Scalable Safe Policy Improvement via Monte Carlo Tree Search

Alberto Castellini!| Federico Bianchi *! Edoardo Zorzi '
Thiago D. Simiio? Alessandro Farinelli' Matthijs T. J. Spaan*

Abstract

Algorithms for safely improving policies are
important to deploy reinforcement learning ap-
proaches in real-world scenarios. In this work, we
propose an algorithm, called MCTS-SPIBB, that
computes safe policy improvement online using
a Monte Carlo Tree Search based strategy. We
theoretically prove that the policy generated by
MCTS-SPIBB converges, as the number of simu-
lations grows, to the optimal safely improved pol-
icy generated by Safe Policy Improvement with
Baseline Bootstrapping (SPIBB), a popular algo-
rithm based on policy iteration. Moreover, our
empirical analysis performed on three standard
benchmark domains shows that MCTS-SPIBB
scales to significantly larger problems than SPIBB
because it computes the policy online and locally,
i.e., only in the states actually visited by the agent.

1. Introduction

Safety is a paramount requirement for the deployment of
reinforcement learning (RL; Sutton & Barto, 2018). In envi-
ronments where humans interact with robots or other kinds
of autonomous agents (e.g., autonomous cars, drones, or in-
dustrial plants) safety, robustness, and reliability of control
policies are crucial issues. Safe RL investigates how these
issues can be addressed by learning policies that maximize
expected return while ensuring minimal performance level
or respecting safety constraints during learning (Garcia &
Fernandez, 2015). In this work, we focus on Safe Policy
Improvement (SPI; Thomas et al., 2015; Petrik et al., 2016)
for Markov Decision Processes (MDPs; Puterman, 2014,

“Equal contribution 'Department of Computer Science, Uni-
versity of Verona, Verona, Italy >Department of Computer Sci-
ence, ETH Zurich, 8092 Zurich, Switzerland *Department of
Software Science, Radboud University, Nijmegen, Netherlands
“Department of Software Technology, Delft University of Tech-
nology, Delft, Netherlands. Correspondence to: Alberto Castellini
<alberto.castellini @univr.it>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Russell & Norvig, 2020) where the agent is provided with
a baseline policy and data is collected running this policy
in the real environment. The goal of SPI is to use this data
and the baseline policy to compute a new policy with better
performance than the baseline. The method is considered
safe if it is guaranteed to return an improved policy with
high probability.

One of the most popular algorithms for SPI is Safe Policy
Improvement with Baseline Bootstrapping (SPIBB; Laroche
etal., 2019). Itis an extension of policy iteration which com-
putes a policy that safely improves a baseline given a dataset
of trajectories produced by executing such baseline in the
environment. SPIBB considers a percentile criterion that
optimizes the policy in the worst-case scenario (Petrik et al.,
2016). The safe improvement is achieved by bootstrapping
the policy trained from data with the baseline policy in the
state-action pairs not executed enough times in the avail-
able trajectories. In practice, SPIBB searches the improved
policy in the constrained space of policies that are equal to
the baseline in the state-action pairs not observed enough
times in the dataset of trajectories (SPIBB constraint). This
strategy is proven to produce a safe improvement. SPIBB’s
derivation from policy iteration, however, limits its appli-
cability to small domains, since the running time of this
algorithm depends cubically (if the Bellman equation is
solved by matrix inversion) or quadratically (if it is solved
by dynamic programming) on the size of the state space
(Sutton & Barto, 2018). We investigate how to develop SPI
algorithms for large problems.

Several approaches have been proposed to scale reinforce-
ment learning to large state spaces (Kearns et al., 2002).
Among the most promising techniques, there is Monte Carlo
Tree Search (MCTS; Coulom, 2007; Browne et al., 2012),
an online sampling-based lookahead-search method that effi-
ciently computes policies converging to optimality and hav-
ing a small error probability if stopped before convergence.
In MCTS, Upper Confidence Bound applied to Trees (UCT;
Kocsis & Szepesvari, 2006) is used as an action selection
strategy to deal with the exploration-exploitation dilemma.
UCT extends the Upper Confidence Bound algorithm (UCB;
Auer et al., 2002), originally defined for multi-armed bandit
problems. The per-state running time of MCTS has no de-
pendence on the number of states but only on the number of

MCTS-SPIBB

simulations, hence the approach is suitable for domains witlsupport of the dataset. Furthermore, Kumar et al. (2020);
large state spaces, e.g., the game of Go where the popubdr et al. (2020); Kidambi et al. (2020) tackle the problem of
AlphaGo reached superhuman performance using MCT $he distributional shift between of ine training data and the
(Silver et al., 2016). However, using MCTS in the context of states visited by the learned policy. However, none of these
SPl is not trivial because the approach is online, i.e., it doesnethods considers the behaviour policy as an explicit input,
not compute the policy for all states. Furthermore, MCTSand none of them provides guarantees on the improvement
performs simulations to approximate action Q-values corwith respect to that policy.

