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Abstract

When facing data with imbalanced classes or
groups, practitioners follow an intriguing strat-
egy to achieve best results. They throw away
examples until the classes or groups are balanced
in size, and then perform empirical risk minimiza-
tion on the reduced training set. This opposes
common wisdom in learning theory, where the ex-
pected error is supposed to decrease as the dataset
grows in size. In this work, we leverage extreme
value theory to address this apparent contradic-
tion. Our results show that the tails of the data
distribution play an important role in determining
the worst-group-accuracy of max-margin linear
classifiers on linearly separable data. When learn-
ing on data with heavy tails, throwing away data
restores the geometric symmetry of the resulting
classifier, and therefore improves its worst-group
generalization.

1. Introduction
Imbalances are ubiquitous in real-world data. On the one
hand, class imbalance is common in rare-event data such as
medical diagnosis, intrusion detection, spam classification,
or credit fraud (Johnson & Khoshgoftaar, 2019). On the
other hand, imbalances may also exist within the classes of
our problem, if each of these comprises hidden groups with
different proportions. For instance, in an image classifica-
tion dataset with balanced classes, most pictures for each
class are commonly taken in wealthy countries (Rojas et al.,
2022). In all of these situations, simply minimizing average
training error may result in classifiers that perform very well
on majority groups, while having poor performance on mi-
nority groups (Buolamwini & Gebru, 2018). For example,
the 1% test error of a classifier could mean that all exam-
ples from a particular minority group are misclassified. As
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such, this work is concerned with the ‘worst-group-error’ of
classification rules on imbalanced data.

While many sophisticated methods have been proposed to
address imbalanced classification problems (Sagawa et al.,
2019), none of these offer a clear advantage to simple sub-
sampling (Idrissi et al., 2022). In subsampling, we throw
away data from large groups until they match the smallest
group in size. Then, we perform empirical risk minimization
on the (often drastically) reduced data. This is a surprising
finding, as classical wisdom in learning theory tells us that
the expected error of classifiers should decrease as training
data grows in size. As it stands, there is no theoretical expla-
nation as to why the popular strategy of subsampling works
so well when addressing imbalanced classification problems.
In particular, commonplace PAC-learning results (Haussler,
1990) upper-bound the error of the worst of the classifiers
correctly classifying all of the training data. While this anal-
ysis can be extended to other metrics such as worst-group
error, since throwing away examples increases the amount
of such compatible classifiers, the error bound can only
worsen, falling short in explaining the empirical benefits of
data subsampling.

This work is an initial effort to resolve this apparent ten-
sion between theory and practice. More specifically, we
focus our analysis on linear maximum-margin binary clas-
sifiers (Steinwart & Christmann, 2008) on linearly separa-
ble data obtained from either logistic regression or hard-
margin SVM. Under this setup, it is well known (Bennett
& Bredensteiner, 2000) that maximum-margin classifiers
are equidistant from the convex hulls delineated by each
of the two classes. In turn, the shape of these convex hulls
is determined by the extremal properties of the probability
distributions of each class. These extremal properties are
the subject of study of a branch of mathematics called ex-
treme value theory (EVT, De Haan & Ferreira (2007)). By
borrowing results from EVT, we show that the location of
the maximum-margin classifier depends on the tail prop-
erties of the data distribution. In particular, when facing
data distributions with heavy tails, we observe geometric
imbalances when groups differ in sample size. These im-
balances skew the maximum-margin classifier, leading to
suboptimal worst-group-error. This ends up being the rea-
son why subsampling works, as balancing groups in size
restores geometric symmetry across groups.
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Figure 1: Illustration of the phenomena studied in this paper. The tails of the data distribution can bias the maximum-margin classifier,
and throwing away is a tool to restore balance and achieve the optimal solution. The top four plots illustrate a classification problem with
two imbalanced classes. In the Gaussian case, throwing away data to balance class sizes leads to the optimal maximum-margin classifier,
which is aligned with magenta checkmark. In the Uniform case, throwing away data does not make any difference. The bottom four plots
illustrate a binary classification problem, where each class is balanced but contains two groups of different proportions. Once again, in the
Gaussian case, throwing away data to balance group sizes leads to the optimal maximum-margin classifier. Subsampling does not provide
any benefit in the Uniform case.

We illustrate these phenomena in Figure 1. When deal-
ing with imbalanced classes, we find that the bias term
in the maximum-margin classifier is shifted towards the
small class. When reducing the data with subsampling to
balance the two classes, the maximum-margin classifier con-
verges to the unbiased one with optimal worst-group-error.
When dealing with imbalanced groups, the direction of the
maximum-margin classifier is biased towards the smaller
group, increasing its error in test examples from the tails of
the distribution. Figure 1 shows that, while these phenomena
happen when dealing with data distributions with Gaussian
tails, they are non-existent when dealing with Uniform data
distributions, with no tails.

Contributions This work proposes a novel theoretical
analysis to understand imbalanced classification, as well as
to justify the popularity of data subsampling in this regime
(Section 2). To this end, we introduce the use of extreme
value theory to construct a new type of generalization anal-
ysis that focusses on distributional tails (Section 3). These
results allow us to characterize the impact of distributional
tails on the worst-group error for both ERM and subsam-
pling strategies. We conduct separate analyses to understand
the case of imbalanced classes (Section 4) and groups (Sec-
tion 5). In particular,

• Subsampling outperforms ERM in worst-group-error
when learning from imbalanced classes with tails (such

as Gaussians, Theorem 3), while it makes no difference
when learning from distributions without tails (such as
Uniforms, Theorem 4).

• Similar results follow for balanced classes but imbal-
anced groups (Theorem 6 for groups with tails, Theo-
rem 7 for groups without tails).

• We extend these results to the high-dimensional case
where there exist a multitude of “noise” dimensions
polluting the data (Theorems 5, 8, 9) and provide em-
pirical support for our theories using Waterbirds and
CelebA, the two most common datasets to benchmark
worst-group-error (Section 6).

2. Our learning setup
We consider the binary classification of examples (x, y),
where instances x ∈ Rd and labels y ∈ {−1,+1}. We
assume that instances with label y are drawn independently
from a class-conditional distribution that we denote by Dy .
We look at two settings—imbalanced classes and imbal-
anced groups. In the setting of imbalanced classes, there
is a majority class with y = −1 and a minority class with
y = +1. Training data S consists of p samples drawn inde-
pendently and identically distributed (iid) from the major-
ity class-conditional distribution, and m from the minority
class-conditional distribution. We assume p is much larger
than m. For imbalanced groups, we extend each example to
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be a triplet (x, y, a), where a ∈ {−1, 1} is a binary attribute.
Label-attribute combinations induce four groups g = (y, a).
Then, the data distribution consists of p points drawn iid
from the majority groups g = (1, 1) and (−1,−1), and m
points drawn from the minority groups g = (−1, 1) and
(1,−1). Once again, p is much larger than m. While de-
scribing data distributions, we use the notation D(ρ) to
denote a distribution with mean ρ.

Commonly, in machine learning we are interested in the gen-
eralization error of a classifier θ on some data distribution
D, err(θ) = PrD(θ(x) ̸= y), where we drop the subscript
D when this causes no confusion. For problems with im-
balanced classes, we are chiefly interested in measuring
worst-class error: wce(θ) = maxỹ Pr(θ(x) ̸= y | y = ỹ).
For imbalanced groups, the metric of interest is the worst-
group error: wge(θ) = maxg̃ Pr(θ(x) ̸= y | g = g̃).

To enable a fine-grained analysis, we focus on a linear clas-
sifier, namely θ(x) = w⊤x+ b, where w is the weight and
b is the bias. We assume that the training data is linearly
separable with high probability—even though the entire dis-
tribution may not be. This mirrors what happens in deep
learning, where zero-training-error is easy to achieve, while
zero-test-error may be elusive. The usual way to train a clas-
sifier is to follow the Empirical Risk Minimization (ERM)
principle to learn the parameters (w, b) separating the train-
ing data S. This amounts to finding (w, b) that minimizes

L(w, b,S) = 1

|S|

|S|∑
i=1

ℓ
(
(w⊤xi + b)yi

)
, (1)

where ℓ : R → [0,∞] is a loss function that penalizes clas-
sification errors. The most popular loss for classification in
deep learning is the logistic loss ℓ(u) = log(1 + exp(−u)).

Support vector machines When our training data is
linearly separable, (Soudry et al., 2018) has shown that
the logistic loss minimizer converges to the well-known
maximum-margin classifier also referred to as the linear
hard-margin Support Vector Machine (Vapnik, 1999, SVM).
The sequel therefore analyzes the properties of the SVM
separator directly. The SVM separator characterized by w∗

and b∗ is known to be equidistant from the convex hulls of
the positive and negative classes (Bennett & Bredensteiner,
2000); it can be obtained by solving:

w∗ = argmax
∥w∥=1

(
inf
x∈B

w⊤x− sup
x∈A

w⊤x
)
,

b∗ = −1

2

(
inf
x∈B

w⊤x+ sup
x∈A

w⊤x
)
,

(2)

whereB is set of positively labeled points andA is the set of
negatively labeled points. Our analysis connects the optimal
w∗ and b∗ to the tail properties of the data distribution.

ERM versus subsampling We will compare two algo-
rithms. On the one hand, given a training dataset with
imbalanced classes or groups, the ERM algorithm directly
solves the SVM optimization problem on the entire dataset
to get the classifier θerm. On the other hand, the subsampling
algorithm solves the SVM problem on a subsample of the
training data that balances out classes or groups. Specifi-
cally, subsampled training sets consists of the entire minor-
ity class or group, and a randomly drawn sample of size m
from the majority class or group. Solving the SVM on this
reduced dataset gives us the classifier θss.

Why are PAC bounds not enough? We will show that
subsampling leads in certain cases to a strictly better worst-
class or worst-group error compared with plain ERM on
the entire training data. In other words, throwing away data
strictly helps! This kind of result cannot be directly obtained
through standard PAC-style analysis in learning theory. Ba-
sic PAC-style analysis in the realizable case provides an
upper bound on the worst-case error of any classifier in the
version space—which is the set of all classifiers that per-
fectly classify the training points. While this analysis can
be adapted to other metrics (such as wce and wge), throw-
ing away data expands the version space, and hence the
worst-case error of this expanding set must also increase.

To address this apparent contradiction, the sequel relies on
the geometric properties of the maximum-margin classifier.
We will use the fact that the maximum-margin separator is
equidistant from the convex hulls of the two classes (Bennett
& Bredensteiner, 2000), and geometrically analyze proper-
ties of these convex hulls. This analysis leverages the fact
that properties of the convex hull of a set of random points
are related to extreme value statistics (Bennett & Breden-
steiner, 2000) of the distribution. To this end, our analysis
makes use of extreme value theory, a branch of probability
theory concerned with maxima and minima of distributions.

3. Basics of extreme value theory
The branch of mathematics studying extreme deviations
is known as Extreme Value Theory (De Haan et al., 2006,
EVT). We borrow tools from EVT to analyze the worst-
group error in SVMs, which is a first in the research litera-
ture. Specifically, we will make use of a central result from
EVT: the Fisher-Tippett-Gnedenko theorem (De Haan et al.,
2006). Suppose we have n iid examples X1, . . . , Xn drawn
from an fixed distribution with CDF F ; the Fishet-Tippett-
Gnedenko theorem characterizes the maximum value Mn

of X1, . . . , Xn provided the distribution F belongs to one
of the following types.

Definition 1. Let xF = supx{x | F (x) < 1} be the largest
value not saturating F . Then F is of the family:
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• Frechet, if xF = ∞ and limt→∞
1−F (tx)
1−F (t) = x−α, for

α > 0 and x > 0.

• Weibull, if xF < ∞ and limh→0
1−F (xF−xh)
1−F (xF−h) = xα,

for α > 0 and x > 0.

• Gumbel, if limt→xF
1−F (t+xg(t))

1−F (t) = e−x, for all real

x where g(t) =
∫ xF
t (1−F (u))du

1−F (t) for t < xF .

In this work, we only study Gumbel and Weibull distri-
butions. Gumbel-type distributions have light tails, and
include Gaussians and Exponentials. Weibull-type distribu-
tions have finite maximum points, and include Uniforms.
Frechet-type distributions have heavy tails, including the
Pareto and Frechet distributions. Some distributions, such
as the Bernoulli, do not belong to any of these types. If
the distribution F is of either of these three types, then the
Fisher-Tippett-Gnedenko theorem shows that there exist se-
quence an and bn such that the CDF F ′ of (Mn − bn)/an
converges to a limit distribution G.

F ′
(
Mn − bn

an

)
→ G,

where an, bn and G take values that depend on the specific
distribution F . Finally, we define the “tail function” of a
distribution with CDF F to measure the spread of its tail.

Definition 2 (Tail Function). The tail function U of a distri-
bution with CDF F is U(t) = F−1(1− 1/t).

Observe that the tail function U(t) is an increasing function
of t; in addition, by definition, we have F (U(t)) = 1− 1/t.
We now have all the necessary tools to introduce the Fisher-
Tippet-Gnedenko theorem formally.

Theorem 1 (Fisher-Tippett-Gnedenko Theorem). 1. If
F is of the Frechet type, then G(x) is the Frechet
distribution with the following CDF:

G(x) = exp(−x−α), x ≥ 0

= 0, x < 0.

Additionally, an = U(n) and bn = 0.

2. If F is of the Weibull type, then G(x) is the reverse
Weibull distribution with the following CDF:

G(x) = 1, x ≥ 0

= exp(−(−x)α), x < 0.

Additionally, an = xF − U(n) and bn = xF .

3. If F is of the Gumbel type, then G(x) is the Gumbel
distribution with the following CDF:

G(x) = exp(−e−x), x ∈ [−∞,∞].

Additionally, an = g(U(n)) and bn = U(n).

4. Analysis of imbalanced classes
We first look at data from imbalanced classes. The basic
setup is as follows. To keep the main message of our analy-
sis simple, we assume that the positive (minority) class and
the negative (majority) class are both distributed according
to a distribution D(·), but with shifted means. Specifically,
the positive class is distributed according to D(µ), and the
negative class according to D(−µ), where ∥µ∥ > 0. Addi-
tionally, we assume that D(µ) is symmetric about its mean
µ – although this symmetry is not strictly needed for our
results to hold. Finally, recall that we have p points from the
majority class and m from the minority with p ≫ m. To
build intuition, we first look at a simple one-dimensional set-
ting where the feature xi’s are scalars. In this case, weight
w is set to one, we use θ to refer to bias b. This case has two
interesting properties that makes the analysis intuitive. First,
due to symmetry of the class-conditional distributions, the
classifier that minimizes worst-class error has a bias of zero.
Second, the bias of the maximum-margin classifier θerm is
the mean of the maximum training point with a negative
label and the minimum training point with a positive label.

How does ERM behave under these conditions? Geometry
suggests that if, due to class imbalance, training data from
the positive majority class is spread out enough to push the
bias of θerm away from zero, then ERM will have poor worst-
class accuracy, and subsampling will help. In contrast, if
training data from both classes are equally spread-out, then
ERM will retain its symmetry. We formalize this notion of
spreading out through a Concentration Condition below.

Assumption 1 (Concentration Condition). Suppose
x1, . . . , xn are scalars drawn i.i.d from D(0). There ex-
ist maps Xmax : Z+ × [0, 1] → R , c : Z+ × [0, 1] → R,
and C : Z+× [0, 1] → R such that for all n ≥ n0, for every
δ ∈ (0, 1), with probability ≥ 1− δ,

max
i∈{1··· ,n}

xi ∈
[
Xmax(n, δ)−c(n, δ), Xmax(n, δ)+C(n, δ)

]
Also, limn→∞ C(n, δ) = 0, limn→∞ c(n, δ) = 0.

The spread quantities Xmax(n, δ), c(n, δ) and C(n, δ) are
distribution specific.

For example, for standard Normals, Xmax(n, δ) =√
2 log n − log logn+log(4π)√

2 logn
, c(n, δ) = log log(6/δ)√

2 logn
and

C(n, δ) = log(6/δ)√
2 logn

. For standard uniforms, Xmax(n, δ) =

1, C(n, δ) = 0 and c(n, δ) = log(1/δ)
n .

Using these tools, we now characterize two kinds of classi-
fication behavior below. These correspond to the Gumbel
and Weibull distribution families, as described in the Fisher-
Tippett-Gnedenko theorem.
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4.1. Low dimensional Gumbel type

For the Gumbel type, the maximum Mn =
max(x1, . . . , xn) of n iid examples converges to anZ + bn,
where an and bn are distribution-specific quantities and Z is
Gumbel-distributed. For these distributions, Xmax(p, δ) is
typically higher than Xmax(m, δ) when p≫ m, producing
a lack of symmetry in the maximum-margin classifier, and
its increasing worst-class error. In this case, throwing away
data to balance classes restores the symmetry and helps
recover the lost worst-class error. This is formalized below.

Theorem 2. [General Gumbel Distributions] Let D be
a distribution of the Gumbel type with cumulative den-
sity function F and tail function U(·) and constants an
and bn in the Fisher-Tippett-Gnedenko theorem. Let λ =
max(am,ap) log(3/δ)

U(p)−U(m) , and let µ = U(p) + ap log(3/δ). Then,
for large enough m and n, with probability ≥ 1− 2δ over
the training samples, we have:

θerm ≥ 1

2
(U(p)− U(m))(1− λ),

|θss| ≤ 1

2
λ(U(p)− U(m))

In addition, the worst-class errors satisfy:

wce(θerm) ≥ 1− F

(
U(p)(1 + 3λ) + U(m)(1− 3λ)

2

)
wce(θss) ≤ 1− F (U(p)(1− λ)).

A few remarks are in order. First, ensuring that the training
data is linearly separable requires µ to grow with p. Second,
observe that usually we expect λ ≤ 1, and it may even be
o(1) for certain growth rates of m and p. When this is the
case, the theorem implies that |θss|, which is of the order
of λ(U(p)− U(m)) is an order of magnitude closer to the
origin than θerm, which is ≈ − 1

2 (U(p) − U(m)). This, in
turn, contributes to θss smaller worst-class-error. If λ =
o(1), this worst-class-error would be ≈ 1− F (U(p)) ≈ 1

p .
In contrast, the worst-class-error of θerm would approach
≈ 1−F (U(p)+U(m)

2 ), which is somewhere between 1
m and

1
p , depending on the exact form of F .

