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Abstract
Given a dataset on actions and resulting long-
term rewards, a direct estimation approach fits
value functions that minimize prediction error on
the training data. Temporal difference learning
(TD) methods instead fit value functions by mini-
mizing the degree of temporal inconsistency be-
tween estimates made at successive time-steps.
Focusing on finite state Markov chains, we pro-
vide a crisp asymptotic theory of the statistical
advantages of this approach. First, we show that
an intuitive inverse trajectory pooling coefficient
completely characterizes the percent reduction in
mean-squared error of value estimates. Depend-
ing on problem structure, the reduction could be
enormous or nonexistent. Next, we prove that
there can be dramatic improvements in estimates
of the difference in value-to-go for two states:
TD’s errors are bounded in terms of a novel mea-
sure — the problem’s trajectory crossing time —
which can be much smaller than the problem’s
time horizon.

1. Introduction
Temporal difference learning is a distinctive approach to es-
timation in long-term optimization problems. Its importance
to reinforcement learning is hard to overstate. In their semi-
nal book, Sutton & Barto (2018) write: If one had to identify
one idea as central and novel to reinforcement learning, it
would undoubtedly be temporal difference learning.

Competing with temporal difference (TD) learning is a
straightforward direct-estimation approach. There, one pro-
ceeds by collecting data on past decisions and the cumula-
tive long-term ‘reward’ that followed them. If actions were
chosen with some experimental randomness, then regression
of long-term rewards on the draw of actions would – with
enough data – correctly identify actions’ causal impacts.
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The direct approach has two significant drawbacks. The
first is delay: actions can only be evaluated after their full
long-term effects realize. The second is variance: long-term
outcomes can be extremely noisy and individual actions
often have a small impact on them.

TD aims to alleviate these challenges by leveraging data on
intermediate outcomes – those observed after the decision
but before final outcomes are realized. The availability of
such data is increasingly common. Robots collect regular
sensor measurements, recommendation systems log sequen-
tial user interactions, and digital devices can track patient’s
health metrics across time. Sutton (1988) observed that
successive predictions, updated as information is gathered,
should be temporally consistent. He proposed to fit maxi-
mally consistent value estimates by iteratively minimizing
‘temporal difference errors’. TD has since become an intel-
lectual pillar of the reinforcement learning literature. It is
used in most successful applications.

Our Contributions. We aim to provide crisp insight into
the statistical benefits of TD. This paper focuses on the
simplest possible setting, where training data consists of a
batch of trajectories sampled independently from a finite
Markov reward process. We compare the asymptotic scaling
of mean squared error under TD and direct value estimation.
Two main findings, different in nature, emerge:

1. The relative benefits of TD are determined by a natural
‘inverse trajectory pooling coefficient.’ TD uses value-
to-go at intermediate states as a surrogate (Athey et al.,
2019; Prentice, 1989). This is beneficial exactly when
trajectories that originate with distinct states/actions
tend to reach common intermediate states. We present
simple examples illustrating when the benefits of TD
are enormous and when they vanish entirely.

2. TD is especially beneficial for advantage estimation;
That is, when estimating the difference in value-to-go
from one state/action versus another. TD estimates of
the value-to-go at different states are not independent
and the coupling of errors leads to this improvement.
While the mean squared error of direct advantage esti-
mation generally scales with the length of the problem
horizon, we show that TD’s errors are bounded by a
smaller trajectory crossing time. This novel notion of
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effective horizon can be small even in some problems
with unbounded mixing time.

On the Markov assumption and state representation.
Our focus on Markov models is standard in the academic
literature on reinforcement learning. This is, in a certain
technical sense, an innocuous assumption. One could al-
ways use the entire sequence of observations so far as a
Markov state (Puterman, 2014). But practical algorithms
need to use appropriate compression of the history. The
choice of representation has a subtle interplay with the bene-
fit of TD. Indeed, we comment in section 9 that the benefits
of TD can vanish when the state representation is too rich
and trajectory pooling vanishes.

2. Related works
TD has been a central idea in RL since it was first proposed.
It is deceptively simple, has intriguing connections to neu-
roscience (Schultz et al., 1997), and seems to be routed in
dynamic programming theory. In the 1990s, researchers
gathered both limited convergence guarantees (Dayan &
Sejnowski, 1994; Jaakkola et al., 1993) and examples of di-
vergence (Baird, 1995). Tsitsiklis & Van Roy (1997) offered
a clarifying theory of when TD converges, and characterized
the TD fixed point it reaches. Maei et al. (2009); Sutton et al.
(2009) proposed methods to reach the TD fixed point in off-
policy settings or when nonlinear function approximation is
used.

While illuminating, this theory does not clarify why TD
should be preferred over direct value function estimation
(dubbed ‘Monte-Carlo’ or ‘MC’). In fact, the main guaran-
tee is convergence to an approximate value function whose
mean-squared error is larger than the one MC reaches. Folk-
lore, intuition, and experiments suggest TD often converges
to its limit at a faster rate.

The literature has emphasized the distinction between on-
line and batch TD algorithms. The convergence speed of
batch TD methods, like LSTD (Bradtke & Barto, 1996), is
a statistical question. With purely online algorithms, each
observation is used to make a single stochastic gradient type
update and then immediately discarded, so issues of mem-
ory, compute, and data efficiency are conflated. The deep
RL literature has adopted experience replay (Andrychowicz
et al., 2017; Mnih et al., 2015; Schaul et al., 2015; Wang
et al., 2016), which blurs the line between batch and online
implementations by recording observations in a dataset and
resampling them many times.

We give a complete and intuitive characterization of the
efficiency benefits of TD in the simplest possible setting: a
batch variant applied without function approximation in a fi-
nite state Markov Reward Process. Here it is straightforward
to show TD is more efficient that MC, but more subtle to

understand when the efficiency gains are large. Grunewalder
et al. (2007) and Grünewälder & Obermayer (2011) make
progress in this direction. They prove that LSTD is at least
as statistically efficient as MC, without quantifying the im-
provement. They also display cases where the two proce-
dures have the same performance. Textbooks by Sutton
& Barto (2018) and Szepesvári (2010) give illuminating
examples, but no theory.

A number of papers bound the data requirements of TD,
mainly in settings with function approximation. See for
example (Mannor et al., 2004), (Lu, 2005)), (Lazaric et al.,
2010), (Pires & Szepesvári, 2012), (Tagorti & Scherrer,
2015)), (Bhandari et al., 2018), (Pananjady & Wainwright,
2020), (Khamaru et al., 2020), (Chen et al., 2020), or (Farias
et al., 2022). These show certain problem instances have
low data requirements, but do not clarify when enforcing
temporal consistency in value estimates produces large ef-
ficiency gains. To the best of our knowledge, our insights
about advantage estimation are new (See Sec 8).

3. Problem Formulation
We first describe the problem of value function estimation
in Markov reward processes (MRPs). We then observe
that after appropriate relabeling of the state variables, this
can also represent the problem of evaluating the long-term
impact of actions. Most mathematical results are stated for
MRPs, but the alternative interpretation enriches the results.

3.1. Value function estimation

A trajectory in a terminating Markov re-
ward process is a Markovian sequence τ =
(S0, R1, S1, R2, S2, . . . , ST−1, RT , ∅), consisting of
a sequence of states (St)t∈[T ] ⊂ S , rewards (Rt)t∈[T ] ⊂ R,
and termination time T . The termination time is the first
time at which ST = ∅, where ∅ is thought of as a special
terminal state. Assume the distribution of Rt is independent
of past rewards given the current state St.

The law of a Markov reward process (MRP) is specified
by the tuple M = (S ∪ {∅}, P,R, d) consisting of a state
space, transition kernel, reward distribution, and initial state
distribution. Here P is a transition matrix over the aug-
mented state space S ∪ ∅, specifying a probability P (s′ | s)
of transitioning from s to s′. We assume terminal sate
is absorbing and reachable. That is, P (∅|∅) = 1 and for
every state s there is some t such that the t step transi-
tion P t(∅|s) is strictly positive. The object R specifies
the draw of rewards conditioned on a state transition as
R(dr|s, s′) = P(Rt = dr | St = s, St+1 = s′). Through-
out we use the notation r(s, s) for the mean of R(·|s, s′).
We assume R(∅, ∅) = 0. The initial state distribution d is a
probability distribution over S from which S0 is drawn.
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The value function

V (s) = E

[ ∞∑
t=1

Rt | S0 = s

]

= E

[
T∑
t=1

r(St, St+1) | S0 = s

]

specifies the expected future reward earned prior to termina-
tion. It is immediate from our formulation that V (∅) = 0.
Our formulation is the Markov reward process analogue of
stochastic shortest path problems (Bertsekas & Tsitsiklis,
1991). Discounted problems are a special case where there
is a constant probability of termination P (∅ | s) = 1 − γ
for each non-terminal state s ∈ S. In that case, the horizon
T follows a geometric distribution with mean 1/(1− γ).

