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Abstract

Many machine learning problems can be ab-
stracted in solving game theory formulations and
boil down to optimizing nested objectives, such
as generative adversarial networks (GANs) and
multi-agent reinforcement learning. Solving these
games requires finding their stable fixed points
or Nash equilibrium. However, existing algo-
rithms for solving games suffer from empirical
instability, hence demanding heavy ad-hoc tun-
ing in practice. To tackle these challenges, we
resort to the emerging scheme of Learning to Op-
timize (L2O), which discovers problem-specific
efficient optimization algorithms through data-
driven training. Our customized L2O framework
for differentiable game theory problems, dubbed

“Learning to Play Games” (L2PG), seeks a sta-
ble fixed point solution, by predicting the fast
update direction from the past trajectory, with
a novel gradient stability-aware, sign-based loss
function. We further incorporate curriculum learn-
ing and self-learning to strengthen the empiri-
cal training stability and generalization of L2PG.
On test problems including quadratic games and
GANs, L2PG can substantially accelerate the con-
vergence, and demonstrates a remarkably more
stable trajectory. Codes are available at https:
//github.com/VITA-Group/L2PG.

1. Introduction
While a substantial fraction of recent progress in machine
learning is based on optimizing neural networks with re-
spect to a single objective function, there is an increasing set
of problems that require optimizing nested objectives, such
as generative adversarial networks (Goodfellow et al., 2014)
and multi-level optimization (Pfau & Vinyals, 2016), among
many of them. These multi-objective problems can be ef-
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fectively modeled as differentiable games (Balduzzi et al.,
2018), where players correspond to internal parts of the
problems and different objective functions are introduced
for different players.

The solutions of differentiable games can be generally de-
fined as equilibrium points, such as (local) Nash equilibrium
or stable equilibrium (stable fixed points) (Balduzzi et al.,
2018). From the perspective of optimization, the latter is
more appealing (Balduzzi et al., 2018) and will be our main
focus. Although various algorithms have been proposed to
locate stable fixed points, they suffer from empirical instabil-
ity. Concretely, hyperparameters such as learning rates and
coefficients of regularization can significantly affect the con-
vergence speed of these algorithms. Moreover, a pre-chosen
set of hyperparameters cannot consistently achieve satis-
factory convergence speed across different game instances.
Therefore, these algorithms demand ad-hoc tuning, gen-
erally done by heavy trial-and-error experiments, making
them less efficient in practice.

We propose an automatic and flexible algorithm for solving
differentiable games to tackle these challenges. An opti-
mization paradigm, termed “Learning to Learn” (Lv et al.,
2017; Andrychowicz et al., 2016) or “Learning to Optimize”
(L2O) (Chen et al., 2022a), is a well-suited candidate. It
learns problem-specific efficient optimization algorithms,
usually parameterized by a neural network (called an “opti-
mizer”), from its performance on a set of optimization prob-
lems. The optimizer produced through data-driven training
is capable of efficiently solving optimization problems un-
seen yet similar to those encountered during training.

However, several questions need to be answered before ex-
tending L2O into solving differentiable games: Firstly, L2O
trains an optimizer based on its “performance” (e.g. training
loss) on a series of optimization problems, but there is no off-
the-shelf metric that characterizes both the distance to fixed
points and stability; Secondly, how to represent the game
dynamics for L2O models, and how to generate updates to
each player’s parameters, remain unexplored; Lastly, the
game dynamics can sometimes be noisy and cyclic, which
could further hinder the learning of L2O optimizers that are
already known to be unstable.

In this work, we present an L2O framework called “Learn-
ing to Play Games” (L2PG), which attempts to tackle the
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above challenges and extends L2O to solving differentiable
games. L2PG learns to predict updates to players’ pa-
rameters from historic trajectories via minimizing a novel
stability-aware sign-based loss function that leads the play-
ers’ parameters to be stable yet away from unstable fixed
points. As L2O optimizers often suffer from unstable train-
ing and poor generalization (Chen et al., 2020a), we also in-
corporate customized curriculum learning and self-learning
techniques, which provide substantial remediation to these
pitfalls. We summarize our contributions as follows:

1. We propose a new L2O framework, called Learning to
Play Games (L2PG), that aims at solving differentiable
games by seeking stable fixed points. A novel stability-
aware, sign-based loss function is leveraged during
the training stage, which helps the optimizer to locate
stable solutions and avoid unstable fixed points.

