on action selection
probabilities, and the effect of the constraint accumulates
in the layers of the MC tree. Bootstrapped actions must be
selected with probability π0(s, a) during the simulations to
generate optimal policies in Π0. Figure 1 shows a diagram
that highlights the key idea behind this extension. Given a
state s in the MC tree, we split the actions into bootstrapped
state-action pairs (s, a) ∈ B and non-bootstrapped state-
action pairs, (s, a) ∈ B (i.e., respectively, actions a1 and a2,
and actions a3 and a4 in Figure 1). When the simulation
reaches state s, we select a bootstrapped action with prob-
ability psB =

∑
a∈BA(s) π0(s, a), where BA(s) is the set of

bootstrapped actions for state s, and a non-bootstrapped

S

Select bootstrapped
action

Select
non-bootstrapped

action

a=1
Q(s,1), N(s,1)

a=2
Q(s,2), N(s,2)

a=3
Q(s,3), N(s,3)

a=4
Q(s,4), N(s,4)

Non-bootstrapped actions

Select non-bootstrapped
action a*

Select bootstrapped
action a*

Bootstrapped actions

UCT(s,a3) UCT(s,a4)0(s,a1) 0(s,a2)

Bootstrapped Non-bootstrapped

𝟙

Bootstrapped or
non-bootstrapped

action?

Figure 1. Action selection strategy of MCTS-SPIBB: flow chart.

action with probability psB = 1 − psB. In the first case,
we choose the specific action according to the probability
distribution π0(s, ·). In the second case, we choose the
specific action according to the UCT strategy, which con-
siders the current estimates of Q-values and visit counts
(respectively, Q3(s, a), Q4(s, a) and N3(s, a), N4(s, a) in
Figure 1) and guarantees to select the optimal action with
enough simulations. In rollout, baseline probabilities are
used for bootstrapped actions and uniform selection for non-
bootstrapped actions. At the end of the simulations, the
estimated Q-values Q(s, a) of the root state s are used to
compute the probabilities of the improved policy π◦(s, a) as
i) π0(s, a) if a ∈ B(s), ii) 1− psB if a = argmax

a′∈BA(s)

Q(s, a′),

iii) 0 otherwise.

4.2. MCTS-SPIBB: Algorithm

Algorithms 1-4 show the pseudocode of MCTS-SPIBB. The
differences w.r.t. standard MCTS are highlighted in blue.
The agent is in a state s, and a baseline policy π0 is available
together with a dataset of trajectories D generated using π0

on the real environment M∗. From dataset D we assume to
have computed the state-action pair counts matrix ND(s, a)
and the MLE transition model TD. Other mathematical
symbols present in the algorithms and already defined above
are R, γ, N∧, m, and the threshold ε used to end simulation
steps. For the sake of compactness, these elements are used
by the algorithms although not explicit input parameters.

MCTS-SPIBB (Algorithm 1) first generates the Monte
Carlo tree Tr for state s performing m simulations (lines 3-
5). Then it produces the improved policy π◦(s, a) setting i)
the probabilities of bootstrapped actions to the related base-
line probabilities (lines 7-9), ii) the probability of the best
non-bootstrapped action a? to the total probability available
for non-bootstrapped actions (lines 10-12), iii) the prob-
ability of other non-bootstrapped actions to zero (line 6).
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Algorithm 1 MCTS-SPIBB
Input: s: current state; π0: baseline policy; N∧: minimum

count; ND: counter; m: total number of simulations;
BA(s), BA(s): bootstrapped/non-bootstrapped actions

1: Tr← {} // Empty MC tree
2: // Build MC tree (i.e., compute Q(s, a))
3: for i = 1, · · · ,m do
4: Simulate(Tr, s, 0, π0,BA(s),BA(s))
5: end for
6: π◦(s, ·)← (0, · · · , 0) // Initialize MCTS-SPIBB policy
7: for a ∈ BA(s) do
8: π◦(s, a)← π0(s, a)
9: end for

10: a? ← argmaxa∈BA(s){Tr.Q(s,a)}
11: psB ←

∑
a∈BA(s) π0(s, a) // BA(s) total probability

12: π◦(s, a?)← 1− psB
13: return a ∼ π◦(s, ·)

Algorithm 2 Simulate
Input: Tr: MC tree structure; s: state node; d: cur-

rent depth; π0: baseline policy; BA(s), BA(s):
bootstrapped/non-bootstrapped actions

1: if γd < ε then
2: return 0
3: end if
4: // Node expansion
5: if s 6∈ Nodes then
6: for a ∈ A do
7: Nodes(sa)← (Ninit(s, a), Qinit(s, a), ∅)
8: end for
9: return Rollout(s, d, π0,BA(s), psB)

10: end if
11: psB ←

∑
a∈BA(s) π0(s, a) // Tot prob bootstrapped act

12: a? ← SelectAction(s,BA(s),BA(s), π0, p
s
B, False)

13: s′ ∼ TD(s, a?, ·); r ← R(s, a?)
14: R← r+γ ·Simulate(Tr, s′, d+1, π0,BA(s′),BA(s′))
15: N(s)← N(s) + 1
16: N(s, a?)← N(s, a?) + 1

17: Q(s, a?)← Q(s, a?) + (R−Q(s,a?))
N(s,a?)

18: return R

Finally, it randomly samples an action from π◦(s, ·) and
returns it. Simulations (Algorithm 2) are performed using
almost a standard MCTS strategy. Steps are performed us-
ing the MLE transition model TD and the simulator is set
up as a standard MCTS simulator. Algorithm 3 selects ac-
tions according to the strategy described in Subsection 4.1.
It first decides whether to bootstrap or not considering the
total probability of bootstrapped actions psB (lines 1-2). If it
decides to bootstrap, it samples the action according to the
probability distribution of those actions (lines 3-7). Other-
wise, it samples the action according to standard UCT if the

Algorithm 3 SelectAction

Input: s: state node; BA(s), BA(s): bootstrapped/non-
bootstrapped action sets; π0: baseline policy; psB: total
probability of bootstrapped actions; roll: rollout flag

1: θ ∼ U([0, 1]) // Uniform sampling from [0, 1]
2: if θ ≤ psB then
3: p(·)← (0, · · · , 0) // Init. bootstrapped probabilities
4: for a ∈ BA(s) do
5: p(a)← π0(s, a)/psB
6: end for
7: a? ∼ p(·) // Sample bootstrapped action
8: else
9: if ¬roll then

10: // Sample non-bootstrapped action using UCT

11: a? ← argmaxa∈BA(s){Q(s, a)+2Cp

√
logN(s)
N(s,a) }

12: else
13: a? ∼ πrollout(s, ·) // Sample uniformly
14: end if
15: end if
16: return a?

Algorithm 4 Rollout
Input: s : state node; d: current depth; π0: baseline policy;
BA(s): bootstrapped action set; psB: total probability of
bootstrapped actions
if γd < ε then

return 0
end if
a? ← SelectAction(s,BA(s), {}, π0, p

s
B, T rue)

s′ ∼ TD(s, a?, ·); r ← R(s, a?)
return r + γ · Rollout(s′, d+ 1, π0,BA(s), psB)

step is performed inside the tree (lines 9-11), or according
to the rollout policy (we used a uniform policy in our tests)
if the step is performed outside the tree (line 13). Finally,
Algorithm 4 performs the standard MCTS rollout using the
new function for action selecting (i.e., Algorithm 3). What
differentiates MCTS-SPIBB from the standard MCTS algo-
rithm is the way in which actions are selected both inside
the tree and during rollouts.

There are two non-trivial parts in the integration of SPIBB
with MCTS. The first concerns the design of the action selec-
tion strategy (Figure 1); the second is the theoretical proof
that this strategy, which merges UCT with baseline policy,
actually provides a safe improvement (see next section and
Appendix A). The way in which, given a state s, we first
decide if to select a bootstrapped or a non-bootstrapped ac-
tion, and then we use baseline probabilities (bootstrapped
case) or Q-value estimates (non-bootstrapped case) to select
actions, guarantees MCTS-SPIBB convergence to SPIBB.
This would not have been ensured by other strategies.
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5. Theoretical Analysis
We prove that, given a baseline π0, the improved policy π◦

generated by MCTS-SPIBB converges, as the number of
simulations tends to infinity, to the improved policy πspibb

generated by SPIBB, which is optimal in Π0 and a safe
improvement of π0. Using the notation of Kocsis et al.
(2006) and Auer et al. (2002), which is derived from multi-
armed bandit theory, we indicate with Xi,t the (random)
payoff (i.e., return) obtained by selecting action i ∈ A in the
t-th simulation passing from the current state. The average
payoff of action i after m simulations passing from the
current state is indicated as X̄i,m := 1

m

∑m
t=1Xi,t and the

expected average payoff (i.e., the expected average return)
of the current state after m simulations passing through it is
indicated as E{X̄m}. Amongm simulations, n are assumed
to select a non-bootstrapped action and c a bootstrapped
action. Ti(m) denotes the number of times action i was
selected after m simulations (notation in Appendix A.1.1).

