
Scalable Safe Policy Improvement via Monte Carlo Tree Search

Alberto Castellini 1 Federico Bianchi * 1 Edoardo Zorzi * 1 2

Thiago D. Simão 3 Alessandro Farinelli 1 Matthijs T. J. Spaan 4

Abstract
Algorithms for safely improving policies are
important to deploy reinforcement learning ap-
proaches in real-world scenarios. In this work, we
propose an algorithm, called MCTS-SPIBB, that
computes safe policy improvement online using
a Monte Carlo Tree Search based strategy. We
theoretically prove that the policy generated by
MCTS-SPIBB converges, as the number of simu-
lations grows, to the optimal safely improved pol-
icy generated by Safe Policy Improvement with
Baseline Bootstrapping (SPIBB), a popular algo-
rithm based on policy iteration. Moreover, our
empirical analysis performed on three standard
benchmark domains shows that MCTS-SPIBB
scales to significantly larger problems than SPIBB
because it computes the policy online and locally,
i.e., only in the states actually visited by the agent.

1. Introduction
Safety is a paramount requirement for the deployment of
reinforcement learning (RL; Sutton & Barto, 2018). In envi-
ronments where humans interact with robots or other kinds
of autonomous agents (e.g., autonomous cars, drones, or in-
dustrial plants) safety, robustness, and reliability of control
policies are crucial issues. Safe RL investigates how these
issues can be addressed by learning policies that maximize
expected return while ensuring minimal performance level
or respecting safety constraints during learning (Garcı́a &
Fernández, 2015). In this work, we focus on Safe Policy
Improvement (SPI; Thomas et al., 2015; Petrik et al., 2016)
for Markov Decision Processes (MDPs; Puterman, 2014;

*Equal contribution 1Department of Computer Science, Uni-
versity of Verona, Verona, Italy 2Department of Computer Sci-
ence, ETH Zurich, 8092 Zurich, Switzerland 3Department of
Software Science, Radboud University, Nijmegen, Netherlands
4Department of Software Technology, Delft University of Tech-
nology, Delft, Netherlands. Correspondence to: Alberto Castellini
<alberto.castellini@univr.it>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Russell & Norvig, 2020) where the agent is provided with
a baseline policy and data is collected running this policy
in the real environment. The goal of SPI is to use this data
and the baseline policy to compute a new policy with better
performance than the baseline. The method is considered
safe if it is guaranteed to return an improved policy with
high probability.

One of the most popular algorithms for SPI is Safe Policy
Improvement with Baseline Bootstrapping (SPIBB; Laroche
et al., 2019). It is an extension of policy iteration which com-
putes a policy that safely improves a baseline given a dataset
of trajectories produced by executing such baseline in the
environment. SPIBB considers a percentile criterion that
optimizes the policy in the worst-case scenario (Petrik et al.,
2016). The safe improvement is achieved by bootstrapping
the policy trained from data with the baseline policy in the
state-action pairs not executed enough times in the avail-
able trajectories. In practice, SPIBB searches the improved
policy in the constrained space of policies that are equal to
the baseline in the state-action pairs not observed enough
times in the dataset of trajectories (SPIBB constraint). This
strategy is proven to produce a safe improvement. SPIBB’s
derivation from policy iteration, however, limits its appli-
cability to small domains, since the running time of this
algorithm depends cubically (if the Bellman equation is
solved by matrix inversion) or quadratically (if it is solved
by dynamic programming) on the size of the state space
(Sutton & Barto, 2018). We investigate how to develop SPI
algorithms for large problems.

Several approaches have been proposed to scale reinforce-
ment learning to large state spaces (Kearns et al., 2002).
Among the most promising techniques, there is Monte Carlo
Tree Search (MCTS; Coulom, 2007; Browne et al., 2012),
an online sampling-based lookahead-search method that effi-
ciently computes policies converging to optimality and hav-
ing a small error probability if stopped before convergence.
In MCTS, Upper Confidence Bound applied to Trees (UCT;
Kocsis & Szepesvári, 2006) is used as an action selection
strategy to deal with the exploration-exploitation dilemma.
UCT extends the Upper Confidence Bound algorithm (UCB;
Auer et al., 2002), originally defined for multi-armed bandit
problems. The per-state running time of MCTS has no de-
pendence on the number of states but only on the number of

1

MCTS-SPIBB

simulations, hence the approach is suitable for domains with
large state spaces, e.g., the game of Go where the popular
AlphaGo reached superhuman performance using MCTS
(Silver et al., 2016). However, using MCTS in the context of
SPI is not trivial because the approach is online, i.e., it does
not compute the policy for all states. Furthermore, MCTS
performs simulations to approximate action Q-values con-
sidering future rewards. Simulations addressed by UCT and
rollout policies are used to search for the optimal policy.
These elements are not present in SPIBB which is based on
a different RL paradigm.