sidering future rewards. Simulations addressed by UCT an%afe Policy Improvementis a specialization of of ine RL

rollout policies are used to search for the optimal policy.f f tical licati in which a behavi i
These elements are not present in SPIBB which is based op 54 ety—crmca app ications In which a behaviour policy
a different RL paradigm. must be_lmproved with guarantees on the performance of the
new policy w.r.t. the performance of the behaviour policy
Against this background, we propose a novel algorithm that(Levine et al., 2020). Delage & Mannor (2010) propose a
given a baseline policy, guarantees SPI using MCTS as percentile criterion which maximizes the expected return
solution strategy. This is, to the best of our knowledge, theof the worst cases. Thomas et al. (2015) allow to compute
rst use of MCTS to improve the scalability on SPI. The pro- policies with performance below a bound with probability
posed methodology, called MCTS-SPIBB, extends MCTShigher than a prede ned value. Some model-based methods
by considering th&PIBB constraint The policies gener- provide improved policies with guarantees on the perfor-
ated by MCTS-SPIBB converge to the improved policiesmance by searching in the estimated transition model with
generated by SPIBB as the number of MCTS simulationguarantees on their error. Petrik et al. (2016) use a percentile
increases. This is achieved by suitably merging UCT withcriterion de ned by Delage & Mannor (2010) and Robust
the baseline policy inside MCTS. We prove this result byMDPs to nd a lower bound on the policy performance in
a full theoretical analysis of our approach. We also empirithe worst-case scenario. Laroche et al. (2019) extend this
cally evaluate the proposed algorithm on three domains, i.emethod allowing a constraint on the minimum number of
GridWorld (Russell & Norvig, 2020)SysAdmir{Guestrin observations of a transition to be violated on some state-
et al., 2003) andVetChicker{Scholl et al., 2022b) showing action pairs. Extensions (S&o & Spaan, 2019b;a; Nadjahi
three key points: the policy generated by MCTS-SPIBBet al., 2019; Siréio et al., 2020; Scholl et al., 2022a; Sim
converges to an optimal policy satisfying the SPIBB con-et al., 2023; Wienbft et al., 2023) and alternative strategies
straint; MCTS-SPIBB produces a safe policy improvement{Abbasi-Yadkori et al., 2016; Cohen et al., 2018; Chandak
MCTS-SPIBB scales better than SPIBB to large domains.et al., 2020; Sara an et al., 2020) are also available, but
none of them use MCTS to scale to large domains, making

In summary, this work proposes four main ContrIbUtlonsMCTS-SPIBB the rst algorithm that employs this strategy.

to the state-of-the-art) a formalization of the problem of
SPIl in the MCTS frameworkij) an online sampling-based MCTS-based Planning/RL aims to scale sequential
algorithm for SPI on MDPs, called MCTS-SPIBl) a decision-making based on MDP/POMDP to large domains,
theoretical proof that the policy generated by MCTS-SPIBBsuch as real-world applications, via ef cient Monte Carlo
converges to the SPIBB policy as the number of simulationsampling. Kearns et al. (2002) proposes a rst online plan-
increasesiv) an empirical evaluation of convergence, safety,ning algorithm based on sparse sampling, which has no com-
and scalability of MCTS-SPIBB on benchmark domains. plexity dependence on the state-space dimension. MCTS
(Chaslot et al., 2008; Browne et al., 2012) extends this
2. Related Work approach using the UCT algorithm (Kocsis & Szep@gv
2006; Coulom, 2007) for balancing exploration and exploita-
The main research topics related to our work are of ine RL tion. The technique converges to the optimal policy more ef-
safe policy improvement, and MCTS-based planning/RL. ciently than Monte Carlo sampling. UCT extends the UCB
strategy (Auer et al., 2002) to the case of non-stationary

Of ine RL develops reinforcement learning algorithms that ; . . .
.- . : bandit problems, in which the payoff sequences may drift as
generate control policies using data previously collected by a

i) .) - "2 “actions are taken. MCTS was also applied to POMDPs (Sil-
behaviour policy, without collecting additional data (Levine ver & Veness, 2010) with extensions in several directions
et al., 2020). Ernst et al. (2005) use regression tree ap- ' '

proximations to generate the Q-function from a batch ofSUCh as model learning (Katt et al., 2017; 2019) and prior

: . . ; . .~ knowledge exploitation (Castellini et al., 2019; Mazzi et al.,
trajectories. Other methods using low dimensional or linear. o . X

T . . 2021a;b; 2023). None of these algorithms, however, aim to
parametrizations of the Q-function are described by Langé

et al. (2012). Fujimoto et al. (2019) use a policy similar Sgh’;;gfﬂ?:ézgﬁlneem'oﬁ:eiﬁgalgeﬂl%e&%s \(;v%?éﬁxrt\;:jos
to the baseline to create the dataset. Kumar et al. (201 policy '

T . . : i extend the action selection strategy (UCT and rollout) to
minimize the bootstrapping error using actions within the .
guarantee the safety of the improvement.