Third, observe that both worst-class error are tighter than
a standard PAC-style analysis that would give a bound of
≈ 1/m on the worst-class error. Next, we present a corollary
to tighten the previous result for the important Gaussian
case.

Theorem 3. Let 0 < ϵ, δ, γ < 1 be constants and suppose
m = βp. There exists an p0 such that the following holds.
If p ≥ p0 and β ≥ 1/p3/4, then with probability greater or

equal than 1− 2ϵ− 2δ − 3γ:

|θerm| ≥
1

2
√

2 log(βp)

(2
3
log(1/β)− 2 log(1/γ)

)
,

|θss| ≤
log(1/γ)

2
√

2 log(βp)
.

When pβ2 ≥ ϵ, this implies:

wce(θss) ≤
2ϵ

γp
, wce(θerm) ≥

ϵγ1/4

2pβ1/12
.

For Gaussians, if β → 0 with βp → ∞, the relative gap
between θss and θerm widens – θss lies in an interval of
length ≈ 1

2
√

2 log(βp)
around the origin, while θerm lies ≈

log(1/β)

2
√

2 log(βp)
away. This leads to a widening of the worst-

class error between the two SVM solutions, with θss having
considerably lower error than θerm.

4.2. Low dimensional Weibull type

Recall that for these distributions, the extremal point of the
distribution is finite, and the maximum Mn converges to
anZ + bn, where an and bn are distribution-specific quanti-
ties and Z is a reverse Weibull random variable with param-
eter α. For these distributions, Xmax(p, δ) ≈ Xmax(m, δ)
even when p ≫ m, and hence the maximum-margin clas-
sifier remains symmetric even when the majority class size
p ≫ m. This means that ERM and subsampling perform
equally well. The following theorem formalizes the result.
Theorem 4. [General Weibull Distributions] Suppose D
is a distribution of the Weibull-type with parameter α and
extremal point xF . Let µ = xF , and let m, p → ∞. Then,
for any 0 < δ ≤ 1/4, with probability ≥ 1

4·22α − δ,

|θss| ≥ 1

2
(xF − U(m))(ln 2)1/α

|θerm| ≤ 1

2
(xF − U(m))(ln 2)1/α.

Once again, we pause for some remarks. First, we observe
that the extremal value of the Weibull distribution is finite,
unlike Gumbel, ensuring that training data is linearly sep-
arable only requires µ = xF ; the distributions themselves
therefore do not change with p. Second, observe that our
theorem states that with constant probability, the |θerm| is
lower than |θss| and so is the worst-class error. This implies
that in the Weibull case, we cannot hope to get a high prob-
ability theorem such as Theorem 2. A final remark is the
dependence of the lower bound on |θss| on the parameter α
of the Weibull distribution; unfortunately, this dependence
is inevitable, since the concentration properties of the dif-
ference between two Weibull random variables depend on
α. The following corollary makes the result concrete for
uniform distributions.
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Corollary 1. Suppose D(0) is the uniform distribution on
[−1/2, 1/2]. Let µ = 1/2, and let m, p → ∞. Then, for
any 0 < δ ≤ 1/4, we have that for m and p large enough,
with probability ≥ 1

16 − δ,

|θss| ≥
ln 2

2m
, |θerm| ≤

ln 2

2m
.

This implies that with probability ≥ 1
16 − δ,

wce(θss) ≥
ln 2

m
≥ wce(θerm).

4.3. High dimensional case

We next look at a higher dimensional case where the feature
vector x ∈ Rd. Our basic setup is as follows. As in the previ-
ous section, we assume that the class conditional distribution
for each class is spherically symmetric around its mean µ;
points x from class y follow D(yµ). The classifier that
minimizes worst-class error for this setting is θ∗(x) = µ⊤x.
Additionally, symmetry of the classes ensures that any linear
classifier that passes through the origin will have equal error
on each class. Thus showing θerm has high worst-class error
involves showing that it has a non-zero bias term. This, in
turn, will happen when the tails of the class-conditional dis-
tributions “spread out” with increasing sample size. This is
formalized by the following high-dimensional concentration
condition similar to the low dimensional cases. Notice that
the difference here is that the concentration applies to all
directions, and that the terms depend on the dimension d in
addition to n and δ.

Assumption 2 (Concentration Condition). Suppose
x1, . . . , xn are d dimensional random variables drawn i.i.d
fromD(0). There exist mapsXmax : Z+×[0, 1]×Z+ → R,
c : Z+ × [0, 1]×Z+ → R, and C : Z+ × [0, 1]×Z+ → R
such that for all n ≥ n0, for every δ ∈ (0, 1), and for all
directions v ∈ Rd, with probability ≥ 1− δ,

max
i∈{1··· ,n}

{v⊤xi} ∈
[
Xmax(n, δ, d)− c(n, d, δ),

Xmax(n, δ, d) + C(n, δ, d)
]
.

Also, limn→∞∞ C(n, δ) = 0 and limn→∞ c(n, δ) = 0.

Unlike low dimensions, our high dimensional analysis re-
quires one more technical condition to bound the s-th order
statistic from the distribution.

Assumption 3. Let ζ : Z+ ×R×Z+ ×Z+ → R be a map
such that for all n ≥ n0 with probability at least 1− δ and

µ̂⊤x(s) ≥ ζ(n, δ, d, s)

where µ̂ is the unit vector along µ, µ̂⊤x(s) is sth largest
value among n iid values of µ̂⊤x, where x ∼ D(0).

Define q = d log(log pmaxxi∈A ∥xi∥) + log(1/δ). We are
now ready to state the main result.
Theorem 5. D(0) satisfies the concentration conditions in
Assumption 2 and 3. Suppose ∥µ∥ > Xmax(p, δ, d) and
ζ(p, δ, d, q) > 4Xmax(m, δ, d). If p and m are sufficiently
large, then with probability at least 1− 8δ, the worst class
error rate achieved by ERM is worse than the worst class
error achieved by subsampling the classes.

We pause for a few remarks. We require ∥µ∥ >
Xmax(p, δ, d) and ζ(p, δ, d, q) > 4Xmax(m, δ, d) to ensure
that the direction of the classifier learned by ERM is suffi-
ciently aligned with the direction (µ̂) of the classifier that
achieves optimal worst class-error. As a result, we only
need to compare the bias term between the subsampling and
ERM. Since ζ(p, δ, d, q) > 4Xmax(m, δ, d) it ensures that
p is sufficiently larger than m, which causes the bias under
ERM to be large. Also, ∥µ∥ > Xmax(p, δ, d) ensures that
the two classes are separable. We now illustrate the above
theorem for Gaussians and uniform distribution.
Corollary 2. Let D(0) be a symmetric Gaussian in R2.
The bias for the ERM classifier θerm lies in an arbitrarily
small interval centered at

√
2 log(p/δ) −

√
2 log(m/δ).

In contrast, the bias for the classifier under subsampling
θss lies in an arbitrarily small interval centerd at zero. If
m = log p and ∥µ∥ >

√
2 log(p/δ), then with probability

1−8δ, ERM has a worse worst class error than subsampling.
Let D(0) be a symmetric uniform in R2. The bias term for
both the ERM classifier and the subsampling classifier lies
in an arbitrarily small interval centered at zero.

The above corollary shows how the bias for Gaussian is
much larger than in the uniform distribution. As a result,
subsampling is guaranteed to help the Gaussians but does
not help uniform distributions as shown in Figure 1.

5. Analysis of imbalanced groups
We now look at data from imbalanced groups. Recall our
basic setup, where label y and the attribute a induce four
groups g = (y, a) that a data point belongs to. To keep our
analysis simple, we assume that each of the four groups have
the same distribution D(·), but with shifted means, and that
D(·) is spherically symmetric about its mean. Specifically,
this means that for a group g = (y, a), the group conditional
distribution is D(yµ + aψ), where µ and ψ are vectors in
Rd with a non-zero norm. Also, recall that we have p points
from each of the majority groups (1, 1) and (−1,−1) andm
from the minority groups (1,−1) and (−1, 1) with p≫ m.

We start with a simple two-dimensional case where each
feature vector xi ∈ R2. We set the parameter vec-
tor µ = ∥µ∥(1, 0)⊤ and ψ = ∥ψ∥(0, 1)⊤. As a re-
sult, the first coordinate of x is aligned with the label y:
E[x1|y] = y∥µ∥. Following Nagarajan et al. (2020a), we
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call this the invariant feature. The corresponding classi-
fier θ∗inv = (w∗

inv = (1, 0)⊤, b∗inv = 0) is the ideal lin-
ear classifier that achieves the best worst-group accuracy
(Theorem 10). We call this the invariant classifier. The
second coordinate of x is aligned with the attribute a
and not the label y: E[x2|a] = a∥ψ∥. The imbalance
in sampling rates of the different groups can cause the
SVM classifier to have a component along this coordi-
nate, even though it is trained to target the label y. We
call this coordinate the spurious feature. If the minority
group were entirely absent, the ideal classifier would in-
volve the spurious feature, and would have the weight vector
w∗

spu = ∥µ∥√
∥µ∥2+∥ψ∥2

(1, 0)⊤+ ∥ψ∥√
∥µ∥2+∥ψ∥2

(0, 1)⊤ and bias

0. We call this the spurious classifier. Next we show that
the max-margin classifier converges to either the invariant
or spurious classifier depending on the tail properties of the
group conditional distributions.

5.1. Low dimensional Gumbel type

Finally, we are ready to state our main results. First, we
look at the case analogous to the Gumbel types in Section 4,
where the distribution tails “spread out” with more data.

Theorem 6. Suppose D(0) satisfies the concentra-
tion condition in Assumption 2 and Xmax(p, δ, 2) −
Xmax(m, δ, 2) ≥ 2∥ψ∥+c(p, δ, 2)+C(m, δ, 2). If p→ ∞,
then with probability at least 1 − 4δ, the ERM solution
converges to the spurious solution w∗

spu. In addition, with
probability at least 1− 12δ, wge(θss) < wge(θerm).

First, observe that bounding Xmax(p, δ, 2)−Xmax(m, δ, 2)
from below essentially means that the maximum of p sam-
ples is considerably larger than the maximum of m samples
when p ≫ m; this is the spreading out condition in Fig-
ure 1. The first part of the theorem thus says that ERM has
poor worst-group error in this case, while the second part
shows that throwing away data through subsampling helps.
Second, observe that unlike Section 4, where the bias term
in the max-margin solution changes with the tail properties,
for imbalanced groups, it is the direction of the max-margin
classifier that changes (as illustrated in Figure 1).

We now make this result concrete when the group-
conditional distributions are symmetric Gaussians centered
at zero in R2. Let ∥µ∥ =

√
3 log p

δ and ∥ψ∥ =
√
κ/4 log p

δ .
The ratio of the weight associated with the spurious feature
to the invariant feature in w∗

spu is
√

κ
12 . Let m = pτ , where

τ < 1. In this case, since ∥µ∥ > Xmax(p, δ, 2), the two
classes are linearly separable. If κ < 2

(
1 + τ − 2

√
τ
)
,

then the condition in the above theorem is satisfied and thus
we can conclude that for this family of Gaussians the max-
margin solution converges to the spurious solution. Let us
contrast this with uniform D(0), which has no tails. Since
Xmax(p, δ, 2) = Xmax(m, δ, 2) = 1 the condition in the

above theorem is not satisfied for uniform distribution.

5.2. Low dimensional Weibull type

We next look at our analogue of the Weibull case in Sec-
tion 4, where the tails of the group-conditional distributions
grow slowly with more data. In this case, we show that the
max-margin solution converges to the invariant classifier
that achieves the optimal worst-group error.
Theorem 7. Suppose D(0) satisfies the concentration con-
dition in Assumption 2 and as p and m approach ∞

Xmax(p, δ, 2)−Xmax(m, δ, 2)

2∥ψ∥
→ 0.

Ifm, p→ ∞, then with probability at least 1−4δ, the ERM
solution converges to the invariant solution w∗

inv.

Some remarks are in order. Observe that this theorem re-
quires that the difference between the tails Xmax(p, δ, 2)−
Xmax(m, δ, 2) shrinks as p and m go to infinity. A concrete
example where Theorem 7 applies is symmetric uniform
D(0), where Xmax(p, δ, 2) = Xmax(m, δ, 2) = 1.

5.3. Higher dimensional case

Moving on to higher dimensions, we again consider a setup
where the feature vectors x ∈ Rd. We assume that the group-
conditional distributions D have the same form but with
shifted means, and are spherically symmetric around their
means. We select the first unit vector e1 = (1, 0, . . .) as the
invariant feature, and the second one e2 = (0, 1, 0, . . .) as
the spurious feature. Thus the group-conditional distribution
for points in group g = (y, a) is D(y∥µ∥e1 + a∥ψ∥e2). As
earlier in the Section 5, we can similarly define the invariant
classifier and the spurious classifiers. The main results
here, which we state below, mirror the theorems for the low
dimensional cases.
Theorem 8. [Gumbel type] Suppose D(0) satisfies the con-
centration condition in Assumption 2 and Xmax(p, δ, d)−
Xmax(m, δ, d) ≥2∥ψ∥+ c(p, δ, d)+C(m, δ, d). If p→ ∞,
then with probability at least 1 − 4δ, the ERM solution
converges to the spurious solution w∗

spu. In addition, with
probability at least 1− 12δ, wge(θss) < wge(θerm).

Theorem 9. [Weibull type] Suppose D(0) satisfies the con-
centration condition in Assumption 2 and as p and m→ ∞

Xmax(p, δ, d)−Xmax(m, δ, d)

2∥ψ∥
→ 0,

Xmax(p, δ, d)−Xmax(m, δ, d)

2∥µ∥
→ 0,

and C(m,δ,d)+c(m,δ,d)+ 1
2

√
2C(m,δ,d)+c(m,δ,d)∥ψ∥

∥µ∥ → 0. If
m, p→ ∞, then with probability at least 1− 4δ, the ERM
solution converges to the invariant solution w∗

inv.
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Table 1: Performance of ERM on imbalanced and balanced
datasets on high and low-dimensional versions of Water-
birds and CelebA. Worst group accuracy of ERM trained on
balanced data substantially improves.

Dataset Method Avg. Accuracy WG accuracy
Waterbirds ERM 0.89± 0.00 0.63± 0.01
Waterbirds SS 0.93± 0.00 0.88± 0.01
Waterbirds ERM-PCA 0.88± 0.01 0.66± 0.03
Waterbirds SS-PCA 0.94± 0.01 0.89± 0.01
CelebA ERM 0.95± 0.00 0.36± 0.05
CelebA SS 0.91± 0.00 0.83± 0.01
CelebA ERM-PCA 0.95± 0.00 0.40± 0.01
CelebA SS-PCA 0.90± 0.00 0.83± 0.01

6. Empirical Implications
We next investigate the empirical implications of the pro-
posed theory. Specifically, we ask:

• Our theory is developed for linear SVMs. Does it bear
relevance to neural networks trained on imbalanced data?

• Our theory is most applicable in low to moderate dimen-
sions. Does throwing away data improve the worst group
error in real data when applied to the top few features?

• What do the tails of the top feature distributions look like?

Datasets & Baselines. These questions are considered in
the context of Waterbirds (Sagawa et al., 2019) and CelebA
(Liu et al., 2015), the two most commonly used datasets
for studying group imbalance. The Waterbirds data consists
of two target classes – Waterbirds and Landbirds, and two
background types – Water and Land. Most waterbirds ap-
pear on water, and most landbirds appear on land. In CelebA
data, the target is to predict hair type – Blond or Non-Blond,
where the frequency of blond women is much higher than
blond men. Our ERM baseline consists of a ImageNet-
pretrained ResNet-50 model that is finetuned on Waterbirds
(4795 data points) and CelebA datasets (162770 data points)
respectively. To understand the impact of dimensionality
reduction, we compare this with the ERM-PCA baseline,
that takes the PCA of the last layer (2048 dimension) of
ResNet-50 model and trains a linear classifier on the first
four principal components that explain ≈ 99% of the vari-
ance in the data. Kirichenko et al. (2022) showed that if
we freeze the fine-tuned representations and retrain just the
last linear layer on balanced data obtained by subsampling
that suffices to improve the worst group error. We call this
method SS. We compare it with SS-PCA that trains a lin-
ear layer on balanced four-dimensional data (top four PCA
components).
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Figure 2: Waterbirds: Distribution of the top features.

Results. Table 1 shows the results. We see that as expected
for the high dimensional data, ERM performs much worse in
terms of worst-group accuracy (WG accuracy) than SS. This
confirms the findings of prior work (Kirichenko et al., 2022;
Idrissi et al., 2022). We also see that the same pattern holds
for ERM-PCA and SS-PCA. This confirms that throwing
away data improve the worst group error in real data when
applied to the top few features. In Figure 2, we visualize the
tails of the top PCA feature for Waterbirds. Specifically, we
plot a histogram of data from each group projected along
the feature with the highest PCA value. The results on other
features and CelebA are plotted in the Appendix. The results
show that the groups are indeed long-tailed, in the sense that
they do not look like the uniform distribution. This suggests
that the theoretical phenomenon that we describe in this
paper might contribute to the success of subsampling.