2. We customize new curriculum learning and self-
training techniques, to enhance the generalization abil-
ity and stabilize the learning process of L2PG.

3. Extensive experiments show that L2PG outperforms
baseline methods in terms of the speed of finding stable
fixed points. On two-player and four-player quadratic
games, L2PG substantially accelerates the convergence
to stable fixed points by significant margins, while
avoiding the convergence to unstable fixed points. We
also show that L2PG can achieve a faster convergence
speed in optimizing GANs.

2. Related Works
2.1. Learning to Optimize

Learning to optimize (L2O) is one specific instance of
meta-learning that aims at learning a network to solve op-
timization tasks. The first L2O framework is introduced
by Andrychowicz et al. (2016), where a recurrent neural
network (RNN) is utilized to predict updates for the opti-
mization problem’s variables from the objective value and
the gradients on the variables. Later on, Li & Malik (2016)
proposed a reinforcement learning framework that used the
historic gradient information as well as the objective val-
ues to predict updates on problems’ variables. To enhance
the generalization of learned optimizers, Wichrowska et al.
(2017) proposed a hierarchical RNN structure with addi-
tional features, which shows better generalization on longer
training horizons; Chen et al. (2020a); Yang et al. (2023)
introduce more training techniques that enhance the learned
optimizer’s generalization.

Regarding the applications of L2O, Chen et al. (2017); You
et al. (2020); Chen et al. (2020b) applied L2O methods in
black-box optimization, graph neural networks, and domain
adaptation, respectively. Cao et al. (2019) used multiple

L2O optimizers to optimize swarm particles. Zheng et al.
(2022) distilled the learned optimization rules with symbolic
regression and enhanced the explainability of the learned
rules. Chen et al. (2022b) applied L2O to train the neural
network in a subspace more efficiently.

One closely related prior art to ours is (Shen et al., 2020),
which extends the RNN-based L2O in (Andrychowicz et al.,
2016) to solving the minimax optimization - often consid-
ered as one particular type of game. However, their method
is tailored for two-player zero-sum games, and cannot easily
extend to finding stable fixed points in general games.

2.2. Learning in Differentiable Games

The game formulations have been introduced for modeling
machine learning problems, such as computer vision (Good-
fellow et al., 2014) and reinforcement learning (Busoniu
et al., 2008). Gradient-based methods have been developed
to find the stationary points (either Nash equilibrium or
stable fixed points). Daskalakis et al. (2017) proposed Opti-
mistic Mirror Descent that extrapolates the next gradient by
using historic information and Gidel et al. (2018) explores
several variants of the extrapolation algorithms. Various
methods have been proposed and designed with guaran-
teed convergence on specific games, such as Consensus
Optimization (Mescheder et al., 2017) that has convergence
guarantee on two-player bi-linear zero-sum games and Com-
petitive Gradient Descent (Schäfer & Anandkumar, 2019)
that has convergence guarantee on two-player zero-sum
games. Vadori et al. (2022) applied reinforcement learning
in solving the constrained two-player zero-sum games.

Several works have studied the general games: Foerster et al.
(2017) proposed learning with opponent-learning awareness
(LOLA) leverages other players’ information to calculate
the anticipated parameter update of one player. Letcher et al.
(2018) proposed Stable Opponent Shaping that maintains
the theoretical guarantee of convergence. Balduzzi et al.
(2018); Letcher et al. (2019) proposed the Symplectic Gra-
dient Adjustment (SGA) that aims at adjusting the direction
of updates towards the stable fixed points using generalized
Helmholtz decomposition, and Ramponi & Restelli (2021)
further developed a Newton-like method that can find stable
fixed points in multi-agent reinforcement learning problems.
In this work, we propose to use L2O as a novel tool to find
stable fixed points for general differential games.

3. Methodology
3.1. Preliminaries

Differentiable Games A general differentiable game (Bal-
duzzi et al., 2018) consists of n players = {1, 2, . . . , n} and
corresponding twice differentiable losses for each player
= {li : Rd 7→ R}ni=1. The parameters for the players are
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defined as w = {w1,w2, . . . ,wn}, where the i-th player
controls wi ∈ Rdi and

∑n
i=1 di = d.