The analysis is based on an assumption and three theorems.
For the sake of compactness, the full assumption is reported
in Assumption A.5 (see Appendix A) and summarized here:
without loss of generality, the expected value of the aver-
age payoff of each action i ∈ A converges to some value
µi ∈ R; payoffs Xi,t are limited to range [0, 1]; the proba-
bility distributions over average payoffs concentrate quickly
around their means, according to the Hoeffding inequality.

The first theorem provides a bound on the bias of the es-
timated value (i.e., expected average return) for the cur-
rent state after m simulations E{X̄m}, given the bias on
the estimated value of the optimal non-bootstrapped action
δ∗n := E{X̄i∗,n} − µ∗ (with µ∗ expected value of the av-
erage payoff of the optimal non-bootstrapped action) and
the biases on the estimated values of the bootstrapped ac-
tions δi,Ti(c) := E{X̄i,Ti(c)} − µi (with i ∈ BA(s), µi ex-
pected value of the average payoff of bootstrapped action i).
N0(ε) is such that if t ≥ N0(ε) then |δi,t| ≤ ε∆i/2 and
|δj∗,t| ≤ ε∆i/2, where ∆i = µ∗ − µi, with i suboptimal
action and j∗ optimal action.

Theorem 5.1. Let X̄m = 1
m

∑
i∈BA

Ti(c)X̄i,Ti(c) +
1
m

∑
i∈BA

Ti(n)X̄i,Ti(n). Under Assumption A.5 the follow-

ing bound holds
∣∣∣E{X̄m}−

∑
i∈BA

π0(i) ·µi− pB ·µ?
∣∣∣ ≤∑

i∈BA
π0(i) · |δi,Ti(c)| + pB · |δ∗n| + O

(
K(C2

p lnm+N0)

m

)
where N0 = N0(ε).

Proof. (Sketch) The idea behind the proof is to split the bias
on the expected payoff of the state (left side of the inequality)
into the bias of the expected payoff of the optimal non-
bootstrapped action and the bias of each bootstrapped action.
The first is bounded by Theorem 3 of (Kocsis et al., 2006)
and the second by

∑
i∈BA

π0(i) · |δi,Ti(c)|. Theorem A.6
(see Appendix A) provides the full derivation.

The second theorem proves the convergence of the estimated
state value E{X̄m} to the optimal value in Π0, which is the
value of the optimal policy in Π0 computed by SPIBB.

Theorem 5.2. Consider algorithm MCTS-SPIBB running
on a tree of depth D, branching factor |A| = L+K with
L bootstrapped actions and K non-bootstrapped actions in
each state, and stochastic payoffs at the leaves. Assume that
payoffs lie in [0, 1]. Then the bias of the estimated expected

payoff X̄m is O
(
LDKD lnm+LDKD

m

)
.

Proof. (Sketch) The proof is made by induction on D con-
sidering the bound of Theorem 5.1 to perform the inductive
step from L + K MC trees of depth D − 1 (one tree for
each non-bootstrapped action and one tree for each boot-
strapped action) to a MC tree of depth D. Theorem A.7 (see
Appendix A) provides the full derivation.

The third theorem proves that the estimated state value con-
centrates quickly around its mean.

Theorem 5.3. Fix an arbitrary δ > 0 and let ∆m =

9
√

2psBm ln(4/δ)+Cp
√
m ln(2L/δ)

∑
i∈BA

√
π0(i). Let

n0 ∈ N be such that
√
n0 ≥ O(K(C2

p lnn0 + N0(1/2))),
if m ≥ n0

pB
then under Under Assumption A.5 the follow-

ing bounds hold: P
{
mX̄m ≥ mE

{
X̄m

}
+ ∆m

}
≤ δ and

P
{
mX̄m ≤ mE

{
X̄m

}
−∆m

}
≤ δ.

Proof. (sketch) The proof is obtained by splitting each prob-
ability P {·} into two terms, one for non-bootstrapped ac-
tions and one for bootstrapped actions. Bounds on the prob-
ability distribution of average payoffs in Assumption A.5
and the Hoeffding inequality allow to prove the theorem.
Details are reported in Theorem A.8 (see Appendix A).

This theoretical analysis shows the safety of MCTS-SPIBB
by demonstrating the convergence of the policy generated
by MCTS-SPIBB to the policy generated by SPIBB (which
is proved to be safe in (Laroche et al., 2019)). Further-
more, SPIBB computes an optimal policy in Π0 (Theorem 1,
Laroche et al., 2019), namely, it solves in an optimal way
the problem of SPI with baseline bootstrapping (satisfying
the percentile criterion of Eq. 1 by Laroche et al., 2019).

6. Experiments
We first apply MCTS-SPIBB to two benchmark domains,
Gridworld and SysAdmin, showing empirically that i) the
performance of the improved policy generated by MCTS-
SPIBB converges to that of the policy generated by SPIBB
as the number of simulations increases, ii) MCTS-SPIBB
guarantees the safety of the improvement, iii) MCTS-SPIBB
can scale to larger domains than SPIBB. To further extend
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our analysis, we also compare MCTS-SPIBB with state-
of-the-art SPI algorithms (i.e., SPIBB, some SPIBB exten-
sions presented by Scholl et al. (2022b), Basic-RL, DUIPI
(Schneegass et al., 2010), R-Min (the pessimistic adaptation
of R-Max, Brafman & Tennenholtz, 2003), and RaMDP
(Petrik et al., 2016)) on a public benchmark based on the
WetChicken domain proposed by Scholl et al. (2022b). This
analysis shows that MCTS-SPIBB reaches state-of-the-art
performance on small domains and scales to large domains.

Domains. In GridWorld (Laroche et al., 2019) an agent
moves in a N ×N grid starting from the bottom-left corner
and aiming to reach the top-right corner. The agent can
select four actions, i.e., moving north, south, east, or west.
Each action has a 75% chance of moving the agent in the
desired direction, 5% in the opposite direction, and 10%
chance of moving it in each of the other two directions.
The reward is 1 if the agent reaches the target cell (top-right
corner), 0 otherwise. The size of the state space is |S| = N2

and that of the action space is |A| = 4, resulting in 4N2

possible state-action pairs. In SysAdmin (Guestrin et al.,
2003) an agent has to administer a network of N machines.
Each machine is connected to two other machines on either
side of it to form a ring topology. A binary random variable
represents whether each machine is working or has failed.
At each time step, the agent can reboot one machine at a
cost of −1 or do nothing with null cost, furthermore, it
receives a reward of 1 for each working machine and a
penalty of−1 for each failed machine. Every machine has a
probability of 0.05 to fail at each time step. This probability
increases by 0.3 for each neighboring machine that failed. If
a machine is rebooted, then it works with probability 1. The
size of the state space is |S| = 2N , and the size of the action
space |A| = N + 1, resulting in 2N (N + 1) state-action
pairs. We chose these two benchmark domains to evaluate
MCTS-SPIBB because, i) they are well-known domains
on which also other SPI algorithms have been tested (e.g.,
Gridworld, Laroche et al., 2019), ii) the state space of these
domains can be enlarged at will (e.g., the largest SysAdmin
instance tested has 35 machines, namely, about 35 billion
states). The benchmark proposed by Scholl et al. (2022b)
is executed on the WetChicken domain: an agent floats in
a small boat on a river with a waterfall at one end. The
goal for the agent is to stay as close as possible to the
waterfall without falling down. The closer the agent is to the
waterfall, the greater the reward. If it falls, the episode ends.
The river is represented as a 5 × 5 grid in the benchmark
(i.e., |S| = 25) and five actions can be chosen by the agent
(Appendix C).

Software and Hardware. The original code of SPIBB1

and our code of MCTS-SPIBB2 are publicly available. Ex-

1https://github.com/RomainLaroche/SPIBB
2https://github.com/Isla-lab/mctsspibb

Figure 2. Results on convergence. X-axis: number of simula-
tions m. Y-axis: absolute difference of values in s0 between
MCTS-SPIBB and SPIBB ∆Vs0 = |V π

◦
M∗(s0)− V π

spibb

M∗ (s0)|.

periments were performed on a laptop with an 11th Gen
Intel(R) Core(TM) i7-1165G7, 2.80 GHz with 10 GB RAM.