7. Discussion
The vast majority of learning theory literature including
works carried out in the context of multi group analysis
have focussed on measuring concentrations of bounded
functions (Rothblum & Yona, 2021; Tosh & Hsu, 2022;
Haghtalab et al., 2022; Sagawa et al., 2019; 2020), and tail
properties of distributions feature rarely. A handful of pa-
pers have looked at designing algorithms with performance
guarantees for tasks carried out on heavy-tailed distribu-
tions. For example, (Hsu & Sabato, 2016) proposes a re-
gression algorithm based on the median-of-means estimator
that concentrates well under heavy-tailed distributions. In
contrast, we analyze algorithms under distributions with
different kinds of tail properties. Other works on theory
of imbalanced classification have focused on metrics other
than accuracy (Menon et al., 2013; Natarajan et al., 2017),
such as precision and recall (Diochnos & Trafalis, 2021).
An example is (Narasimhan et al., 2015), which proposes
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a new Bayes Optimal classifier for different functions of
the confusion matrix when there are imbalanced classes,
together with consistency guarantees. However, the bounds
in these works are coarser than ours, as they do not reflect
changing behavior depending on the tail distributions of the
classes.

Our work is also related to Nagarajan et al. (2020b), which
analyzes max-margin classifiers to explain the failure of
of ERM under group imbalance. Our work complements
their findings. While the authors derive a lower bound
on the weight associated with the spurious feature, they
do not specify conditions on the distribution under which
this bound is positive, which is crucial towards explaining
when the model relies on spurious features. We fill this
gap as we provide a characterization of the max-margin
classifiers in terms of the tails of the distribution. To the
best of our knowledge, this is a first characterization of the
SVM classifiers as a function of the tails of the distribution.
Therefore, we believe the proof techniques developed here
can be of independent interest. Looking forward, we believe
that while data balancing is powerful it still requires access
to the knowledge of spurious attributes. Therefore, it is
important to formalize what is achievable in the absence of
such knowledge.
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Why Throwing Away Data Improves Worst-Group Error?

Appendices

We organize this section as follows.

• In Appendix A, we derive the results for imbalanced classification.

– In Appendix A.1, we derive results for imbalanced classification in the one-dimensional setting.
– In Appendix A.2, we derive results for imbalanced classification in higher dimensions.

• In Appendix B, we derive the results for classification with imbalanced groups.

– In Appendix B.1, we derive the results for imbalanced groups in two-dimensional setting.
– In Appendix B.2, we derive the results for imbalanced groups in higher-dimensional setting.

• In Appendix C, we present the supplementary materials for the empirical findings.

A. Proofs for imbalanced classes
A.1. One-dimensional case

Theorem 2. [General Gumbel Distributions] Let D be a distribution of the Gumbel type with cumulative density function
F and tail function U(·) and constants an and bn in the Fisher-Tippett-Gnedenko theorem. Let λ =

max(am,ap) log(3/δ)
U(p)−U(m) ,

and let µ = U(p) + ap log(3/δ). Then, for large enough m and n, with probability ≥ 1− 2δ over the training samples, we
have:

θerm ≥ 1

2
(U(p)− U(m))(1− λ),

|θss| ≤ 1

2
λ(U(p)− U(m))

In addition, the worst-class errors satisfy:

wce(θerm) ≥ 1− F

(
U(p)(1 + 3λ) + U(m)(1− 3λ)

2

)
wce(θss) ≤ 1− F (U(p)(1− λ)).

Proof. Let Mm denote the maximum of m random variables drawn from D(0). The bias term is the mean of maximum
negative point and minimum positive training point. In the case of subsampled data, where both classes have the same
number of datapoints, the solution to the bias term is

θss =
1

2
(Mm −M ′

m),

From the Gumbel concentration lemma (Lemma 8), with probability ≥ 1 − δ, bm + am log log(3/δ) ≤ Mm ≤ bm +
am log(3/δ). Therefore,

|θss| ≤
am
2

log(3/δ) ≤ λ(U(p)− U(m)),

where the second step follows from the definition of λ.

Similarly, we can show that:

θerm =
1

2
(Mp −Mm),

11
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where Mp and Mm are the maxima of p and m independent draws from D(0). From the Fisher-Tippett-Gnedenko theorem,
Mn = bn + anZ where Z is an unit Gumbel random variable, and bn = U(n). Therefore,

θerm =
1

2
(U(p)− U(m) + apZ − amZ

′),

where Z and Z ′ are independent Gumbel variables. This is at least:

θerm ≥ 1

2
(U(p)− U(m)−max{am, ap} log(3/δ)) ≥

1

2
(U(p)− U(m))(1− λ),

where the last step follows from the definition of λ. The first part of the lemma follows.

For the second part of the lemma, let Φ(x) = 1− F (x).

Observe that

wce(θss) ≤ Φ(µ− |θss|)

≤ Φ(U(p) + ap log(3/δ)−
am
2

log(3/δ))

≤ Φ(U(p)(1− λ))

where the first step follows by definition of wce (worse class error is determined by error conditioned on data drawn from
negative class). The second step follows by plugging in the values of µn and an upper bound on |θss| and using the fact that
Φ(x) is a decreasing function of x. The third step follows because am

2 log(3/δ)− ap log(3/δ) ≤ λU(p), and because Φ(x)
is a decreasing function of x.

In contrast,

wce(θerm) ≥ max(Φ(µ− θerm),Φ(µ+ θerm))

≥ Φ(U(p) + an log(3/δ)−
1

2
(U(p)− U(m))(1− λ))

≥ Φ

(
U(p)(1 + 3λ) + U(m)(1− 3λ)

2

)
,

where the first step follows from the fact that Φ is a decreasing function, the second step by plugging in the value of µ, and
the third step from the observation that µn ≤ U(p)(1 + λ). The second part of the theorem follows.

Lemma 1. Let Z3 and Z4 be two independent standard Gumbel variables. Then with probability ≥ 1− 2
1+eτ , |Z3−Z4| ≤ τ .

Proof. Since Z3 and Z4 are independent standard Gumbel variables, Z3−Z4 is distributed according to a logistic distribution
with location parameter 0 and scale parameter 1. This means that Z3 − Z4 is symmetric about 0, and also that for any τ ,

Pr(Z3 − Z4 ∈ [−τ, τ ]) = 1− 2

1 + eτ
(3)

The lemma follows.

Lemma 2. (Feller, 1968) Let X ∼ N(0, 1). Then, for any t,

1√
2π
e−t

2/2
(1
t
− 1

t3

)
≤ Pr(X ≥ t) ≤ 1√

2π

e−t
2/2

t

Theorem 3. Let 0 < ϵ, δ, γ < 1 be constants and suppose m = βp. There exists an p0 such that the following holds. If
p ≥ p0 and β ≥ 1/p3/4, then with probability greater or equal than 1− 2ϵ− 2δ − 3γ:

|θerm| ≥
1

2
√
2 log(βp)

(2
3
log(1/β)− 2 log(1/γ)

)
,

|θss| ≤
log(1/γ)

2
√
2 log(βp)

.

When pβ2 ≥ ϵ, this implies:

wce(θss) ≤
2ϵ

γp
, wce(θerm) ≥

ϵγ1/4

2pβ1/12
.
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Proof. Fix ϵ, γ and δ. We first show that with the given value of µn, the probability that the training samples are realizable
is at least 1− 2ϵ. To see this, observe that from Lemma 2, the probability a sample z from the positive class has value < 0 is
at most:

Pr(X ≥
√
2 log(n/ϵ)|X ∼ N(0, 1)) ≤ e−µ

2
n/2

√
2πµn

≤ ϵ/n

An union bound over all n samples establishes that the probability that any of the n positive samples lie below zero is at
most ϵ. A similar argument can also be applies to the negative class to show that with probability ≥ 1− 2ϵ, the training data
is linearly separable.

To establish the first part of the theorem, we will separately look at θss and θerm. For p large enough, we can write

Pr

(
|θss| ≥

1

2
· log(1/γ)√

2 log(βp)

)
≤ Pr (|Z3 − Z4| ≥ log(1/γ)) + δ

From Lemma 1, this probability is at most δ + 2
1+(1/γ) ≤ δ + 2γ.

Similarly, for p large enough, we have that:

θerm → 1

2
(bβp − bp) +

1

2
aβp(Z1 − Z2) +

1

2
(ap − aβp)Z2

where Z1 and Z2 are standard Gumbel random variables. This means that for p large enough, and for any threshold τ , we
have that:

Pr(θerm ≤ τ) ≤ Pr(
1

2
(bβp − bp) +

1

2
aβp(Z1 − Z2) +

1

2
(ap − aβp)Z2 ≤ τ) + δ (4)

Now, observe that for Gaussians:

bβp − bp =
√
2 log βp− log log(βp) + log 4π√

2 log βp
−
√
2 log p+

log log p+ log 4π√
2 log p

≤
√
2 log βp−

√
2 log p

=
√
2 log βp(1−

√
log p

log βp
)

=
√

2 log βp(1− (1 +
log(1/β)

log βp
)1/2)

≤
√
2 log βp(− log(1/β)

3 log βp
)

≤ − 2 log(1/β)

3
√
2 log βp

(5)

Here the first step follows as log log p+log(4π)√
log p

is a decreasing function of p, and the second and third steps follow from

algebra. The fourth step follows from the fact that (1 + x)1/2 ≥ 1 + x/3 when x ≤ 3; as p3 ≥ β4, log(1/β)
log βp ≤ 3. The final

step then follows from algebra. Additionally, from Lemma 1,

Pr(aβp(Z1 − Z2) ≥
log(1/γ)√
2 log βp

) ≤ Pr(Z1 − Z2 ≥ log(1/γ)) ≤ 1

1 + 1/γ
≤ γ

Finally, observe that

aβp − an =
1√

2 log βp
− 1√

2 log p

=
1√

2 log βp
(1−

√
log βp

log p
)

=
1√

2 log βp
(1− (1− log(1/β)

log p
)1/2)

≤ 1√
2 log βp

· log(1/β)
log p

(6)
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where the last step follows because for 0 < x < 1,
√
1− x ≥ 1− x. Therefore,

Pr((aβp − ap)Z2 ≥ log(1/γ)√
2 log βp

) ≤ Pr(Z2 ≥ log(1/γ) · log p

log(1/β)
)

≤ Pr(Z2 ≥ log(1/γ))

≤ 1− e−γ ≤ γ (7)

where the first step follows from Equation 6, the second step from the fact that log(1/β) ≤ log n, and the final step from the
standard Gumbel cdf and the fact that 1− e−x ≤ x. The first part of the theorem follows from combining Equations 5, 6
and 7.

To prove the third part of the theorem, we use Lemma 2. From the second part of the theorem and Lemma 2, observe that

err(θss) ≤ Φ
(
µ− log(1/γ)

2
√
2 log βp

)
From Lemma 2, the right hand side is, in turn, at most:

≤ 1
√
2π(µ− log(1/γ)

2
√
2 log βp

)
· exp

(
− 1

2

(
µ− log(1/γ)

2
√
2 log βp

)2 )
≤ 2√

2πµn
exp

(
− 1

2
µ2 +

µ log(1/γ)

2
√
2 log βn

)
≤ 2ϵ

n
· exp

( µ log(1/γ)
2
√
2 log βp

)

Here the first step follows because for p large enough, µ− log(1/γ)

2
√
2 log βp

≥ 1
2µ; this is because µ is an increasing function of p.

The second step follows because by design 1√
2πµ

e−µ
2/2 = ϵ/p and the third step follows from simple algebra.

We observe that µ ≤
√

2 log(p/ϵ) – this is because e−
√

2 log(p/ϵ)
2
/2/
√

4π log(p/ϵ) < ϵ/p. This implies that:

µn√
2 log βp

≤
(
1 +

log(1/ϵβ)

log βp

)1/2
≤ 2,

provided 1
ϵ ≤ β2p. Therefore,

err(θss) ≤
2ϵ

γp

In contrast, from Lemma 2,

err(θerm) ≥ Φ
(
µ−

2
3 log(1/β)− 2 log(1/γ)

2
√
2 log βp

)
= Φ

(
µ− log(γ2/β2/3)

2
√
2 log βp

)
From Lemma 2, this is at least:

1√
2π

( 1

(µ− log(γ2/β2/3)

2
√
2 log βp

)
− 1

(µ− log(γ2/β2/3)

2
√
2 log βp

)3

)
· exp(−1

2

(
(µ− log(γ2/β2/3)

2
√
2 log βp

)2)
)

For p large enough, 1

(µ− log(γ2/β2/3)

2
√

2 log βp
)3

≤ 1
2

1

(µ− log(γ2/β2/3)

2
√

2 log βp
)
; also 1

(µn− log(γ2/β2/3)

2
√

2 log βp
)
≥ 1

µ . This implies that the right hand side

is at least:

1√
2π

· 1

2µ
· exp(−1

2

(
(µ− log(γ2/β2/3)

2
√
2 log βp

)2)
)

14
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Observe that:

1

2
√
2πµ

· exp(−1

2

(
(µ− log(γ2/β2/3)

2
√
2 log βp

)2)
)

≥ 1

2
√
2πµ

· exp(−1

2
µ2) · exp(µ log(γ

2/β2/3)

2
√
2 log βp

− (
log(γ2/β2/3)

2
√
2 log βp

)2)

≥ 1

2
· ϵ
p
· exp(1

2

µ log(γ2/β2/3)

2
√
2 log βp

)

where the first step follows since 1√
2πµ

· e−µ2/2 = ϵ/p and the second step follows since for large enough p, µ/2 ≥
log(γ2/β2/3)

2
√
2 log βp

.

Also: observe that for p large enough µ√
2 log βp

≥ 1
2 – since µ ≥ 1

2

√
2 log(p/ϵ). Putting these all together, the entire error is

at least:
ϵ

2p
exp(

1

8
log(γ2/β2/3)) ≥ ϵγ1/4

2pβ1/12

The theorem now follows.

Theorem 4. [General Weibull Distributions] Suppose D is a distribution of the Weibull-type with parameter α and extremal
point xF . Let µ = xF , and let m, p→ ∞. Then, for any 0 < δ ≤ 1/4, with probability ≥ 1

4·22α − δ,

|θss| ≥ 1

2
(xF − U(m))(ln 2)1/α

|θerm| ≤ 1

2
(xF − U(m))(ln 2)1/α.

Proof. Let Mm denote the maximum of m random variables drawn from D(0). We observe that

θss =
1

2
(Mm −M ′

m),

which for the Weibull case converges to am
2 (W −W ′) = am

2 (Z ′ − Z); here, W and W ′ are reverse Weibull random
variables with parameters α and 1, which makes Z ∼ Weibull(α, 1) and Z ′ ∼ Weibull(α, 1) are independent Weibull
variables, and am = xF − U(m). Combining this with Lemma 3, and accounting for the distributional convergence, we get
that for m large enough,

Pr(|θss| ≥
(xF − U(m))

2
(ln 2)1/α) ≥ 1

22α
− δ

Similarly,

θerm =
1

2
(Mm −Mn),

which in the Weibull case converges to am
2 (Z ′ − Z); here Z ∼ Weibull(α, 1) and Z ′ ∼ Weibull(α, anam ). Observe that

as U(·) is an increasing function, anam = xF−U(n)
xF−U(m) ≤ 1. We can therefore apply Lemma 4 to conclude that for large enough

m and n,

Pr(|θerm| ≤
xF − U(m)

2
(ln 2)1/α) ≥ 1

4
− δ

The theorem follows.

Lemma 3. Let Z ∼ Weibull(α, 1) and Z ′ ∼ Weibull(α, 1) be independent Weibull variables. Then,

Pr(|Z − Z ′| ≥ (ln 2)1/α) ≥ 1

22α

15
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Proof. For any constants a and b,

Pr(|Z − Z ′| ≥ a) ≥ 2Pr(Z ≥ a+ b, Z ′ ≤ b) = 2Pr(Z ≥ a+ b) Pr(Z ′ ≤ b) = 2e−(a+b)α(1− e−b
α

),

where the first step follows becauseZ andZ ′ come from the same distribution, the second step follows from the independence
of Z and Z ′, and the third step from plugging in the CDF for the Weibull distribution. Next, we plug in a = (ln 2)1/k and
b = (ln 2)1/k – and bound the final quantity as:

≥ 2 · 1
2
· exp(−(2(ln 2)1/α)α) ≥ 1

22α
,

which is a constant for constant α.

Lemma 4. Let λ < 1 and let Z ∼ Weibull(α, 1) and Z ′ ∼ Weibull(α, λ) be independent Weibull variables. Then,

Pr(|Z − Z ′| ≤ median(Z)) ≥ 1

4

Proof. Since both Z and Z ′ are positive random variables, Pr(|Z−Z ′| ≤ a) ≥ Pr(Z ≤ a, Z ′ ≤ a) = Pr(Z ≤ a) Pr(Z ′ ≤
a). Now, λ < 1, we can establish a coupling between Z and Z ′ to show that for any a, Pr(Z ′ ≤ a) ≥ Pr(Z = a). The
lemma follows by plugging this in, and setting a = median(Z).

Finally, the proof to Corollary 1 follows by substituting the expression for an and bn for the Uniform distribution in
Theorem 4.

A.2. Imbalanced Classes: Higher Dimensional Case

Denote v̂ as a unit vector in the direction of the vector v. In the lemmas below, we prove some facts that are necessary to
prove the main Theorem 5. µ̂ is a unit vector in the direction of µ (conditional mean of positive class) and ŷ is a unit vector
orthogonal to µ̂.

Lemma 5. If D(0) is spherically symmetric, then the median ŷ⊤x conditioned on µ̂⊤x is zero, i.e., Median[ŷ⊤x|µ̂⊤x] = 0,
where µ̂ ⊥ ŷ.

Proof. To show the above lemma, we will first prove that the joint probability Pr(µ̂⊤x, ŷ⊤x) = Pr(µ̂⊤x, ẑ⊤x), where ŷ
and ẑ are any two unit vectors perpendicular to µ̂. Consider two orthonormal basis B1 and B2 to express vectors x ∈ Rd. We
write the coordinates of x in B1 as {υ11 , · · · , υ1d} and in B2 as {υ21 , · · · , υ2d}. Since x is drawn from a spherically symmetric
distribution Pr(υ11 , · · · , υ1d) = Pr(υ21 , · · · , υ2d). As a result, Pr(υ11 , υ

1
2) = Pr(υ21 , υ

2
2). Suppose the first two vectors in B1

are µ̂ and ŷ and suppose the first two vectors in B2 are µ̂ and ẑ. Thus, υ11 = µ̂⊤x, υ12 = ŷ⊤x, and υ21 = µ̂⊤x, υ22 = ẑ⊤x.
As a result, Pr(µ̂⊤x, ŷ⊤x) = Pr(µ̂⊤x, ẑ⊤x). This implies

Pr(ŷ⊤x ≤ a|µ̂⊤x) = Pr(ẑ⊤x ≤ a|µ̂⊤x)

Substitute ẑ = −ŷ to get
Pr(ŷ⊤x ≤ a|µ̂⊤x) = Pr(−ŷ⊤x ≤ a|µ̂⊤x)

Pr(ŷ⊤x ≤ a|µ̂⊤x) = Pr(ŷ⊤x ≥ −a|µ̂⊤x)

If a = 0, then Pr(ŷ⊤x ≤ 0|µ̂⊤x) = Pr(ŷ⊤x ≥ 0|µ̂⊤x). This implies that the conditional median is zero.