A related quantity measures the value-to-go differences be-
tween states,

A(s, s′) = V (s)− V (s′).

We call this the advantage of s over s′, since, as revealed
in the next subsection, it is closely related to the advantage
function in RL (Baird III, 1993).

We consider the problem of estimating the value-to-go at
initial states. We compare methods that produce estimates
V̂ based on n independent trajectories

D =
(
τi = (S

(i)
0 , R

(i)
1 , S

(i)
1 , . . . , S

(i)

T (i)−1
, R

(i)

T (i) , ∅)
)
i=1,...,n

.

by their mean squared error E
[(
V (s)− V̂ (s)

)2]
or

E
[(

A(s, s′)− Â(s, s′)
)2]

, where the expectation is over

the randomness in D. We assume that all states have a
non-zero probability of being visited in the dataset.

3.2. Heterogenous treatment effect estimation

This section demonstrates theory developed in this paper
directly applies to settings seemingly more general than the
one described in 3.1. Specifically, we explain how evaluat-
ing the long-term impact of a chosen decision in a specific
context falls in the scope of our setting with a simple appro-
priate relabeling of variables.

Here we consider a special case of our formulation where
the continuing state space S = S0 ∪ SI is partitioned into
a set of initial states S0 and a set of intermediate states SI .
With probability 1, S0 ∈ S0, ST = ∅, and at intermediate
times t ∈ {1, . . . , T − 1}, St ∈ SI .

We give the initial states a special interpretation. We think
of them as consisting of an initial context X0 and a decision
A0 and write S0 = (X0, A0). Using the more familiar

notation Q(X0, A0) ≡ V (S0), we have

Q(x, a) = E

[
T∑
t=1

Rt | X0 = x,A0 = a

]
.

The initial distribution d0 is determined by an initial con-
text distribution P(X0 = x) and a logging policy P(A0 =
x | X0 = x) which determines the frequency with which
actions are observed in the data.

Of particular interest in this setting is the advantage

A((x, a), (x, a′)) = Q(x, a)−Q(x, a′),

which measures the performance difference between actions
a and a′ in context x. The term ‘advantage’ is common in
RL, but in causal inference one might call this ‘heterogenous
treatment effect’ estimation.

Since policy gradient methods typically involve computing
the expectation of weighted advantages, we expect that in-
sights developed in this paper could apply to these methods.

4. Algorithms
4.1. Direct approach: First visit monte-Carlo (MC)

For any candidate value function, we can evaluate its ac-
curacy by comparing the future value it predicts from a
given state visited in the data and the actual cumulative
reward observed in the remainder of that trajectory. This
suggests a natural direct value estimation approach: over a
candidate class of value functions, pick one that minimizes
mean squared prediction error on the dataset. This method
is called Monte Carlo in the RL literature.

To formally describe the algorithm, define the random time
T (s) = min{t : St = s ∨ St = ∅} to be the first hitting
time of state s if it is reached, or T otherwise. Let I(s) =
{i ∈ [n] : s ∈ τi} to be set of trajectories that visit state s.
Form a dataset

DMC =
⋃
s∈S

⋃
i∈I(s)


s, T (i)∑

t=T (i)(s)+1

R
(i)
t

 .

that records pairs of states and the cumulative rewards
earned following the first visit to the state. Given a parame-
terized class of value functions {Vθ : θ ∈ Θ}, a direct value
estimation approach is to solve the least squares problem

min
θ∈Θ

∑
(s,v)∈DMC

(Vθ(s)− v)
2

We focus on tabular representations, where the space of
parameterized value functions spans all possible functions.
In that case

V̂MC(s) = E(S,V )∼DMC [V | S = s] ,
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where the notation (S, V ) ∼ DMC means that state/value
pairs are sampled uniformly at random from the dataset.
The value estimate at state s is simply the average reward
earned after visits to state s in the dataset.

What we described is called first visit Monte-carlo in the lit-
erature. It is an unbiased estimator because it only includes
the first time a state was visited during the an episode. We
focus on this version for analytical simplicity, but many of
our key examples focus on cases where initial states are
never revisited (See e.g. Subsection 3.2) and it coincides
with an “every visit” Monte Carlo estimate.

4.2. Indirect approach: TD learning

Temporal difference learning uses a reformatted dataset con-
sisting of tuples of reward realizations and state transitions:

DTD = {(S(i)
t , R

(i)
t+1, S

(i)
t+1)t=1,...,T (i),i=1,...,n}.

Define the temporal difference error between two candidate
value functions V, V ′ to be the average gap in Bellman’s
equation:

ℓTD(V, V
′) = E(S,R,S′)∼DTD [V (S)− (R+ V ′(S′))] ,

where the notation (S,R, S′) ∼ DTD means that tuples
are sample uniformly at random from the dataset. Given
a parameterized class of value functions, VΘ = {Vθ : θ ∈
Θ}, batch TD algorithms iteratively generate parameters
(θ1, θ2, . . .) by solving minθi+1 ℓ(Vθi+1 , Vθi). (Online TD
algorithms, combined with experience replay, make SGD
updates instead.) For linear function approximation (Tsit-
siklis & Van Roy, 1996), or neural networks in the ‘Neural
tangent kernel’ regime (Cai et al., 2019), value functions are
known to converge to a fixed point

V̂TD = argmin
V ∈VΘ

ℓ
(
V, V̂TD

)
,

which, in a sense, maximizes feasible temporal consistency.

Again, we focus on tabular representations, where the space
of parameterized value functions spans all possible func-
tions. In that case, TD solves the empirical Bellman equa-
tion

V̂TD(s) = E(S,R,S′)∼DTD

[
R+ V̂TD(S

′) | S = s
]

5. Intuition: surrogacy and intermediate
outcomes

A lot of the intuition regarding TD can be gained through the
simple example in Figure 1. Imagine our goal is to select
the website design among 100 alternatives that leads to
the largest sale rate (of some product). Users arrive and are
randomly assigned to one of the 100 pages. They either click

Figure 1. Modeling a user’s behavior

to purchase and proceed to the checkout page or navigate
away from the site without purchasing. Among those who
click, only a small fraction complete the sale.

Assume, for simplicity, that we have no access to personal in-
formation that distinguishes users from one another. (There
is only one possible x in Section 3.2.) There are 100 pos-
sible initial states, corresponding to the webpage version,
and the user is equally likely to start at each of those. A
sale and a no-sale immediately precede termination. We call
the checkout page an intermediate state. The sale state is
associated with a reward of 1 and all others are associated
with a reward of 0.

What we called the Monte-Carlo estimate of the value func-
tion would directly estimate the value of an impression of
each webpage to be the fraction who purchased among that
cohort of users.

Due to the directed nature of state transitions, TD estima-
tion can be thought of in two steps. We first estimate
V̂ (checkout) to be the fraction who purchased among
users who visit the checkout page. We then estimate the
value of an impression of webpage i by

V̂ TD(webpage i) = CTR(i)× V̂ (checkout),

the empirical click-through rate among those shown web-
page i times the estimated sale rate on the checkout page.

Monte-carlo estimation is unbiased, but it may be difficult
to reliably estimate the efficacy of each webpage. If only
a small fraction click initially, and among those who do
only a small fraction convert to a sale, one would need
to show each webpage to an enormous number of users.
With TD, we pool data from across users who were shown
any of the 100 webpages when estimating V̂ (checkout),
greatly reducing variance. In this example, there is a lot
of data pooling because trajectories that begin at distinct
states quickly converge to the intermediate state. In fact, our
theory reveals that certain intuitive measures of trajectory
pooling exactly determine degree of statistical benefit TD
provides.

Another view of TD is that it uses the intermediate click/no-
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click outcome as a surrogate or proxy-metric (Prentice,
1989). Recognizing this, TD’s potential downsides become
as transparent as its benefits. If the conversion probability
among users who visit the checkout page depends strongly
on which page design they saw, the Markov property does
not hold and TD is biased. We discuss this example again
in the conclusion, mentioning how the risks and benefits
interplay with the choice of state representation.

6. Empirical illustration
6.1. The benefits of TD

To illustrate how much TD can improve over MC, we ex-
plore an example: we consider a layered MRP as describe
in Figure 2. A layered MRP with width W and horizon T
has W × (T − 1) states split in T layers. States in layer t
can only transition to states in layer t+ 1 and states in the
last layer T − 1 always transition to the terminal state.

s
(1)
1

s
(2)
1

...

s
(W )
1

s
(1)
2

s
(2)
2

...

s
(W )
2

s
(1)
T−1

s
(2)
T−1

...

s
(W )
T−1

∅

Figure 2. Layered MRP with width W and horizon T . Transi-
tions are chosen randomly and rewards are uniform on [r(s, s′)−
1; r(s, s′) + 1] where r(s, s′) is chosen uniformly between -1 and
1.