Results on Convergence. To show that the performance of
the policy generated by MCTS-SPIBB converges to that of
the policy generated by SPIBB as the number of simulations
m increases, we perform experiments on Gridworld 3x3,
4x4, 5x5, and SysAdmin with 7 machines. For each domain,
we first generate a baseline policy (details in Appendix
B). Then, we generate ND = 20 datasets each containing
|D| = 10000 trajectories for Gridworld (trajectory lengths
are 15 steps for 3x3, 20 steps for 4x4 and 30 steps for
5x5) and |D| = 5000 trajectories for SysAdmin (trajectory
length is 15 steps). Then, for each dataset, we compute the
MLE transition model TD, the state-action pair count ma-
trix ND(s, a) and the bootstrapped/non-bootstrapped action
sets BA(s)/BA(s) using threshold N∧ = 5 for Gridworld
(average % of safe actions is |BA(s)|/|A| ·100 = 81%) and
N∧ = 50 for SysAdmin (avg % of safe actions: 13.4%). Fi-
nally, for each dataset we generate the improved policy with
both SPIBB and MCTS-SPIBB and compute the absolute
difference between their values in the initial state s0, that
is ∆Vs0 = |V π◦M∗(s0)− V πspibb

M∗ (s0)| (notice that in this test
we compute the entire policy (all states) also with MCTS-
SPIBB, and evaluate it using policy evaluation). Figure 2
shows the value of ∆Vs0 (y-axis) for each domain (Fig. 2.a
for Gridworld and Fig. 2.b for SysAdmin) and for each
dataset (each point is a dataset) with m = 100, 1000, 10000
simulations (x-axis). Lines connect average values. In both
domains avg ∆Vs0 tends to zero showing the convergence.
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Results on Safety. To show the practical impact in the
safety of policies generated by MCTS-SPIBB we perform
the same experiments performed by Laroche et al. (2019) on
Gridworld 5x5 and SysAdmin with 7 machines. Namely, for
each domain, we first generate a baseline policy. Then, for
different dataset sizes |D| we generate ND = 20 datasets,
each containing |D| trajectories. In particular, in Gridworld
|D| ∈ {2, 101, 102, 103, 104} and each trajectory is 30 steps
long, while in SysAdmin |D| ∈ {5, 500, 5000} and each
trajectory is 15 steps long. Afterward, for each dataset, we
compute TD,ND(s, a) and sets BA(s)/BA(s) using thresh-
old N∧ = 20 for Gridworld and N∧ = 50 for SysAdmin
(average % of safe actions for each |D| are reported in Fig-
ure 3). Finally, for each dataset, we generate the improved
policy using three algorithms, namely, MCTS-SPIBB (with
10000 simulations), SPIBB, and Basic RL (Basic RL is
the vanilla Batch RL used as a non-safe baseline also by
Laroche et al. (2019); it computes the optimal policy in the
MLE MDP MD even when too few samples are available
for some state-action pairs) and we evaluate their perfor-
mance on the real environment as ρ(πI ,M

∗) = V πI

M∗(s0)
(also in this test the policy based on MCTS-SPIBB is com-
puted in all states to allow the usage of policy evaluation to
compute values).

Figures 3.a,c show the results on Gridworld and SysAdmyn,
respectively. The size of the dataset |D| is shown on the
x-axis and the performance of the improved policy on the y-
axis. Each point represents the performance of an improved
policy generated using a specific dataset and a specific al-
gorithm. The yellow line represents the performance of the
baseline π0 and the green line is the performance of the
optimal policy, namely, the policy computed using policy
iteration with the true transition model T ∗. Basic RL per-
forms better than MCTS-SPIBB in some cases but it is not
safe (we use it only as an unsafe baseline in our tests), in
fact, it achieves a performance decrease on small datasets
(i.e., |D| = 2 in Gridworld and |D| = 5 in SysAdmin) as it
has no safety guarantees. On the contrary, MCTS-SPIBB
and SPIBB perform almost identically (differences in perfor-
mance are not statistically significant) and their performance
is always equal or higher than that of the baseline, i.e., they
are safe. This behaviour is also shown in Figures 3.b,d
considering 15% Conditional Value-at-Risk (15%-CVaR),
i.e., the mean performance over the 15% worst runs. For
each algorithm-|D| pair, we select the worst 3 points and
draw lines among averages. Interestingly, MCTS-SPIBB
and SPIBB are still safe and they perform very similarly.
Experiments with different parameters (see Appendix C)
confirm the result.

Results on Scalability. SPIBB complexity is O(|S · A|3)
if the Bellman equation is solved exactly or O(|S|2 · |A|) if
it is solved by dynamic programming. On the other hand,
MCTS-SPIBB complexity is O(m), with m number of sim-

Figure 3. Results on safety. Performance ρ(πI ,M
∗) and 15%-

CVaR ρ(πI ,M
∗) (y-axis) depending on dataset sizeD (x-axis) on

Gridworld (a,b) and SysAdmin (c,d).

ulations, and it does not directly depend on the size of the
state/action space. This allows MCTS-SPIBB to scale to
larger domains than SPIBB. In fact, in domains with a large
number of states, each iteration of SPIBB improves all states,
although many of them are not reached in real runs. This
could require a large time or produce limited improvements.
On the other hand, MCTS-SPIBB employs the time avail-
able to improve the policy only on the small number of
states actually visited, producing larger improvements. To
show this in practice, we perform a test on SysAdmin (we
selected this domain because its state space scales expo-
nentially with the number of machines) with an increasing
number of machines, and compare the time required and the
performance achieved by the two algorithms. In particular,
we make tests with |D| = 5000 and N∧ = 5, varying the
number of machines (4, 7, 10, 12, 13, 20, 35), which also
changes the percentage of safe actions (98%, 49%, 18%,
12%, 8.5%, 6.1%, and 4%, respectively).

Figure 4 shows the time needed by SPIBB (light blue line),
SPIBBDP based on dynamic programming (dotted blue

8
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Figure 4. Results on scalability. Lines: computational time of
SPIBB, SPIBBDP and MCTS-SPIBB on SysAdmin with 4, 7,
10, 12, 13, 20, and 35 machines. Box plots: performance of
baseline policy, SPIBBDP and MCTS-SPIBB on 12, 13, 20, and
35 machines.

line) and MCTS-SPIBB (light green, red, and dotted purple
lines). For SPIBB and SPIBBDP we evaluate the time for
computing the complete policy (all states, because it is the
only output the algorithm can provide), while for MCTS-
SPIBB we evaluate the time for computing the policy in
a single state (because the algorithm works online on the
single states visited in the runs). We notice, again, that
in standard applications with large state spaces, the agent
only reaches a very small subset of states, hence the total
time per episode is in general much lower than the time
required to compute the entire policy with SPIBB. We con-
sider m = 100, 4000, 10000 simulations. SPIBB manages
to compute the policy only until 10 machines, SPIBBDP in-
stead works until 12 machines, whereas MCTS-SPIBB can
work even with a larger number of machines. We analyze
the performance, in terms of average discounted return, of
the improved policy for 13, 20, and 35 machines to see if it
actually improves the baseline where SPIBB and SPIBBDP
do not work. The box plots in Figure 4 show that the poli-
cies computed by MCTS-SPIBB with m = 4000 (which
requires only about 12 seconds per step) for 13, 20, and 35
machines are actual improvements of the related baseline
policies (larger m can be also used). Notice that the perfor-
mance drop for problems with more machines is justified by
the lower percentage of safe actions, which makes the policy
more conservative. The average discounted return of each
policy is computed performing 20 runs from s0. Results on
15% CVaR (Appendix C) show that the improvements in all
domain sizes are also safe.

Comparison with other state-of-the-art SPI Algorithms.
We evaluate the performance of MCTS-SPIBB on the
WetChicken domain in the context of the benchmark
presented by Scholl et al. (2022b). In particular, we
compare MCTS-SPIBB with SPIBB, some SPIBB ex-
tensions (Scholl et al., 2022b), Basic-RL, DUIPI, R-
Min, RaMDP. We compute the performance of each al-
gorithm using different dataset dimensions (i.e., |D| =

Figure 5. Comparison between MCTS-SPIBB and state-of-the-art
algorithms on WetChicken (benchmark proposed in (Scholl et al.,
2022b)).

100, 200, 500, 1000, 2000, 5000). For each algorithm and
each dimension we perform 10000 runs and compute mean
performance and 1%-CVaR (Scholl et al., 2022b).

Results, displayed in Figure 5 (further details in Figure 8,
Appendix C), confirm that MCTS-SPIBB performs sim-
ilarly to SPIBB if enough simulations are used (we use
m = 1000 simulations in these tests), hence it also has
state-of-the-art performance. Furthermore, all the state-of-
the-art algorithms considered in this benchmark fail to scale
to grids larger than 60× 60 (i.e., |S| = 3600 and |A| = 5)
on our computer for memory issues, while MCTS-SPIBB
computes improved policies on larger grids. For instance,
Figure 9 in Appendix C shows that MCTS-SPIBB can com-
pute an improved policy on a 70× 70 WetChicken grid.

7. Conclusions and Future Work
MCTS-SPIBB is a novel approach that uses MCTS to guar-
antee SPI with Baseline Bootstrapping. The use of MCTS
allows to scale to domains significantly larger than the ones
addressed by state-of-the-art approaches. The methodo-
logical contribution allowing this scaling is a non-trivial
extension of UCT that satisfies safety constraints on state-
action pairs with low coverage. We proved the convergence
of the improved policy generated by MCTS-SPIBB to the
policy generated by SPIBB, as the number of simulations
grows. Furthermore, we successfully tested the approach on
two benchmark domains showing that MCTS-SPIBB can
compute the policy on environment sizes not manageable by
SPIBB. Future work aims to extend this method to partially
observable MDPs and multi-agent MDPs, and to apply it
to other (Fu et al., 2020) (also real-world) problems. We
will also investigate the possibility to substitute the offline
strategy with an online one.
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Wienhöft, P., Suilen, M., Simão, T. D., Dubslaff, C., Baier,
C., and Jansen, N. More for less: Safe policy im-
provement with stronger performance guarantees. CoRR,
abs/2305.07958, 2023.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S.,
Finn, C., and Ma, T. MOPO: Model-based Offline Policy
Optimization. In Proceedings of the 33th Conference
on Neural Information Processing Systems (NeurIPS).
Curran Associates, Inc., 2020.