MCTS-SPIBB

3. Background criteria (Delage & Mannor, 2010) (notice that a per-

i) centile criterion was rst proposed in 2007 for ex-
We describe MDPs, SPIBB and MCTS, and introduce theploration (Delage & Mannor, 2007) and in 2008 for

mathematical notation used in the following sections. safety (Schneegass et al., 2008)). Safe Policy Im-

o provement with Baseline Bootstrapping (SPIBB) con-
3.1. Markov Decision Processes siders theworst-case scenario(Petrik et al., 2016)

A Markov Decision Process (MDP; Puterman, 2014) is ahamely, | =argmax 2 minyz ((;M) (Do: M)).
tupleM = hS;A;T;R; i, whereSisa nite setofstates ~Where is the set of admissible MDP& M~;¢) =

A'is a nite set ofactions(we represent each action with M = ISIAIRIT; ij8(s;a) 2 S AkT(s;a;)
its index, i.e.A = f1::::jAjg). T : S A 1P (S) T°(sia)ki e(s;a)g. The MDPs in this set have transi-
is a stochastigransition function whereP (E) denotes tlon_ modelT with L distance from the transition modgP

the space of probability distributions over the nite &t €Stimated from dat® smaller than the errcg(s; a). The
thereforeT (s; a; &%) indicates the probability of reaching the €Ifor functione : S~ A ! R is an arbitrary function
states®2 S after executingg2 Ains2 S,R:S A representing the uncertainty over the estimated transition

[Rmax ; Rmax] is @ bounded stochastieward function modelTP . The optimization of | is, however, NP-hard.
and 2 [0;1) is adiscount factor The set of stochastic The main contribution of SPIBB (Laroche et al., 2019) is to

policiesforM is = f :S!P (A)g. reformulate the percentile criterion to make the search of an

Given an MDPM and a policy we can compute state val- ef cient and provably-safe policy tractable. LNtD.(s; a) _2
uesv,, (s);s 2 S, namely, the expected value acquired by N be the number of occurrences of a state-actmn(pam)
from's; and action value®y (s;a):s 2 S;a2 A, namely, I D andN~ 2 N arelated threshold. SPIBB splits state-
the expected value acquired byvhen actiora.is performed ~ &ction pairs in two subsets: th@otstrapped subs& =
from states. To evaluate the performance of apolicgnan ~ f($:8) @ No(s;a) < N ~gis the set of state-action pairs
MDP M, i.e., (:M), we compute its expected return (i.e., that occur less thaN~ times inD; the non-bootstrapped
its value) in the initial statso, namely, (;M)= V,, (so). S€tB=Tf(s;@): No(s;a) Nngis the set of state-action
The goal of MDP solvers, such as value iteration and policyP@irs that occur at leadt~ times inD. We also de ne boot-
iteration (Russell & Norvig, 2020; Sutton & Barto, 2018), is Strapped and non-bootstrapped action sets, for eactsstate
to compute optimal policies, namely, policies having maxi-2s functionsBa(s) = fa 2 A: (s;a) 2 Bg andBa (s) =
mal values (i.e., expected return) in all their states. Given 422 A: (s;8) 2 Bg, reigectlvely. SPIBB policies satisfy
policy subset © , apolicy °is said to be “optimal ~ theSPIBB constraint **™(s;2) = o(s;a); if (s;8) 2 B.
for an MDPM when it has maximal performance among the The approach guarantees that® is a -approximate safe
policies in © thatis (®*M)=max » o (;M). We policy improvement of the baselineg) with high proba-
USEVimax to denote the known upper bound of the return'sPility 1, where depends oiN~ and . The search
absolute value, i.e\ma =~ Rmec is done in the subspace of policies equal to the baseline
! in the state-action pairs not observed enough timds,in
namely, o=f 2 : (s;a)= o(s;a): 8(s;a) 2 Bg.
The SPIBB algorithm (Algorithm 1; Laroche et al., 2019)
performs policy iteration (Sutton & Barto, 2018) with tran-
Let us represent the true environment by an MDP = sition modelTP and constraining the policy tog at each
hS;A; T ;R; i with unknown transition model' and policy improvement step.
known reward functiorR. This is common in real-world
domains where the transition model must be estimate@d. 3. Monte Carlo Tree Search

or inferred from small amounts of data. Safe policy im-

provement (SPI) aims to compute a new poligythat ~ Given the current state of the agent, MCTS (Browne et al.,
outperforms a baseline policy, using adataset of tra- 2012)_ rst ggnerates a Mont_e Carlo tree rooted in the state
jectoriesD = Isj;a ;1 ;sjoi,- 2w collected using o to estimate ina sample-ef ugnt way the Q-values for tha'F

in the true environment. The dataset is used to constate. Then, it uses these estimates to select the best action.