Lemma 6. If D(0) is spherically symmetric, then the median ŷ⊤x(i) conditioned on µ̂⊤x(i) is zero, i.e.,
Median[ŷ⊤x(i)|µ̂⊤x(i)] = 0, where µ̂ ⊥ ŷ and x(i) corresponds to the x in {x1, · · · , xn} with ith largest projection
on µ̂.

Proof. For cleaner exposition, without loss of generality we will say xj takes the jth highest projection on µ̂ for all
j ∈ {1, · · · , n}.

We write the joint probability over ŷ⊤xi, and all µ̂⊤xj as

Pr

(
ŷ⊤xi, µ̂

⊤xi = u, {µ̂⊤xj ≤ u,∀j ≤ i− 1}, {µ̂⊤xk ≥ u,∀k ≥ i+ 1}
)
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= Pr(ŷ⊤xi, µ̂
⊤xi = u)Fµ̂(u)

i−1(1− Fµ̂(u))
n−i (8)

where Fµ̂ is the CDF of x projected on µ̂.

The conditional probability simplifies as follows

Pr(ŷ⊤x(i)|µ̂⊤x(i)) =
Pr(ŷ⊤xi, µ̂

⊤xi = u)Fµ̂(u)
i−1(1− Fµ̂(u))

n−i

Pr(µ̂⊤xi = u)Fµ̂(u)i−1(1− Fµ̂(u))n−i
= Pr(ŷ⊤xi|µ̂⊤xi) (9)

The rest of the lemma now follows from the previous Lemma 5.

Lemma 7. Suppose n iid samples {x1, · · · , xn} are sampled from a spherically symmetric D(0). Let s = d log(2N/ϵ+
1) + log(1/δ) where N = maxi∈{1,··· ,n} ∥xi∥. Then, with probability ≥ 1− δ, for all directions ŷ in Rd there exists an
i ∈ {1, . . . , s} such that

ŷ⊤x(i) ≥ −ϵ
where {x(1), · · · , x(n)} are in the decreasing order of their projection on µ̂, where µ̂ ⊥ ŷ.

Proof. We select an ϵ/N cover C = {y1, . . . , yM} over the surface of the sphere; this is possible for M = ( 2Nϵ + 1)d.1

We will prove the lemma in two steps. First, we will show that with probability ≥ 1 − δ, for all yj ∈ C, there exists a
xi in x(1), . . . , x(s) for which y⊤j xi ≥ 0. To show this, first let us fix a particular yj , and consider x(1), . . . , x(s). For any
of these x(i)’s, Pr(y⊤j x

(i) ≥ 0|µ̂⊤x(i)) = 1/2 (from Lemma 6) and as a result Pr(y⊤j x
(i) ≥ 0) = 1/2. This means that

the probability that y⊤j x
(i) < 0 for all x(i) in x(1), . . . , x(s) is at most 1/2s. For s = d log(2N/ϵ + 1) + log(1/δ), this

probability is at most δ/( 2Nϵ + 1)d. Now, let ŷ be any vector on the surface of the sphere. Suppose yj is its closest vector in
C, and xi is the corresponding x such that y⊤j xi ≥ 0. Since C is an ϵ/N -cover of the sphere, this means that:

ŷ⊤xi ≥ y⊤j xi −
ϵ

N
∥xi∥ ≥ −ϵ

The lemma follows.

Denote set of points in positive class as B and the set of points in negative class as A. We simplify the optimal solution to
SVM as follows.

w∗ = argmax
∥w∥=1

inf
x∈B

w⊤x− sup
x∈A

w⊤x

= argmin
∥w∥=1

− inf
x∈B

w⊤x+ sup
x∈A

w⊤x

= argmin
∥w∥=1

sup
x∈B

−w⊤x+ sup
x∈A

w⊤x

= argmin
∥w∥=1

sup
x∈−B

w⊤x+ sup
x∈A

w⊤x

(10)

Additionally,

−b∗ =
1

2
(sup
x∈A

(αµ̂+ βŷ)⊤)x− sup
x∈−B

(αµ̂+ βŷ)⊤)x)

Define the set Aµ = {x+ µ,∀x ∈ A}, and the set −Bµ = {x+ µ,∀x ∈ −B}.

With this, and some algebraic simplification the SVM optimization problem becomes:

argmin
α∈[−1,1],ŷ

sup
x∈Aµ

(αµ̂+ βŷ)⊤(x− µ) + sup
x∈−Bµ

(αµ̂+ βŷ)⊤(x− µ)

argmin
α∈[−1,1],ŷ

−2α∥µ∥+ sup
x∈Aµ

(αµ̂+ βŷ)⊤)x+ sup
x∈−Bµ

(αµ̂+ βŷ)⊤)x

1https://people.eecs.berkeley.edu/˜bartlett/courses/281b-sp08/19.pdf
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w∗ = argmin
α,ŷ

−2α∥µ∥+ sup
x∈Aµ

(αµ̂+ βŷ)⊤)x+ sup
x∈−Bµ

(αµ̂+ βŷ)⊤)x (11)

Additionally,

−b∗ =
1

2
( sup
x∈Aµ

(αµ̂+ βŷ)⊤)x− sup
x∈−Bµ

(αµ̂+ βŷ)⊤)x)

Theorem 5. D(0) satisfies the concentration conditions in Assumption 2 and 3. Suppose ∥µ∥ > Xmax(p, δ, d) and
ζ(p, δ, d, q) > 4Xmax(m, δ, d). If p and m are sufficiently large, then with probability at least 1− 8δ, the worst class error
rate achieved by ERM is worse than the worst class error achieved by subsampling the classes.

Proof. We start with expression for optimal SVM solution derived above

w∗ = argmin
α,ŷ

−2α∥µ∥+ sup
x∈Aµ

(αµ̂+ βŷ)⊤)x+ sup
x∈−Bµ

(αµ̂+ βŷ)⊤)x (12)

Additionally,

−b∗ =
1

2
( sup
x∈Aµ

(αµ̂+ βŷ)⊤)x− sup
x∈−Bµ

(αµ̂+ βŷ)⊤)x)

Let us try to bound −b∗. From the concentration condition in Assumption 2, we know the first term above lies in

1

2
[Xmax(p, δ, d)− c(p, δ, d), Xmax(p, δ, d) + C(p, δ, d)]

The second term lies in
1

2
[Xmax(m, δ, d)− c(m, δ, d), Xmax(m, δ, d) + C(m, δ, d)]

As a result, the lower bound on −b∗ is

1

2

(
Xmax(p, δ, d)−Xmax(m, δ, d)− c(p, δ, d)− C(m, δ, d)

)
(13)

The upper bound on −b∗ is

1

2

(
Xmax(p, δ, d)−Xmax(m, δ, d) + C(p, δ, d) + c(m, δ, d)

)
(14)

Note −b∗ lies in the above interval with probability at least 1− 2δ.

The expression for the error of a classifier w⊤x+ b is given as follows. We assume ∥w∥ = 1.

Err+ = P(w⊤X + b ≤ 0|X ∼ D(µ)) (15)

where D(µ) is the distribution of samples for the positive class centered at µ. We assume D is spherically symmetric about
zero so we simplify the above expression as follows.

Err+ = P(w⊤(µ+ X̃) + b ≤ 0|X̃ ∼ D(0)) (16)

Since X̃ is sampled from D(0) which is spherically symmetric, its projection on wT X̃ will have a distribution that does not
depend on the direction w. Let us denote w⊤X̃ =W . The above expression becomes. Let us denote the CDF of W as FW .

Err+ = P(W ≤ −w⊤µ− b) = FW (−w⊤µ− b) (17)

18
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We now plug in expression for the max-margin solution. In the analysis above, we showed that −b∗ ∈ [amin, amax].
Therefore, the error for the positive class

FW (−w⊤µ+ amin) ≤ Err+ ≤ FW (−w⊤µ+ amax)

FW (−α∥µ∥+ amin) ≤ Err+ ≤ FW (−α∥µ∥+ amax)

FW (−∥µ∥+ 1

2

(
Xmax(p, δ, d)−Xmax(m, δ, d)− c(p, δ, d)− C(m, δ, d)

)
) ≤ Err+ ≤

FW (−α∥µ∥+ 1

2

(
Xmax(p, δ, d)−Xmax(m, δ, d) + C(p, δ, d) + c(m, δ, d)

)
)

(18)

In the upper bound, we invoked a condition that for the optimal w = αµ̂+ βŷ, where β =
√
1− α2. In the lower bound,

we set α to one. Consider the following two cases.

• Balanced class case: m = p

FW

(
− ∥µ∥ − 1

2
c(p, δ, d)− 1

2
C(m, δ, d)

)
≤ Err+ ≤ FW

(
− α∥µ∥+ 1

2
C(p, δ, d) +

1

2
c(m, δ, d)

)
(19)

• Imbalanced class case: p >> m. In this case, the error at least grows as

FW
(
− ∥µ∥+ 1

2

(
Xmax(p, δ, d)−Xmax(m, δ, d)

))
We need to show that the upper bound of the balanced case is better than the lower bound of the imbalanced case, which
boils down to the following

FW

(
− α∥µ∥+ 1

2
C(p, δ, d) +

1

2
c(m, δ, d)

)
≤

FW

(
− ∥µ∥+ 1

2

(
Xmax(p, δ, d)−Xmax(m, δ, d)− c(p, δ, d)− C(m, δ, d)

)) (20)

If α ≥ 1− Xmax(p,δ,d)−Xmax(m,δ,d)−c̄(p,m,δ,d)
2∥µ∥ , where c̄(p,m, δ, d) = C(p, δ, d) + c(p, δ, d) +C(m, δ, d) + c(m, δ, d) then

the above inequality holds true.

We now show that α ≥ 1−η, where η = Xmax(p,δ,d)−Xmax(m,δ,d)−c̄(p,m,δ,d)
2∥µ∥ . Since ∥µ∥ > Xmax(p, δ, d), η < 1

2 . To confirm

that 1− Xmax(p,δ,d)−Xmax(m,δ,d)−c̄(p,m,δ,d)
2∥µ∥ ≤ 1, we need to check that Xmax(p, δ, d) ≥ Xmax(m, δ, d) + c̄(p,m, δ, d) ≥

0. Observe that ζ(p, δ, d, q) > 4Xmax(m, δ, d), which implies Xmax(p, δ, d, q) > 4Xmax(m, δ, d). Xmax(p, δ, d) −(
Xmax(m, δ, d) + c̄(p,m, δ, d)

)
, which is lower bounded 3Xmax(m, δ, d) − c̄(p,m, δ, d). Note that the second term

c̄(p,m, δ, d) diminishes to zero for sufficiently large m and p while the first term is positive, which shows that α ≤ 1.

Recall the SVM objective is
−2α∥µ∥+ sup

x∈Aµ
(αµ̂+ βŷ)⊤x+ sup

x∈−Bµ
(αµ̂+ βŷ)⊤x

where x ∈ D(0). For a fixed α, let ŷ(α) denote the minimizer of the above.

We compare the SVM objective when α = 1 to a lower bound on the optimal value achievable if α < 1− η. When α = 1
the objective becomes

−2∥µ∥+ sup
x∈Aµ

(µ̂⊤x) + sup
x∈−Bµ

(µ̂⊤x) (21)

Recall q = d log(N/ϵ+1)+ log(1/δ), where N = maxi∈A ∥xi∥, where ϵ = 1
log p . Similarly, define q̃ = d log(Ñ/ϵ+1)+

log(1/δ), where Ñ = maxi∈B ∥xi∥. Consider the qth and q̃th highest value for µ̂⊤x on set A and set B respectively. For a
fixed α, we obtain a lower bound for the SVM objective in terms of qth and q̃th highest values as follows.

−2α∥µ∥+ αµ̂⊤x
(i)
+ + αµ̂⊤x

(j)
− + βŷ(α)⊤x

(i)
+ + βŷ(α)⊤x

(j)
−

19
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where x(j)− has one of the top q projections on µ̂ among the positive samples, where x(i)+ has one of the top q̃ projections on
µ̂ among the negative samples. We use Lemma 7 to arrive at a lower bound on the SVM objective. To use Lemma 7, we
need ŷ⊤x(i)+ to have a median of zero conditional on µ̂⊤x

(i)
+ . We also need a similar condition for ŷ⊤x(j)− conditional on

µ̂⊤x
(j)
− . These conditions follow from Lemma 6.

With probability 1− 2δ the lower bound on the objective is

α(−2∥µ∥+ µ̂⊤x
(i)
+ + µ̂⊤x

(j)
− )− 2ϵ

We minimize this lower bound for α ∈ [−1, 1− η) and obtain the following

(1− η)(−2∥µ∥+ µ̂⊤x
(i)
+ + µ̂⊤x

(j)
− )− 2ϵ

where we use the following fact ∥µ∥ > Xmax(p, δ, d) ≥ Xmax(m, δ, d) + c̄(p,m, δ, d). We will now show that the lower
bound above has a very low probability to improve upon the objective value for α = 1. As a result, optimal α will have to
be more than 1− η. Let us consider the event

(1− η)(−2∥µ∥+ µ̂⊤x
(i)
+ + µ̂⊤x

(j)
− )− 2ϵ ≤

−2∥µ∥+ sup
x∈Aµ

(αµ̂⊤x) + sup
x∈−Bµ

(αµ̂⊤x)
(22)

After rearrangement we get

η∥µ∥+ 1

2
(1− η)

(
µ̂⊤x

(i)
+ + µ̂⊤x

(j)
− )

)
≤ 1

2

(
sup
x∈Aµ

(µ̂⊤x) + sup
x∈−Bµ

(µ̂⊤x) + 2ϵ

)
We substitute ϵ = 1/ log p and use the expression for η∥µ∥ to get

(
Xmax(p, δ, d)−Xmax(m, δ, d)− c̄(p,m, δ, d)

)
+ (1− η)

(
µ̂⊤x

(i)
+ + µ̂⊤x

(j)
− )

)
≤(

sup
x∈Aµ

(µ̂⊤x) + sup
x∈−Bµ

(µ̂⊤x) +
2

log p

)

After further rearrangement we get

(1− η)

(
µ̂⊤x

(i)
+ + µ̂⊤x

(j)
− )

)
≤(

sup
x∈Aµ

(µ̂⊤x) + sup
x∈−Bµ

(µ̂⊤x)−Xmax(p, δ, d) +Xmax(m, δ, d) +
2

log p

)
+ c̄(p,m, δ, d)

From the above we get

(1− η)

(
µ̂⊤x

(i)
+ + µ̂⊤x

(j)
− )

)
≤(

sup
x∈Aµ

(µ̂⊤x) + sup
x∈−Bµ

(µ̂⊤x)−Xmax(p, δ, d) +Xmax(m, δ, d) +
2

log p

)
+ c̄(p,m, δ, d)

Since η < 1
2 we can further simplify the LHS with a weaker lower bound
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1

2

(
µ̂⊤x

(i)
+ + µ̂⊤x

(j)
− )

)
≤
(

sup
x∈Aµ

(µ̂⊤x) + sup
x∈−Bµ

(µ̂⊤x)−Xmax(p, δ, d) +Xmax(m, δ, d) +
2

log p

)
+ c̄(p,m, δ, d)

We write an upper bound for RHS using the concentration condition.

1

2

(
µ̂⊤x

(i)
+ + µ̂⊤x

(j)
− )

)
≤ 2Xmax(m, δ, d) + c̄(p,m, δ, d) + C(m, δ, d) + C(p, δ, d) +

2

log p

Using the lower bound from the concentration condition in Assumption 3, we get the following lower bound

ζ(m, δ, d, q̃) + ζ(p, δ, d, q) ≤ 4Xmax(m, δ, d) + 2c̄(p,m, δ, d) + 2C(m, δ, d) + 2C(p, δ, d) +
4

log p

Since ζ(p, δ, d, q) > 4Xmax(m, δ, d) for a sufficiently large m and p we gather that ζ(p, δ, d, q) + ζ(m, δ, d, q̃) ≥
4Xmax(m, δ, d) + 2c̄(p,m, δ, d) + 2C(m, δ, d) + 2C(p, δ, d) + 4

log p . As a result, the above inequality does not hold.
Therefore, the event in equation 22 occurs with a probability at most 2δ. As a result, we obtain that α ≥ 1 − η with a
probability at least 1 − 4δ. We showed above that if α ≥ 1 − η, then with probability at least 1 − 4δ, worst class error
improves under data balancing. The intersection of these two events occurs with a probability at least 1− 8δ.

Expression for ζ In this section, our goal is to derive a lower bound on the qth maximum projection of µ̂ across different
data samples. We denote V = µ̂⊤X .

We first make some observations that we use subsequently. Consider the event V (q) > t, where V (q) is qth highest value of
V among p samples. Suppose the CDF of V is FV . Find a value r such that FV (t) = 1− r. This denotes r fraction of V is
greater than t. Define Ui = I(Vi > t), where I is the indicator function and Ui is one when Vi > r and zero otherwise.
Consider the event

p∑
i=i

Ui > q

If the above event is true, then that implies there are at least q values that are above t and thus V (q) > t. Also, if V (q) > t,
then there exist at least q Ui’s that are one. Thus the above two events are equivalent. The expectation E[

∑p
i=1 Ui] = pr.