We consider a Layered MRP with width W = 5. We focus
on state s(1)1 and s(2)1 and study the accuracy of the estimates
of their value as we vary the horizon T of the MRP. We
also study the accuracy of the estimate of the advantage
A
(
s
(1)
1 , s

(2)
1

)
= V

(
s
(1)
1

)
− V

(
s
(2)
1

)
. Figure 3 displays

the Mean Square Error (MSE) of the TD and MC estimates
for these quantities when the dataset contains n = 2000
independent trajectories. MSE calculations involve 10000
Monte-Carlo replications. Alongside the observed MSE, we
plot projected MSE based on the central limit theorem from
Proposition B.4 and Proposition B.5. There is almost perfect
alignment between asymptotic and finite sample results.

We highlight three main take-aways from this example:

1. TD can vastly outperform MC. For the chosen states
s
(1)
1 and s(2)1 , the MSE is about 5 times smaller when

using TD instead of MC for a Layered MRP with width
W = 5 and horizon T = 120.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

Horizon T

M
SE

(a) Full Y-Axis

0 20 40 60 80 100 120
0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

Horizon T

M
SE

(b) Truncated Y-Axis

Value at s Asymptotic TD MSE
Value at s′ Asymptotic MC MSE
Advantage Empirical TD MSE

Empirical MC MSE

Figure 3. MSE of different MC and TD estimates on Layered MRP
with W = 5 and varying horizon T

2. TD benefits are enhanced for advantage estimation.
In this example, TD performs up to 100 times better
than MC for the advantage estimation. This example
also shows that the MSE of the TD estimate of the ATE
is smaller than the MSE of individual estimates of the
value of s(1)1 and s(2)1 when the horizon T is larger than
20. On the other hand, the MSE of the MC estimate of
the advantage is larger than the individual MSE of the
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estimates of the value.

3. TD effectively truncates the horizon. While the MSE
of the MC estimate of the advantage scales linearly
with the horizon T , the MSE of the TD estimate is
constant with respect to the horizon T . This is all the
more striking that the variance of the total reward along
a trajectory scales linearly with the horizon.

6.2. Dependence on the MRP structure

We have seen in Section 6.1 that TD vastly outperforms
MC in the case of Layered MRP. However, different MRP
structures lead to different level of improvement of TD
over MC. To illustrate this, we introduce a new class of

s
(1)
1

s
(2)
1

s
(k)
1

s
(1)
H−1

s
(2)
H−1

s
(k)
H−1

sH sT−1 ∅

Figure 4. MRP with meeting horizon H

MRPs described in Figure 4. Each of the k initial states
s
(1)
1 , . . . , s

(k)
1 lead to disjoint trajectories for the first H − 1

steps before reaching a common state on the Hth step. We
are interested in seeing how TD and MC perform when
the crossing time H varies. Figure 5 displays the ratio
of the MSE of the TD and MC estimates for the values
of s(1)1 , s

(2)
1 and for the advantage as the crossing time H

varies. The MSE used to compute the ratios have been
computed using n = 200 independent trajectories and 1000
Monte-Carlo replications. These ratios are plotted alongside
the asymptotic ratio from Theorem 7.2. As the crossing time
H gets closer to the horizon T , the advantage of TD over
MC vanishes until H = T , when TD and MC produce the
exact same estimates. To convey intuition, we first focus
on the two extreme cases:

• In the case where H = 2, depicted in Figure 6a, all
initial states directly transition to the same state. This
mimics the webpage example in Figure 1. In this ex-
ample, apart from the first reward, trajectories do not
depend of the initial state. TD pools trajectories across
actions which allows to highly reduce the variance of
the estimate of the value at s2. This low variance esti-
mate is then used as a surrogate to estimate the value-
to-go at initial states. On the other hand, MC does
not leverage the structure of the MRP and produces

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Meeting horizon H

R
at

io
of

M
SE

E
[ (V̂

T
D
−
V
)2
] /E

[ (V̂
M
C
−
V
)2
]

Value at s
value at s′

Advantage
Asymptotic ratio
Empirical ratio

Figure 5. Ratio of variance between TD and MC as a function of
the meeting horizon H for T = 20

an independent estimate for each initial state, using
only trajectories starting at a given state to evaluate this
state. In this case, TD will significantly improve over
MC.

• At the other extreme, consider H = T . Then, no two
initial states can lead to a common state before the
terminal state, as shown in Figure 6b. There is no
opportunity to pool trajectories across actions so TD
strictly reduces to MC in this case.

s
(1)
1

s
(2)
1

s
(k)
1

s2 sT−1 ∅

(a)

s
(1)
1

s
(2)
1

s
(k)
1

s
(1)
T−1

s
(2)
T−1

s
(k)
T−1

∅

(b)

Figure 6. 6a is an instance on which TD leverages pooling to im-
prove considerably over MC. 6b is an instance on which TD and
MC output the same estimate.

6.3. Organization of the results

In Section 7, we characterize the ratio in variance between
TD and MC estimates for value estimation depending on
the MRP structure. This characterization enables an intu-
itive understanding of which MRP structures lead to a large

6



On the Statistical Benefits of Temporal Difference Learning

improvement of TD and, conversely, for which MRP struc-
tures TD and MC perform similarly. In Section 8, we show
that the TD estimate of advantages scales with an effective
horizon that can be much smaller than the horizon.

7. Value estimation and the pooling coefficient
Recall that T (s) is the first hitting time of state s if it is
reached, or T otherwise. The variables

N(s′) =

T∑
t=0

1(St = s′), N(s→ s′) =

T∑
t=T (s)

1(St = s′),

respectively measure the total number of visits to state s′

and the number of visits to s′ which occur after a visit to
state s.

Define the coupling coefficient between s and s′ by

C(s, s′) =
E [N(s→ s′)]

E [N(s′)]
,

with C(s, s′) = 0 if E [N(s′)] = 0. Implicitly, it is under-
stood that S0 is drawn from the MRP’s initial distribution
d. Among all trajectories which reach state s′, the coupling
coefficient measures the fraction which first pass through
state s. If the coupling coefficient is large, it means s and s′

are strongly coupled.

The inverse trajectory pooling coefficient measures the
average coupling coefficient C(s, s′) over a distribution
of possible successor states s′. The right distribution
over which to average turns out to be µs(·), identified
in the definition below. That distribution weighs highly
states that are likely to be visited following a visit to s
(high E[N(s′) | S0 = s]) and contribute heavily to esti-
mator variance (measured through the one-step variance
Var (Rt+1 + V (St+1) | St = s′)).
Definition 7.1 (Inverse trajectory pooling coefficient). For
any state s ∈ S define

C(s) = Es′∼µs [C(s, s′)] ,

where µs(·) a probability distribution over states defined by

µs(s
′) ∝ E [N(s′) | S0 = s]×Var [Rt + V (St+1) | St = s′] .

Again, the inverse trajectory pooling coefficient is small
when there is a lot of trajectory pooling. The next theorem
compares the asymptotic mean squared error of the value
estimated under TD and a direct approach. The asymptotic
ratio of their mean squared errors is equal to the inverse
trajectory pooling coefficient.
Theorem 7.2. For any s ∈ S,

lim
n→∞

E
[(
V̂TD(s)− V (s)

)2]
E
[(
V̂MC(s)− V (s)

)2] = C(s).

Let us interpret this result. Recall that TD updates value pre-
diction at state s using value predictions at successor states.
The theorem shows this is helpful precisely when there is a
lot of trajectory pooling, resulting in a small inverse trajec-
tory pooling coefficient. When this holds, and the dataset
D is large, there will be many trajectories which reach an
important possible successor s′ of s, but never cross s first.
TD leverages these trajectories to learn about s′ and then
properly incorporates that knowledge to better evaluate s.
Direct estimation approaches only use sub-trajectories origi-
nating at s to evaluate s and forego the trajectory pooling
benefit. We already developed this intution by discussing
the simple example in Figure 1. The theorem confirms that
this interpretation of TD’s advantages is exactly the right
one.

Figures 6a describes an instance with extreme trajectory
pooling. Trajectories that start in distinct states tend to
immediately reach common successors, so TD understands
value-to-go from successors quite well. Figure 6b is a case
with no trajectory pooling at all (i.e. C(s) = 1).

8. Horizon truncation in advantage estimation
Section 6 previewed two of the paper’s key insights: TD’s
benefits are enhanced for advantage estimation and, in that
setting, it effectively truncates the problem’s time horizon.
Theory in this section formalizes these insights.