pute the Maximum Likelihood Estimation (MLE) MDp We performm 2 N simulations using, at each step, Upper
MP = hS:A:TP:R: i whereTP is the transition statis- COn dence Bound applied to Trees (Kocsis & Szepsv

tics observed in the dataset. Téafetyof the improvement 2006) (inside the tree) or a rollout policy (from a leaf to the
must be guaranteed, namely, must outperform o with an end o_f_the simulation) to selgct the a_ct|on, and the known
admissible performance los2 R* and con dence level transition model (or an equivalent S|m.ulator). to perform

1 ,witho 1andloss (o;M) (1:M). the step from one state to the next. Simulations allow to

update two node statistics, namely, the average discounted

SPI was formalized on MDPs using differepércentile yeturnQ(s; a) obtained selecting acticmand the number

3.2. Safe Policy Improvement with Baseline
Bootstrapping

MCTS-SPIBB

of timesN (s; a) actiona was selected from node (state)
UCT extends UCB1 (Auer et al., 2002) to sequential de-
cisions and allows to balance exploration and exploitation
in the simulation steps performed inside the tree, and to
nd the optimal action asn tends to in nity. Given the
average returixX 5.1, () of each actiora 2 A of a node,
whereT,(t) is the number of times actiomhas been se-
lected up to simulatioh from that node, UCT selects the
action with the best upper con dence bound. In other words,
the index of the action selected at thgh visit of a node is

— In(t 1 :
le = argmaxao 1:.::; jAj Xa;Ta(t) + ZCD TZ((t 1)) » with ap-
propriate constar€, > 0. When allm simulations are per-
formed the actiom with maximum average retuiX .1, ()

in the root is executed in the real environment.

4. Method Figure 1.Action selection strategy of MCTS-SPIBB: ow chart.

The MCTS-SPIBB algorithm is rst presented from a high- _ -~

level perspective and then in detail. action with probabilitypy = 1 p3. In the rst case,
we choose the speci c action according to the probability

4.1. MCTS-SPIBB: Overview distribution o(s;). In the second case, we choose the

speci ¢ action according to the UCT strategy, which con-
MCTS-SPIBB is a Monte Carlo Tree Search extension ofsiders the current estimates of Q-values and visit counts
SPIBB (Laroche et al., 2019). As MCTS approximates opti{respectivelyQs(s; @), Q4(s; @) andN3(s; a), N4(s; a) in
mal policies generated by policy iteration, so MCTS-SPIBBFigure 1) and guarantees to select the optimal action with
approximates o-optimal policies generated by SPIBB start- enough simulations. In rollout, baseline probabilities are
ing from a baseline 9. The MCTS-SPIBB policy with used for bootstrapped actions and uniform selection for non-
in nite simulations is o-optimal in the Maximum Like- pootstrapped actions. At the end of the simulations, the
lihood Estimate (MLE) transition moddI® (Theorem 1 estimated Q-value®(s; a) of the root states are used to
by Laroche et al., 2019) and aapproximate safe policy compute the probabilities of the improved policy(s; a) as
improvement over o (Theorem 2 by Laroche et al., 2019). i) (s;a) if a2 B(s), ii) 1 p if a = argmax Q(s; a9,
Since MCTS-SPIBB computes the policy online and locally a%Ba (s)
it can scale to larger problems than SPIBB. The convergenc) O otherwise.
of MCTS—SEIBB to the optimal policy in o w.r.t. M ® and 4.2. MCTS-SPIBB: Algorithm
the capability of MCTS-SPIBB to scale better than SPIBB
are two key contributions shown in Sections 5 (theoreticaflgorithms 1-4 show the pseudocode of MCTS-SPIBB. The
analysis) and Section 6 (empirical analysis), respectively. differences w.r.t. standard MCTS are highlighted in blue.

o . . The agentis in a state and a baseline policyy is available
The main idea behind MCTS-SPIBB is to extend UCT Con.'together with a dataset of trajectoriesgenerated usingg

sidering the constraint on bootstrapped actions. This IS the real environmeml . From dataseb we assume to

non-FriviaI for several reasons, e.g.,'UC'T select.s actions.at':]-(,ive computed the state-action pair counts matexs; a)
cording to Q-values and the constraint is on action selectlo%nd the MLE transition model® . Other mathematical
probabilities, and the effect of the constraint gccumulategymbols present in the algorithms and already de ned above

in the layers of the MC tree. Bootstrapped actions must b reR. N~ m. and the threshold used to end simulation
selected with probability o(s; 8) during the simulations to steps,. F,or tklle s,ake of compactness, these elements are used

generate optimal policies ing. Figure 1 shows a diagram by the alqorith ithouah not licit inout i
that highlights the key idea behind this extension. Given ay € algorithms affnough ot explicit Iput parameters.

states in the MC tree, we split the actions into bootstrappedMCTS-SPIBB @Algorithm 1) rst generates the Monte
state-action pair§s; a) 2 B and non-bootstrapped state- Carlo tre€Tr for states performingm simulations (lines 3-
action pairs(s; a) 2 B (i.e., respectively, actiors; anda,, 5). Then it produces the improved policy(s; a) settingi)

and actionsaz anday in Figure 1). When the simulation the probabilities of bootstrapped actions to the related base-
reaches stafg, we select a bootstrapped action with prob-line probabilities (lines 7-9)j) the probability of the best
ability p§ = a28 4 (5) o(s; @), whereBa (s) is the set of non-bootstrapped actia to the total probability available
bootstrapped actions for stase and a non-bootstrapped for non-bootstrapped actions (lines 10-1i#), the prob-

ability of other non-bootstrapped actions to zero (line 6).