Let q = pr
2 . We use Chernoff bound to arrive at the following bound

Pr(

p∑
i=i

Ui < q) < e−
pr
8

We set pr8 = d log(log pmaxxi∈A ∥xi∥) + log(1/δ).

Therefore, r = 8
d log p log(maxxi∈A ∥xi∥/ϵ)+log(1/δ)

p . For the case of symmetric d dimensional Gaussians centered at zero we
get, pr8 = d log(log p

√
d log p)) + log(1/δ). We simplify the bound e−

pr
8 as follows.

e−
pr
8 ≤ e−d log(log p

√
d log p)) ≤ 1

(log p
√
d log p)d

For sufficiently large p, the probability falls below any δ.

We now derive a bound on t.

Recall F (t) = 1− r, which simplifies for a Gaussian to Q(t) = r, where Q is the Q function. Since Q(t) ≤ e−t
2

. We get
e−t

2 ≥ r, which implies

t ≤
√
2 log

1

r
=

√
2 log

p

8(d log(log p
√
d log p) + log(1/δ))
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Hence, we can use ζ(p, δ, d) =
√
2 log p

8(d log(log p
√
d log p)+log(1/δ))

for symmetric Gaussian distributions.

Corollary 2. Let D(0) be a symmetric Gaussian in R2. The bias for the ERM classifier θerm lies in an arbitrarily small
interval centered at

√
2 log(p/δ)−

√
2 log(m/δ). In contrast, the bias for the classifier under subsampling θss lies in an

arbitrarily small interval centerd at zero. If m = log p and ∥µ∥ >
√
2 log(p/δ), then with probability 1− 8δ, ERM has

a worse worst class error than subsampling. Let D(0) be a symmetric uniform in R2. The bias term for both the ERM
classifier and the subsampling classifier lies in an arbitrarily small interval centered at zero.

Proof. To prove this Corollary, we leverage Theorem 5 and its proof. In equation 13 and equation 14 we derive the upper
and the lower bounds for the bias. For a d dimensional spherically symmteric Gaussian, the expressions for concentration
condition are derived in Lemma 18. For a sufficiently large m, p, the bias is centered at√

2 log
p

δ
−
√
2 log

m

δ

Observe that Xmax(p, δ, d) ≈
√

2 log p
δ and Xmax(m, δ, d) ≈

√
2 log m

δ . If we subsample, then we are in the case, where
Xmax(p, δ, d) = Xmax(m, δ, d) and as a result the bias term is centered at zero. If m grows as log p, then the upper bound
on Xmax(m, δ, d) is

√
2 log log p. As a result, the condition that ζ(p, δ, d, q) > 4Xmax(m, δ, d) is satisfied for sufficiently

large p. Finally, if ∥µ∥ for the mean of the Gaussian is more than
√

2 log(p/δ)−
√
2 log(m/δ), then it follows from the

previous theorem that subsampling improves the worst group error. For a 2 dimensional symmetric uniform, the expressions
for the concentration condition are derived in Lemma 13. For a sufficiently large m, p, the bias term is centered at zero with
the interval given as [

− ϱ

p2/3
− 1

p
,
1

m
+

ϱ

m2/3

]
where ϱ is a constant whose expression can be obtained from Lemma 13.

B. Proofs for imbalanced groups
B.1. Two-dimensional case

Lemma 8. Let x1, . . . , xn be n i.i.d unit Gaussians and let Xmax = max(x1, . . . , xn). Then for n large enough, with
probability ≥ 1− 3δ, we have that:

Xmax ≤ bn + an log(1/δ), Xmax ≥ bn − an log log(1/δ)

where an = 1√
2 log(n)

and bn =
√
2 log(n)− log logn+log(4π)√

2 logn
are the constants in the Fisher-Tippett-Gnedenko theorem

when applied to Gaussians.

Proof. From the Fisher-Tippett-Gnedenko theorem, when n is large enough, we have that Xmax
d−→ anZ + bn, where d−→

stands for convergence in distribution, and Z is a standard Gumbel random variable. If n is sufficiently large, then for any
t ∈ R, |Pr(Xmax ≤ t)− Pr(anZ + bn ≤ t)| ≤ δ/2.

For a standard Gumbel variable Z, we have that:

Pr(Z ≤ log(1/δ)) = exp(− exp(− log(1/δ))) = exp(−δ) ≥ 1− δ

As a result,

Pr(Xmax ≤ bn + an log(1/δ) ≥ 1− 3δ

2
Additionally, we have:

Pr(Z ≥ − log log(1/δ)) = 1− exp(− exp(log log(1/δ))) = 1− δ

As a result,

Pr(Xmax ≥ bn − an log log(1/δ)) ≥ 1− 3δ

2

Finally, if we take a union bound on the complement of the above two events and then the lemma follows.
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Lemma 9. Let x1, . . . , xn be vectors in R2 drawn i.i.d from N(0, I2). Then, with probability ≥ 1− δ,

max
i

∥xi∥ ≤
√
2 log(n/δ)

Proof. ∥xi∥ follows a Rayleigh distribution and we use this observation to arrive at the above result.

Pr

(
max
i

∥xi∥ ≤
√
2 log(n/δ)

)
= 1− Pr

(
max
i

∥xi∥ ≥
√
2 log(n/δ)

)
≥

1− nPr

(
∥xi∥ ≥

√
2 log(n/δ)

)
= 1− ne− log(n/δ) = 1− δ

(23)

Lemma 10. Let x1, . . . , xn be n i.i.d unit Gaussians with covariance I2. Then for n large enough, with probability ≥ 1− δ,
we have that for all directions v ∈ R2:

max
i∈{1,··· ,n}

{v⊤xi} ≤ bn + an + an log

(
6
√
2 log(2n/δ)

anδ

)
,

max
i∈{1,··· ,n}

{v⊤xi} ≥ bn − an − an log log

(
6
√
2 log(2n/δ)

anδ

)
where an and bn are the constants in the Fisher-Tippett-Gnedenko theorem when applied to Gaussians.

Proof. Suppose f(v) = maxi v
⊤xi where v is a unit vector in R2. Then,

f(v)− f(u) = max
i
v⊤xi −max

i
u⊤xi ≤ max

i
(v − u)⊤xi ≤ ∥v − u∥ ·max

i
∥xi∥

where the first step follows from definition, the second step from subtracting a smaller quantity, and the last step from the
Cauchy-Schwartz inequality.

From Lemma 9, with probability ≥ 1− δ/2, maxi ∥xi∥ ≤
√
2 log(2n/δ), which gives us:

f(v)− f(u) ≤
√

2 log(2n/δ) · ∥v − u∥

Now, we can build an ϵ-cover C(ϵ) over unit vectors on the circle so that successive vectors vi and vi+1 have the property
that ∥vi − vi+1∥ ≤ ϵ. The size of such an ϵ-cover is N(ϵ) = 1/ϵ; additionally, for any unit vector v in R2, there exists some
vi in the cover such that

f(vi)−
√

2 log(2n/δ)ϵ ≤ f(v) ≤ f(vi) +
√

2 log(2n/δ)ϵ

f(vi) is the maximum over n i.i.d. standard Gaussians N(0, 1). From Lemma 8, we know

bn − an log log(1/δ) ≤ f(vi) ≤ bn + an log(1/δ)

Now we can apply Lemma 8 with δ = δ
6N(ϵ) plus an union bound over the cover C(ϵ) to get that for all vi in the cover,

bn − an log log(6/(ϵδ)) ≤ f(vi) ≤ bn + an log(6/(ϵδ))

For all directions v ∈ R2

bn − an log log(6/(ϵδ))−
√
2 log(2n/δ)ϵ ≤ f(v) ≤ bn + an log(6/(ϵδ)) +

√
2 log(2n/δ)ϵ

Plugging in ϵ = an√
2 log(2n/δ)

in the above expression we get.

bn − an − an log log

(
6
√
2 log(2n/δ)

anδ

)
≤ f(v) ≤ bn + an + an log

(
6
√

2 log(2n/δ)

anδ

)
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Lemma 11. Consider the density: f(t) = 2
π

√
1− t2 for t ∈ [0, 1] and f(t) = 0 otherwise. Let F be the corresponding

CDF and let U(t) = F−1(1− 1/t). Then, the following facts hold:

1.

lim
h→0

1− F (1− xh)

1− F (1− h)
= x3/2

2. 1− U(n) ≥
(

3π
4
√
2n

)2/3
.

Proof. The first part follows by integration by substitution and Taylor expansion of θ − sin 2θ
2 around θ = 0.

To see the first part, observe that:

1− F (1− h) =

∫ 1

1−h

2

π
·
√

1− t2dt

We now calculate this integral by substitution. Let t = cos θ, then dt = − sin θdθ, and the limits of the integral become
cos−1(1− h) to 0. The integral becomes:∫ cos−1(1−h)

0

2

π
· sin2 θdθ =

∫ cos−1(1−h)

0

1

π
· (1− cos 2θ) dθ =

1

π
·
(
θ − sin 2θ

2

) ∣∣∣cos−1(1−h)

0

A Taylor series expansion of sin 2θ shows that sin 2θ = 2θ − 8θ3

3! + o(θ3); therefore

θ − sin 2θ

2
=

2θ3

3
+ o(θ3),

which brings the result of the integral to 4(cos−1(1−h))3
3π + o((cos−1(1− h))3). Observe through a Taylor expansion that

cos−1(1− h) = sin−1(
√
h(2− h)) =

√
h(2− h)− o(h(2− h)),

and hence

lim
h→0

1

π
·
(
θ − sin 2θ

2

) ∣∣∣cos−1(1−h)

0
=

1

π
· 2(2h)

3/2

3
, (24)

from which the first part of the lemma follows. For the second part, we observe that from the definition of U(n), we have
that 1− U(n) = h, where: ∫ 1

1−h

2

π
·
√
1− t2dt =

1

n

From equation 24, observe that for small enough h (which corresponds to large enough n), the left hand side is at most
4
√
2

3π h
3/2. This implies that h = 1− U(n) ≥

(
3π

4
√
2n

)2/3
and the lemma follows.

Lemma 12. Consider the density: f(t) = 2
π

√
1− t2 for t ∈ [0, 1] and f(t) = 0 otherwise. Let x1, . . . , xn be n drawn i.i.d

from f and let Xmax = max(x1, . . . , xn). Then for n large enough, with probability ≥ 1− δ, we have that:

Xmax ≤ 1, Xmax ≥ 1−
(
3π log(2/δ)

4
√
2n

)2/3

Proof. Observe that for this distribution, xF = 1. From this, and the first part of Lemma 11, it follows that this distribution
is of the Weibull type with α = 3/2. From the Fisher-Tippett-Gnedenko Theorem, this means that the maximum of n points
converges to anZ + bn in distribution, where an = 1− U(n), bn = 1, and Z is a reverse Weibull distributed variable with
α = 3/2. Setting Xmax(n, δ) = 1, we get that C(n, δ) = 0.

24



Why does Throwing Away Data Improve Worst-Group Error?

To calculate c(n, δ), we observe that from the second part of Lemma 11, an ≥
(

3π
4
√
2n

)2/3
. Additionally, if Z is a reverse

Weibull variable with parameter α = 3/2, then,

Pr(Z ≤ −(log(2/δ)2/3)) = exp(−(log(2/δ))2/3)3/2 = exp(−(log(2/δ)) = δ/2

Therefore, Pr
(
anZ + bn ≤ 1−

(
3π log(2/δ)

4
√
2n

)2/3 )
≤ δ/2. We get another δ/2 from the distributional convergence of the

maximum of n random variables to the limit for large enough n.

Lemma 13. Let x1, . . . , xn be n drawn i.i.d from symmetric uniform distribution centered at zero. Then for n large enough,
with probability ≥ 1− δ, we have that for all directions v ∈ R2:

max
i∈{1,··· ,n}

{v⊤xi} ≤ 1

max
i∈{1,··· ,n}

{v⊤xi} ≥ 1−
(
3π log(2n/δ)

4
√
2n

)2/3

− 1

n

Proof. Suppose f(v) = maxi v
⊤xi where v is a unit vector in R2. Then,

f(v)− f(u) = max
i
v⊤xi −max

i
u⊤xi ≤ max

i
(v − u)⊤xi ≤ ∥v − u∥ ·max

i
∥xi∥

where the first step follows from definition, the second step from subtracting a smaller quantity, and the last step from the
Cauchy-Schwartz inequality.

Note that maxi ∥xi∥ ≤ 1, which gives us:
f(v)− f(u) ≤ ·∥v − u∥

Now, we can build an ϵ-cover C(ϵ) over unit vectors on the circle so that successive vectors vi and vi+1 have the property
that ∥vi − vi+1∥ ≤ ϵ. The size of such an ϵ-cover is N(ϵ) = 1/ϵ; additionally, for any unit vector v in R2, there exists some
vi in the cover such that

f(vi)− ϵ ≤ f(v) ≤ f(vi) + ϵ

Observe that f(vi) is a maximum over n i.i.d. random variables drawn from a distribution f(t) = 2
π

√
1− t2 for t ∈ [0, 1]

and f(t) = 0 otherwise. Now we can apply Lemma 12 with δ = δ
N(ϵ) plus an union bound over the cover C(ϵ) to get that

for all vi in the cover,

1−
(
3π log(2N(ϵ)/δ)

4
√
2n

)2/3

≤ f(vi) ≤ 1

For all directions v ∈ R2

1−
(
3π log(2N(ϵ)/δ)

4
√
2n

)2/3

− ϵ ≤ f(v) ≤ 1

Plugging in ϵ = 1
n in the above expression we get.

1−
(
3π log(2n/δ)

4
√
2n

)2/3

− 1

n
≤ f(v) ≤ 1

Lemma 14 (Approximate Maximization Lemma - I). Let F (α) = f(α) + g(α) where g(α) = αu+
√
1− α2v, u, v > 0,

and f(α) is an arbitrary function of α that lies in the interval [−L,U ]. Let αF be the value of α that maximizes F (α), and
let αg = u√

u2+v2
be the value of α that maximizes g(α).

Then, the angle between (αF ,
√
1− α2

F ) and (αg,
√

1− α2
g) is at most cos−1

(
1− L+U√

u2+v2

)
. Additionally, the maximum

value of F (α) is at least
√
u2 + v2 − L.
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Proof. For convenience, we can do a quick change of variables – we let α = cos θ. Then g(θ) = u cos θ + v sin θ, and is
maximized at θg = cos−1

(
u√

u2+v2

)
. This means we can re-write g as follows:

g(θ) =
√
u2 + v2 · (cos θg cos θ + sin θg sin θ)

=
√
u2 + v2 · cos(θg − θ)

Similarly, we can do a change of variables on F and f as well. Suppose the value of θ that maximizes F is θF . Then we
have that:

f(θg) +
√
u2 + v2 ≤ f(θF ) +

√
u2 + v2 cos(θg − θF )

Since f(θg) ≥ −L and f(θF ) ≤ U , this gives us:

−L+
√
u2 + v2 ≤ U +

√
u2 + v2 cos(θg − θF )

The lemma follows from simple algebra.

Lemma 15 (Approximate Maximixation Lemma - II). Let F (α) = f(α) + g(α) where g(α) = αu−
√
1− α2v, u, v > 0,

and f(α) is an arbitrary function of α that lies in the interval [−L,U ]. Let αF be the value of α that maximizes F (α), and
let αg = 1 be the value of α that maximizes g(α). Then, αF ≥ 1− U+L

u+v .

Proof. To show the lemma, we observe that since f(α) ∈ [−L,U ],

−L+ u ≤ U + αFu−
√

1− α2
F v

which implies u(1− αF ) + v
√
1− α2

F ≤ L+ U . This will hold when 1− αF ≤ U+L
u+v . The lemma follows.

Denote set of points in positive class as B and the set of points in negative class as A. We simplify the optimal solution to
SVM as follows.

w = argmax
∥w∥=1

inf
x∈B

w⊤x− sup
x∈A

w⊤x

= argmin
∥w∥=1

− inf
x∈B

w⊤x+ sup
x∈A

w⊤x

= argmin
∥w∥=1

sup
x∈B

−w⊤x+ sup
x∈A

w⊤x

= argmin
∥w∥=1

sup
x∈−B

w⊤x+ sup
x∈A

w⊤x

(25)

We write the classifier as w = αµ̂+ σβψ̂, where µ̂ is a unit vector in the direction µ, ψ̂ is a unit vector in the direction ψ,
α ∈ [−1, 1], β =

√
1− α2 and σ is either +1 or −1.

Define the set Aµ = {x+ µ,∀x ∈ A}, and the set −Bµ = {x+ µ,∀x ∈ −B}.

With this, and some algebraic simplification the SVM optimization problem becomes:

α∗ = argmin
α∈[−1,1],σ∈{−1,1}

sup
x∈Aµ

(αµ̂+ σβψ̂)⊤(x− µ) + sup
x∈−Bµ

(αµ̂+ σβψ̂)⊤(x− µ)

Theorem 7. Suppose D(0) satisfies the concentration condition in Assumption 2 and as p and m approach ∞

Xmax(p, δ, 2)−Xmax(m, δ, 2)

2∥ψ∥
→ 0.