The MSE of direct advantage estimates scales with the
horizon. The variance of the total reward along a trajec-
tory typically scales with the horizon. Therefore, it would
not be surprising that the mean squared error of the estimate
of the advantage also scales with the horizon. We show that
it is indeed the case for MC by stating a lower bound on the
mean squared error.

Proposition 8.1. For s, s′ ∈ S such that
P [s ∈ τ ∧ s′ ∈ τ ] = 0,

lim
n→∞

n · E
[(

ÂMC(s, s
′)− A(s, s′)

)2]
≥ σ2

min

(
E [T |S0 = s]

P [s ∈ τ ]
+

E [T |S0 = s′]

P [s′ ∈ τ ]

)
.

where σ2
min = mins∈S Var [Rt + V (St+1) | St = s]

The condition P [s ∈ τ ∧ s′ ∈ τ ] = 0 guarantees that no
trajectory can visit both s and s′. It ensures that the MC
estimate of the value at s and s′ are independent. It is veri-
fied when considering the heterogeneous treatment effect,
described in Section 3.2, where a single action is chosen for
every trajectory. The scaling in the inverse probability of
visiting s and s′ appears because nP [s ∈ τ ] and nP [s′ ∈ τ ]
are asymptotically the number of trajectories available for
the Monte-Carlo estimation.

7
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The MSE of TD’s advantage estimates scales with a
smaller trajectory crossing time. Rather than scale with
problem’s time horizon, the mean squared error of TD’s
advantage estimate is bounded by a smaller notion of the
problem’s effective horizon. To formally capture this phe-
nomenon, we introduce the trajectory crossing timeH(s, s′)
for two states s and s′ to be the expected time for trajecto-
ries starting at s and s′ to cross under the most optimistic
coupling. Two trajectories always cross once both have ter-
minated, as in that case both have visited the terminal state
∅, but they could cross much sooner. Intuition for the this
definition is provided below.

Definition 8.2. The set of distributions Ψ(s, s′) is the set
of all joint distributions over trajectories (τ, τ̃) such that the
marginal distributions of τ and τ̃ are those of trajectories
starting at s and s′, respectively.

Definition 8.3 (Trajectory crossing time). The trajectory
crossing time of two states s and s′ is the expected time
for trajectories originating from s and s′ to cross under
the best coupling that preserves the trajectories’ marginal
distributions:

H(s, s′) = min
ψ∈Ψ(s,s′)

E(τ,τ̃)∼ψ [inf{t|Ct(S, S′) ̸= ∅}]

where Ct(S, S′) = {S0, . . . , St} ∩ {S′
1, . . . , S

′
t} is the set

of states visited by both trajectories at time t.

The following theorem establishes that the mean squared
error of the TD estimate of the advantage scales with the
trajectory crossing time instead of the full horizon:

Theorem 8.4. For s, s′ ∈ S,

lim
n→∞

n · E
[(

ÂTD(s, s
′)− A(s, s′)

)2]
≤ 2

(
σ2
max

min (P [s ∈ τ ] ,P [s′ ∈ τ ])

)
·H(s, s′)

with σ2
max = maxs∈S Var [Rt + V (St+1) | St = s].

Figure 3, in Section 6, provides an empirical illustration of
this result.

This result can actually understate the benefits the TD. Any
trajectory pooling that happens before the trajectories cross
further helps reducing the variance, but is not reflected in
the upper bound of Theorem 8.4. In particular, we show
in Appendix B.5 that trajectory pooling ensures that TD
estimates are at least as accurate as MC estimates, even
when the crossing time matches the full horizon. We also
discuss the tightness of these bounds in Appendix B.6.

Comparison with a coupling time. Trajectories are said
to cross if one of the trajectories reaches a state already
visited by the other one, potentially at an earlier time. It

s
(1)
1

s
(2)
1

s2 s3 sm

Figure 7. An example with no coupling but rapid crossing.

is different from the coupling time where trajectories have
to reach a common state simultaneously. In particular, the
crossing time is always smaller than the coupling time.The
MRP defined in Figure 7 illustrates this. Trajectories start-
ing at states s(1)1 and s(2)1 only couple when reaching the
terminal state, after m+ 1 timesteps. However, they cross
in two timesteps, that is H

(
s
(1)
1 , s

(2)
1

)
= 2.

Intuition for the result. Let us give intuition for Theorem
8.4. Under the MRP structure, two trajectories reaching a
common state have the same future expected reward. Hence,
when estimating the difference in expected total rewards
along two trajectories, one starting at s, the other starting
at s′, it is only useful to estimate them up until the state
where trajectories cross. By computing estimates at every
state, TD leverages this property: two trajectories reaching
a common state (the crossing state) use the same estimate
(the value at the crossing state) to update predictions along
both trajectories. Since the same estimate is used, its value
cancels out when computing the difference in values at s
and s′. Whether the value at the crossing state is accurately
estimated doesn’t affect the estimation of the advantage.

9. Open questions
There is a subtle interplay between the choice of state repre-
sentation and the benefits of imposing temporal consistency
in value estimates. Consider again the problem in Figure 1.
In that case, we chose to represent the ‘checkout page’ as a
state, implying that the purchase probability at the checkout
page does not depend on the initial webpage shown to the
user. This makes a strong surrogacy assumption, which TD
leverages to greatly improve data efficiency. An alterna-
tive representation of the state in the second period is of
the form s = (website version i, checkout), retaining infor-
mation about how the user navigated to the checkout. In
this case, there is no trajectory pooling and our theory indi-
cates that TD behaves as MC would. By using a very rich
representation, which recalls much of the past, the bene-
fits of TD disappear. Clearly, we want representations that
are accurate, to avoid severe approximation errors. But we
have shown that representations that are forgetful of aspects
of the past offer enormous benefits; this lets value-to-go
from intermediate states serve as surrogate outcomes. How

8
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should one balance this tradeoff while learning representa-
tions from data? This question closely relates to the one of
understanding temporal consistency with function approxi-
mation.
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ver, D., Szepesvári, C., and Wiewiora, E. Fast gradient-
descent methods for temporal-difference learning with
linear function approximation. In Proceedings of the 26th
annual international conference on machine learning, pp.
993–1000, 2009.
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A. Additional experiments
Figure 3 and 5 aims at displaying the difference in precision of MC estimates and TD estimates on minimal working
examples, to underline what is driving the difference. In this section, we complement the experiments in the main body to
illustrate that the theory holds in more complex settings. Specifically, we show empirical results on an augmented version
of the Layered MRP introduced in Figure 2, where we introduce cycles. Specifically, a cyclic Layered MRP with width
W , horizon T and backward arc probability p has T − 1 layers of W states, each of which has a non-zero probability to
each state in the next layer and with probability p, a transition to a state in a previous or the current layer. The structure is
illustrated in Figure 8.

s
(1)
1

s
(2)
1

...

s
(W )
1

s
(1)
2

s
(2)
2

...

s
(W )
2

s
(1)
T−1

s
(2)
T−1

...

s
(W )
T−1

∅

Figure 8. Layered MRP with width W and horizon T and backwards transitions. There is at most one backward transition per node.
The probability of adding a backward transition is fixed p and the desitination of a backward transition is chosen uniformly at random.
Transitions are chosen randomly and rewards are uniform on [r(s, s′)− 1; r(s, s′) + 1] where r(s, s′) is chosen uniformly between -1
and 1.

We first show that the Central Limit Theorems governing the MC and TD estimates still hold empirically when cycles are
introduced. We used 10000 Monte-Carlo replications, each of which used 2000 samples to compute the value-to-go.
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Advantage Empirical TD MSE

Empirical MC MSE

Figure 9. MSE of different MC and TD estimates on Cyclic Layered MRP with W = 5, p = 0.1 and varying horizon T

Next, we show how accurate the limiting approximation is in the finite sample regime. To do so, we compute the empirical
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MSE for the MC and TD estimates for a range of sample sizes and plot alongside the normal approximation. The MRP used
for these experiment is a Layered MRP with cycles with parameter W = 5, T = 120, p = 0.1. We used 10000 Monte-Carlo
replications.
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Value at s Asymptotic TD MSE
Value at s′ Asymptotic MC MSE
Advantage Empirical TD MSE

Empirical MC MSE

Figure 10. MSE of MC and TD estimators when varying the number of samples, compared with the normal approximation

An alternate view on the impact of the number of samples is the one of regret: when trying to choose what state has the
highest value function between two states s and s′, how often would an estimator indicate the wrong decision. That is, the
regret of an estimator V̂ is E

[
1

(
V̂ (s) > V̂ (s′)

)]
, assuming V (s′) > V (s). We plot the empirical regret when using MC

estimates versus TD estimates, as a function of the number of samples, along with the normal approximation derived from
the Central Limit Theorems.

B. Proofs.
We state and prove results in the context of weighted value function which is a linear combination of the value function
evaluated at individual states.