Against this background, we propose a novel algorithm that,
given a baseline policy, guarantees SPI using MCTS as a
solution strategy. This is, to the best of our knowledge, the
�rst use of MCTS to improve the scalability on SPI. The pro-
posed methodology, called MCTS-SPIBB, extends MCTS
by considering theSPIBB constraint. The policies gener-
ated by MCTS-SPIBB converge to the improved policies
generated by SPIBB as the number of MCTS simulations
increases. This is achieved by suitably merging UCT with
the baseline policy inside MCTS. We prove this result by
a full theoretical analysis of our approach. We also empiri-
cally evaluate the proposed algorithm on three domains, i.e.,
GridWorld (Russell & Norvig, 2020),SysAdmin(Guestrin
et al., 2003) andWetChicken(Scholl et al., 2022b) showing
three key points: the policy generated by MCTS-SPIBB
converges to an optimal policy satisfying the SPIBB con-
straint; MCTS-SPIBB produces a safe policy improvement;
MCTS-SPIBB scales better than SPIBB to large domains.

In summary, this work proposes four main contributions
to the state-of-the-art:i) a formalization of the problem of
SPI in the MCTS framework;ii) an online sampling-based
algorithm for SPI on MDPs, called MCTS-SPIBB;iii) a
theoretical proof that the policy generated by MCTS-SPIBB
converges to the SPIBB policy as the number of simulations
increases;iv) an empirical evaluation of convergence, safety,
and scalability of MCTS-SPIBB on benchmark domains.

2. Related Work

The main research topics related to our work are of�ine RL,
safe policy improvement, and MCTS-based planning/RL.

Of�ine RL develops reinforcement learning algorithms that
generate control policies using data previously collected by a
behaviour policy, without collecting additional data (Levine
et al., 2020). Ernst et al. (2005) use regression tree ap-
proximations to generate the Q-function from a batch of
trajectories. Other methods using low dimensional or linear
parametrizations of the Q-function are described by Lange
et al. (2012). Fujimoto et al. (2019) use a policy similar
to the baseline to create the dataset. Kumar et al. (2019)
minimize the bootstrapping error using actions within the

support of the dataset. Furthermore, Kumar et al. (2020);
Yu et al. (2020); Kidambi et al. (2020) tackle the problem of
the distributional shift between of�ine training data and the
states visited by the learned policy. However, none of these
methods considers the behaviour policy as an explicit input,
and none of them provides guarantees on the improvement
with respect to that policy.

Safe Policy Improvementis a specialization of of�ine RL
for safety-critical applications in which a behaviour policy
must be improved with guarantees on the performance of the
new policy w.r.t. the performance of the behaviour policy
(Levine et al., 2020). Delage & Mannor (2010) propose a
percentile criterion which maximizes the expected return
of the worst cases. Thomas et al. (2015) allow to compute
policies with performance below a bound with probability
higher than a prede�ned value. Some model-based methods
provide improved policies with guarantees on the perfor-
mance by searching in the estimated transition model with
guarantees on their error. Petrik et al. (2016) use a percentile
criterion de�ned by Delage & Mannor (2010) and Robust
MDPs to �nd a lower bound on the policy performance in
the worst-case scenario. Laroche et al. (2019) extend this
method allowing a constraint on the minimum number of
observations of a transition to be violated on some state-
action pairs. Extensions (Sim̃ao & Spaan, 2019b;a; Nadjahi
et al., 2019; Sim̃ao et al., 2020; Scholl et al., 2022a; Simão
et al., 2023; Wienḧoft et al., 2023) and alternative strategies
(Abbasi-Yadkori et al., 2016; Cohen et al., 2018; Chandak
et al., 2020; Sara�an et al., 2020) are also available, but
none of them use MCTS to scale to large domains, making
MCTS-SPIBB the �rst algorithm that employs this strategy.

MCTS-based Planning/RL aims to scale sequential
decision-making based on MDP/POMDP to large domains,
such as real-world applications, via ef�cient Monte Carlo
sampling. Kearns et al. (2002) proposes a �rst online plan-
ning algorithm based on sparse sampling, which has no com-
plexity dependence on the state-space dimension. MCTS
(Chaslot et al., 2008; Browne et al., 2012) extends this
approach using the UCT algorithm (Kocsis & Szepesvári,
2006; Coulom, 2007) for balancing exploration and exploita-
tion. The technique converges to the optimal policy more ef-
�ciently than Monte Carlo sampling. UCT extends the UCB
strategy (Auer et al., 2002) to the case of non-stationary
bandit problems, in which the payoff sequences may drift as
actions are taken. MCTS was also applied to POMDPs (Sil-
ver & Veness, 2010) with extensions in several directions,
such as model learning (Katt et al., 2017; 2019) and prior
knowledge exploitation (Castellini et al., 2019; Mazzi et al.,
2021a;b; 2023). None of these algorithms, however, aim to
solve the SPI problem. The challenge in this context is to
consider the baseline policy inside the MCTS, which needs
to extend the action selection strategy (UCT and rollout) to
guarantee the safety of the improvement.

2

MCTS-SPIBB

3. Background

We describe MDPs, SPIBB and MCTS, and introduce the
mathematical notation used in the following sections.