If m, p→ ∞, then with probability at least 1− 4δ, the ERM solution converges to the invariant solution w∗
inv.
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Proof. We write w∗ = α∗µ̂+ σβ∗ψ̂. Recall that α∗ is a solution to:

α∗ = argmin
α∈[−1,1],σ∈{−1,1}

sup
x∈Aµ

(αµ̂+ σβψ̂)⊤(x− µ) + sup
x∈−Bµ

(αµ̂+ σβψ̂)⊤(x− µ)

where β =
√
1− α2. We next consider a further split of the positive class into the majority and minority groups – AMµ and

Amµ .

sup
x∈Aµ

v⊤x = max

(
sup
x∈AMµ

v⊤x, sup
x∈Amµ

v⊤x

)
,

Define sets AMµ,ψ = −ψ +AMµ and Amµ,ψ = ψ +Amµ . We can write

sup
x∈Aµ

(αµ̂+ σβψ̂)⊤(x− µ)

= max

(
sup
x∈AMµ

(αµ̂+ σβψ̂)⊤(x− µ), sup
x∈Amµ

(αµ̂+ σβψ̂)⊤(x− µ)

)

= max

(
sup

x∈AMµ,ψ
(αµ̂+ σβψ̂)⊤x− α∥µ∥+ σβ∥ψ∥, sup

x∈Amµ,ψ
(αµ̂+ σβψ̂)⊤x− α∥µ∥ − σβ∥ψ∥

)
,

A similar expression will hold for Bµ. Define sets BMµ,ψ = ψ +BMµ and Bmµ,ψ = ψ +Bmµ . We can write

sup
x∈−Bµ

(αµ̂+ σβψ̂)⊤(x− µ)

max

(
sup

x∈−BMµ,ψ
(αµ̂+ σβψ̂)⊤x− α∥µ∥+ σβ∥ψ∥, sup

x∈−Bmµ,ψ
(αµ̂+ σβψ̂)⊤x− α∥µ∥ − σβ∥ψ∥

)
Define

f1(α) = sup
x∈AMµ,ψ

(αµ̂+ σβψ̂)⊤x, f2(α) = sup
x∈Amµ,ψ

(αµ̂+ σβψ̂)⊤x

f3(α) = sup
x∈−BMµ,ψ

(αµ̂+ σβψ̂)⊤x, f4(α) = sup
x∈−Bmµ,ψ

(αµ̂+ σβψ̂)⊤x

We split up the SVM objective, and begin with two cases:

Case 1: σ = 1. Here, the SVM objective becomes:

F (α) = min
α

{
max(f1(α)− α∥µ∥+ β∥ψ∥, f2(α)− α∥µ∥ − β∥ψ∥)+

+max(f3(α)− α∥µ∥+ β∥ψ∥, f4(α)− α∥µ∥ − β∥ψ∥)
}

Recall the concentration condition holds for D(0). Since the size of the majority group and minority group both ≥ n0, we
obtain

f1(α), f3(α) ∈ [Xmax(p, δ, 2)− c(p, δ, 2), Xmax(p, δ, 2) + C(p, δ, 2)], (26)

and also:
f2(α), f4(α) ∈ [Xmax(m, δ, 2)− c(m, δ, 2), Xmax(m, δ, 2) + C(m, δ, 2)] (27)

We now look at two possible cases for α to determine what the inside maximum will look like. The first case is for large β –
where

β ≥ C(m, δ, 2)− c(p, δ, 2)− (Xmax(p, δ, 2)−Xmax(m, δ, 2))

2∥ψ∥
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and the objective simplifies to.

F (α) = min
α
f1(α) + f3(α)− 2α∥µ∥+ 2β∥ψ∥,

The solution to this, from Lemma 15 is α∗ ≥ 1− C(p,δ,2)+c(p,δ,2)
∥µ∥+∥ψ∥ , which converges to the relevant solution as p→ ∞. The

other case is where β is small – namely, β ≤ C(m,δ,2)−c(p,δ,2)
2∥ψ∥ (here we use the fact that Xmax(p, δ, 2) ≥ Xmax(m, δ, 2).

Since α2 + β2 = 1, this implies that α is now close to 1 – specifically, α ≥
√

1−
(
C(m,δ,2)−c(p,δ,2)

2∥ψ∥ )
)2

→ 1 as p→ ∞
by the conditions of the theorem. This means that in both cases, the inner maximum is achieved when α is close to 1.

Case 2: σ = −1. In this case, the SVM objective becomes:

F (α) = min
α

{
max(f1(α)− α∥µ∥ − β∥ψ∥, f2(α)− α∥µ∥+ β∥ψ∥)+

max(f3(α)− α∥µ∥ − β∥ψ∥, f4(α)− α∥µ∥+ β∥ψ∥)
}

We again do a case by case analysis. We say that β is large if

β ≥ βth =
Xmax(p, δ, 2)−Xmax(m, δ, 2) + C(p, δ, 2) + c(m, δ, 2)

2∥ψ∥

In this case, the SVM objective becomes:

F (α) = f2(α) + f4(α)− 2∥µ∥α+ 2β∥ψ∥

Since β ≥ βth, −
√
1− β2

th ≤ α ≤
√
1− β2

th. From Lemma 23, the solution to this is α ≥
√
1− β2

th−
C(m,δ,2)+c(m,δ,2)

∥µ∥+∥ψ∥ →
1 as m→ ∞. The other case is for small β, where

β ≤ Xmax(p, δ, 2)−Xmax(m, δ, 2) + C(p, δ, 2) + c(m, δ, 2)

2∥ψ∥

Since α2 + β2 = 1, here α by definition satisfies

α ≥

√
1−

(
Xmax(p, δ, 2)−Xmax(m, δ, 2) + C(p, δ, 2) + c(m, δ, 2)

4∥ψ∥

)2

→ 1

As p,m→ ∞ from the condition in the theorem α→ 1. This means that in all four cases, the optimum is achieved when α
is close to 1. The theorem follows.

Theorem 6. Suppose D(0) satisfies the concentration condition in Assumption 2 and Xmax(p, δ, 2)−Xmax(m, δ, 2) ≥
2∥ψ∥+ c(p, δ, 2)+C(m, δ, 2). If p→ ∞, then with probability at least 1− 4δ, the ERM solution converges to the spurious
solution w∗

spu. In addition, with probability at least 1− 12δ, wge(θss) < wge(θerm).

Proof. Recall w∗ = α∗µ̂+ σβ∗ψ̂, where α∗ is a solution to:

α∗ = argmin
α∈[−1,1],σ∈{−1,1}

sup
x∈Aµ

(αµ̂+ σβψ̂)⊤(x− µ) + sup
x∈−Bµ

(αµ̂+ σβψ̂)⊤(x− µ)

where β =
√
1− α2. We follow a similar strategy as the previous proof of Theorem 7 and look at two cases – σ = 1 and

−1.
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Case 1: σ = 1. Here, the SVM objective becomes:

F (α) = min
α

{
max(f1(α)− α∥µ∥+ β∥ψ∥, f2(α)− α∥µ∥ − β∥ψ∥)+

+max(f3(α)− α∥µ∥+ β∥ψ∥, f4(α)− α∥µ∥ − β∥ψ∥)
}

where f1(α) = supx∈AMµ,ψ (αµ̂ + σβψ̂)⊤x, f2(α) = supx∈Amµ,ψ (αµ̂ + σβψ̂)⊤x, f3(α) = supx∈−BMµ,ψ
(αµ̂ + σβψ̂)⊤x,

f2(α) = supx∈−Bmµ,ψ
(αµ̂ + σβψ̂)⊤x. From conditions on the majority and the minority class, and the Concentration

Condition, with probability 1− 4δ

f1(α), f3(α) ∈ [Xmax(p, δ, 2)− c(p, δ, 2), Xmax(p, δ, 2) + C(p, δ, 2)], (28)

and also:
f2(α), f4(α) ∈ [Xmax(m, δ, 2)− c(m, δ, 2), Xmax(m, δ, 2) + C(m, δ, 2)] (29)

Observe that from the conditions of the theorem, the first terms will dominate for all values of α, and hence the SVM
objective will become:

F (α) = min
α
f1(α) + f3(α)− 2α∥µ∥+ 2β∥ψ∥,

From Lemma 15, the optimal solution α∗ ≥ 1− C(p,δ,2)+c(p,δ,2)
∥µ∥+∥ψ∥ , with a lower bound on the optimal value 2Xmax(p, δ, 2)−

2c(p, δ, 2)− 2∥µ∥.

Case 2: σ = −1. Here, the SVM objective becomes:

F (α) = min
α

{
max(f1(α)− α∥µ∥ − β∥ψ∥, f2(α)− α∥µ∥+ β∥ψ∥)+

max(f3(α)− α∥µ∥ − β∥ψ∥, f4(α)− α∥µ∥+ β∥ψ∥)
}

This time, from the conditions of the theorem, the first terms will dominate the maximum for all values of α, and hence the
objective will become:

F (α) = min
α
f1(α) + f3(α)− 2α∥µ∥ − 2β∥ψ∥

From Lemma 14, the optimal solution vector (α,
√
1− α2) will be close to the spurious solution vector

( |µ∥√
∥µ∥2+∥ψ∥2

, ∥a∥√
∥µ∥2+∥ψ∥2

), with the angle being at most cos−1(1− C(p,δ,2)+c(p,δ,2)√
∥µ∥2+∥ψ∥2

). The optimal solution value will be

at most 2Xmax(p, δ, 2) + 2C(p, δ, 2)− 2
√
∥µ∥2 + ∥ψ∥2. From the conditions of the theorem, this value is lower than the

lower bound on the optimal solution for σ = 1, and hence the optimal SVM solution will be achieved at this value. Thus the
result follows, from the additional condition that C(p, δ, 2) + c(p, δ, 2) → 0 as p→ ∞. The comparison of the worst group
errors is carried out in Lemma 16.

Illustrating Theorem 6 using Gaussians.

• For sufficiently large p,
(
Xmax(p, δ, 2)−Xmax(p

τ , δ, 2)
)2

gets arbitarily close to (
√
2 log p

δ )−
√

2τ log p
δ )

2, which
when simplified gives

(

√
2 log

p

δ
−
√
2τ log

p

δ
)2 = 2 log

p

δ
(1 + τ − 2

√
τ)

For sufficiently large p, (2∥ψ∥+c(p, δ, 2)+C(pτ , δ, 2))2 gets arbitrarily close to log(pδ )
κ. Now if κ < 2(1+τ−2

√
τ)

the condition Xmax(p, δ, 2)−Xmax(p
τ , δ, 2)

)
≥ 2∥ψ∥+ c(p, δ, 2) + C(pτ , δ, 2) is satisfied.
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• The objective value F (α) when α = 1 is at most 2Xmax(p, δ, 2) + 2C(p, δ, 2) − 2∥µ∥. This expression simplifies
to 2
(
(
√
2−

√
3) log p+ C(p, δ, 2)

)
. For a sufficiently large p, the objective is negative. This implies that the data is

perfectly separable in the invariant feature.

• We also need to check
√
∥µ∥2 + ∥ψ∥2 − ∥µ∥ > C(p, δ, 2) + c(p, δ, 2). The expression in the LHS simplifies√

∥µ∥2 + ∥ψ∥2 − ∥µ∥ =
√
log p

δ (
√

3 + κ
4 −

√
3). The expression in the LHS is an increasing function of p and

grows to infinity and the RHS decreases to zero. For sufficiently large p, the condition has to be satisfied. Finally, the
ratio spurious feature to invariant feature is

√
κ/12.

Lemma 16 (Data balancing helps improve worst group error under heavy tails). Consider the same set of assumptions as in
Theorem 6. With probability at least 1− 12δ, wge(θ∗ss) < wge(θ∗erm).

Proof. We start with analyzing the worst group error for the standard SVM solution, i.e., without any data balancing. Recall

−b∗ =
1

2
(sup
x∈A

(αµ̂+ σβψ̂)⊤)x− sup
x∈−B

(αµ̂+ σβψ̂)⊤)x)

Let us try to bound −b∗. From the concentration condition and the fact that p ≥ n0, with probability at least 1− δ, the first
term above supx∈A(αµ̂+ σβψ̂)⊤x) lies in

[Xmax(p+m, δ, 2)− c(p+m, δ, 2), Xmax(p+m, δ) + C(p+m, δ, 2)]

The second term also lies in

[Xmax(p+m, δ, 2)− c(p+m, δ, 2), Xmax(p+m, δ, 2) + C(p+m, δ, 2)]

As a result, with probability 1− 2δ, −b∗ is in[
−c(p+m, δ, 2)− C(p+m, δ, 2))

2
,
c(p+m, δ, 2) + C(p+m, δ, 2)

2

]
We denote amin = −c(p+m,δ,2)−C(p+m,δ,2))

2 and amax = c(p+m,δ,2)+C(p+m,δ,2))
2

Consider a classifier w⊤x+ b. We write the error for different groups. Erry,a is the error for the group g = (y, a).

Err1,−1 = P(w⊤X + b ≤ 0|X ∼ D(µ− ψ))

Err1,−1 = P(w⊤(µ− ψ + X̃)− b ≤ 0|X̃ ∼ D(0))

= P(w⊤X ≤ w⊤(ψ − µ)− b|X̃ ∼ D(0))

= FW (w⊤(ψ − µ)− b)

(30)

Denote w⊤X = W , FW is the CDF of W. Also, observe that since X̃ is spherically symmetric, the distribution w⊤X is
the same as distribution of another w

′,⊤X̃ , where ∥w∥ = ∥w′∥ = 1. We now plug in the value of −b∗ for the max-margin
classifier to arrive at the bounds for the error for each of the groups. We write

FW (w⊤(ψ − µ) + amin) ≤ Err1,−1 ≤ FW (w⊤(ψ − µ) + amax)

FW (−α∥µ∥+ σβ∥ψ∥+ amin) ≤ Err1,−1 ≤ FW (−α∥µ∥+ σβ∥ψ∥+ amax)
(31)

Similarly, we write

FW (−α∥µ∥ − σβ∥ψ∥+ amin) ≤ Err1,1 ≤ FW (−α∥µ∥ − σβ∥ψ∥+ amax) (32)

Observe that as p grows, amax and amin converge to zero (from Assumption 1). Also as p grows, from Theorem 6, we know
that the optimal α approaches ∥µ∥√

∥µ∥2+∥ψ∥2
and σ = −1.
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As a result, we can say that with probability at least 1− 6δ, Err1,−1 and Err1,−1 approach the following quantities.

Err1,−1 → FW

(
(−∥µ∥2 − ∥ψ∥2) 1√

∥µ∥2 + ∥ψ∥2

)

Err1,1 → FW

(
(−∥µ∥2 + ∥ψ∥2) 1√

∥µ∥2 + ∥ψ∥2

)
We now turn our attention to the optimal SVM solution achieved after balancing the data. In this case, we throw the data
out so all groups have same size m. In this case, the optimal b∗ lies in the interval amin = −c(2m,δ,2)−C(2m,δ,2))

2 and
amax = c(2m,δ,2)+C(2m,δ,2))

2

Observe that as m grows, amax and amin converge to zero (from Assumption 1). Also as m grows, from Theorem 7, we
know that the optimal α approaches 1. We denote the error for a group y, a under balancing as Errbaly,a.

As a result, we can say that with probability at least 1− 6δ, Errbal1,−1 and Errbal1,−1 approach the following quantities.

Errbal1,−1 → FW (−∥µ∥)

Errbal1,1 → FW (−∥µ∥)

We compare the error achieved by the two approaches. With probability 1−12δ (We need to account for the joint probability
that for imbalanced case the optimal solution is the spurious one and under the balanced case the optimal solution is the
invariant one. From union bound it follows that at least one of them does not occur with probability at most 12δ).

Errbal1,1 → FW (−∥µ∥)

and
Err1,1 → FW (−∥µ∥)

We want to show

Errbal1,1 < Err1,1 (33)

To show the above, is equivalent to showing

(−∥µ∥2 + ∥ψ∥2) 1√
∥µ∥2 + ∥ψ∥2

> −∥µ∥

Suppose ∥ψ∥ ≥ ∥µ∥, then the LHS is non negative and RHS is non positive. Thus the claim is true in that case.

Suppose ∥ψ∥ < ∥µ∥, then both the LHS and RHS are negative. As a result, we want to show that

(−∥µ∥2 + ∥ψ∥2)2

∥µ∥2 + ∥ψ∥2
< ∥µ∥2 (34)

Further simplification yields

(−∥µ∥2 + ∥ψ∥2)2

∥µ∥2 + ∥ψ∥2
< ∥µ∥2 ⇐⇒ ∥ψ∥2(∥ψ∥2 − 3∥µ∥2) < 0 (35)

Since ∥ψ∥ < ∥µ∥, the above condition is satisfied.
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B.2. Higher-dimensional case

Lemma 17. Let x1, . . . , xn be vectors in Rd drawn i.i.d from N(0, Id). Then, with probability ≥ 1− δ,

max
i

∥xi∥ ≤
√
d+ 2

√
d log(n/δ) + 2 log(n/δ)

Proof. Observe that

∥xi∥ ≤
√
d+ 2

√
d log(n/δ) + 2 log(n/δ),∀i ∈ {1, · · · , n}

∥xi∥2 ≤ d+ 2
√
d log(n/δ) + 2 log(n/δ),∀i ∈ {1, · · · , n}

(36)

We bound the probability of the above

P(max
i

∥xi∥2 ≤ d+ 2
√
d log(n/δ) + 2 log(n/δ)) =

1− P(max
i

∥xi∥2 ≥ d+ 2
√
d log(n/δ) + 2 log(n/δ)) ≥ 1− nP(∥xi∥2 ≥

d+ 2
√
d log(n/δ) + 2 log(n/δ)) = 1− ne− log(n/δ) = 1− δ

(37)

For the last step in the above, we leverage the fact that ∥xi∥2 follows the Chi-square X 2(d) distribution and use the tail
bound in Lemma 1 from (Laurent & Massart, 2000).

Define Q(n, δ, d) =
√
d+ 2

√
d log(n/δ) + 2 log(n/δ)

Lemma 18. Let x1, . . . , xn be n i.i.d unit Gaussians with covariance Id. Then for n large enough, with probability ≥ 1− δ,
we have that for all directions v ∈ Rd:

max
i∈{1,··· ,n}

{v⊤xi} ≤ bn + an + and log

( 12Q(n,δ/2,d)
an

+ 6

δ

)
,

max
i∈{1,··· ,n}

{v⊤xi} ≥ bn − an − an log

(
d log

( 12Q(n,δ/2,d)
an

+ 6

δ

))
where an and bn are the constants in the Fisher-Tippett-Gnedenko theorem when applied to Gaussians.

Proof. Suppose f(v) = maxi v
⊤xi where v is a unit vector in Rd. Then,

f(v)− f(u) = max
i
v⊤xi −max

i
u⊤xi ≤ max

i
(v − u)⊤xi ≤ ∥v − u∥ ·max

i
∥xi∥

where the first step follows from definition, the second step from subtracting a smaller quantity, and the last step from the
Cauchy-Schwartz inequality.