Definition B.1 (Weighted value function). For a weighting over states π, the extended value function is defined as

J(π) =
∑
s∈S

π(s)V (s)

By setting π to be a mass point at a single state, we recover the value function at this state. When interpreting initial states as
actions (as in Section 3.2), we recover randomized policy when using a distribution over actions as the weighting. In this
case, the weighted value function is the expected value when playing according to the randomized policy. Note that our
definition of weighted value function allows for any weighting of states, including negative weights. This will be useful for
analyzing advantages V (s)− V (s′) by setting π(s) = 1 and π(s′) = −1.

We also extend our definition of expected number of visits to weightings over initial states.

Definition B.2 (Weighted expected number of visits). For a weighting over states π, we write ηπ(s) the weighted number

12
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Figure 11. Regret for TD and MC estimates on Cyclic Layered MRP with W = 5, p = 0.1, T = 120 as the number of samples used vary.

of visits to s:
ηπ(s) =

∑
s′∈S

π(s′)E [N(s)|S0 = s′]

Similarly to the weighted value function, π is not enforced to be a distribution over state, allowing even for negative values.
In the case where π is a distribution over state, we recover the probabilistic interpretation: ηπ(s) is the expected number of
visits to state s when the initial distribution is π.

Definition B.3 (One-step variance).

σ2
V (s) = Var [Rt + V (St+1) | St = s] .

We extend trajectories into infinite horizon trajectories that stay in the terminating state and stop collecting rewards once the
terminating state is reached: St = ∅ and Rt+1 = 0 for all t ≥ T . Equivalently, we define the transition P (∅ | ∅) = 1 and
the reward R(∅, ∅) = 0 a.s.

We start by stating and proving Central Limit Theorems (CLT) for the convergence of both TD and MC estimates. We then
use these two results as building blocks to prove the main theorems.

B.1. Central Limit Theorems

Proposition B.4 (Central Limit Theorem for MC). For s ∈ S,

√
n(V̂MC(s)− V (s)) ⇒ N

(
0,

1

P [s ∈ τ ]

∑
s′∈S

E [N(s′) | S0 = s]σ2
V (s′)

)

Proof. We recall that, for tabular representation, the MC estimator takes the form

V̂MC(s) = E(S,V )∼DMC [V | S = s]

=
1

| I(s) |
∑
i∈I(s)

T (i)∑
t=T (i)(s)

R
(i)
t+1,

13
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where I(s) is the set of trajectories that visit state s and T (i)(s) is the first visit to state s in trajectory i. Since we consider
first-visit MC, each trajectory appears at most once in the summation. We start by rewriting the error V̂MC(s)− V (s) as the
product of a scaling factor and the average of i.i.d. random variables:

V̂MC(s)− V (s) =
1

| I(s) |
∑
i∈I(s)

 T (i)∑
t=T (i)(s)

R
(i)
t+1 − V (s)


=

n

| I(s) |
· 1
n

n∑
i=1

1(s ∈ τ (i))

 T (i)∑
t=T (i)(s)

R
(i)
t+1 − V (s)


Recall that if s is not visited in trajectory i, T (i)(s) is defined to be T (i)(s) = T (i).

• We start by proving a Central Limit Theorem on

1

n

n∑
i=1

1(s ∈ τ (i))

T (i)∑
t=T (i)(s)

R
(i)
t+1

 .

The variables
(
1(s ∈ τ (i))

(∑T (i)

t=T (i)(s)R
(i)
t+1 − V (s)

))
i=1,...,n

are n i.i.d., zero mean random variables. We now

compute their variance.

Var

1(s ∈ τ)

 T∑
t=T (s)

Rt+1 − V (s)

 = P [s ∈ τ ] Var

1(s ∈ τ)

 T∑
t=T (s)

Rt+1 − V (s)

 | s ∈ τ


= P [s ∈ τ ] Var

 T∑
t=T (s)

Rt+1 − V (s) | s ∈ τ


Since the summation starts at the stopping time defined by the first visit to state s, the Strong Markov Property enables
to re-index the summation in the following way:

Var

1(s ∈ τ)

 T∑
t=T (s)

Rt+1 − V (s)

 = P [s ∈ τ ] Var

[
T∑
t=0

Rt+1 − V (s) | S0 = s

]

= P [s ∈ τ ] Var

[ ∞∑
t=0

Rt+1 − V (s) | S0 = s

]

where we allowed the sum to run to infinity since (Rt+1)t is a.s. stationary at 0 for t ≥ T . Similarly, we use the fact
that (V (St)− V (St+1)) is a.s. stationary at 0 to write V (S0) =

∑∞
t=0 (V (St)− V (St+1)). Plugging in the previous

expression gives:

Var

1(s ∈ τ)

 T∑
t=T (s)

Rt+1 − V (s)

 = P [s ∈ τ ] Var

[ ∞∑
t=0

(Rt+1 + V (St+1)− V (St)) |S0 = s

]

14



On the Statistical Benefits of Temporal Difference Learning

Notice that (Rt+1 + V (St+1)− V (St))t are martingale differences with respect to the filtration Ft = {S0, . . . St}.
Using that martingale differences are uncorrelated:

Var

1(s ∈ τ)

 T∑
t=T (s)

Rt+1 − V (s)

 = P [s ∈ τ ]

∞∑
t=0

E
[
(V (St+1) +Rt+1 − V (St))

2|S0 = s
]

We then group the terms in the sum by the value of St:

Var

1(s ∈ τ)

 T∑
t=T (s)

Rt+1 − V (s)

 =

P [s ∈ τ ]

∞∑
t=0

∑
s′∈S

P [St = s′|S0 = s]E
[
(V (St+1) +Rt+1 − V (St))

2|St = s′
]

= P [s ∈ τ ]

∞∑
t=0

∑
s′∈S

P [St = s′|S0 = s]σ2
V (s′)

= P [s ∈ τ ]
∑
s′∈S

σ2
V (s′)

∞∑
t=0

P [St = s′|S0 = s]

= P [s ∈ τ ]
∑
s′∈S

E [N(s′)|S0 = s]σ2
V (s′)

Using the Central Limit Theorem, we obtain the following convergence:

√
n
1

n

n∑
i=1

1(s ∈ τ (i))

T (i)∑
t=T (i)(s)

R
(i)
t+1

⇒ N

(
0,P [s ∈ τ ]

∑
s′∈S

E [N(s′)|S0 = s]σ2
V (s′)

)
.

• The Strong Law of Large Number ensures:

n

| I(s) |
−→
n→∞

1

P [s ∈ τ ]
a.s..

Finally, using Slutsky’s Theorem, the product converges:

n

| I(s) |
· 1
n

n∑
i=1

1(s ∈ τ (i))

 T (i)∑
t=T (i)(s)

R
(i)
t+1 − V (s)

⇒ N

(
0,

1

P [s ∈ τ ]

∑
s′∈S

E [N(s′)|S0 = s]σ2
V (s′)

)
.

Proposition B.5 (Central Limit Theorem for TD). For any weighting π,

√
n(ĴTD(π)− J(π)) ⇒ N

(
0,
∑
s′∈S

η2π(s
′)σ2

V (s′)

E [N(s′)]

)
.

Corollary B.6. For s ∈ S

√
n(V̂TD(s)− V (s)) ⇒ N

(
0,
∑
s′∈S

E [N(s′) | S0 = s]
2
σ2
V (s′)

E [N(s′)]

)
.
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B.2. Proof of Proposition B.5

Notations The idea of the proof is to use the fixed point identities verified by V and V̂TD to obtain a recursive formula for
the error V̂TD − V . We then analyze the two quantities that appear when iterating this recursive formula: one is a sum of
empirical one-step error and we show the other is of second order.

We adopt a vectorial representation of the value function V = (V (s))s∈S such that J(π) = ⟨V, π⟩. Let T be the Bellman
operator:

T (f)(s) = ES′∼P (·|s) [R(s, S
′) + f(S′)]

The value function is the unique fixed point of the Bellman operator: V = T (V ) to verify V (∅) = 0. We also write the
transition operator as follow:

P (f)(s) = ES′∼P (·|s) [f(S
′)] = ⟨P (· | s), f⟩.

As discussed in Section 4.2, by trying to minimize temporal differences, TD solves the empirical Bellman equation:

V̂TD(s) = E(S,R,S′)∼DTD

[
R+ V̂ TD(S′) | S = s

]
.

Solving the empirical Bellman equation can be viewed as being a fixed point (with f(∅) = 0) of the empirical Bellman
operator that we define as follow:

T̂ (f)(s) = E(S,R,S′)∼DTD [R+ f(S′) | S = s] .

Similarly, we note the empirical transition operator

P̂ (f)(s) = E(S,R,S′)∼DTD [f(S′) | S = s] .