12



MCTS-SPIBB

A. Theoretical Analysis: Full Version
In this appendix, we provide the full version of the theoretical analysis, with complete proofs.

A.1. Convergence of MCTS-SPIBB to SPIBB

The convergence of UCT to an optimal policy given an unconstrained policy space is here implemented in the context
of safe policy improvement with baseline bootstrapping, in which the policy has to satisfy the SPIBB constraint, namely,
the improved policy must belong to the subspace Π0 = {π ∈ S → P(A)|π(s, a) = π0(s, a) : ∀(s, a) ∈ B}, with B set
of state-action pairs that occur less than N∧ times in dataset D. This constraint requires that for each state encountered
in simulations we consider in different ways bootstrapped and non-bootstrapped actions. In particular, non-bootstrapped
actions can still be selected using the UCT strategy, which is proved to converge to optimality, while bootstrapped actions
(i.e., actions that have not been observed enough times in dataset D) must be selected according to the related baseline
probabilities π0(s, a). The bias of the estimated state-value (i.e., expected average payoff) of the root node of a MCTS
computed by UCT tends to zero as the number of simulations tends to infinity (Kocsis et al., 2006). In other words, the
estimated state-value of the root node tends to its optimal value and the action with maximum Q-value tends to be the
optimal one as the number of simulations tends to infinity. Our proof adds to the bias of the estimated state-value (related to
UCT for non-bootstrapped actions) the bias due to baseline policy sampling (for bootstrapped actions), and shows that the
composed bias still converges to zero as the number of simulations tends to infinity. We notice that the two contributions
mix with each other in the lower levels of the MC tree, hence the values of all (bootstrapped and non-bootstrapped) actions
of the root node are affected by contributions of bootstrapped and non-bootstrapped actions of the underlying nodes. This
makes the analysis non-trivial and of interest.

A.1.1. NOTATION

We indicate: actions in the set A = {1, . . . , |A|} as i ∈ A (considering each action as its index in A), bootstrapped actions
for the current state as i ∈ BA (for the sake of compactness, we omit from BA(s) symbol s for the state when we refer
to the current state), and non-bootstrapped actions for the current state as i ∈ BA. We use L to denote the number of
bootstrapped actions for the current state and K to denote the number of non-bootstrapped actions. Being i an action index
and t the current simulation index, we indicate with Xi,t the (random) payoff (i.e., return) obtained by selecting i in the t-th
simulation. Formally, this payoff is a realization of a random variable with a non-stationary distribution (i.e., the distribution
can change across epochs t). Given m total simulations, the number of times we have selected action i up to that point is
Ti(m) :=

∑
t∈{1,...,m} 1[It = i], where It is a random variable representing the action taken in the t-th simulation. The

average payoff after m simulations is indicated as X̄i,m := 1
m

∑m
t=1Xi,t.

As mentioned above, payoff sequences are non-stationary, namely, taking the same action multiple times can result in
payoffs taken from different distributions. Formally, if we fix an action i ∈ A, and a payoff sequence Xi,1, Xi,2, . . . , Xi,m,
then Xi,t ∼ Pt and Xi,t′ ∼ Pt′ with Pt possibly different from Pt′ . We indicate with µi,m := E{X̄i,m} the expected value
of the average payoff of action i after m simulations, and with µi its value in the limit µi := limm→∞ µi,m (see Assumption
A.5 for its existence). We also define δi,m := µi,m − µi as the difference, at simulation m, between the expectation of the
current mean and its value in the limit. For the non-bootstrapped actions, we assume there exists only a single optimal
action i?, as in (Kocsis et al., 2006)3. For quantities related to this action we drop the i symbol and use the ? symbol,
e.g., µ?m, µ

?, X?
t , X̄

?
m. We define the difference between the expected value of the average payoff of the optimal action

µ∗ and the expected value of the average payoff of another action i, namely µi, as ∆i := µ? − µi. This value is always
positive. Since δi,t converges by assumption to zero, for all ε > 0 there exists and index N0(ε) such that if t ≥ N0(ε) then
|δi,t| ≤ ε∆i/2 and |δj∗,t| ≤ ε∆i/2, where i is a suboptimal action and j∗ is the optimal action. This says that if enough
(i.e., ≥ N0(ε)) simulations are run then the estimated expected average payoff of the optimal action will be far enough
from the estimated expected average payoffs of all suboptimal actions, hence, in that case, the optimal action can be clearly
identified as the action with the highest estimated expected average payoff. In the following, we will arbitrarily use ε = 1/2,
as in (Kocsis et al., 2006), for which it holds that if t ≥ N0(1/2) then |δi,t| ≤ ∆i/4 and |δj∗,t| ≤ ∆i/4, therefore each
estimated expected average payoff of suboptimal action is farther than ∆i/2 from the estimated expected average payoff of
the optimal action.

3Notice that if all actions are bootstrapped then n = 0, c = m and X̄m = X̄c. On the other hand, if all actions are non-bootstrapped
then c = 0, n = m, and X̄m = X̄n.
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Table 1. Summary of mathematical notation.

SYMBOL DESCRIPTION

BA SET OF BOOTSTRAPPED ACTIONS FOR THE CURRENT STATE

BA SET OF NON-BOOTSTRAPPED ACTIONS FOR THE CURRENT STATE
L NUMBER OF BOOTSTRAPPED ACTIONS FOR THE CURRENT STATE
K NUMBER OF NON-BOOTSTRAPPED ACTIONS FOR THE CURRENT STATE
Xi,t PAYOFF (I.E., RETURN) OBTAINED BY SELECTING ACTION i IN THE t-TH SIMULATION
Cp CONSTANT REGULATING EXPLORATION-EXPLOITATION TRADEOFF IN UCT
m NUMBER OF SIMULATIONS PERFORMED FROM THE CURRENT STATE
c NUMBER OF BOOTSTRAPPED ACTIONS SELECTED FROM THE CURRENT STATE
n NUMBER OF NON-BOOTSTRAPPED ACTIONS SELECTED FROM THE CURRENT STATE
m = c+ n RELATIONSHIP BETWEEN m, c AND n
Ti(m) :=

∑
t∈{1,...,m} 1[It = i] NUMBER OF TIMES ACTION i WAS SELECTED IN CURRENT STATE AFTER m SIMULATIONS

X̄i,m := 1
m

∑m
t=1 Xi,t AVERAGE PAYOFF OF ACTION i AFTER m SIMULATIONS FROM THE CURRENT STATE

µi,m := E{X̄i,m} EXPECTED VALUE OF THE AVERAGE PAYOFF OF ACTION i AFTER m SIMULATIONS
µi := limm→∞ µi,m EXPECTED VALUE OF THE AVERAGE PAYOFF OF ACTION i IN THE THE LIMIT
|δi,m| := |µi,m − µi| BIAS OF ESTIMATED EXPECTED AVERAGE PAYOFF AT SIMULATION m
µ?n, µ

?, X?
t , X̄

?
n SYMBOLS DEFINED ABOVE BUT RELATED TO THE OPTIMAL NON-BOOTSTRAPPED ACTION

∆i := µ? − µi DIFF. BTW EXP. VAL. OF AVG PAYOFF OPTIMAL AND ANOTHER NON-BOOTSTRAPPED ACT.
N0(ε) IF t ≥ N0(ε) THEN FOR NON-BOOTSTRAPPED ACTIONS |δi,t| ≤ ε∆i/2 AND |δj∗,t| ≤ ε∆i/2
pB :=

∑
i∈BA

π0(i) PROBABILITY OF SELECTING A BOOTSTRAPPED ACTION FROM THE CURRENT STATE

pB := 1− pB PROBABILITY TO SELECT A NON-BOOTSTRAPPED ACTION FROM THE CURRENT STATE

limm→∞
c(m)
m

= pB VALUE OF c IN THE LIMIT

limm→∞
n(m)
m

= pB VALUE OF n IN THE LIMIT

limm→∞
Ti(m)
m

= π0(i),∀i ∈ BA VALUE OF Ti(m)
m

IN THE LIMIT

limm→∞
Ti(c(m))

m
= π0(i), ∀i ∈ BA VALUE OF Ti(c(m))

m
IN THE LIMIT

limc→∞
Ti(c)
c

= π0(i)
pB

, ∀i ∈ BA VALUE OF Ti(c)
c

IN THE LIMIT

We then define the probability of selecting a bootstrapped action from the current state as pB :=
∑
i∈BA

π0(i) and the
probability to select a non-bootstrapped action as pB := 1− pB. Also in this case we omit the symbol s since we refer to
the current state. Over m simulations performed from the current state, we assume c simulations selected a bootstrapped
action and n simulations selected a non-bootstrapped action, hence m = c + n. For m tending to∞ we have that c/m
tends to pB, hence we write the limit limm→∞

c(m)
m = pB (symbol c(m) is used only here to emphasize that c depends on

m). Similarly, with non-bootstrapped actions, for m tending to∞ we have that n/m tends to pB, hence we write the limit
limm→∞

n(m)
m = pB. We then represent by Ti(c) the number of times bootstrapped action i ∈ BA has been selected over c

selections of bootstrapped actions and by Ti(n) the number of times non-bootstrapped action i ∈ BA has been selected over
n selections of non-bootstrapped actions. Focusing on single bootstrapped actions we have that ∀i ∈ BA, Ti(m)/m tends
to π0(i) as m tends to∞. Therefore we can also write the limit limm→∞

Ti(m)
m = π0(i),∀i ∈ BA. The limit can also be

written as limm→∞
Ti(c(m))

m = π0(i),∀i ∈ BA since Ti(m) = Ti(c(m)) (the first notation refers to the number of times
action i is selected over m selections of bootstrapped or non-bootstrapped actions, while the second notation refers to the
number of times action i is selected over c(m) selections of bootstrapped actions only, but the number is the same). Finally,
the same limit can be written also in terms of c in the following form limc→∞

Ti(c)
c = π0(i)

pB
,∀i ∈ BA. Notice that, the ratio

π0(i)
pB

is used in line 5 of Algorithm 3 for selecting bootstrapped actions. Table 1 summarizes the mathematical notation
introduced so far and used in the theoretical analysis.