MCTS-SPIBB

Algorithm 1 MCTS-SPIBB Algorithm 3 SelectAction
Input: S. current state; o: baseline pO"CyNA . mlnlmum |nput: s: state nodeBa (S), EA (S): bootstrapped/non-
count;Np: counter;m: total number of simulations; bootstrapped action setsy: baseline policypg: total

Ba(s), Ba(s): bootstrapped/non-bootstrapped actions probability of bootstrapped actionsll : rollout ag

1: Tr fg // Empty MC tree 1: U ([0;1]) // Uniform sampling from0; 1]

2: // Build MC tree (i.e., comput€(s; a)) 2: if pg, then

3 fori=1; ;mdo _ 3 p() (0; ;0)//Init. bootstrapped probabilities
4: Simulate(Trs;0; o;Ba(s); Ba(s)) 4: fora2Ba(s)do

5: end for 5: p(a) o(s; @)=p

6: (s;) (0; ;0)/ Initialize MCTS-SPIBB policy 6: end for

7: fora2 Ba(s) do 7: & p() !/l Sample bootstrapped action

8: (s;8) ofs;a) 8: else

9: egd for 9: if : roll then

10:a° gmax,,g, (f Tr.Q(s,ay 10: /I sample non-bootstrapped actionyising UCT
i; D‘E(S. a?)aZB Al(s) pg(s;a) I Ba () total probability 11: a? argmax,, g,)T Q(s;8)+2C, |c;lg(zl;;s))g

: : B 12: else
13: return a (s;) 13: a’ olouwt (S;)// Sample uniformly
14: endif

Algorithm 2 Simulate 15: end if .

Input: Tr: MC tree structure;s: state node;d: cur- 16: return a'

rent depth; o: baseline policy; Ba(s), Ba(S):
' _L;Jo%tstr?pEed/non—bootstrapped actions Algorithm 4 Rollout

;j ! ret;rn toen Input: s: state noded: current depth; o: baseline policy;
3: end if Ba (s): bootstrapped action s : total probability of

4; // Node expansion _boodtstrapped actions

5: if s 62Nodesthen it r et;rn (’;hen

6: fora2A do end if

7. Nodesga) (Ninit(s; @); Qinit(s; @);) a’ SelectAction§; Ba();f9; o;p%; True)

8: end for © TO(s;a’): r R(s;a)

9: return Rollout(s; d; o;Ba(S);pg) ' ,R '” O'd, 1+ Ba(s) o

10: endif return r + ollout(s”d+1; o;Ba(S);P3)

11: pg a2B 4 (3) o(s; @) /l Tot prob bootstrapped act

12: @’ SelectActiong; Ba (s); Ba(S); o;p;False) _ o _ _
13:s° TO(s;a%;)i r R(s;a) step is performed inside the tree (lines 9-11), or according
14: R r+ Simulate(Tr;s®d+1; o;Ba(s);Ba(s9) Fo the roIIom_Jt policy (we used_a uniform poIi_cy in our tgsts)
15:N(s) N(s)+1 if the_step is performed outside the tree (line 13). .Flnally,
16: N(s;a?) N(s:a)+1 Algorithm 4 performs the standard MCTS rollout using the
17: Q(s;a?) Q(s:a’) + (R Q(s;;’:l?)) new function for action selecting (i.e., Algorithm 3)/hat
18: retu’rn R ’ N(sia”) differentiates MCTS-SPIBB from the standard MCTS algo-

rithm is the way in which actions are selected both inside
the tree and during rollouts.

Finally, it randomly samples an action from(s;) and There are two non-trivial parts in the integration of SPIBB
returns it. SimulationsAlgorithm 2) are performed using with MCTS. The rst concerns the design of the action selec-
almost a standard MCTS strategy. Steps are performed usen strategy (Figure 1); the second is the theoretical proof
ing the MLE transition modeT°® and the simulator is set that this strategy, which merges UCT with baseline policy,
up as a standard MCTS simulatéigorithm 3 selects ac- actually provides a safe improvement (see next section and
tions according to thetrategy described in Subsection 4.1.Appendix A). The way in which, given a stasewe rst

It rst decides whether to bootstrap or not considering thedecide if to select a bootstrapped or a non-bootstrapped ac-
total probability of bootstrapped actiopg (lines 1-2). Ifit tion, and then we use baseline probabilities (bootstrapped
decides to bootstrap, it samples the action according to thease) or Q-value estimates (non-bootstrapped case) to select
probability distribution of those actions (lines 3-7). Other-actions, guarantees MCTS-SPIBB convergence to SPIBB.
wise, it samples the action according to standard UCT if theThis would not have been ensured by other strategies.