3.1. Markov Decision Processes

A Markov Decision Process (MDP; Puterman, 2014) is a
tupleM = hS; A; T; R;
 i , whereS is a �nite set ofstates,
A is a �nite set ofactions(we represent each action with
its index, i.e.,A = f 1; : : : ; jAjg), T : S � A ! P (S)
is a stochastictransition function, whereP(E) denotes
the space of probability distributions over the �nite setE ,
thereforeT(s; a; s0) indicates the probability of reaching the
states0 2 S after executinga 2 A in s 2 S, R : S � A !
[� Rmax ; Rmax] is a bounded stochasticreward function,
and
 2 [0; 1) is a discount factor. The set of stochastic
policies forM is � = f � : S ! P (A)g.

Given an MDPM and a policy� we can compute state val-
uesV �

M (s); s 2 S, namely, the expected value acquired by�
from s; and action valuesQM (s; a); s 2 S; a 2 A, namely,
the expected value acquired by� when actiona is performed
from states. To evaluate the performance of a policy� in an
MDP M , i.e.,� (�; M), we compute its expected return (i.e.,
its value) in the initial states0, namely,� (�; M) = V �

M (s0).
The goal of MDP solvers, such as value iteration and policy
iteration (Russell & Norvig, 2020; Sutton & Barto, 2018), is
to compute optimal policies, namely, policies having maxi-
mal values (i.e., expected return) in all their states. Given a
policy subset� 0 � � , a policy� 0 is said to be� 0-optimal
for an MDPM when it has maximal performance among the
policies in� 0, that is� (� 0; M) = max � 2 � 0 � (�; M). We
useVmax to denote the known upper bound of the return's
absolute value, i.e.,Vmax � R max

1�
 .

3.2. Safe Policy Improvement with Baseline
Bootstrapping

Let us represent the true environment by an MDPM � =
hS; A; T � ; R;
 i with unknown transition modelT � and
known reward functionR. This is common in real-world
domains where the transition model must be estimated
or inferred from small amounts of data. Safe policy im-
provement (SPI) aims to compute a new policy� I that
outperforms a baseline policy� 0 using adataset of tra-
jectories D = hsj ; aj ; r j ; s0

j i j 2 [1;N] collected using� 0

in the true environment. The dataset is used to com-
pute the Maximum Likelihood Estimation (MLE) MDP
M D = hS; A; T D ; R;
 i whereTD is the transition statis-
tics observed in the dataset. Thesafetyof the improvement
must be guaranteed, namely,� I must outperform� 0 with an
admissible performance loss� 2 R+ and con�dence level
1 � � , with 0 � � � 1 and loss� (� 0; M) � � (� I ; M).

SPI was formalized on MDPs using differentpercentile

criteria (Delage & Mannor, 2010) (notice that a per-
centile criterion was �rst proposed in 2007 for ex-
ploration (Delage & Mannor, 2007) and in 2008 for
safety (Schneegass et al., 2008)). Safe Policy Im-
provement with Baseline Bootstrapping (SPIBB) con-
siders the worst-case scenario(Petrik et al., 2016)
namely,� I = arg max � 2 � minM 2 � (� (�; M)� � (� 0; M)) ,
where � is the set of admissible MDPs�(M D ; e) =
f M = hS; A; R; T;
 i j 8 (s; a) 2 S � A; kT(s; a; �) �
TD (s; a; �)k1 � e(s; a)g. The MDPs in this set have transi-
tion modelT with L 1 distance from the transition modelTD

estimated from dataD smaller than the errore(s; a). The
error functione : S � A ! R is an arbitrary function
representing the uncertainty over the estimated transition
modelTD . The optimization of� I is, however, NP-hard.

The main contribution of SPIBB (Laroche et al., 2019) is to
reformulate the percentile criterion to make the search of an
ef�cient and provably-safe policy tractable. LetND (s; a) 2
N be the number of occurrences of a state-action pair(s; a)
in D andN^ 2 N a related threshold. SPIBB splits state-
action pairs in two subsets: thebootstrapped subsetB =
f (s; a) : ND (s; a) < N ^ g is the set of state-action pairs
that occur less thanN^ times inD; the non-bootstrapped
setB = f (s; a) : ND (s; a) � N^ g is the set of state-action
pairs that occur at leastN^ times inD. We also de�ne boot-
strapped and non-bootstrapped action sets, for each states,
as functionsBA (s) = f a 2 A : (s; a) 2 Bg andBA (s) =
f a 2 A : (s; a) 2 Bg, respectively. SPIBB policies satisfy
theSPIBB constraint� spibb (s; a) = � 0(s; a); if (s; a) 2 B .
The approach guarantees that� spibb is a� -approximate safe
policy improvement of the baseline� 0 with high proba-
bility 1� � , where� depends onN^ and � . The search
is done in the subspace of policies equal to the baseline
in the state-action pairs not observed enough times inD,
namely, � 0= f � 2 � : � (s; a) = � 0(s; a) : 8(s; a) 2 Bg.
The SPIBB algorithm (Algorithm 1; Laroche et al., 2019)
performs policy iteration (Sutton & Barto, 2018) with tran-
sition modelTD and constraining the policy to� 0 at each
policy improvement step.