From Lemma 17, with probability ≥ 1− δ/2, maxi ∥xi∥ ≤ Q(n, δ/2, d), which gives us:

f(v)− f(u) ≤ Q(n, δ/2, d) · ∥v − u∥

Now, we can build an ϵ-cover C(ϵ) over unit vectors on the circle so that successive vectors vi and vi+1 have the property
that ∥vi − vi+1∥ ≤ ϵ. The size of such an ϵ-cover is N(ϵ) ≤ ( 2ϵ + 1)d 2; additionally, for any unit vector v in Rd, there
exists some vi in the cover such that

f(vi)−Q(n, δ/2, d)ϵ ≤ f(v) ≤ f(vi) +Q(n, δ/2, d)ϵ

f(vi) is the maximum over n i.i.d. standard Gaussians N(0, 1). From Lemma 8, we know

2https://www.stat.berkeley.edu/˜bartlett/courses/2013spring-stat210b/notes/12notes.pdf
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bn − an log log(1/δ) ≤ f(vi) ≤ bn + an log(1/δ)

Now we can apply Lemma 8 with δ = δ
6N(ϵ) plus an union bound over the cover C(ϵ) to get that for all vi in the cover,

bn − an log log(6N(ϵ)/(δ)) ≤ f(vi) ≤ bn + an log(6N(ϵ)/(δ))

bn − an log

(
d log

(
( 12ϵ + 6)

δ

))
≤ f(vi) ≤ bn + and log

(
( 12ϵ + 6)

δ

)
For all directions v ∈ Rd

bn − an log

(
d log

(
( 12ϵ + 6)

δ

))
−Q(n, δ/2, d)ϵ ≤ f(v) ≤ bn + and log

(
( 12ϵ + 6)

δ

)
+Q(n, δ/2, d)ϵ

Plugging in ϵ = an
Q(n,δ/2,d) in the above expression we get.

bn − an − an log

(
d log

( 12Q(n,δ/2,d)
an

+ 6

δ

))
≤ f(v) ≤ bn + an + and log

( 12Q(n,δ/2,d)
an

+ 6

δ

)

Lemma 19. Consider the density: f(t) = 3
2 (1 − t2) for t ∈ [0, 1] and f(t) = 0 otherwise. Let F be the corresponding

CDF and let U(t) = F−1(1− 1/t). Then, the following facts hold:

1.

lim
h→0

1− F (1− xh)

1− F (1− h)
= x

2. 1− U(n) ≥ 2
3n .

Proof. To see the first part, observe that:

1− F (1− h) =

∫ 1

1−h

3

2
(1− t2) =

3

2
(h− h3 − 3h2 + 3h

3

lim
h→0

1− F (1− xh)

1− F (1− h)
=
xh− (xh)3−3(xh)2+3xh

3

h− h3−3h2+3h
3

= x

For the second part, we observe that from the definition of U(n), we have that 1− U(n) = h, where:∫ 1

1−h

3

2
(1− t2) =

1

n

Observe that for small enough h (which corresponds to large enough n), the left hand side is at most 3
2h. This implies that

h = 1− U(n) ≥ 2
3n and the lemma follows.

Lemma 20. Consider the density: f(t) = 3
2 (1− t2) for t ∈ [0, 1] and f(t) = 0 otherwise. Let x1, . . . , xn be n drawn i.i.d

from f and let Xmax = max(x1, . . . , xn). Then for n large enough, with probability ≥ 1− δ, we have that:

Xmax ≤ 1, Xmax ≥ 1−
(
2 log(2/δ)

3n

)
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Proof. Observe that for this distribution, xF = 1. From this, and the first part of Lemma 11, it follows that this distribution
is of the Weibull type with α = 1. From the Fisher-Tippett-Gnedenko Theorem, this means that the maximum of n points
converges to anZ + bn in distribution, where an = 1− U(n), bn = 1, and Z is a reverse Weibull distributed variable with
α = 1. Setting Xmax(n, δ) = 1, we get that C(n, δ) = 0.

To calculate c(n, δ), we observe that from the second part of Lemma 19, an ≥ 2
3n . Additionally, if Z is a reverse Weibull

variable with parameter α = 1, then,

Pr(Z ≤ −(log(2/δ))) = exp(−(log(2/δ))) = δ/2

Therefore, Pr
(
anZ + bn ≤ 1 −

(
2 log(2/δ)

3n

))
≤ δ/2. We get another δ/2 from the distributional convergence of the

maximum of n random variables to the limit for large enough n.

Lemma 21. Let x1, . . . , xn be n drawn i.i.d from symmetric uniform distribution centered at zero in R3. Then for n large
enough, with probability ≥ 1− δ, we have that for all directions v ∈ R2:

max
i∈{1,··· ,n}

{v⊤xi} ≤ 1

max
i∈{1,··· ,n}

{v⊤xi} ≥ 1− 6 log(4n+ 2)/δ)

3n
− 1

n

Proof. Suppose f(v) = maxi v
⊤xi where v is a unit vector in R2. Then,

f(v)− f(u) = max
i
v⊤xi −max

i
u⊤xi ≤ max

i
(v − u)⊤xi ≤ ∥v − u∥ ·max

i
∥xi∥

where the first step follows from definition, the second step from subtracting a smaller quantity, and the last step from the
Cauchy-Schwartz inequality.

Note that maxi ∥xi∥ ≤ 1, which gives us:
f(v)− f(u) ≤ ·∥v − u∥

Now, we can build an ϵ-cover C(ϵ) over unit vectors on the circle so that successive vectors vi and vi+1 have the property
that ∥vi − vi+1∥ ≤ ϵ. The size of such an ϵ-cover is N(ϵ) = 1/ϵ; additionally, for any unit vector v in R2, there exists some
vi in the cover such that

f(vi)− ϵ ≤ f(v) ≤ f(vi) + ϵ

Observe that f(vi) is a maximum over n i.i.d. random variables drawn from a distribution f(t) = 3
2 (1− t2) for t ∈ [0, 1]

and f(t) = 0 otherwise. Now we can apply Lemma 20 with δ = δ
N(ϵ) plus an union bound over the cover C(ϵ) to get that

for all vi in the cover,

1− 2 log(2N(ϵ)/δ)

3n
≤ f(vi) ≤ 1

For all directions v ∈ R3

1− 2 log(2N(ϵ)/δ)

3n
− ϵ ≤ f(v) ≤ 1

Plugging in ϵ = 1
n in the above expression we get.

1− 6 log(4n+ 2)/δ)

3n
− 1

n
≤ f(v) ≤ 1

Lemma 22 (Approximate Maximization Lemma - I). Let F (α) = f(α) + g(α) where g(α) = αu+
√
η2 − α2v, u, v > 0,

and f(α) is an arbitrary function of α that lies in the interval [−L,U ]. Let αF be the value of α that maximizes F (α), and

let αg = η u√
u2+v2

be the value of α that maximizes g(α). Then, the angle between (αF ,
√
η2 − α2

F ) and (αg,
√

1− α2
g)

is at most cos−1
(
1− L+U√

u2+v2

)
. Additionally, the maximum value of F (α) is at least η

√
u2 + v2 − L.
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Proof. For convenience, we can do a quick change of variables – we let α = η cos θ. Then g(θ) = η(u cos θ + v sin θ), and
is maximized at θg = cos−1

(
u√

u2+v2

)
. This means we can re-write g as follows:

g(θ) = η
√
u2 + v2 · (cos θg cos θ + sin θg sin θ)

= η
√
u2 + v2 · cos(θg − θ)

Similarly, we can do a change of variables on F and f as well. Suppose the value of θ that maximizes F is θF . Then we
have that:

f(θg) + η
√
u2 + v2 ≤ f(θF ) + η

√
u2 + v2 cos(θg − θF )

Since f(θg) ≥ −L and f(θF ) ≤ U , this gives us:

−L+ η
√
u2 + v2 ≤ U + η

√
u2 + v2 cos(θg − θF )

The lemma follows from simple algebra.

Lemma 23 (Approximate Maximixation Lemma - II). Let F (α) = f(α)+ g(α) where g(α) = αu−
√
η2 − α2v, u, v > 0,

and f(α) is an arbitrary function of α that lies in the interval [−L,U ]. Let αF be the value of α ∈ [−η, η] that maximizes
F (α), and let αg = η be the value of α that maximizes g(α). Then, αF ≥ η − U+L

u+v .

Proof. To show the lemma, we observe that since f(α) ∈ [−L,U ],

−L+ ηu ≤ U + αFu−
√
η2 − α2

F v

which implies u(η − αF ) + v
√
η2 − α2

F ≤ L+ U . This will hold when η − αF ≤ U+L
u+v . The lemma follows.

Recall that the SVM solution is stated as

w∗ = argmax
∥w∥=1

inf
x∈B

w⊤x− sup
x∈A

w⊤x

We rewrite w = αµ̂+ βψ̂ + γ⊤Γ̂, where µ̂, ψ̂ denote unit vectors along µ, ψ respectively. Γ̂ ∈ Rd×d−2 is a matrix of d− 2
vectors that span the subspace orthogonal to the subspace spanned µ and ψ. We introduce an additional parameter η ∈ [0, 1]
and define a set as follows Sη = {(α, β, γ), α2 + β2 = η2, ∥γ∥2 = 1 − η2}. Note that S = ∪n∈[0,1]Sη is the set of all
vectors of norm 1. We divide the standard SVM optimization into an optimization over the set Sη and then choosing the best
η.

α∗(η) = argmin
α∈[−η,η],σ∈{−1,1},∥γ∥|=

√
1−η2

sup
x∈Aµ

{
(αµ̂+ σβψ̂ + γ⊤Γ̂)⊤(x− µ)

}
+ sup
x∈−Bµ

{
(αµ̂+ σβψ̂ + γ⊤Γ̂)⊤(x− µ)

}
,

(38)

where β =
√
1− α2. We compare the SVM objective for all η and pick the set of α∗(η) that lead to the optimal value.

Theorem 8. [Gumbel type] Suppose D(0) satisfies the concentration condition in Assumption 2 and Xmax(p, δ, d) −
Xmax(m, δ, d) ≥2∥ψ∥+c(p, δ, d)+C(m, δ, d). If p→ ∞, then with probability at least 1−4δ, the ERM solution converges
to the spurious solution w∗

spu. In addition, with probability at least 1− 12δ, wge(θss) < wge(θerm).

Proof. We fix an η and write the optimal solution for the η as

α∗(η) = argmin
α∈[−η,η],σ∈{−1,1},∥γ∥|=

√
1−η2

sup
x∈Aµ

{
(αµ̂+ σβψ̂ + γ⊤Γ̂)⊤(x− µ)

}
+ sup
x∈−Bµ

{
(αµ̂+ σβψ̂ + γ⊤Γ̂)⊤(x− µ)

}
,

(39)
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where β =
√
1− α2. We next consider a further split of the positive class into the majority and minority groups – AMµ and

Amµ . This means that:

sup
x∈Aµ

v⊤x = max

(
sup
x∈AMµ

v⊤x, sup
x∈Amµ

v⊤x

)
,

and hence, we can write:

sup
x∈Aµ

((αµ̂+ σβψ̂ + γ⊤Γ̂)⊤(x− µ)

= max

(
sup
x∈AMµ

(αµ̂+ σβψ̂ + γ⊤Γ̂)⊤(x− µ), sup
x∈Amµ

((αµ̂+ σβψ̂ + γ⊤Γ̂)⊤(x− µ)

)

=max

(
sup

x∈AMµ,ψ
(αµ̂+ σβψ̂ + γ⊤Γ̂)⊤x− α∥µ∥+ σβ∥ψ∥,

sup
x∈Amµ,ψ

(αµ̂+ σβψ̂ + γ⊤Γ̂)⊤x− α∥µ∥ − σβ∥ψ∥

)
,

and a similar expression will hold for Bµ. We look at two cases – σ = 1 and −1.

Case 1: σ = 1. Here, the SVM objective becomes:

min
α,γ

{
max(f1(α, γ)− α∥µ∥+ β∥ψ∥, f2(α, γ)− α∥µ∥ − β∥ψ∥)+

max(f3(α, γ)− α∥µ∥+ β∥ψ∥, f4(α, γ)− α∥µ∥ − β∥ψ∥)
}

where f1(α, γ) = supx∈AMµ,ψ (αµ̂ + σβψ̂ + γ⊤Γ̂)⊤x, f2(α, γ) = supx∈Amµ,ψ (αµ̂ + σβψ̂ + +γ⊤Γ̂)⊤x, f3(α, γ) =

supx∈−BMµ,ψ
(αµ̂+ σβψ̂+ γ⊤Γ̂)⊤x, f4(α, γ) = supx∈−Bmµ,ψ

(αµ̂+ σβψ̂+ γ⊤Γ̂)⊤x. From conditions on the majority and
the minority class, and the Concentration Condition with probability ≥ 1− 4δ,

f1(α, γ), f3(α, γ) ∈ [Xmax(p, δ, d)− c(p, δ, d), Xmax(p, δ, d) + C(p, δ, d)], (40)

and also:
f2(α, γ), f4(α, γ) ∈ [Xmax(m, δ, d)− c(m, δ, d), Xmax(m, δ, d) + C(m, δ, d)] (41)

Observe that from the conditions of the theorem, the first terms will dominate for all values of α, and hence the SVM
objective will become:

min
α∈[−η,η],∥γ∥=

√
1−η2

f1(α, γ) + f3(α, γ)− 2α∥µ∥+ 2β∥ψ∥ =

min
α∈[−η,η]

h(α, η)− 2α∥µ∥+ 2β∥ψ∥
(42)

where h(α, η) = min∥γ∥=
√

1−η2 f1(α, γ)+f3(α, γ). Observe that h(α, η) ∈ [2Xmax(p, δ, d)−2c(p, δ, d), 2Xmax(p, δ, d)+

2C(p, δ, d)]. From Lemma 23, the optimal solution α∗ ≥ η − C(p,δ,d)+c(p,δ,d)
∥µ∥+∥ψ∥ , with an optimal value is lower bounded by

2Xmax(p, δ, d)− 2c(p, δ, d)− 2η∥µ∥.

Case 2: σ = −1. Here, the SVM objective becomes:

min
α∈[−η,η],∥γ∥=

√
1−η2

{
max(f1(α, γ)− α∥µ∥ − β∥ψ∥, f2(α, γ)− αµ+ βψ)+

max(f3(α, γ)− α∥µ∥ − β∥ψ∥, f4(α, γ)− α∥µ∥+ β∥ψ∥)
}
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This time, from the conditions of the theorem, the first terms will dominate the maximum for all values of α, and hence the
objective will become:

min
α∈[−η,η],∥γ∥=

√
1−η2

f1(α, γ) + f3(α, γ)− 2α∥µ∥ − 2β∥ψ∥ =

min
α∈[−η,η]

h(α, η)− 2α∥µ∥ − 2β∥ψ∥
(43)

Observe that h(α, η) ∈ [2Xmax(p, δ, d)− 2c(p, δ, d), 2Xmax(p, δ, d) + 2C(p, δ, d)]. From Lemma 22, the optimal solution
(α,

√
1− α2) will be close to the spurious solution vector (η ∥µ∥√

∥µ∥2+∥ψ∥2
, η ∥ψ∥√

∥µ∥2+∥ψ∥2
), with the angle being at most

cos−1(1− C(p,δ,d)+c(p,δ,d)√
∥µ∥2+∥ψ∥2

). The optimal solution value will be at most 2Xmax(p, δ, d) + 2C(p, δ, d)− 2η
√
∥µ∥2 + ∥ψ∥2.

From the conditions of the theorem, this value is lower than the lower bound on the optimal solution for σ = 1, and hence
the optimal SVM solution for a fixed η will be achieved at this value. We now compare the lower bound for the optimal η
with the upper bound of the optimal value at η = 1.

2Xmax(p, δ, d)− 2C(p, δ, d)− 2η
√
∥µ∥2 + ∥ψ∥2 ≤ 2Xmax(p, δ, d) + 2C(p, δ, d)− 2

√
∥µ∥2 + ∥ψ∥2

η ≥ 1− C(p, δ, d)√
∥µ∥2 + ∥ψ∥2

(44)

The result follows from the additional condition that C(p, δ, d) + c(p, δ, d) → 0 as p→ ∞. The comparison of worst group
errors is carried out in Lemma 24

Lemma 24 (Data balancing helps improve worst group error under heavy tails). Consider the same set of assumptions as
Theorem 8. With probability at least 1− 12δ, wge(θ∗ss) < wge(θ∗erm).

Proof. We start with analyzing the worst group error for the standard SVM solution, i.e., without any data balancing. Recall

−b∗ =
1

2
(sup
x∈A

(αµ̂+ σβψ̂ + γ⊤Γ̂)⊤x− sup
x∈−B

(αµ̂+ σβψ̂ + γ⊤Γ̂)x)

Let us try to bound −b∗. From the concentration condition and the fact that p ≥ n0, with probability at least 1− δ, the first
term above supx∈A(αµ̂+ σβψ̂ + γ⊤Γ̂)⊤x) lies in

[Xmax(p+m, δ, d)− c(p+m, δ, d), Xmax(p+m, δ, d) + C(p+m, δ, d)]

The second term also lies in

[Xmax(p+m, δ, d)− c(p+m, δ, d), Xmax(p+m, δ, d) + C(p+m, δ, d)]

As a result, with probability 1− 2δ, −b∗ is in[
−c(p+m, δ, d)− C(p+m, δ, d))

2
,
c(p+m, δ, d) + C(p+m, δ, d)

2

]
We denote amin = −c(p+m,δ,d)−C(p+m,δ,d))

2 and amax = c(p+m,δ,d)+C(p+m,δ,d))
2

Consider a classifier w⊤x+ b. We write the error for different groups. Erry,a is the error for the group g = (y, a).