Finally, we introduce an explicit notation of the empirical Bellman operator that will ease proofs. To do so, we first need to
introduce B(s), the set of all visits to state s:

B(s) = {(i, t) | S(i)
t = i}

Using this notation, the empirical Bellman operator can be written as follow:

T̂ (f)(s0) =
1

| B(s0) |
∑

(i,t)∈B(s0)

(
f
(
S
(i)
t+1

)
+R

(i)
t+1

)
.

Analysis We start by expanding the error vector V̂TD − V into a sum of empirical one-step errors and a second term that
we later show to be of second order.

Lemma B.7.

√
n
(
V̂TD − V

)
=

√
n

∞∑
t=0

P t(T̂ V − V ) +

∞∑
t=0

P t
(√

n(P̂ − P )(V̂TD − V )
)

Note that, since P t(S0) = St is stationary at ∅ almost surely, the quantities summed in Lemma B.7 are ultimately zero
almost surely.

Proof. By expending the difference V̂TD − V using the fixed point identities, we obtain a recursive identity:

16



On the Statistical Benefits of Temporal Difference Learning

V̂TD − V = T̂ V̂TD − T V
= (T̂ − T )V̂TD + T V̂TD − T V
= (P̂ − P )(V̂TD − V ) + (T̂ − T )V + P (V̂TD − V )

= (P̂ − P )(V̂TD − V ) + (T̂ V − V ) + P (V̂TD − V ).

Iterating this identity and multiplying by
√
n on both sides gives

√
n
(
V̂TD − V

)
=

∞∑
t=0

P t
(√

n(P̂ − P )(V̂TD − V )
)
+
√
n

∞∑
t=0

P t(T̂ V − V ). (1)

We now state two lemmas that analyze the two terms that appear in equation (1). They are proved later.

Lemma B.8. For all s ∈ S, as n→ ∞,

∞∑
t=0

P t
(√

n(P̂ − P )(V̂TD − V )
)
(s) → 0 a.s.

Lemma B.9. As n→ ∞

√
n
∑
s∈S

π(s)

∞∑
t=0

P t(T̂ V − V )(s) ⇒ N

(
0,
∑
s∈S

ηπ(s)
2

E [N(s)]
σ2
V (s)

)

Finally, combining Lemma B.8 and Lemma B.9 with Slutstky Lemma concludes the proof.

We now proceed to prove Lemma B.8 and Lemma B.9, starting with Lemma B.8

B.2.1. PROOF OF LEMMA B.8

Proof. We start by showing that, after appropriate rescaling the error in transition estimates converge to a Gaussian
distribution. We do not calculate the variance here since it is not needed.

Lemma B.10. For each s,
√
n
(
P̂ − P

)
(·|s) weakly converges to a normal distribution with mean zero.

Proof. We first express P̂ (s′|s)− P (s′|s) as the product of a scaling factor and the average of n i.i.d random vectors:(
P̂ (s′|s)− P (s′|s)

)
s′∈S

=
1

| B(s) |
∑

(i,t)∈B(s)

(
1(S

(i)
t+1 = s′)− P (s′|s)

)
s′∈S

=
n

| B(s) |
· 1
n

n∑
i=1

( ∞∑
t=0

1(S
(i)
t = s)

(
1(S

(i)
t+1 = s′)− P (s′|s)

))
s′∈S.

We decompose this identity in two terms:

• Strong law of large numbers ensures that

n

| B(s) |
−→
n→∞

1

E [N(s)]
a.s..

17
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• Since trajectories are independent,

∞∑
t=0

1(S
(i)
t = s)

(
1(S

(i)
t+1 = s′)− P (s′|s)

)
s′∈S

are independent, identically distributed random variables with finite variance and mean 0. The Central Limit Theorem
ensures that the rescaled average of these random variables

√
n · 1

n

n∑
i=1

∞∑
t=0

1(S
(i)
t = s)

(
1(S

(i)
t+1 = s′)− P (s′|s)

)
s′∈S

weakly converges to a mean 0 normal distribution.

Finally, the product of these two quantities also converges to a mean 0 normal distribution.

We terminate the proof of Lemma B.8 by combining Lemma B.10 with the fact that V̂TD − V converges almost surely to 0
by Slutsky’s Theorem.

B.2.2. PROOF OF LEMMA B.9

Proof. We start by expanding the transition operator P t,

√
n

∞∑
t=0

P t(T̂ V − V )(s) =
√
n

∞∑
t=0

E
[
T̂ V (St)− V (St) | S0 = s, T̂

]

This term consists of a sum one-step differences of the form
√
n
(
T̂ V (S

(i)
t )− V (S

(i)
t )
)

. Grouping S(i)
t that are equal:

√
n

∞∑
t=0

P t(T̂ V − V )(s) =
√
n ·

∞∑
t=0

E

[∑
s′∈S

1(St = s′)
(
T̂ V (s′)− V (s′)

)
| S0 = s, T̂

]

=
√
n · E

[∑
s′∈S

∞∑
t=0

1(St = s′)
(
T̂ V (s′)− V (s′)

)
| S0 = s, T̂

]

=
√
n
∑
s′∈S

E

[ ∞∑
t=0

1(St = s′) | S0 = s′

](
T̂ V (s′)− V (s′)

)
=

√
n
∑
s′∈S

E [N(s′)|S0 = s]
(
T̂ V (s′)− V (s′)

)
.

To get the result for a general weighting of states π, we take the dot product of the previous identity with π:

√
n
∑
s∈S

π(s)

∞∑
t=0

P t(T̂ V − V )(s) =
√
n
∑
s∈S

ηπ(s)
(
T̂ V (s)− V (s)

)
. (2)

We are left with analyzing a linear combination of terms of the form T̂ V (s)− V (s). For an individual s, T̂ V (s)− V (s)
is an average of i.i.d. variables and its asymptotical behavior can be controlled using a Central Limit Theorem. However,
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to find the limiting distribution of the linear combination, we need to prove a vectorial Central Limit Theorem for the
random vector

(
T̂ V (s)− V (s)

)
s∈S

. In particular, we show that
(
T̂ V (s)− V (s)

)
s∈S

converge to independent normal

distributions.

The following lemma is key to prove the independence of the limiting distribution. It states that one-step differences are
uncorrelated:

Lemma B.11. For (s, t) ̸= (s′, t′):

Cov [1(St = s) (V (St)− V (St+1)−Rt+1) ,1(St′ = s′) (V (St′)− V (St′+1)−Rt′+1)] = 0.

Proof. The result follows from the Markovian property:

Cov [1(St = s) (V (St)− V (St+1)−Rt+1) ,1(St′ = s̃) (V (St′)− V (St′+1)−Rt′+1)]

= E [Cov [1(St = s) (V (St)− V (St+1)−Rt+1) ,1(St′ = s′) (V (St′)− V (St′+1)−Rt′+1) | St, St+1, St′ ]]

= E [1(St = s) (V (St)− V (St+1)−Rt+1)1(St′ = s′) (V (St′)− E [V (St′+1) +Rt′+1|St′ ])]
= 0.

Given the previous result, we can now state and proof the joint Central Limit Theorem of empirical one-step differences:

Lemma B.12. As n→ ∞,
√
n
((
T̂ V (s)− V (s)

))
s∈S

⇒ N (0,Σ)

where Σ is a diagonal matrix with

Σs,s =
1

E [N(s)]
σ2
V (s).

Proof. We use a similar approach as in the proof of Lemma B.10: we express T̂ V (s)− V (s) as the product of a scaling
factor that converges almost surely and an average of i.i.d. random vectors that is controlled by the Central Limit Theorem:

√
n ·
(
T̂ V (s)− V (s)

)
=

√
n · 1

| B(s) |
∑

(i,t)∈B(s)

(V (S
(i)
t+1) +R

(i)
t+1 − V (s))

=
√
n · 1

| B(s) |

n∑
i=1

∞∑
t=0

1(S
(i)
t = s)(V (S

(i)
t+1) +R

(i)
t+1 − V (S

(i)
t ))

=
n

| B(s) |

(
√
n · 1

n

∞∑
i=1

∞∑
t=0

1(S
(i)
t = s)(V (S

(i)
t+1) +R

(i)
t+1 − V (S

(i)
t ))

)

• B(s) can be rewritten as the sum of i.i.d. random variables:

B(s) =

n∑
i=1

( ∞∑
t=0

1(S
(i)
t = s)

)
.

The average
| B(s) |
n

converges almost surely to E [N(s)] by the Strong Law of Large Numbers. Taking the inverse
gives:

n

| B(s) |
→ 1

E [N(s)]
a.s. (3)
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• The random vector
√
n · 1

n

n∑
i=1

( ∞∑
t=0

1(S
(i)
t = s)(V (S

(i)
t+1) +R

(i)
t+1 − V (S

(i)
t ))

)
s∈S

is the re-scaled average of n i.i.d., mean 0, vectors of the form (
∑∞
t=0 1(St = s)(V (St+1) +Rt+1 − V (St)))s∈S .