3.3. Monte Carlo Tree Search

Given the current state of the agent, MCTS (Browne et al.,
2012) �rst generates a Monte Carlo tree rooted in the state
to estimate in a sample-ef�cient way the Q-values for that
state. Then, it uses these estimates to select the best action.
We performm 2 N simulations using, at each step, Upper
Con�dence Bound applied to Trees (Kocsis & Szepesvári,
2006) (inside the tree) or a rollout policy (from a leaf to the
end of the simulation) to select the action, and the known
transition model (or an equivalent simulator) to perform
the step from one state to the next. Simulations allow to
update two node statistics, namely, the average discounted
returnQ(s; a) obtained selecting actiona and the number

3

MCTS-SPIBB

of timesN (s; a) actiona was selected from node (state)s.
UCT extends UCB1 (Auer et al., 2002) to sequential de-
cisions and allows to balance exploration and exploitation
in the simulation steps performed inside the tree, and to
�nd the optimal action asm tends to in�nity. Given the
average return�X a;T a (t) of each actiona 2 A of a node,
whereTa(t) is the number of times actiona has been se-
lected up to simulationt from that node, UCT selects the
action with the best upper con�dence bound. In other words,
the index of the action selected at thet-th visit of a node is
I t = argmaxa2 1;:::; jA j

�X a;T a (t) + 2Cp

q
ln(t � 1)
Ta (t � 1) , with ap-

propriate constantCp > 0. When allm simulations are per-
formed the actiona with maximum average return�X a;T a (t)

in the root is executed in the real environment.

4. Method

The MCTS-SPIBB algorithm is �rst presented from a high-
level perspective and then in detail.

4.1. MCTS-SPIBB: Overview

MCTS-SPIBB is a Monte Carlo Tree Search extension of
SPIBB (Laroche et al., 2019). As MCTS approximates opti-
mal policies generated by policy iteration, so MCTS-SPIBB
approximates� 0-optimal policies generated by SPIBB start-
ing from a baseline� 0. The MCTS-SPIBB policy with
in�nite simulations is� 0-optimal in the Maximum Like-
lihood Estimate (MLE) transition modelTD (Theorem 1
by Laroche et al., 2019) and a� -approximate safe policy
improvement over� 0 (Theorem 2 by Laroche et al., 2019).
Since MCTS-SPIBB computes the policy online and locally
it can scale to larger problems than SPIBB. The convergence
of MCTS-SPIBB to the optimal policy in� 0 w.r.t. M D and
the capability of MCTS-SPIBB to scale better than SPIBB
are two key contributions shown in Sections 5 (theoretical
analysis) and Section 6 (empirical analysis), respectively.

The main idea behind MCTS-SPIBB is to extend UCT con-
sidering the constraint on bootstrapped actions. This is
non-trivial for several reasons, e.g., UCT selects actions ac-
cording to Q-values and the constraint is on action selection
probabilities, and the effect of the constraint accumulates
in the layers of the MC tree. Bootstrapped actions must be
selected with probability� 0(s; a) during the simulations to
generate optimal policies in� 0. Figure 1 shows a diagram
that highlights the key idea behind this extension. Given a
states in the MC tree, we split the actions into bootstrapped
state-action pairs(s; a) 2 B and non-bootstrapped state-
action pairs,(s; a) 2 B (i.e., respectively, actionsa1 anda2,
and actionsa3 anda4 in Figure 1). When the simulation
reaches states, we select a bootstrapped action with prob-
ability ps

B =
P

a2B A (s) � 0(s; a), whereBA (s) is the set of
bootstrapped actions for states, and a non-bootstrapped

Figure 1.Action selection strategy of MCTS-SPIBB: �ow chart.

action with probabilityps
B

= 1 � ps
B . In the �rst case,

we choose the speci�c action according to the probability
distribution � 0(s; �). In the second case, we choose the
speci�c action according to the UCT strategy, which con-
siders the current estimates of Q-values and visit counts
(respectively,Q3(s; a), Q4(s; a) andN3(s; a), N4(s; a) in
Figure 1) and guarantees to select the optimal action with
enough simulations. In rollout, baseline probabilities are
used for bootstrapped actions and uniform selection for non-
bootstrapped actions. At the end of the simulations, the
estimated Q-valuesQ(s; a) of the root states are used to
compute the probabilities of the improved policy� � (s; a) as
i) � 0(s; a) if a 2 B(s), ii) 1 � ps

B if a = argmax
a02 BA (s)

Q(s; a0),

iii) 0 otherwise.

4.2. MCTS-SPIBB: Algorithm

Algorithms 1-4 show the pseudocode of MCTS-SPIBB. The
differences w.r.t. standard MCTS are highlighted in blue.
The agent is in a states, and a baseline policy� 0 is available
together with a dataset of trajectoriesD generated using� 0

on the real environmentM � . From datasetD we assume to
have computed the state-action pair counts matrixND (s; a)
and the MLE transition modelTD . Other mathematical
symbols present in the algorithms and already de�ned above
areR,
 , N^ , m, and the threshold� used to end simulation
steps. For the sake of compactness, these elements are used
by the algorithms although not explicit input parameters.