A.1.2. DERIVATION

The average payoff of the root state of a MC tree considering only non-bootstrapped actions is (Kocsis et al., 2006)

X̄n :=
1

n

∑
i∈BA

Ti(n)X̄i,Ti(n). (1)
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This value is proved to converge to the value of the optimal policy when UCT is used as action selection strategy. We define
in a similar way the average payoff of the bootstrapped actions, namely,

X̄c :=
1

c

∑
i∈BA

Ti(c)X̄i,Ti(c). (2)

We have therefore split in two parts the average payoff of the root node of our MC tree, corresponding to the current state of
the agent. Putting together in a weighted way the two terms we obtain the total average payoff

X̄m :=
1

m
(c · X̄c + n · X̄n)

=
c

m
· X̄c +

n

m
· X̄n

=
1

m

∑
i∈BA

Ti(c)X̄i,Ti(c) +
1

m

∑
i∈BA

Ti(n)X̄i,Ti(n)

=
1

m
(
∑
i∈BA

Ti(c)X̄i,Ti(c) +
∑
i∈BA

Ti(n)X̄i,Ti(n))

(3)

Our proof aims to show that the difference between the estimated expected average payoff E{X̄m} (i.e., the expected value
of the current state) computed using MCTS-SPIBB and the true expected average payoff of the optimal policy (i.e., the true
optimal expected value of the current state) in Π0 (i.e., the space of policies satisfying the SPIBB constraint) tends to zero
as the number of simulations m tends to infinity. In the following, we call this difference bias of the estimated expected
average payoff of the current state or bias of the expected value of the current state. In this derivation, we prove that UCT
and the baseline policy can be used together to select optimal actions in the simulations achieving a MCTS-based version of
SPIBB that computes optimal policies in Π0.

We will make use of the following standard concentration inequalities:

Fact A.1 (Hoeffding’s inequality (Boucheron et al., 2013)). Let Y1, . . . , Yn be independent random variables such that
ap ≤ Yp ≤ bp almost surely for all p < n. Let Sn =

∑n
p=1(Yp − E(Yp)). Then for every λ > 0

P {Sn ≥ λ} ≤ exp

(
− 2λ2∑n

p=1(bp − ap)2

)
(4)

Fact A.2 (Hoeffding-Azuma inequality (Kocsis et al., 2006)). Let Y1, . . . , Yn be a martingale difference (i.e.,
E(Yp|Y1, . . . , Yp−1) = Yp−1) with |Yp| ≤ C and C > 0. Let Sn =

∑n
p=1 Yp, then for every ε > 0

P {Sn ≥ εn} ≤ exp

(
−2nε2

C2

)
(5)

P {Sn ≤ −εn} ≤ exp

(
−2nε2

C2

)
(6)

Then, from (Kocsis et al., 2006) we get the following concentration inequality for X̄i,Ti(t) − µi on non-bootstrapped actions.

Fact A.3 (Inequality for bias X̄i,Ti(t) − µi on non-bootstrapped actions (Kocsis et al., 2006)). Let Xit be payoffs i.i.d. (or a

form of martingale difference process shifted by a constant) and ct,Ti(t) =
√

2 ln t
Ti(t)

the bias sequence of UCT, then

P
{
X̄i,Ti(t) ≥ µi + ct,Ti(t)

}
≤ t−4 (7)

P
{
X̄i,Ti(t) ≤ µi − ct,Ti(t)

}
≤ t−4 (8)

This inequality follows from Hoeffding-Azuma inequality (Fact A.2), considering Yp = Xi,p − µi with p = 1, . . . , Ti(t),
which is a martingale difference with |Yp| ≤ 1, since |Xi,p − µi| ≤ 1 with p > 0. Hence, we use C = 1 and
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STi(t) =
∑Ti(t)
p=1 Yp = Ti(t)(X̄i,Ti(t) − µi), with ε = ct,Ti(t) =

√
2 ln t
Ti(t)

. Substituting these values in Equation 5 we obtain

P

{
Ti(t)(X̄i,Ti(t) − µi) ≥ Ti(t)

√
2 ln t

Ti(t)

}
≤ exp

(
−

2Ti(t)
2 ln t
Ti(t)

1

)
from which is simply derived Equation 7. Equation 8 is obtained similarly from Equation 6.

We then extend Fact A.3 to bootstrapped actions obtaining the following concentration inequality for payoff bias sequence
generated by bootstrapped actions.
Fact A.4 (Inequality for bias X̄i,Ti(t) − µi on bootstrapped actions). Let Xit be payoffs i.i.d. (or a form of martingale
difference process shifted by a constant) and π0(i), i ∈ BA, the baseline probabilities for bootstrapped actions from the
current state, then

P

{
X̄i,Ti(t) ≥ µi +

√
2 ln t

Ti(t)

}
≤ t−4π0(i) (9)

P

{
X̄i,Ti(t) ≤ µi −

√
2 ln t

Ti(t)

}
≤ t−4π0(i) (10)

Let us start now the actual derivation defining an assumption that characterizes the payoff sequences used in the rest of the
proof.
Assumption A.5. Let It be a discrete action index set, namely a random variable representing the action taken at the
t-th action selection from the current state. In MCTS-SPIBB I is computed in two steps (see Figure 1), first selecting
between bootstrapped and non-bootstrapped actions according to probability pB (see line 2 of Algorithm 3), then, in case

of non-bootstrapped action, using the UCT strategy, i.e., It = argmaxi∈BA(s){X̄i,Ti(t−1) + 2Cp

√
ln (t−1)
Ti(t−1)} (see (Kocsis

et al., 2006) and Algorithm 3, line 11, in this paper), and in case of bootstrapped action according to the probabilistic
strategy I ∼ π0(s, .)/pB (see Algorithm 3, line 3-7, in this paper), hence each bootstrapped action i is selected with
probability π0(s, i)/pB. Index set It defines a filtration {Fi,t}t such that {Xi,t}t is Fi,t-adapted and Xi,t is conditionally
independent of Fi,t+1,Fi,t+2, . . . given Fi,t−1 (Kocsis et al., 2006). Then we assume 0 ≤ Xi,t ≤ 1 and that the limit
of µi,m = E{X̄i,m} exists both for non-bootstrapped and bootstrapped actions. Furthermore, we assume there exist a
constant Cp > 0 and an integer Np such that for n > Np and for any δ > 0, with ∆n(δ) := Cp

√
n ln(1/δ), the following

concentration bounds hold for all actions i ∈ A:

P
{
nX̄i,n ≥ nE

{
X̄i,n

}
+ ∆n(δ)

}
≤ δ (11)

P
{
nX̄i,n ≤ nE

{
X̄i,n

}
−∆n(δ)

}
≤ δ (12)

Concentration bounds of Equations 11 and 12 hold due to Hoeffding inequality (see Fact A.1) considering the payoffs Xi,t

as independent random variables. Their values are 0 ≤ Xi,t ≤ 1, hence at = 0 and bt = 1 for 1 ≤ t ≤ Ti(t). Then we
define STi(t) =

∑Ti(t)
t=1 (Xi,t − E {Xi,t}) and λ = ∆Ti(t)(δ) = Cp

√
Ti(t) ln(1/δ). Substituting these values in Equation 4

we get

P


Ti(t)∑
t=1

(Xi,t − E {Xi,t}) ≥ ∆Ti(t)(δ)

 ≤ exp

(
−

2C2
pTi(t) ln(1/δ)

Ti(t)

)
from which Equations 11 and 12 are simply derived with Cp = 1√

2
.