The Central Limit Theorem ensures that this quantity converges to a normal distribution with mean 0. We now proceed
to compute the variance of this distribution.

– Lemma B.11 ensures that entries of this vector are uncorrelated:
– The variance of a single entry is given by

Var

[ ∞∑
t=0

1(St = s)(V (St+1) +Rt+1 − V (St))

]
(a)
=

∞∑
t=0

Var [1(St = s)(V (St+1) +Rt+1 − V (St))]

=

∞∑
t=0

E
[
1(St = s)(V (St+1) +Rt+1 − V (St))

2
]

=

∞∑
t=0

E
[
1(St = s)E

[
(V (St+1) +Rt+1 − V (St))

2|St
]]

=

∞∑
t=0

E
[
1(St = s)σ2

V (St)
]

= E [N(s)]σ2
V (s)

where (a) also follows from Lemma B.11.

From the Central Limit Theorem, we obtain:

√
n · 1

n

n∑
i=1

( ∞∑
t=0

1(S
(i)
t = s)(V (S

(i)
t+1) +R

(i)
t+1 − V (S

(i)
t ))

)
s∈S

⇒ N
(
0,Diag

(
(E [N(s)]σ2

V (s))s∈S
))

(4)

Combining (3) and (4) gives the result.

Finally, we just need to take the dot product of
√
n ·
(
T̂ V (s)− V (s)

)
s∈S

with the weighted occupancy measure ηπ to get

the result:
√
n
∑
s∈S

π(s)

∞∑
t=0

P t(T̂ V − V )(s) ⇒ N

(
0,
∑
s∈S

ηπ(s)
2

E [N(s)]
σ2
V (s)

)

B.3. Proof of Theorem 7.2

The proof follows directly from Proposition B.4 and Proposition B.5.

From, Proposition B.4, we have

lim
n→∞

√
n · E

[(
V̂MC(s)− V (s)

)2]
=

1

P [s ∈ τ ]

∑
s′∈S

E [N(s′)|S0 = s]σ2
V (s′) .

Similarly, from Proposition B.5, we have

lim
n→∞

√
n · E

[(
V̂TD(s)− V (s)

)2]
=
∑
s′∈S

E [N(s′)|S0 = s]
2
σ2
V (s′)

E [N(s′)]
.
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Taking the ratio of these two limits, we obtain:

lim
n→∞

E
[(
V̂TD(s)− V (s)

)2]
E
[(
V̂MC(s)− V (s)

)2] =

∑
s′∈S E [N(s′) | S0 = s]σ2

V (s′)∑
s′∈S E [N(s′) | S0 = s]σ2

V (s′)
· E [N(s′) | S0 = s]P [s ∈ τ ]

E [N(s′)]

= Es′∼µ(s)
[
E [N(s′) | S0 = s]P [s ∈ τ ]

E [N(s′)]

]
where µ(s) is defined in Definition 7.1.

Finally,
E [N(s′) | S0 = s]P [s ∈ τ ] = E [N(s→ s′)] .

B.4. Proof of Theorem 8.4

We define π to be such that π(s) = 1, π(s′) = −1 and π(s̃) = 0 for all s̃. That way J(π) = V (s)− V (s′) = A(s, s′). This
allows to use Lemma B.5:

lim
n→∞

n · E
[(
ĴTD(π)− J(π)

)2]
=
∑
s̃∈S

(E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′])
2
σ2
V (s̃)

E [N(s̃)]

We decompose the sum into three terms that we bound separately:

lim
n→∞

n · E
[(
ĴTD(π)− J(π)

)2]
≤
(
max
s̃∈S

∣∣∣∣E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′]

E [N(s̃)]

∣∣∣∣)
×
(
max
s̃∈S

σ2
V (s̃)

)
×
∑
s̃∈S

|E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′]| .

(5)

We start by proving that if trajectories where S0 is sampled from the initial distribution visit s frequently often, then the
occupancy measure E [N(s̃)] and E [N(s̃) | S0 = s] cannot differ too much (and symmetrically for s′).

If E [N(s̃) | S0 = s] ≥ E [N(s̃) | S0 = s′] then

∣∣∣∣E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′]

E [N(s̃)]

∣∣∣∣ ≤ E [N(s̃) | S0 = s]

P [s ∈ τ ]E [N(s̃) | S0 = s]
=

1

P [s ∈ τ ]
.

When E [N(s̃) | S0 = s] < E [N(s̃) | S0 = s′], a symmetric argument ensures that∣∣∣∣E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′]

E [N(s̃)]

∣∣∣∣ ≤ 1

P [s′ ∈ τ ]
.

Combining these two cases gives:

max
s̃∈S

∣∣∣∣E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′]

E [N(s̃)]

∣∣∣∣ ≤ 1

min (P [s ∈ τ ] ,P [s′ ∈ τ ])
.

Plugging this result in Equation 5:
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lim
n→∞

n · E
[(
ĴTD(π)− J(π)

)2]
≤ maxs̃∈S σ

2
V (s̃)

min (P [s ∈ τ ] ,P [s′ ∈ τ ])
·
∑
s̃∈S

|E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′]| . (6)

Finally, we show that the last sum scales as the crossing time. To give intuition on why this holds, note that we have the
following identity:

∑
s̃∈S

E [N(s̃) | S0 = s] = E [T |S0 = s] .

E [N(s̃) | S0 = s] is the expected number of visits to s̃ whens starting at s: summing over s̃ is the expected total number
of states visited when starting at s (not counting the terminating state ∅) which is exactly the horizon. In the case of the
comparison of trajectories, |E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′]| is how many additional times s̃ has been visited by
one of the trajectories compared to the other, in expectation. Summing over s̃ gives the expected total number of states that
have been visited by only one of the trajectories, which is at most twice the number of states visited before both trajectories
reach a common state.

Lemma B.13. ∑
s̃∈S

|E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′] | ≤ 2H(s, s′)

Proof. Let τ, τ ′ = (S0, R1, . . . , ST−1, RT , ∅), (S′
0, R

′
1, . . . , S

′
T−1, R

′
T ′ , ∅) ∼ ψ where ψ is a joint distribution such that τ

and τ ′ are marginally distributed like trajectories generated with S0 = s and S′
0 = s′, respectively. We define the crossing

time for ψ is defined as the first time a state has been visited by both trajectories:

Hψ(s, s
′) = inf{t|{S0, . . . , St} ∩ {S̃0, . . . , S̃t} ≠ ∅}.

Since we always consider the crossing time of s and s′, we omit the s and s′ dependency and simply write Hψ for
convenience in the rest of the proof. By definition, either S′

Hψ
∈ {S1, . . . , SHψ} or SHψ ∈ {S′

1, . . . , S
′
Hψ

}. Without loss of
generality, we assume S′

Hψ
∈ {s1, . . . , sHψ} holds. Let Nψ = inf{t|St = S′

Hψ
}, that is SNψ = S′

Hψ
.

We now construct a new trajectory that follows τ ′ until the crossing state SNψ = S′
Hψ

is reached and then follows
the trajectory τ : τ̂ = (S′

0, R
′
1, . . . , S

′
Hψ

= SNψ , RN+1, SN+1, . . . , ST−1, RT , ∅). By Markov property, τ̂ is identically
distributed as τ ′.

We are interested in bounding the difference in occupancy measure:

E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′] = E

[ ∞∑
t=0

1(St = s̃)

]
− E

[ ∞∑
t=0

1(S′
t = s̃)

]
.

Using that τ̂ and τ ′ are identically distributed, this expression can be rewritten as

E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′] = E

[ ∞∑
t=0

1(St = s̃)

]
− E

[ ∞∑
t=0

1(Ŝt = s̃)

]

= E

Nψ−1∑
t=0

1(St = s̃)

− E

Hψ−1∑
t=0

1(S′
t = s̃)
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Taking absolute values and summing over s̃ gives

∑
s̃∈S

|E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′]| =
∑
s̃∈S

E

∣∣∣∣∣∣
Nψ−1∑
t=0

1(St = s̃)−
Hψ−1∑
t=0

1(S′
t = s̃)

∣∣∣∣∣∣


≤
∑
s′∈S

E

Nψ−1∑
t=0

1(St = s̃)

+
∑
s̃∈S

E

Hψ−1∑
t=0

1(St = s′)


= E [Nψ] + E [Hψ]

≤ 2E [Hψ]

Taking the infimum over all ψ ∈ Ψ(s, s′) that conserves marginal distribution gives the result.