MCTS-SPIBB (Algorithm 1) �rst generates the Monte
Carlo treeTr for states performingm simulations (lines 3-
5). Then it produces the improved policy� � (s; a) settingi)
the probabilities of bootstrapped actions to the related base-
line probabilities (lines 7-9),ii) the probability of the best
non-bootstrapped actiona? to the total probability available
for non-bootstrapped actions (lines 10-12),iii) the prob-
ability of other non-bootstrapped actions to zero (line 6).

4

MCTS-SPIBB

Algorithm 1 MCTS-SPIBB
Input: s: current state;� 0: baseline policy;N^ : minimum

count;ND : counter;m: total number of simulations;
BA (s), BA (s): bootstrapped/non-bootstrapped actions

1: Tr fg // Empty MC tree
2: // Build MC tree (i.e., computeQ(s; a))
3: for i = 1 ; � � � ; m do
4: Simulate(Tr,s;0; � 0; BA (s); BA (s))
5: end for
6: � � (s; �) (0; � � � ; 0) // Initialize MCTS-SPIBB policy
7: for a 2 BA (s) do
8: � � (s; a) � 0(s; a)
9: end for

10: a? argmaxa2 BA (s) f Tr.Q(s,a)g
11: ps

B
P

a2B A (s) � 0(s; a) // BA (s) total probability
12: � � (s; a?) 1 � ps

B
13: return a � � � (s; �)

Algorithm 2 Simulate
Input: Tr: MC tree structure;s: state node;d: cur-

rent depth; � 0: baseline policy; BA (s), BA (s):
bootstrapped/non-bootstrapped actions

1: if
 d < " then
2: return 0
3: end if
4: // Node expansion
5: if s 62Nodesthen
6: for a 2 A do
7: Nodes(sa) (N init(s; a); Qinit(s; a); ;)
8: end for
9: return Rollout(s; d; � 0; BA (s); ps

B)
10: end if
11: ps

B
P

a2B A (s) � 0(s; a) // Tot prob bootstrapped act

12: a? SelectAction(s;BA (s); BA (s); � 0; ps
B ; False)

13: s0 � TD (s; a?; �); r R(s; a?)
14: R r +
 �Simulate(Tr; s0; d+1 ; � 0; BA (s0); BA (s0))
15: N (s) N (s) + 1
16: N (s; a?) N (s; a?) + 1
17: Q(s; a?) Q(s; a?) + (R � Q(s;a ?))

N (s;a ?)
18: return R

Finally, it randomly samples an action from� � (s; �) and
returns it. Simulations (Algorithm 2) are performed using
almost a standard MCTS strategy. Steps are performed us-
ing the MLE transition modelTD and the simulator is set
up as a standard MCTS simulator.Algorithm 3 selects ac-
tions according to thestrategy described in Subsection 4.1.
It �rst decides whether to bootstrap or not considering the
total probability of bootstrapped actionsps

B (lines 1-2). If it
decides to bootstrap, it samples the action according to the
probability distribution of those actions (lines 3-7). Other-
wise, it samples the action according to standard UCT if the

Algorithm 3 SelectAction

Input: s: state node;BA (s), BA (s): bootstrapped/non-
bootstrapped action sets;� 0: baseline policy;ps

B : total
probability of bootstrapped actions;roll : rollout �ag

1: � � U ([0; 1]) // Uniform sampling from[0; 1]
2: if � � ps

B then
3: p(�) (0; � � � ; 0) // Init. bootstrapped probabilities
4: for a 2 BA (s) do
5: p(a) � 0(s; a)=ps

B
6: end for
7: a? � p(�) // Sample bootstrapped action
8: else
9: if : roll then

10: // Sample non-bootstrapped action using UCT

11: a? argmaxa2 BA (s) f Q(s; a)+2 Cp

q
log N (s)
N (s;a) g

12: else
13: a? � � rollout (s; �) // Sample uniformly
14: end if
15: end if
16: return a?

Algorithm 4 Rollout
Input: s : state node;d: current depth;� 0: baseline policy;

BA (s): bootstrapped action set;ps
B : total probability of

bootstrapped actions
if
 d < " then

return 0
end if
a? SelectAction(s;BA (s); fg ; � 0; ps

B ; T rue)
s0 � TD (s; a?; �); r R(s; a?)
return r +
 � Rollout(s0; d + 1 ; � 0; BA (s); ps

B)

step is performed inside the tree (lines 9-11), or according
to the rollout policy (we used a uniform policy in our tests)
if the step is performed outside the tree (line 13). Finally,
Algorithm 4 performs the standard MCTS rollout using the
new function for action selecting (i.e., Algorithm 3).What
differentiates MCTS-SPIBB from the standard MCTS algo-
rithm is the way in which actions are selected both inside
the tree and during rollouts.

There are two non-trivial parts in the integration of SPIBB
with MCTS. The �rst concerns the design of the action selec-
tion strategy (Figure 1); the second is the theoretical proof
that this strategy, which merges UCT with baseline policy,
actually provides a safe improvement (see next section and
Appendix A). The way in which, given a states, we �rst
decide if to select a bootstrapped or a non-bootstrapped ac-
tion, and then we use baseline probabilities (bootstrapped
case) or Q-value estimates (non-bootstrapped case) to select
actions, guarantees MCTS-SPIBB convergence to SPIBB.
This would not have been ensured by other strategies.