As a first result we provide a bound on the difference between the expected average payoff E{X̄m} estimated by MCTS-
SPIBB afterm simulations and the optimal average payoff satisfying the SPIBB constraint, namely,

∑
i∈BA

π0(i)µi+pB ·µ?.
This is, in practice, the bias of the value of the current state (i.e., root node) with respect to the optimal value in Π0. The
action selection strategy used in the following Theorem A.6 mixes UCT, for non-bootstrapped actions, and baseline policy,
for bootstrapped actions. The mix is performed in a non-stationary context in which payoffs can drift since several actions
must be selected in sequence considering also states reached in successive time instants. Notice that also the payoff of
bootstrapped actions can drift because of the influence of UCT in the low levels of the sub-trees used for the estimation of
these payoffs.
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Theorem A.6 (Bias of the mean.). Let

X̄m =
1

m

∑
i∈BA

Ti(c)X̄i,Ti(c) +
1

m

∑
i∈BA

Ti(n)X̄i,Ti(n) (13)

Under Assumption A.5 the following bound holds

∣∣∣E{X̄m} −
∑
i∈BA

π0(i) · µi − pB · µ
?
∣∣∣ ≤ ∑

i∈BA

π0(i) · |δi,Ti(c)|+ pB · |δ
∗
n|+O

(
K(C2

p lnm+N0)

m

)
(14)

where N0 = N0(ε).

Proof. First, we notice that the term
∑
i∈BA

π0(i)µi in Equation 14 represents the true optimum value of the weighted sum of
the average payoffs obtained from bootstrapped actions, i.e., it is the equivalent (for bootstrapped actions) of value pB ·µ? for
the optimal non-bootstrapped action. Let X̄c := 1

c

∑
i∈BA

Ti(c)X̄i,Ti(c) (see Equation 2), X̄n := 1
n

∑
i∈BA

Ti(n)X̄i,Ti(n)

(see Equation 1) and X̄m := c
m · X̄c + n

m · X̄n (see Equation 3). For the linearity of the expectation, we can rewrite the
expected payoff E{X̄m} as follows

E{X̄m} =E
{ c
m
· X̄c +

n

m
· X̄n

}
=

c

m
E{X̄c}+

n

m
E{X̄n} (15)

Therefore, the left part of Inequality 14 can be written as∣∣∣E{X̄m} −
∑
i∈BA

π0(i)µi − pB · µ
?
∣∣∣ =

∣∣∣( c
m
E{X̄c} −

∑
i∈BA

π0(i)µi) + (
n

m
E{X̄n} − pB · µ

?)
∣∣∣ (16)

[Since lim
m→∞

c(m)

m
= pB and lim

m→∞

n(m)

m
= pB ] =

∣∣∣(pBE{X̄c} −
∑
i∈BA

π0(i)µi) + (pBE{X̄n} − pB · µ
?)
∣∣∣ (17)

=
∣∣∣(pBE{X̄c} −

∑
i∈BA

π0(i)µi) + pB(E{X̄n} − µ?)
∣∣∣ (18)

[Triangle inequality] ≤
∣∣∣pBE{X̄c} −

∑
i∈BA

π0(i)µi

∣∣∣+ pB

∣∣∣E{X̄n} − µ?
∣∣∣ (19)

[Theorem 3 of (Kocsis et al., 2006)] ≤
∣∣∣pBE{X̄c} −

∑
i∈BA

π0(i)µi

∣∣∣+ pB · |δ
∗
n|+O

(
pB
K(C2

p lnn+N0)

n

)
(20)

[E{X̄c} =
∑

i∈BA

Ti(c)

c
E{X̄i,Ti(c)

}] =
∣∣∣pB ∑

i∈BA

Ti(c)

c
E{X̄i,Ti(c)} −

∑
i∈BA

π0(i)µi

∣∣∣+ pB · |δ
∗
n| (21)

+O

(
n

m

K(C2
p lnn+N0)

n

)
(22)

[ lim
c→∞

Ti(c)

c
=
π0(i)

pB
; µi,Ti(c)

:= E{X̄i,Ti(c)
} ] =

∣∣∣ ∑
i∈BA

π0(i)µi,Ti(c) −
∑
i∈BA

π0(i)µi

∣∣∣+ pB · |δ
∗
n|+O

(
K(C2

p lnn+N0)

m

)
(23)

[ lim
m→∞

n(m)

m
= pB] =

∣∣∣ ∑
i∈BA

π0(i)(µi,Ti(c) − µi)
∣∣∣+ pB · |δ

∗
n|+O

(
K(C2

p ln(pB ·m) +N0)

m

)
(24)
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[ δi,Ti(c)
:= µi,Ti(c)

− µi; Prop. of logarithms] =
∣∣∣ ∑
i∈BA

π0(i) · δi,Ti(c)

∣∣∣+ pB · |δ
∗
n|+O

(
K(C2

p ln pB + C2
p lnm+N0)

m

)
(25)

[C2
p ln pB ≤ 0→ removed] =

∣∣∣ ∑
i∈BA

π0(i) · δi,Ti(c)

∣∣∣+ pB · |δ
∗
n|+O

(
K(C2

p lnm+N0)

m

)
(26)

[ Triangle inequality] ≤
∑
i∈BA

π0(i) · |δi,Ti(c)|+ pB · |δ
∗
n|+O

(
K(C2

p lnm+N0)

m

)
(27)

The bound provided by Theorem A.6 depends on the biases δi,Ti(c) of the values of bootstrapped actions in the current state
and the bias δ∗n of the optimal non-bootstrapped action in the current state. Namely, it considers only (action-)nodes of
the MC tree one level below the root. The next theorem extends this result considering all the levels of the MC tree up to
the leaves and providing a bound that depends only on the total number of simulations m, the depth of the tree D and the
number of non-bootstrapped and bootstrapped actions, K and L, respectively. The bound converges to zero as m increases.
This proves that the value generated by MCTS-SPIBB for the current state converges to the optimal value in Π0 (as SPIBB).
Theorem A.7 (Convergence of the estimated expected payoff X̄m.). Consider algorithm MCTS-SPIBB running on a tree
of depth D, branching factor |A| = |BA| + |BA| = L + K with 0 ≤ L ≤ |A| bootstrapped actions and 0 ≤ K ≤ |A|
non-bootstrapped actions in each state, and stochastic payoffs at the leaves. Assume that the payoffs lie in the interval [0, 1].
Then the bias of the estimated expected payoff, X̄m, is

O

(
LDKD lnm+ LDKD

m

)
. (28)

Proof. The proof is made by induction on D.

Base. Consider the case with D = 1. The bias of E
{
X̄m

}
can be bounded, according to Theorem A.6, as∣∣∣E{X̄m} −

∑
i∈BA

π0(i)µi − pB · µ
?
∣∣∣ ≤ ∑

i∈BA

π0(i) · |δi,Ti(c)|+ pB · |δ
∗
n|+O

(
K(lnm+N0)

m

)
. (29)

With D = 1 the biases of bootstrapped actions |δi,Ti(c)| and the optimal non-bootstrapped action |δ∗n| refer to leaf nodes and
UCT on non-bootstrapped actions correspond to UCB1. Since 0 ≤ Xi,t ≤ 1 and µi exist ∀i ∈ A, for Assumption A.5, we
have that |δi,Ti(c)| := |E

{
X̄i,Ti(c)

}
− µi| ≤ 1,∀i ∈ BA and |δ∗n| := |E

{
X̄i∗,n

}
− µ∗| ≤ 1, therefore∑

i∈BA

π0(i) · |δi,Ti(c)|+ pB · |δ
∗
n| ≤ pB + pB = 1. (30)

Then, the term O
(
K lnm+KN0

m

)
of Equation 29 is also an O

(
LK lnm+LK

m

)
(i.e., theorem thesis with D = 1) because

i) (K lnm ≤ LK lnm) since L ≥ 1 (otherwise we are in the case of only non-bootstrapped actions for which Th. 7 of
(Kocsis et al., 2006) holds), ii) (KN0 ≤ LK) since L ≥ 1 and N0 = O(LDKD−1), that is, N0 = O(L) with D = 1.
Notice that with D = 1 N0 is actually a constant that depends neither on L nor on K.

Inductive step. Let us assume that the theorem holds for all trees of depth D− 1, namely, that for each of these trees the bias
of the estimated expected payoff is

O

(
LD−1K(D − 1) lnm+ LD−1KD−1

m

)
. (31)

then we show that also for all trees of depth D the theorem holds. Theorem A.6 allows us to connect the root node of a tree
of depth D with its children nodes, which are root nodes of subtrees of depth D − 1. According to that theorem, the bias of
the estimated expected payoff in the root (depth D) is

∣∣∣E{X̄m} −
∑
i∈BA

π0(i)µi − pB · µ
?
∣∣∣ ≤ ∑

i∈BA

π0(i) · |δi,Ti(c)|+ pB · |δ
∗
n|+O

(
K(lnm+N0)

m

)
. (32)
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where |δi,Ti(c)| = |µi,Ti(c) − µi| = |E
{
X̄i,Ti(c)

}
− µi|, i ∈ BA are the biases of the estimated expected payoffs of nodes

reachable performing a bootstrapped action from the root, and |δ∗n| = |µ∗n − µ∗| = |E
{
X̄i∗,n

}
− µ∗| is the bias of the

estimated expected payoffs of the node reachable performing the optimal non-bootstrapped action (identified using the UCT
strategy) from the root. Since the nodes reached performing a bootstrapped or the optimal non-bootstrapped action are roots
of a sub-tree with depth reduced of 1 w.r.t. the root, biases |δi,Ti(c)| and |δ∗n| refer to trees of depth D − 1 for which the
inductive hypothesis holds.