5

MCTS-SPIBB

5. Theoretical Analysis The second theorem proves the convergence of the estimated
. . . . state valu€ef X 1, g to the optimal value in o, which is the
We prove that, given a baseling, the improved policy value of the optimal policy in o computed by SPIBB.
generated by MCTS-SPIBB converges, as the number of)))
simulations tends to in nity, to the improved policy?®® Theorem 5.2. Consider algorithm MCTS-SPIBB running
generated by SPIBB, which is optimal iny and a safe ©On @ tree of depttd, branching factojAj = L + K with-
improvement of o. Using the notation of Kocsis et al. L bootstrapped actions arid non-bootstrapped actions in
(2006) and Auer et al. (2002), which is derived from multi- €ach state, and stochastic payoffs at the leaves. Assume that
armed bandit theory, we indicate wi¥y,; the (random) Payoffs lie in[0; 1]. Then the bias of the estimated expected
payoff (i.e., return) obtained by selecting actio® A inthe payoffX m isO KD It LOK?®
t-th simulation passing from the current state. The average

payoff of actioni after m simulationf}, passing from the . . . i
current state is indicated ¥§. = L [n:l X.; and the Proof. (Sketch)The proof is made by induction dix con

expected average payoft (i.e., the gx ected average retur:F,]it)dering the bound of Theorem 5.1 to perform the inductive
P 9¢ pay - P g ep fromL + K MC trees of depttD 1 (one tree for

. . . o S
.Of the current state aften S|mulgtlons passing through itis each non-bootstrapped action and one tree for each boot-
indicated a&f X, . Amongm simulationsn are assumed

to select a non-bootstrapped action ana bootstrapped strapped action) to a MC tree of defith Theorem A.7 (see

action. T;(m) denotes the number of times actiomwas Appendix A) provides the full derivation. =

selected aftem simulations (notation in Appendix A.1.1).

o , The third theorem proves that the estimated state value con-
The analysis is based on an assumption and three theoremsrates quickly around its mean.

For the sake of compactness, the full assumption is reported .)
in Assumption A.5(see Appendix A) and summarized here: T§€0rem 5.3. Fix an arbitrary > 0 and let m =
without loss of generality, the expected value of the averd 2pimin(4=)+Cp," mIn(2L=) 55, ofi). Let

age payoff of each action2 A converges to some value no 2 N be such thap o O(K (C,f Inno + No(1=2))),

i 2 R; payoffsX;; are limited to rang¢0; 1], the proba- it ;3 "o then under Under Assumption A.5 the follow-
bility distributions over average payoffs concentrate quickly. P

around their means, according to the Hoef'fdinginequality.'ngboundShOIdP MXm ME Xm + m and
P mX, mE Xq m

The rst theorem provides a bound on the bias of the es-
timated value (i.e., expected average return) for the cu
rent state aftem simulationsEf X , g, given the bias on
the estimated value of the optimal non-bootstrapped actio
n = EfXi ng (with expected value of the av-
erage payoff of the optimal non-bootstrapped action) an
the biases on the estimated values of the bootstrapped
tions i1, (¢ = Ef Xit, (99 i (Withi 2Ba(s), i ex-
pected value of the average payoff of bootstrapped ac}ion

Broof. (sketch)The proof is obtained by splitting each prob-
ability Pf g into two terms, one for non-bootstrapped ac-
Hlons and one for bootstrapped actions. Bounds on the prob-
ibility distribution of average payoffs in Assumption A.5
nd the Hoeffding inequality allow to prove the theorem.
FSetails are reported in Theorem A.8 (see Appendix A}l

No() is such that it No() thenj i j =2 and This theoretical analysis shows the safety of MCTS-SPIBB
i o =2 where ; = C With i suboptimal by demonstrating the convergence of the policy generated
action and optimal action. by MCTS-SPIBB to the policy generated by SPIBB (which

is proved to be safe in (Laroche et al., 2019)). Further-
more, SPIBB computes an optimal policy iy (Theorem 1,
Laroche et al., 2019), namely, it solves in an optimal way