5

MCTS-SPIBB

5. Theoretical Analysis

We prove that, given a baseline� 0, the improved policy� �

generated by MCTS-SPIBB converges, as the number of
simulations tends to in�nity, to the improved policy� spibb

generated by SPIBB, which is optimal in� 0 and a safe
improvement of� 0. Using the notation of Kocsis et al.
(2006) and Auer et al. (2002), which is derived from multi-
armed bandit theory, we indicate withX i;t the (random)
payoff (i.e., return) obtained by selecting actioni 2 A in the
t-th simulation passing from the current state. The average
payoff of actioni after m simulations passing from the
current state is indicated as�X i;m := 1

m

P m
t =1 X i;t and the

expected average payoff (i.e., the expected average return)
of the current state afterm simulations passing through it is
indicated asEf �X m g. Amongm simulations,n are assumed
to select a non-bootstrapped action andc a bootstrapped
action. Ti (m) denotes the number of times actioni was
selected afterm simulations (notation in Appendix A.1.1).

The analysis is based on an assumption and three theorems.
For the sake of compactness, the full assumption is reported
in Assumption A.5(see Appendix A) and summarized here:
without loss of generality, the expected value of the aver-
age payoff of each actioni 2 A converges to some value
� i 2 R; payoffsX i;t are limited to range[0; 1]; the proba-
bility distributions over average payoffs concentrate quickly
around their means, according to the Hoeffding inequality.

The �rst theorem provides a bound on the bias of the es-
timated value (i.e., expected average return) for the cur-
rent state afterm simulationsEf �X m g, given the bias on
the estimated value of the optimal non-bootstrapped action
� �

n := Ef �X i � ;n g � � � (with � � expected value of the av-
erage payoff of the optimal non-bootstrapped action) and
the biases on the estimated values of the bootstrapped ac-
tions� i;T i (c) := Ef �X i;T i (c) g � � i (with i 2 BA (s), � i ex-
pected value of the average payoff of bootstrapped actioni).
N0(�) is such that ift � N0(�) thenj� i;t j � � � i =2 and
j� j � ;t j � � � i =2, where� i = � � � � i , with i suboptimal
action andj � optimal action.

Theorem 5.1. Let �X m = 1
m

P
i 2B A

Ti (c) �X i;T i (c) +
1
m

P
i 2 BA

Ti (n) �X i;T i (n) . Under Assumption A.5 the follow-

ing bound holds
�
�
�Ef �X m g �

P
i 2B A

� 0(i) � � i � pB � � ?
�
�
� �

P
i 2B A

� 0(i) � j � i;T i (c) j + pB � j � �
n j + O

�
K (C 2

p ln m + N 0)
m

�

whereN0 = N0(�).

Proof. (Sketch)The idea behind the proof is to split the bias
on the expected payoff of the state (left side of the inequality)
into the bias of the expected payoff of the optimal non-
bootstrapped action and the bias of each bootstrapped action.
The �rst is bounded by Theorem 3 of (Kocsis et al., 2006)
and the second by

P
i 2B A

� 0(i) � j � i;T i (c) j. Theorem A.6
(see Appendix A) provides the full derivation.

The second theorem proves the convergence of the estimated
state valueEf �X m g to the optimal value in� 0, which is the
value of the optimal policy in� 0 computed by SPIBB.

Theorem 5.2. Consider algorithm MCTS-SPIBB running
on a tree of depthD , branching factorjAj = L + K with
L bootstrapped actions andK non-bootstrapped actions in
each state, and stochastic payoffs at the leaves. Assume that
payoffs lie in[0; 1]. Then the bias of the estimated expected

payoff �X m is O
�

L D KD ln m + L D K D

m

�
.

Proof. (Sketch)The proof is made by induction onD con-
sidering the bound of Theorem 5.1 to perform the inductive
step fromL + K MC trees of depthD � 1 (one tree for
each non-bootstrapped action and one tree for each boot-
strapped action) to a MC tree of depthD . Theorem A.7 (see
Appendix A) provides the full derivation.

The third theorem proves that the estimated state value con-
centrates quickly around its mean.

Theorem 5.3. Fix an arbitrary � > 0 and let � m =
9
q

2ps
B

m ln(4=�)+ Cp
p

m ln(2L=�)
P

i 2B A

p
� 0(i). Let

n0 2 N be such that
p

n0 � O(K (C2
p ln n0 + N0(1=2))) ,

if m � n 0
pB

then under Under Assumption A.5 the follow-

ing bounds hold:P
�

m �X m � mE
� �X m

	
+ � m

	
� � and

P
�

m �X m � mE
� �X m

	
� � m

	
� � .

Proof. (sketch)The proof is obtained by splitting each prob-
ability Pf�g into two terms, one for non-bootstrapped ac-
tions and one for bootstrapped actions. Bounds on the prob-
ability distribution of average payoffs in Assumption A.5
and the Hoeffding inequality allow to prove the theorem.
Details are reported in Theorem A.8 (see Appendix A).