We consider now each of the three terms on the right of inequality (32) separately. Then, we put the results together to
complete the proof. The first term is related to the sum of biases of bootstrapped actions, namely,

∑
i∈BA

π0(i) · |δi,Ti(c)|.
We consider each action i separately and apply the inductive hypothesis on it, obtaining the following bound

|δi,Ti(c)| = |E
{
X̄i,Ti(c)

}
− µi| (33)

[By inductive hypothesis ] = O

(
LD−1K(D − 1) lnTi(c) + LD−1KD−1

Ti(c)

)
(34)

[ lim
m→∞

Ti(c(m))

m
= π0(i), ∀i ∈ BA] = O

(
LD−1K(D − 1) ln (m · π0(i)) + LD−1KD−1

m · π0(i)

)
(35)

[Properties of logarithms] = O

(
LD−1K(D − 1) lnm+ LD−1K(D − 1) lnπ0(i) + LD−1KD−1

m · π0(i)

)
(36)

[LD−1
K(D − 1) lnπ0(i) ≤ 0→ removed ] = O

(
LD−1K(D − 1) lnm+ LD−1KD−1

m · π0(i)

)
(37)

= O

(
LD−1KD lnm− LD−1K lnm+ LD−1KD−1

m · π0(i)

)
(38)

Summing up over all bootstrapped actions i according to
∑
i∈BA

π0(i) · |δi,Ti(c)| we obtain

∑
i∈BA

π0(i) · |δi,Ti(c)| = O

(∑
i∈BA

π0(i)
LD−1KD lnm− LD−1K lnm+ LD−1KD−1

m · π0(i)

)
(39)

= O

(∑
i∈BA

LD−1KD lnm− LD−1K lnm+ LD−1KD−1

m

)
(40)

[Sum overL bootstrapped actions, no dependence on i in the sum] = O

(
L · L

D−1KD lnm− LD−1K lnm+ LD−1KD−1

m

)
(41)

= O

(
LDKD lnm− LDK lnm+ LDKD−1

m

)
(42)

The second term we consider is pB · |δ∗n| which is related to the bias of the optimal non-bootstrapped action. We obtain the
bound

pB · |δ
∗
n| = pB|E

{
X̄i∗,n

}
− µ∗| (43)

[By inductive hypothesis ] = pB ·O
(
LD−1K(D − 1) lnn+ LD−1KD−1

n

)
(44)

[ lim
m→∞

n(m)

m
= pB] = pB ·O

(
LD−1K(D − 1) ln (pB ·m) + LD−1KD−1

pB ·m

)
(45)

= O

(
LD−1K(D − 1) ln (pB ·m) + LD−1KD−1

m

)
(46)

[Properties of logarithms] = O

(
LD−1K(D − 1) ln pB + LD−1K(D − 1) ln (m) + LD−1KD−1

m

)
(47)

[LD−1
K(D − 1) ln pB ≤ 0→ removed ] = O

(
LD−1K(D − 1) lnm+ LD−1KD−1

m

)
(48)
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= O

(
LD−1KD lnm− LD−1K lnm+ LD−1KD−1

m

)
(49)

The third term we consider is O
(
K(lnm+N0)

m

)
, namely, the second part of the bias related to non-bootstrapped actions

O

(
K(lnm+N0)

m

)
= O

(
K lnm+KN0

m

)
(50)

[WithN0 = O(L
D
K

D−1
)] = O

(
K lnm+ LDKD

m

)
(51)

Finally, we put together the three terms of Equations 42, 49, and 51 in Equation 32 obtaining a bound for the bias of the
estimated expected payoff of the root of the tree having depth D, which is∣∣∣E{X̄m} −

∑
i∈BA

π0(i)µi − pB · µ
?
∣∣∣ ≤ O(LDKD lnm− LDK lnm+ LDKD−1

m

)
(52)

+O

(
LD−1KD lnm− LD−1K lnm+ LD−1KD−1

m

)
(53)

+O

(
K lnm+ LDKD

m

)
(54)

[Rearranging terms] = O

(
LD−1KD lnm+ LDKD lnm+K lnm

m

)
(55)

+O

(
LDKD + LD−1KD−1 + LDKD−1

m

)
(56)

+O

(
−LD−1K lnm− LDK lnm

m

)
(57)

[Removing (positive) terms with smallerD order] = O

(
LDKD lnm+ LDKD − LD−1K lnm− LDK lnm

m

)
(58)

[−LD−1
K lnm ≤ 0,−LD

K lnm ≤ 0→ removed] = O

(
LDKD lnm+ LDKD

m

)
(59)

which proves the induction.

The third theorem provides, finally, a concentration bound that shows that the estimated optimal payoff concentrates quickly
around its mean.

Theorem A.8 (Concentration bound for the mean.). Fix an arbitrary δ > 0 and let ∆m = 9
√

2pBm ln(4/δ) +

Cp
√
m ln(2L/δ)

∑
i∈BA

√
π0(i). Let n0 ∈ N be such that

√
n0 ≥ O(K(C2

p lnn0 + N0(1/2))), if m ≥ n0

pB
then un-

der Assumption A.5 the following bounds hold:

P
{
mX̄m ≥ mE

{
X̄m

}
+ ∆m

}
≤ δ, (60)

P
{
mX̄m ≤ mE

{
X̄m

}
−∆m

}
≤ δ. (61)

Proof. Let us consider the first bound, in Equation 60. We first split the probability in two parts, namely,

P
{
mX̄m ≥ mE

{
X̄m

}
+ ∆m

}
= (62)

Since X̄m =
c

m
· X̄c +

n

m
· X̄n = P

{
cX̄c + nX̄n ≥ E

{
cX̄c + nX̄n

}
+ ∆m

}
(63)

Linearity of expectation and ∆m := ∆c + ∆n = P
{
cX̄c + nX̄n ≥ c · E

{
X̄c

}
+ n · E

{
X̄n

}
+ ∆c + ∆n

}
(64)

Since P {A + B ≥ C +D} ≤ P {A ≥ C} + P {B ≥ D} ≤ P
{
cX̄c ≥ c · E

{
X̄c

}
+ ∆c

}
+ P

{
nX̄n ≥ n · E

{
X̄n

}
+ ∆n

}
(65)

= PB + PB. (66)
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The part related to non-bootstrapped actions PB := P
{
nX̄n ≥ n · E

{
X̄n

}
+ ∆n

}
can be bounded using Theorem 5 of

(Kocsis et al., 2006). For an arbitrary δB = δ/2 and ∆n = 9
√

2n ln(2/δB) = 9
√

2n ln(4/δ) there exist a n0 such that√
n0 ≥ O(K(C2

p lnn0 +N0(1/2))) and for any n ≥ n0, under Assumption A.5 the following bound holds:

PB = P
{
nX̄n ≥ n · E

{
X̄n

}
+ ∆n

}
≤ δB = δ/2 (67)

We notice that ∆n can be expressed also in terms of the total number of simulations m, since limm→∞
n(m)
m = pB. In that

case we have
∆n = 9

√
2pBm ln(4/δ). (68)

The probability related to bootstrapped actions PB := P
{
cX̄c ≥ c · E

{
X̄c

}
+ ∆c

}
can be decomposed into probabilities

for the single actions, as follows:

PB = P
{
cX̄c ≥ c · E

{
X̄c

}
+ ∆c

}
(69)

[Since X̄c :=
1

c

∑
i∈BA

Ti(c)X̄i,Ti(c)
] = P

{∑
i∈BA

Ti(c)X̄i,Ti(c) ≥
∑
i∈BA

Ti(c)E
{
X̄i,Ti(c)

}
+ ∆c

}
(70)

[∆c :=
∑

i∈BA

∆ci
] = P

{∑
i∈BA

Ti(c)X̄i,Ti(c) ≥
∑
i∈BA

(Ti(c)E
{
X̄i,Ti(c)

}
+ ∆ci)

}
(71)

[Since P
{∑

i

Ai ≥
∑
i

Bi

}
≤

∑
i

P {Ai ≥ Bi}] ≤
∑
i∈BA

P
{
Ti(c)X̄i,Ti(c) ≥ (Ti(c)E

{
X̄i,Ti(c)

}
+ ∆ci)

}
(72)

We consider each term P
{
Ti(c)X̄i,Ti(c) ≥ (Ti(c)E

{
X̄i,Ti(c)

}
+ ∆ci)

}
in the sum separately. We observe that it cor-

responds to Equation 11 of Assumption A.5, substituting Ti(c) to n and ∆ci = Cp
√
Ti(c) ln( 1

δB,i
) to ∆n with

δB,i > 0,∀i ∈ BA. Also in this case ∆ci can be expressed in terms of m since limm→∞
Ti(c(m))

m = π0(i),∀i ∈ BA. In that
case we have

∆ci = Cp

√
π0(i)m ln(

1

δB,i
). (73)

Therefore, P
{
Ti(c)X̄i,Ti(c) ≥ (Ti(c)E

{
X̄i,Ti(c)

}
+ ∆ci)