Thgorem 5.1. Let Xpp = L e, TOXiT (¢ +
1

o i28s T(MXiT (- UrE)derAssumption A.5 the follow-

ing bound holdsEf X m g s, o) i pg 7 the problem of SPI with baseline bootstrapping (satisfying
i i i oo K(C2ZInm+No) the percentile criterion of Eq. 1 by Laroche et al., 2019).
g, o) Jitil*tpPg J it O —F——

whereNo = No()- 6. Experiments

Proof. (Sketch)The idea behind the proof is to split the bias We rst apply MCTS-SPIBB to two benchmark domains,
on the expected payoff of the state (left side of the inequality\aridworld and SysAdmin, showing empirically thathe

into the bias of the expected payoff of the optimal non-performance of the improved policy generated by MCTS-
bootstrapped action and the bias of each bootstrapped actid®P1BB converges to that of the policy generated by SPIBB
The rstis boundqg by Theorem 3 of (Kocsis et al., 2006)as the number of simulations increasgsMCTS-SPIBB
and the second by ;,5, o(i) | iT,(¢i- Theorem A.6 guarantees the safety of the improvement, iii) MCTS-SPIBB
(see Appendix A) provides the full derivation. O can scale to larger domains than SPIBB. To further extend

MCTS-SPIBB

our analysis, we also compare MCTS-SPIBB with state-
of-the-art SPI algorithms (i.e., SPIBB, some SPIBB exten-
sions presented by Scholl et al. (2022b), Basic-RL, DUIPI
(Schneegass et al., 2010), R-Min (the pessimistic adaptation
of R-Max, Brafman & Tennenholtz, 2003), and RaMDP
(Petrik et al., 2016)) on a public benchmark based on the
WetChicken domain proposed by Scholl et al. (2022b). This
analysis shows that MCTS-SPIBB reaches state-of-the-art
performance on small domains and scales to large domains.

Domains. In GridWorld (Laroche et al., 2019) an agent

movesina\ N grid starting from the bottom-left corner

and aiming to reach the top-right corner. The agent can

select four actions, i.e., moving north, south, east, or west.

Each action has a 75% chance of moving the agent in the

desired direction, 5% in the opposite direction, and 10%

chance of moving it in each of the other two directions.

The reward idl if the agent reaches the target cell (top-right

corner),0 otherwise. The size of the state spacis= N 2

and that of the action spacejisj = 4, resulting in4N 2

possible state-action pairs. 8ysAdminGuestrin et al., Figure 2.Results on convergence. X-axis: number of simula-
2003) an agent has to administer a networklomachines. tionsm. Y-axis: absolute difference of valuessgi;gjb between
Each machine is connected to two other machines on eithedCTS-SPIBB and SPIBB Vs, = jVy (So) Vu (So)j.
side of it to form a ring topology. A binary random variable

represents whether each machine is working or has failed.

At each time step, the agent can reboot one machine at[?eriments were performed on a laptop with an 11th Gen

cost of 1 or do nothing with null cost, furthermore, it Intel(R) Core(TM) i7-1165G7, 2.80 GHz with 10 GB RAM
receives a reward of for each working machine and a T '

penalty of 1 for each failed machine. Every machine has aResults on ConvergenceTo show that the performance of
probability of0:05to fail at each time step. This probability the policy generated by MCTS-SPIBB converges to that of
increases b@:3 for each neighboring machine that failed. If the policy generated by SPIBB as the number of simulations
a machine is rebooted, then it works with probability 1. Them increases, we perform experiments on Gridworld 3x3,
size of the state spaceij =2N , and the size of the action 4x4, 5x5, and SysAdmin with 7 machines. For each domain,
spacgAj = N + 1, resulting in2V (N + 1) state-action We rst generate a baseline policy (details in Appendix
pairs. We chose these two benchmark domains to evaluaf). Then, we generatdD = 20 datasets each containing
MCTS-SPIBB becausé) they are well-known domains jDj = 10000 trajectories for Gridworld (trajectory lengths
on which also other SPI algorithms have been tested (e.ge 15 steps for 3x3, 20 steps for 4x4 and 30 steps for
Gridworld, Laroche et al., 2019} the state space of these 5X5) andiDj = 5000 trajectories for SysAdmin (trajectory
domains can be enlarged at will (e.g., the largest SysAdmifength is 15 steps). Then, for each dataset, we compute the
instance tested has 35 machines, namely, about 35 billioMLE transition modell °, the state-action pair count ma-
states). The benchmark proposed by Scholl et al. (2022H}ix Np (s; &) and the bootstrapped/non-bootstrapped action
is executed on theVetChickerdomain: an agent oats in S€tsBa (s)=Ba (s) using thresholdN~ =5 for Gridworld

a small boat on a river with a waterfall at one end. The(average % of safe actionsjBa (s)j5Aj 100 = 81%) and
goal for the agent is to stay as close as possible to thBlx =50 for SysAdmin (avg % of safe action$3:4%). Fi-
waterfall without falling down. The closer the agent is to the nally, for each dataset we generate the improved policy with
waterfall, the greater the reward. If it falls, the episode endgoth SPIBB and MCTS-SPIBB and compute the absolute
The river is represented assa 5 grid in the benchmark ~ difference between their values in the initial stajgthat
(i.e.,jSj = 25) and ve actions can be chosen by the agentis Vs, = jVyy (S0) Vi~ (So)j (notice that in this test
(Appendix C). we compute the entire policy (all states) also with MCTS-

. B SPIBB, and evaluate it using policy evaluation). Figure 2
Software and Hardware. The original code of SPIB shows the value of Vs, (y-axis) for each domain (Fig. 2.a

and our code of MCTS-SPIBBare publicly available. Ex- for Gridworld and Fig. 2.b for SysAdmin) and for each

Yhttps://github.com/RomainLaroche/SPIBB dataset (each point is a dataset) with= 100; 1000 10000
2https://github.com/Isla-lab/mctsspibb simulations (x-axis). Lines connect average values. In both
domains avg Vs, tends to zero showing the convergence.