This theoretical analysis shows the safety of MCTS-SPIBB
by demonstrating the convergence of the policy generated
by MCTS-SPIBB to the policy generated by SPIBB (which
is proved to be safe in (Laroche et al., 2019)). Further-
more, SPIBB computes an optimal policy in� 0 (Theorem 1,
Laroche et al., 2019), namely, it solves in an optimal way
the problem of SPI with baseline bootstrapping (satisfying
the percentile criterion of Eq. 1 by Laroche et al., 2019).

6. Experiments

We �rst apply MCTS-SPIBB to two benchmark domains,
Gridworld and SysAdmin, showing empirically thati) the
performance of the improved policy generated by MCTS-
SPIBB converges to that of the policy generated by SPIBB
as the number of simulations increases,ii) MCTS-SPIBB
guarantees the safety of the improvement, iii) MCTS-SPIBB
can scale to larger domains than SPIBB. To further extend

6

MCTS-SPIBB

our analysis, we also compare MCTS-SPIBB with state-
of-the-art SPI algorithms (i.e., SPIBB, some SPIBB exten-
sions presented by Scholl et al. (2022b), Basic-RL, DUIPI
(Schneegass et al., 2010), R-Min (the pessimistic adaptation
of R-Max, Brafman & Tennenholtz, 2003), and RaMDP
(Petrik et al., 2016)) on a public benchmark based on the
WetChicken domain proposed by Scholl et al. (2022b). This
analysis shows that MCTS-SPIBB reaches state-of-the-art
performance on small domains and scales to large domains.

Domains. In GridWorld (Laroche et al., 2019) an agent
moves in aN � N grid starting from the bottom-left corner
and aiming to reach the top-right corner. The agent can
select four actions, i.e., moving north, south, east, or west.
Each action has a 75% chance of moving the agent in the
desired direction, 5% in the opposite direction, and 10%
chance of moving it in each of the other two directions.
The reward is1 if the agent reaches the target cell (top-right
corner),0 otherwise. The size of the state space isjSj = N 2

and that of the action space isjAj = 4 , resulting in4N 2

possible state-action pairs. InSysAdmin(Guestrin et al.,
2003) an agent has to administer a network ofN machines.
Each machine is connected to two other machines on either
side of it to form a ring topology. A binary random variable
represents whether each machine is working or has failed.
At each time step, the agent can reboot one machine at a
cost of � 1 or do nothing with null cost, furthermore, it
receives a reward of1 for each working machine and a
penalty of� 1 for each failed machine. Every machine has a
probability of0:05 to fail at each time step. This probability
increases by0:3 for each neighboring machine that failed. If
a machine is rebooted, then it works with probability 1. The
size of the state space isjSj = 2 N , and the size of the action
spacejAj = N + 1 , resulting in2N (N + 1) state-action
pairs. We chose these two benchmark domains to evaluate
MCTS-SPIBB because,i) they are well-known domains
on which also other SPI algorithms have been tested (e.g.,
Gridworld, Laroche et al., 2019),ii) the state space of these
domains can be enlarged at will (e.g., the largest SysAdmin
instance tested has 35 machines, namely, about 35 billion
states). The benchmark proposed by Scholl et al. (2022b)
is executed on theWetChickendomain: an agent �oats in
a small boat on a river with a waterfall at one end. The
goal for the agent is to stay as close as possible to the
waterfall without falling down. The closer the agent is to the
waterfall, the greater the reward. If it falls, the episode ends.
The river is represented as a5 � 5 grid in the benchmark
(i.e., jSj = 25) and �ve actions can be chosen by the agent
(Appendix C).

Software and Hardware. The original code of SPIBB1

and our code of MCTS-SPIBB2 are publicly available. Ex-

1https://github.com/RomainLaroche/SPIBB
2https://github.com/Isla-lab/mctsspibb

Figure 2.Results on convergence. X-axis: number of simula-
tions m. Y-axis: absolute difference of values ins0 between
MCTS-SPIBB and SPIBB� Vs0 = jV � �

M � (s0) � V � spibb

M � (s0)j.

periments were performed on a laptop with an 11th Gen
Intel(R) Core(TM) i7-1165G7, 2.80 GHz with 10 GB RAM.

Results on Convergence.To show that the performance of
the policy generated by MCTS-SPIBB converges to that of
the policy generated by SPIBB as the number of simulations
m increases, we perform experiments on Gridworld 3x3,
4x4, 5x5, and SysAdmin with 7 machines. For each domain,
we �rst generate a baseline policy (details in Appendix
B). Then, we generateND = 20 datasets each containing
jDj = 10000 trajectories for Gridworld (trajectory lengths
are 15 steps for 3x3, 20 steps for 4x4 and 30 steps for
5x5) andjDj = 5000 trajectories for SysAdmin (trajectory
length is 15 steps). Then, for each dataset, we compute the
MLE transition modelTD , the state-action pair count ma-
trix ND (s; a) and the bootstrapped/non-bootstrapped action
setsBA (s)=BA (s) using thresholdN^ = 5 for Gridworld
(average % of safe actions isjBA (s)j=jAj � 100 = 81%) and
N^ = 50 for SysAdmin (avg % of safe actions:13:4%). Fi-
nally, for each dataset we generate the improved policy with
both SPIBB and MCTS-SPIBB and compute the absolute
difference between their values in the initial states0, that
is � Vs0 = jV � �

M � (s0) � V � spibb

M � (s0)j (notice that in this test
we compute the entire policy (all states) also with MCTS-
SPIBB, and evaluate it using policy evaluation). Figure 2
shows the value of� Vs0 (y-axis) for each domain (Fig. 2.a
for Gridworld and Fig. 2.b for SysAdmin) and for each
dataset (each point is a dataset) withm = 100; 1000; 10000
simulations (x-axis). Lines connect average values. In both
domains avg� Vs0 tends to zero showing the convergence.

7

MCTS-SPIBB

Results on Safety. To show the practical impact in the
safety of policies generated by MCTS-SPIBB we perform
the same experiments performed by Laroche et al. (2019) on
Gridworld 5x5 and SysAdmin with 7 machines. Namely, for
each domain, we �rst generate a baseline policy. Then, for
different dataset sizesjDj we generateND = 20 datasets,
each containingjDj trajectories. In particular, in Gridworld
jDj 2 f 2; 101; 102; 103; 104g and each trajectory is 30 steps
long, while in SysAdminjDj 2 f 5; 500; 5000g and each
trajectory is 15 steps long. Afterward, for each dataset, we
computeTD , ND (s; a) and setsBA (s)=BA (s) using thresh-
old N^ = 20 for Gridworld andN^ = 50 for SysAdmin
(average % of safe actions for eachjDj are reported in Fig-
ure 3). Finally, for each dataset, we generate the improved
policy using three algorithms, namely, MCTS-SPIBB (with
10000 simulations), SPIBB, and Basic RL (Basic RL is
the vanilla Batch RL used as a non-safe baseline also by
Laroche et al. (2019); it computes the optimal policy in the
MLE MDP M D even when too few samples are available
for some state-action pairs) and we evaluate their perfor-
mance on the real environment as� (� I ; M �) = V � I

M � (s0)
(also in this test the policy based on MCTS-SPIBB is com-
puted in all states to allow the usage of policy evaluation to
compute values).

Figures 3.a,c show the results on Gridworld and SysAdmyn,
respectively. The size of the datasetjDj is shown on the
x-axis and the performance of the improved policy on the y-
axis. Each point represents the performance of an improved
policy generated using a speci�c dataset and a speci�c al-
gorithm. The yellow line represents the performance of the
baseline� 0 and the green line is the performance of the
optimal policy, namely, the policy computed using policy
iteration with the true transition modelT � . Basic RL per-
forms better than MCTS-SPIBB in some cases but it is not
safe (we use it only as an unsafe baseline in our tests), in
fact, it achieves a performance decrease on small datasets
(i.e., jDj = 2 in Gridworld andjDj = 5 in SysAdmin) as it
has no safety guarantees. On the contrary, MCTS-SPIBB
and SPIBB perform almost identically (differences in perfor-
mance are not statistically signi�cant) and their performance
is always equal or higher than that of the baseline, i.e., they
are safe. This behaviour is also shown in Figures 3.b,d
considering 15% Conditional Value-at-Risk (15%-CVaR),
i.e., the mean performance over the 15% worst runs. For
each algorithm-jDj pair, we select the worst 3 points and
draw lines among averages. Interestingly, MCTS-SPIBB
and SPIBB are still safe and they perform very similarly.
Experiments with different parameters (see Appendix C)
con�rm the result.

Results on Scalability.SPIBB complexity isO(jS � Aj3)
if the Bellman equation is solved exactly orO(jSj2 � jAj) if
it is solved by dynamic programming. On the other hand,
MCTS-SPIBB complexity isO(m), with m number of sim-

Figure 3.Results on safety. Performance� (� I ; M �) and 15%-
CVaR� (� I ; M �) (y-axis) depending on dataset sizeD (x-axis) on
Gridworld (a,b) and SysAdmin (c,d).

ulations, and it does not directly depend on the size of the
state/action space. This allows MCTS-SPIBB to scale to
larger domains than SPIBB. In fact, in domains with a large
number of states, each iteration of SPIBB improves all states,
although many of them are not reached in real runs. This
could require a large time or produce limited improvements.
On the other hand, MCTS-SPIBB employs the time avail-
able to improve the policy only on the small number of
states actually visited, producing larger improvements. To
show this in practice, we perform a test on SysAdmin (we
selected this domain because its state space scales expo-
nentially with the number of machines) with an increasing
number of machines, and compare the time required and the
performance achieved by the two algorithms. In particular,
we make tests withjDj = 5000 andN^ = 5 , varying the
number of machines (4, 7, 10, 12, 13, 20, 35), which also
changes the percentage of safe actions (98%, 49%, 18%,
12%, 8:5%, 6:1%, and4%, respectively).

Figure 4 shows the time needed by SPIBB (light blue line),
SPIBBDP based on dynamic programming (dotted blue

8