}
≤ δB,i by Assumption A.5 (proved above using the Hoeffding

inequality). This guarantees that the estimated payoff of each bootstrapped action concentrates quickly around its mean,
hence computing the sum over bootstrapped actions in Eq. 72 we obtain:

PB ≤
∑
i∈BA

P
{
Ti(c)X̄i,Ti(c) ≥ (Ti(c)E

{
X̄i,Ti(c)

}
+ ∆ci)

}
(74)

≤
∑
i∈BA

δB,i (75)

[δB,i := δ/(2L)] = δ/2 (76)

Notice that we selected δB,i := δ/(2L), so that δB =
∑
i∈BA

δB,i = Lδ/(2L) = δ/2. To conclude the proof we substitute

δB,i in ∆ci obtaining ∆ci = Cp

√
π0(i)m ln( 2L

δ ) and we sum up ∆ci over bootstrapped actions obtaining

∆c =
∑
i∈BA

∆ci (77)

=
∑
i∈BA

Cp

√
π0(i)m ln(

2L

δ
) (78)

= Cp
√
m ln(2L/δ)

∑
i∈BA

√
π0(i) (79)
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In conclusion

P
{
mX̄m ≥ mE

{
X̄m

}
+ ∆m

}
≤ PB + PB (80)
≤ δ/2 + δ/2 (81)
= δ (82)

with

∆m = ∆n + ∆c (83)

= 9
√

2pBm ln(4/δ) + Cp
√
m ln(2L/δ)

∑
i∈BA

√
π0(i) (84)

Equation 61 can be proved similarly.

B. Supplementary Material About the Methodology
B.1. Generation of the Baseline Policy

Baseline policies are generated on a small version of GridWorld and SysAdmin by first creating an optimal policy πopt with
policy iteration, and then applying random noise to the probabilities to introduce suboptimal choices. On large SysAdmin
domains, used to test MCTS-SPIBB scalability, the computation of the optimal policies by policy iteration is impossible,
hence the baseline policies are generated from simple rules. For instance, given the configuration of machines turned on/off
in a specific state, our rule says: if all machines are off, turn on a random machine; if at least one machine is on, turn on the
closest machine that is off; if all machines are on, do nothing.

C. Supplementary Results
C.1. Results on Convergence

We also performed an empirical analysis of the number of simulations required for concentration by Theorem 5.3. We
focused on two random states, one for GridWorld (i.e., third row, second column of the grid) and one for SysAdmin (i.e.,
4 machines off out of 7). Substituting parameters Cp, γ, L, K, D, π0 in the inequality containing term n0, considering
N0(1/2) = LDKD−1 (as in Theorem 5.2), solving the inequality, and finally computing m from n0 we get that the number
of simulations required by the GridWorld state ism = 5.03 ·1063 and that required by the SysAdmin state ism = 5.05 ·1062.
These numbers are much higher than those we used to get good results in our empirical tests (i.e., m = 100, 1000, 10000
for both GridWorld and SysAdmin). The motivation for this is that the assumption of N0(1/2) = O(LDKD−1) made in
the proof of Theorem 5.2 is an overestimation of the actual number of simulations needed to reach convergence. However,
this assumption simplifies the mathematical computation and allows us to obtain the proof. We notice that a similar
overestimation is made also in (Laroche et al., 2019) to compute parameter N∧. More strict bounds could exist but their
derivation is not the focus of this work. We will try to derive stricter bounds in future work.

C.2. Results on Safety

We perform supplementary experiments on safety on Gridworld 5x5 and SysAdmin with 7 machines. For each domain,
we first generate a baseline; then, for different dataset sizes |D| we generate ND = 20 datasets each containing |D|
trajectories. In particular, in Gridworld |D| ∈ {2, 101, 102, 103, 104} and each trajectory is 30 steps long, while in
SysAdmin |D| ∈ {5, 500, 5000} and each trajectory is 15 steps long. Afterward, for each dataset, we compute the
MLE transition model TD, the state-action pair count matrix ND(s, a) and the bootstrapped/non-bootstrapped action sets
BA(s)/BA(s) using threshold N∧ = 5. Finally, for each dataset, we generate the improved policy using MCTS-SPIBB
(with 10000 simulations), SPIBB, and Basic RL and we evaluate their performance on the real environment as values in the
initial state s0, i.e., ρ(πI ,M

∗) = V πI

M∗(s0) (the policy based on MCTS-SPIBB is computed in all states to allow the usage
of policy evaluation to compute the values).

Figures 6.a,c show the results on Gridworld and SysAdmyn, respectively. We observe that also in this supplementary
experiment, Basic RL achieves a performance decrease since it is not safe. MCTS-SPIBB and SPIBB perform almost

22



MCTS-SPIBB

Figure 6. Supplementary results on safety. Performance ρ(πI ,M
∗) and 15%-CVaR ρ(πI ,M

∗) on Gridworld 5× 5 (a,b) and SysAdmin
with 7 machines (c,d).

identically and their performance is always equal or higher than that of the baseline since they are safe. In Figures 6.b,d
which consider 15% Conditional Value-at-Risk (15%-CVaR), MCTS-SPIBB and SPIBB are still safe and they perform very
similarly.

C.3. Results on Scalability

We perform supplementary experiments on scalability on SysAdmin. Figure 7 shows the time needed by SPIBB (Laroche
et al., 2019) (light blue line), SPIBBDP based on dynamic programming (dotted blue line) and MCTS-SPIBB (light green,
red and dotted purple lines). We analyze the time for computing the policy and performance of the improved policy with the
worst 15%-CVar computed by MCTS-SPIBB on 13, 20, and 35 machines to see if it actually improves the baseline where
SPIBB and SPIBBDP do not work.

Figure 7. Results on scalability. Lines: computational time of SPIBB, SPIBBDP and MCTS-SPIBB on SysAdmin with 4, 7, 10, 12, 13,
20, and 35 machines. Box plots: 15%-CVar of baseline policy, SPIBBDP and MCTS-SPIBB on 12, 13, 20, and 35 machines.
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C.4. Comparison with Other State-of-the-art SPI Algorithms

Full Description of the WetChicken Domain. An agent floats in a small boat on a river with a waterfall at one end. The
goal for the agent is to stay as close as possible to the waterfall without falling down. The closer the agent is to the waterfall,
the greater the reward, but if it falls down, the episode ends. The river is represented as a 5× 5 grid in the benchmark (i.e.,
|S| = 25). Five actions can be chosen by the agent (drift - do nothing; hold - paddle back with half its power; paddle back
- paddle back; right - go right parallel to the waterfall; left - go left parallel to the waterfall. The agent starts at position
(x, y) = (0, 0), and its position at time t is denoted by the pair (xt, yt). The river has turbulence equal to bt = 3.5 − vt,
which is stronger for small y, and a stream towards the waterfall equal to vt = 3

5yt, which is stronger for larger y. The effects
of turbulence are stochastic and are defined by τ ∼ U(−1, 1). Given a state st = (xt, yt) and an action at = (ax, ay), the
next state is calculated as s′ = (x′t, y

′
t) = (round(xt + ax + vt + τtbt), round(xt, ay)).

Figure 8. Performance comparison between MCTS-SPIBB and state-of-the-art SPI algorithms (SPIBB, SPIBB extensions, Basic-RL,
DUIPI, R-Min, RaMDP) on the WetChicken domain (Scholl et al., 2022b).

Figure 9. Results on scalability. a) Performance ρ(πI ,M
∗) of Baseline and MCTS-SPIBB policy and, b) 1%-CVar on WetChicken

domain on a 70× 70 grid.

Results. Figure 8 shows the results of the experiments performed on the benchmark proposed in (Scholl et al., 2022b).
Tests are performed using the baseline policy, Basic RL, SPIBB, some SPIBB variants presented in (Scholl et al., 2022b),
R-min, DUIPI, RAMDP, and MCTS-SPIBB. The x-axis displays different dataset dimensions |D| and the y-axis displays the
performance of the improved policy (on top) and the 1%-CVaR of the performance of the improved policy (at the bottom).
All tests are performed on a WetChicken environment with 25 states, as in (Scholl et al., 2022b). We used the software
provided in (Scholl et al., 2022b) to perform the experiments and we added MCTS-SPIBB to the benchmark. The charts
show that the improved policy generated by MCTS-SPIBB is safe (i.e., it never has performance lower than the baseline) on
small datasets and has performance equivalent to SPIBB (hence comparable to the other state-of-the-art SPI algorithms)
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with larger datasets.

Figure 9 shows the performance of the improved policy computed by MCTS-SPIBB on a WetChicken environment based
on a 70 × 70 grid, namely, with |S| = 4900. On this environment dimension, the state-of-the-art SPI algorithm fails
because of the state space dimensionality (the algorithms could not run on our hardware for memory reasons). The policy
generated by MCTS-SPIBB has instead higher performance than the baseline. The dataset used in these experiments
has dimension |D| = 500000 and the number of simulations used by MCTS-SPIBB is m = 1000. Comparisons with
approximated methods, e.g., SPIBB-DQN (Laroche et al., 2019), are not shown because these methods do not provide
theoretical guarantees (not even asymptotic) of optimality.
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