Err1,−1 = P(w⊤X + b ≤ 0|X ∼ D(µ− ψ))

Err1,−1 = P(w⊤(µ− ψ + X̃) + b ≤ 0|X̃ ∼ D(0))

= P(w⊤X ≤ w⊤(ψ − µ)− b|X̃ ∼ D(0))

= FW (w⊤(ψ − µ) + b)

(45)
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Denote w⊤X = W , FW is the CDF of W. Also, observe that since X is spherically symmetric, the distribution w⊤X is
the same as distribution of another w

′,⊤X , where ∥w∥ = ∥w′∥ = 1. We now plug in the value of b∗ for the max-margin
classifier to arrive at the bounds for the error for each of the groups. We write

FW (w⊤(ψ − µ) + amin) ≤ Err1,−1 ≤ FW (w⊤(ψ − µ) + amax)

FW (−α∥µ∥+ σβ∥ψ∥+ amin) ≤ Err1,−1 ≤ FW (−α∥µ∥+ σβ∥ψ∥+ amax)
(46)

Similarly, we write

FW (−α∥µ∥ − σβ∥ψ∥+ amin) ≤ Err1,1 ≤ FW (−α∥µ∥ − σβ∥ψ∥+ amax) (47)

Observe that as p grows, amax and amin converge to zero (from Assumption 1). Also as p grows, from Theorem 8, we know
that the optimal α approaches ∥µ∥√

∥µ∥2+∥ψ∥2
and σ = −1 and γ = 0.

As a result, we can say that with probability at least 1− 6δ, Err1,−1 and Err1,−1 approach the following quantities.

Err1,−1 → FW

(
(−∥µ∥2 − ∥ψ∥2) 1√

∥µ∥2 + ∥ψ∥2

)

Err1,1 → FW

(
(−∥µ∥2 + ∥ψ∥2) 1√

∥µ∥2 + ∥ψ∥2

)
We now turn our attention to the optimal SVM solution achieved after balancing the data. In this case, we throw the data
out so all groups have same size m. In this case, the optimal b∗ lies in the interval amin = −c(2m,δ,d)−C(2m,δ,d))

2 and
amax = c(2m,δ,d)+C(2m,δ,d))

2

Observe that as m grows, amax and amin converge to zero (from Assumption 1). Also as m grows, from Theorem 9, we
know that the optimal α approaches 1. We denote the error for a group y, a under balancing as Errbaly,a.

As a result, we can say that with probability at least 1− 6δ, Errbal1,−1 and Errbal1,−1 approach the following quantities.

Errbal1,−1 → FW (−∥µ∥)

Errbal1,1 → FW (−∥µ∥)

We compare the error achieved by the two approaches. With probability 1−12δ (We need to account for the joint probability
that for imbalanced case the optimal solution is the spurious one and under the balanced case the optimal solution is the
invariant one. From union bound it follows that at least one of them does not occur with probability at most 12δ).

Errbal1,1 → FW (−∥µ∥)

and
Err1,1 → FW (−∥µ∥)

We want to show

Errbal1,1 < Err1,1 (48)

To show the above, is equivalent to showing

(−∥µ∥2 + ∥ψ∥2) 1√
∥µ∥2 + ∥ψ∥2

> −∥µ∥
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Suppose ∥ψ∥ ≥ ∥µ∥, then the LHS is non negative and RHS is negative. Thus the claim is true in that case.

Suppose ∥ψ∥ < ∥µ∥, then both the LHS and RHS are negative. As a result, we want to show that

(−∥µ∥2 + ∥ψ∥2)2

∥µ∥2 + ∥ψ∥2
< ∥µ∥2 (49)

Further simplification yields

(−∥µ∥2 + ∥ψ∥2)2

∥µ∥2 + ∥ψ∥2
< ∥µ∥2 ⇐⇒ ∥ψ∥2(∥ψ∥2 − 3∥µ∥2) < 0 (50)

Since ∥ψ∥ < ∥µ∥, the above condition is satisfied.

Theorem 9. [Weibull type] Suppose D(0) satisfies the concentration condition in Assumption 2 and as p and m→ ∞

Xmax(p, δ, d)−Xmax(m, δ, d)

2∥ψ∥
→ 0,

Xmax(p, δ, d)−Xmax(m, δ, d)

2∥µ∥
→ 0,

and C(m,δ,d)+c(m,δ,d)+ 1
2

√
2C(m,δ,d)+c(m,δ,d)∥ψ∥

∥µ∥ → 0. If m, p→ ∞, then with probability at least 1−4δ, the ERM solution
converges to the invariant solution w∗

inv.

Proof. We fix an η and write the optimal solution for the η as

α∗(η) =

argmin
α∈[−η,η],σ∈{−1,1},∥γ∥|=

√
1−η2

sup
x∈Aµ

{
(αµ̂+ σβψ̂ + γ⊤Γ̂)⊤(x− µ)+

sup
x∈−Bµ

(αµ̂+ σβψ̂ + γ⊤Γ̂)⊤(x− µ)
} (51)

where β =
√
1− α2. We next consider a further split of the positive class into the majority and minority groups – AMµ and

Amµ . This means that:

sup
x∈Aµ

v⊤x = max

(
sup
x∈AMµ

v⊤x, sup
x∈Amµ

v⊤x

)
,

and hence, we can write:

sup
x∈Aµ

((αµ̂+ σβψ̂ + γ⊤Γ̂)⊤(x− µ)

=max

(
sup
x∈AMµ

((αµ̂+ σβψ̂ + γ⊤Γ̂)⊤(x− µ), sup
x∈Amµ

((αµ̂+ σβψ̂ + γ⊤Γ̂)⊤(x− µ)

)

max

(
sup

x∈AMµ,ψ
((αµ̂+ σβψ̂ + γ⊤Γ̂)⊤x− α∥µ∥+

σβ∥ψ∥, sup
x∈Amµ,ψ

((αµ̂+ σβψ̂ + γ⊤Γ̂)⊤x− α∥µ∥ − σβ∥ψ∥

)

and a similar expression will hold for Bµ. We look at two cases – σ = 1 and −1.
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Case 1: σ = 1. Here, the SVM objective becomes:

min
α,γ

{
max(f1(α, γ)− α∥µ∥+ β∥ψ∥, f2(α, γ)− α∥µ∥ − β∥ψ∥)+

max(f3(α, γ)− α∥µ∥+ β∥ψ∥, f4(α, γ)− α∥µ∥ − β∥ψ∥)
}

where f1(α, γ) = supx∈AMµ,ψ (αµ̂ + σβψ̂ + γ⊤Γ̂)⊤x, f2(α, γ) = supx∈Amµ,ψ (αµ̂ + σβψ̂ + +γ⊤Γ̂)⊤x, f3(α, γ) =

supx∈−BMµ,ψ
(αµ̂+ σβψ̂+ γ⊤Γ̂)⊤x, f4(α, γ) = supx∈−Bmµ,ψ

(αµ̂+ σβψ̂+ γ⊤Γ̂)⊤x. From conditions on the majority and
the minority class, and the Concentration Condition with probability ≥ 1− 4δ,

f1(α, γ), f3(α, γ) ∈ [Xmax(p, δ, d)− c(p, δ, d), Xmax(p, δ, d) + C(p, δ, d)], (52)

and also:
f2(α, γ), f4(α, γ) ∈ [Xmax(m, δ, d)− c(m, δ, d), Xmax(m, δ, d) + C(m, δ, d)] (53)

We now look at two possible cases for α to determine what the inside maximum will look like. The first case is for large β –
where

β ≥ C(m, δ, d)− c(n, δ, d)− (Xmax(p, δ, d)−Xmax(m, δ, d))

2∥ψ∥

and the objective simplifies to.

F (α) = min
α
f1(α, γ) + f3(α, γ)− 2α∥µ∥+ 2β∥ψ∥,

min
α∈[−η,η],∥γ∥=

√
1−η2

f1(α, γ) + f3(α, γ)− 2α∥µ∥+ 2β∥ψ∥ =

min
α∈[−η,η]

h(α, η)− 2α∥µ∥+ 2β∥ψ∥
(54)

where h(α, η) = min∥γ∥=
√

1−η2 f1(α, γ)+f3(α, γ). Observe that h(α, η) ∈ [2Xmax(p, δ, d)−2c(p, δ, d), 2Xmax(p, δ, d)+

2C(p, δ, d)]. From Lemma 23, the optimal solution α∗ ≥ η − C(p,δ,d)+c(p,δ,d)
∥µ∥+∥ψ∥ , with an optimal value is lower bounded by

2Xmax(p, δ, d)− 2c(p, δ, d)− 2η∥µ∥.

The other case is where β is small – namely, β ≤ C(m,δ,d)−c(p,δ,d)
2∥ψ∥ (here we use the fact thatXmax(p, δ, d) ≥ Xmax(m, δ, d).

Since α2 + β2 = η2, this implies that α is now close to 1 – specifically, α ≥
√
η2 −

(
C(m,δ,d)−c(p,δ,d)

2∥ψ∥ )
)2

→ 1 as p→ ∞
by the conditions of the theorem. This means that in both cases, the inner maximum is achieved when α is close to η.

Case 2: σ = −1. In this case, the SVM objective becomes:

F (α) = min
α,γ

{
max(f1(α, γ)− α∥µ∥ − β∥ψ∥, f2(α, γ)− α∥µ∥+ β∥ψ∥)+

max(f3(α, γ)− α∥µ∥ − β∥ψ∥, f4(α, γ)− α∥µ∥+ β∥ψ∥)
}

We again do a case by case analysis. We say that β is large if

β ≥ βth =
Xmax(p, δ, d)−Xmax(m, δ, d) + C(p, δ, d) + c(m, δ, d)

2∥ψ∥
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In this case, the SVM objective becomes:

F (α) = f2(α, γ) + f4(α, γ)− 2∥µ∥α+ 2β∥ψ∥

As a result of the above, −
√

1− β2
th ≤ α ≤

√
1− β2

th. We divide the analysis into two cases. Case 1. η <
√

1− β2
th From

Lemma 23, the solution to this is α ≥ η − C(m,δ,d)+c(m,δ,d)
∥µ∥+∥ψ∥ → η as m→ ∞. Case 2. η ≥

√
1− β2

th From Lemma 23, the

solution to this is α ≥
√

1− β2
th −

C(m,δ,d)+c(m,δ,d)
∥µ∥+∥ψ∥ → 1 as m→ ∞.

Now we are left with analyzing the setting when β is small, where

β ≤ Xmax(p, δ, d)−Xmax(m, δ, d) + C(p, δ, d) + c(m, δ, d)

2∥ψ∥

Since α2 + β2 = η2, here α by definition satisfies

α ≥

√
η2 −

(
Xmax(p, δ, d)−Xmax(m, δ, d) + C(p, δ, d) + c(m, δ, d)

4∥ψ∥

)2

→ η

This means that in all four cases, the inner maximum is achieved when α is close to η. We now compare the lower bound
for optimal value achieved by η with the upper bound on the objective for α =

√
1− β2

th to show that η approaches 1 as
m→ ∞.

For a fixed η, α takes value arbitrarily close to η. A lower bound on the SVM objective when α ∈ [−η, η] and η ≤
√

1− β2
th

is

2Xmax(m, δ, d)− 2c(m, δ, d)− 2η∥µ∥ − β∥ψ∥ =

2Xmax(m, δ, d)− 2c(m, δ, d)− 2η∥µ∥ −

√
2η
C(m, δ, d) + c(m, δ, d)

∥µ∥+ ∥ψ∥
∥ψ∥ ≤

2Xmax(m, δ, d)− 2c(m, δ, d)− 2η∥µ∥ −
√
2C(m, δ, d) + c(m, δ, d)∥ψ∥

When α =
√
1− β2

th the SVM objective can be at most

2Xmax(m, δ, d) + 2C(m, δ, d)− 2
√
1− β2

th∥µ∥+ 2βth∥ψ∥

Comparing the above to the lower bound on the SVM objective we get

2Xmax(m, δ, d)− 2c(m, δ, d)− 2η∥µ∥ −
√
2C(m, δ, d) + c(m, δ, d)∥ψ∥ <

2Xmax(m, δ, d) + 2C(m, δ, d)− 2
√

1− β2
th∥µ∥+ 2βth∥ψ∥

η ≥
√
1− β2

th −
C(m, δ, d) + c(m, δ, d) + βth∥ψ∥+ 1

2

√
2C(m, δ, d) + c(m, δ, d)∥ψ∥

∥µ∥

(55)

Owing to the conditions in the theorem, as m→ ∞, η → 1.

Theorem 10. The ideal invariant classifier µ̂ achieves the minimum worst group error.

Proof. We write down the error expressions for the four groups as follows. We consider a general classifier w⊤x+ b, where
∥w∥ = 1.

Err1,−1 = P(w⊤X + b ≤ 0|X ∼ D(µ− ψ))

Err1,−1 = FW (w⊤(ψ − µ)− b)
(56)

Err1,1 = P(w⊤X + b ≤ 0|X ∼ D(µ+ ψ))

Err1,1 = FW (w⊤(−ψ − µ)− b)
(57)
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Err−1,1 = P(w⊤X + b ≥ 0|X ∼ D(−µ+ ψ))

= P(w⊤(X̃ − µ+ ψ) + b ≥ 0|X̃ ∼ D(0))

= P(w⊤X̃ ≥ w⊤(µ− ψ)− b|X̃ ∼ D(0))

= FW (w⊤(ψ − µ) + b)

(58)

In the above simplification, we exploit the fact that X̃ is symmetric and as a result the distribution of X̃ is same as −X̃ .

Err−1,−1 = P(w⊤X + b ≥ 0|X ∼ D(−µ− ψ))

= FW (w⊤(−ψ − µ) + b)
(59)

• Case 1. w⊤ψ ≥ 0, b ≥ 0. In this case, observe that Err−1,1 achieves the worst group error. Observe that FW is
monotonic in b so b = 0 is optimal. Now we want to minimize FW (w⊤(ψ − µ) subject to ∥w∥ = 1 and w⊤ψ ≥ 0.
The first term takes smallest value when w⊤(ψ) = 0 and second term takes smallest value when −w⊤µ = −∥µ∥. If
w = µ̂, then both constraints are simultaneously satisfied as µ ⊥ ψ. The error achieved as a result is FW (−∥µ∥)

• Case 2. w⊤ψ ≤ 0, b ≥ 0. In this case, observe that Err−1,−1 achieves the worst group error. Observe that FW is
monotonic in b so b = 0 is optimal. Now we want to minimize FW (w⊤(−ψ − µ) subject to ∥w∥ = 1 and w⊤ψ ≤ 0.
The first term takes smallest value when w⊤(ψ) = 0 and second term takes smallest value when −w⊤µ = −∥µ∥. If
w = µ̂, then both constraints are simultaneously satisfied as µ ⊥ ψ. The error achieved as a result is FW (−∥µ∥)

• Case 3. w⊤ψ ≥ 0, b ≤ 0. In this case, observe that Err1,−1 achieves the worst group error. Observe that FW is
monotonic in b so b = 0 is optimal. Now we want to minimize FW (w⊤(ψ − µ) subject to ∥w∥ = 1 and w⊤ψ ≥ 0.
The first term takes smallest value when w⊤(ψ) = 0 and second term takes smallest value when −w⊤µ = −∥µ∥. If
w = µ̂, then both constraints are simultaneously satisfied as µ ⊥ ψ. The error achieved as a result is FW (−∥µ∥)

• Case 4. w⊤ψ ≤ 0, b ≤ 0. In this case, observe that Err1,1 achieves the worst group error. Observe that FW is
monotonic in b so b = 0 is optimal. Now we want to minimize FW (w⊤(−ψ − µ) subject to ∥w∥ = 1 and w⊤ψ ≤ 0.
The first term takes smallest value when w⊤(ψ) = 0 and second term takes smallest value when −w⊤µ = −∥µ∥. If
w = µ̂, then both constraints are simultaneously satisfied as µ ⊥ ψ. The error achieved as a result is FW (−∥µ∥)

Therefore, FW (−∥µ∥) is the lowest value for the error and is achieved by w = µ̂. In fact, if the cdf of FW is strictly
increasing, then w = µ̂ is the unique optimal solution.

C. Supplementary Materials for Empirical Findings
C.1. Training details for the experiments

The training procedure consists of two steps. We use the training strategy very similar to that in (Kirichenko et al.,
2022). We process CelebA and Waterbirds dataset using the procedure used in (Idrissi et al., 2021). We train in Pytorch
using the same environment from (Idrissi et al., 2021) provided at https://github.com/facebookresearch/
BalancingGroups.

We first explain training of ERM and SS.

• Feature Learning We take a pretrained ResNet-50 and fine tune a fresh linear layer on the target data (Waterbirds or
CelebA). We use Adam optimizer with a learning rate of 10−4 and a weight decay of 10−3 and train for 10 epochs
with a batch size of 128.

• Linear Layer Learning In this step, we train a fresh linear layer. The only difference between ERM and SS is that SS
is trained on a balanced dataset obtained by subsampling. We use Adam optimizer with a learning rate of 10−2 and
train for 100 epochs with a batch size of 128.

In ERM-PCA and SS-PCA the first step is exactly the same. Before the second step of linear layer learning, we carry out
PCA on the representations input to the last linear layer and retain the first four components as they explain 99 percent of
variance in the data. After this we carry out the second step with same parameters as above.
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C.2. Supplementary figures
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Figure 3: Waterbirds: Distribution of the second highest PCA feature.
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Figure 4: Waterbirds: Distribution of the third highest PCA feature.
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Figure 5: Waterbirds: Distribution of the fourth highest PCA feature
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Figure 6: CelebA: Distribution of the highest PCA feature.

0 2
 

0.0

0.5

1.0

 

0 2
 

0.0

0.5

1.0

 

1 0 1 2
x | (y,a) 

0.0

0.5

1.0

D
en

si
ty

 

1 0 1 2
 

0.0

0.5

1.0

 

Figure 7: CelebA: Distribution of the second highest PCA feature.
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Figure 8: CelebA: Distribution of the third highest PCA feature.
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Figure 9: CelebA: Distribution of the fourth highest PCA feature.
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