MCTS-SPIBB

Results on Safety. To show the practical impact in the
safety of policies generated by MCTS-SPIBB we perform
the same experiments performed by Laroche et al. (2019) on
Gridworld 5x5 and SysAdmin with 7 machines. Namely, for
each domain, we rst generate a baseline policy. Then, for
different dataset sizgBj we generatd D = 20 datasets,
each containingDj trajectories. In particular, in Gridworld
jDj 2 f 2;10% 10%; 10°; 10*g and each trajectory is 30 steps
long, while in SysAdminDj 2 f 5;500 5000y and each
trajectory is 15 steps long. Afterward, for each dataset, we
computeT P, Np (s; @) and set8Ba (s)=Ba (S) using thresh-

old N~ = 20 for Gridworld andN~ = 50 for SysAdmin
(average % of safe actions for eg€Eh are reported in Fig-
ure 3). Finally, for each dataset, we generate the improved
policy using three algorithms, namely, MCTS-SPIBB (with
10000 simulations), SPIBB, and Basic RL (Basic RL is
the vanilla Batch RL used as a non-safe baseline also by
Laroche et al. (2019); it computes the optimal policy in the
MLE MDP M P even when too few samples are available
for some state-action pairs) and we evaluate their perfor-
mance on the real environment &s,;M) = V,,' (So)
(also in this test the policy based on MCTS-SPIBB is com-
puted in all states to allow the usage of policy evaluation to
compute values).

Figures 3.a,c show the results on Gridworld and SysAdmyn,

respectively. The size of the data@@} is shown on the

x-axis and the performance of the improved policy on the y-

axis. Each point represents the performance of an improved

policy generated using a speci ¢ dataset and a speci ¢ al-

gorithm. The yellow line represents the performance of thé“igure 3.Results on safety. Performance ;M) and 15%-
baseline o and the green line is the performance of theCVaR (1;M) (y-axis) depending on dataset size(x-axis) on
optimal policy, namely, the policy computed using policy G"1dworld (a,b) and SysAdmin (c,d).

iteration with the true transition mod&l . Basic RL per-

forms better than MCTS-SPIBB in some cases butitis N0y, 4tions, and it does not directly depend on the size of the

safe (we use it only as an unsafe baseline in our tests), igate/action space. This allows MCTS-SPIBB to scale to

fact, it achieves a performance decrease on small datas§l3qq jomains than SPIBB. In fact, in domains with a large
(i.e.,jDj = 2 in Gridworld andiDj =5 in SysAdmin) as it

number of states, each iteration of SPIBB improves all states,
has no safety guarantees. On the contrary,

_ X . MCTS'SPIBQIthough many of them are not reached in real runs. This
and SPIBB perform aimost identically (differences in perfor-,, 1 yequire a large time or produce limited improvements.

mance are not statistically signi cant) and their performanceOn the other hand, MCTS-SPIBB employs the time avail-
is always equal or higher than that of the baseline, i.e., the}éble to improve the policy only on the small number of

are safe. This behaviour is also shown in Figures 3.b,d 05 actually visited, producing larger improvements. To
considering 15% Conditional Value-at-Risk (15%-CVaR),qhow this in practice, we perform a test on SysAdmin (we

|.e.,r':he| me-a;]n performance 0\|/er thhe 15% worst runs. ';°§elected this domain because its state space scales expo-
each algorithmbj pair, we select the worst 3 points an nentially with the number of machines) with an increasing

draw lines among averages. Interestingly, MCTS-SPIBB, e of machines, and compare the time required and the

and SPIBB are still safe and they perform very similarly., o formance achieved by the two algorithms. In particular,
Experiments with different parameters (see Appendix C), o 1ake tests witiDj = 5000 andN = 5, varying the

con rm the result. number of machines (4, 7, 10, 12, 13, 20, 35), which also
Results on Scalability. SPIBB complexity isO(jS Aj®) changes the percentage of safe acti@@¥4 49% 18%
if the Bellman equation is solved exactly ©(jSj? jAj)if ~ 12% 8:5%, 6:1%, and4%, respectively).

it is solved by dynamic programming. On the other handg;y re 4 shows the time needed by SPIBB (light blue line),
MCTS-SPIBB complexity i€D(m), with m number of sim- SPIBBy» based on dynamic programming (dotted blue