Finally, plugging Lemma B.13 in Equation 6 leads to the result:

lim
n→∞

n · E
[(
ĴTD(π)− J(π)

)2]
≤ 2

maxs̃∈S σ
2
V (s̃)

min (P [s ∈ τ ] ,P [s′ ∈ τ ])
·H(s, s′)

B.4.1. PROOF OF PROPOSITION 8.1

We now prove that the MC estimate of the advantage can scale as the full horizon, no matter how small the crossing time
is. We focus on the advantage of s over s′ when P [s ∈ τ ∧ s′ ∈ τ ] = 0, that is no trajectory can visit both s and s′. No
trajectories visiting both s and s′ means that the MC value estimates at s and s′ are independent since they rely on disjoints
sets of trajectories. In terms of variance, this implies:

Var
[
ÂMC(s, s

′)
]
= Var

[
V̂MC(s)− V̂MC(s

′)
]
= Var

[
V̂MC(s)

]
+Var

[
V̂MC(s

′)
]
.

It now suffices to prove that for any s,

lim
n→∞

Var
[
V̂MC(s)

]
≥ σ2

min

P [s ∈ τ ]
E [T |S0 = s] .

From Proposition B.4, we know the variance of the MC estimate is

lim
n→∞

n ·Var
[
V̂MC(s)

]
=

1

P [s ∈ τ ]

∑
s̃∈S

E [N(s̃) | S0 = s]σ2
V (s̃) .

Using that σ2
V (s̃) ≥ σ2

min for all s̃ ∈ S, this expression simplifies to:

lim
n→∞

n ·Var
[
V̂MC(s)

]
≥ σ2

min

P [s ∈ τ ]

∑
∈S

E [N(s̃) | S0 = s] .

Finally,

∑
s′∈S

E [N(s′) | S0 = s] =
∑
s̃∈S

E

[
T∑
t=0

1(St = s̃)|S0 = s

]

= E

[
T∑
t=0

∑
s̃∈S

1(St = s̃)|S0 = s

]
= E [T |S0 = s]

23



On the Statistical Benefits of Temporal Difference Learning

B.5. TD always improves over MC

Theorem 8.4 and Proposition 8.1 show that the error of the TD estimate of the advantage scales with the crossing time while
the error of the MC estimate of the advantage scales with the full horizon, hinting that TD can provide significantly more
precise advantage estimates. However, in some cases, as described in Figure 6b, the crossing time is as large as the full
horizon. One can then wonder if there are any setting in which MC can outperform TD for advantage estimation. Theorem
7.2 shows that this is never the case for value-to-go estimation. For completeness, we show that, under a technical condition,
this is also never the case for advantage estimation.

Proposition B.14. For s, s′ ∈ S such that P [s ∈ τ ∧ s′ ∈ τ ] = 0,

lim
n→∞

E
[(

ÂTD(s, s
′)− A(s, s′)

)2]
E
[(

ÂMC(s, s′)− A(s, s′)
)2] ≤ 1

Proof. From Lemma B.5 and the proof of Proposition 8.1, we have:

lim
n→∞

n · E
[(
ĴTD(π)− J(π)

)2]
=
∑
s̃∈S

(E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′])
2

E [N(s̃)]
σ2
V (s̃)

lim
n→∞

n · E
[(
ĴMC(π)− J(π)

)2]
=
∑
s̃∈S

(
E [N(s̃) | S0 = s]

P [s ∈ τ ]
+

E [N(s̃) | S0 = s′]

P [s′ ∈ τ ]

)
σ2
V (s̃)

Since P [s ∈ τ ∧ s′ ∈ τ ] = 0, we have:

E [N(s̃)] ≥ E [N(s̃)|s ∈ τ ]P [s ∈ τ ] + E [N(s̃)|s′ ∈ τ ]P [s′ ∈ τ ]

≥ E [N(s̃)|S0 = s]P [s ∈ τ ] + E [N(s̃)|S0 = s′]P [s′ ∈ τ ]

Plugging this into the limiting error of the TD estimates, we have:

lim
n→∞

n · E
[(
ĴTD(π)− J(π)

)2]
≤
∑
s̃∈S

(E [N(s̃) | S0 = s]− E [N(s̃) | S0 = s′])
2

E [N(s̃)|S0 = s]P [s ∈ τ ] + E [N(s̃)|S0 = s′]P [s′ ∈ τ ]

≤
∑
s̃∈S

max

(
E [N(s̃) | S0 = s]

P [s ∈ τ ]
+

E [N(s̃) | S0 = s′]

P [s′ ∈ τ ]

)
≤ lim
n→∞

n · E
[(
ĴMC(π)− J(π)

)2]

B.6. On tightness of bounds of advantage estimation

We start by showing that the lower bound on the MSE of the MC estimate of the advantage is tight.

Proposition B.15. Let M be a MRP such that E [R(s, s′)] = 0, Var [R(s, s′)] = V for all s, s′. For all s, s′ ∈ S such that
P [s ∈ τ ∧ s′ ∈ τ ] = 0,

lim
n→∞

n · E
[(

ÂMC(s, s
′)− A(s, s′)

)2]
= σ2

min

(
E [T |S0 = s]

P [s ∈ τ ]
+

E [T |S0 = s′]

P [s′ ∈ τ ]

)
.

Proof. The only inequality in the proof of Proposition 8.1 is

σ2
V (s̃) ≥ σ2

min
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We show that this inequality is an equality when E [R(s, s′)] = 0 and Var [R(s, s′)] = V for all s, s′. In particular, that
V (s) = 0 for all s.

σ2
V (s̃) = Var [R0 + V (S1)|S0 = s]

= E [Var [R0 + V (S1)|S0 = s, S1] |S0 = s] + Var [E [R0 + V (S1)|S0 = s] |S0 = s]

= E [Var [R(S0, S1)] |S0 = s]

= V

Hence, σ2
V (s̃) is constant equal to V . We therefore have the equality

σ2
V (s̃) = σ2

min.

In the case of the advantage estimation using TD learning, we can prove a lower bound on the MSE. The gap between the
lower bound and the upper bound is a factor 2.

Proposition B.16. There exists a MRP M = {S ∪ {∅}, P,R, d} and s, s′ ∈ S such that P [s ∈ τ ∧ s′ ∈ τ ] = 0 and

lim
n→∞

n · E
[(

ÂTD(s, s
′)− A(s, s′)

)2]
≥ σ2

max

(
1

min (P [s ∈ τ ] ,P [s′ ∈ τ ])

)
·H(s, s′)

Proof. We define formally a set of MRP on which the bound is achieved. The structure is pictured in Figure 7. Let MW,T,H

be the MRP with

• States SW,T,H = {s(w,t)|w ∈ {1, . . . ,W}, t ∈ {1, . . . ,H − 1}}} ∩ {st|t ∈ {H, . . . , T − 1}}.

• Transitions P (s(w,t+1)|s(w,t)) = 1 for all 1 ≤ w ≤ W, 1 ≤ t ≤ H − 2, P (sH |s(w,H−1)) = 1 for all 1 ≤ 1 ≤ W ,
P (st+1|st) = 1 for all H ≤ t ≤ T − 2 and P (sT−1|∅) = 1

• Var [R(s, s′)] = V and E [R(s, s′)] = 0 for all s, s′

First, we note that the TD estimate of the advantage between s(i,1) and s(j,1) in MW,T,H has the same distribution as the
MC estimate of the advantage in MW,H,H . However, from Proposition B.15, we know that

lim
n→∞

n · E
[(

ÂMC,MW,H,H(s(i,1), s(j,1))− AMW,H,H
(s(i,1), s(j,1))

)2]
= HV

(
1

P
[
s(i,1) ∈ τ

] + 1

P
[
s(j,1) ∈ τ

]) .
Noting that AMW,H,H

(s(i,1), s(j,1)) = AMW,T,H
(s(i,1), s(j,1)) (since all value-to-go are zero), we obtain:

lim
n→∞

n · E
[(

ÂTD,MW,T,H(s, s
′)− A(s, s′)

)2]
= HV

(
1

P
[
s(i,1) ∈ τ

] + 1

P
[
s(j,1) ∈ τ

])

≥ HV
1

min
(
P
[
s(i,1) ∈ τ

]
,P
[
s(j,1) ∈ τ

])
≥ σ2

max

(
1

min
(
P
[
s(i,1) ∈ τ

]
,P
[
s(j,1) ∈ τ

])) ·H(s(i,1), s(j,1))

As mentioned in Section 8, the upper bound on the MSE of TD estimates does not take into account any pooling that can
happen before the crossing time. Hence, it is generally loose. The tightness result is achieved on MRPs with no pooling
before the crossing time. On the other hand, the tightness of the lower bound on MC estimates only requires to control the
distribution of the rewards and the transition structure of the MRP is not important.
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