The simultaneous gradient of the game is defined as
the concatenated gradient of each player’s loss (li)
with respect to its corresponding parameters (wi),
i.e., g(w) = (g1(w1), g2(w2), . . . , gn(wn)) =
(∇w1

l1,∇w2
l2, . . . ,∇wn

ln). Besides the simultaneous
gradient, we will also utilize the Jacobian of a game, which
is a d× d matrix containing second-order derivatives:

J(w) =


∇2

w1
l1 ∇w1,w2 l1 . . . ∇w1,wn l1

∇w2,w1 l2 ∇2
w2

l2 . . . ∇w2,wn l2
...

...
...

∇2
wn,w1

ln ∇wn,w2
ln . . . ∇2

wn
ln

 ,

where ∇wi,wj
lk is a di × dj matrix and ∇2

wi
li is a di ×

di matrix. We adopt the definition of stable and unstable
fixed points from Balduzzi et al. (2018), i.e., w is called a
fixed point if g(w) is 0; a fixed point w∗ is called stable
if J(w) ⪰ 0; and is called unstable if J(w) ≺ 0 for every
w in the neighborhood of w∗, where ⪰ denotes positive
semi-definiteness and≺ denotes negative definiteness. With
this definition, every stable fixed points is a (local) Nash
equilibrium of a game (Balduzzi et al., 2018).

Learning to Optimize In L2O, an optimizer is usually
a neural network opt parameterized by ϕ. An observa-
tion vector z(t) is constructed for players’ parameters w(t),
where t indicates that the number of update steps.

Generally, the pipeline of L2O can be split into two stages.
The first one is called meta-training, where the parameters
of the optimizer ϕ are being updated by minimizing the
following loss (Chen et al., 2022a):

L(ϕ) = Eli

[
T∑

t=1

atLt({li}ni=1,w
(t))

]
, (1)

with w(t+1) = w(t) − opt(z(t);ϕ), where Lt(·, ·) is the
function for evaluating the performance of the L2O opti-
mizer at time step t. The coefficients {at}Tt=1 are introduced
to balance the losses between different time steps, which
we by default set as 1 to distribute the same importance. In
each training rounds, the optimizer will be required to solve
new games with newly initialized players’ parameters.

The second stage is called meta-testing, where the parame-
ters of the L2O optimizer are fixed. The optimizer is utilized
to solve new unseen game problems at this stage, which is
expected to find stable fixed points rapidly and amortize the
meta-training cost.

3.2. Formulating L2PG

We now explain the framework of L2PG in details. We have
summarized the workflow of L2PG in Algorithm 1.

3.2.1. FEATURIZING GAME DYNAMICS FOR L2O

The first critical design is how to construct the observation
vector z(t) for each time step. While previously L2O opti-
mizers primarily use the gradient information (i.e., g(w(t)))
and its momentums to predict the updates for networks’
parameters, they are not sufficiently representing the game
dynamics due to the potential existence of “rotational forces”
in certain games (Balduzzi et al., 2018). Using only gra-
dients to update the players’ parameters fails to, or slowly,
reach convergence on some games (Balduzzi et al., 2018),
and is often not optimal on others. Therefore, we involve
additional information to depict the game dynamics, i.e.,
the combinations of second-order derivatives. This addi-
tional information is found to be beneficial and accelerate
the empirical convergence (see Section 4.4).

Specifically, we consider the generalized Helmholtz de-
composition (Letcher et al., 2019) which decomposes the
Jacobian into symmetric and antisymmetric components
S(w) = (J(w) + J(w)⊤)/2 and A(w) = (J(w) −
J(w)⊤)/2. These components are respectively associ-
ated to the potential and Hamiltonian (cyclic) dynam-
ics of the game. Consensus optimization considers an
update rule based on J⊤(w)g(w), whereas SGA con-
siders A⊤(w)g(w). We will generalize these update
rules by considering both A⊤(w)g(w) and S(w)g(w)
independently. The three components g,A⊤g and
Sg are stacked to construct a feature matrix o(t) =
[g(w(t));S(w(t))g(w(t));A⊤(w(t))g(w(t))] ∈ Rn×3.
Following Zheng et al. (2022), we further include the mo-
mentum terms (Lv et al., 2017), i.e., m(t), m̃(t) and õ(t):

m(t) = β1m
(t−1) + (1− β1)o

(t),

(v(t))2 = β2(v
(t−1))2 + (1− β2)(o

(t))2,

m̂(t) = m(t)/(1− βt
1), v̂

(t) = v(t)/(1− βt
1),

m̃(t) = m̂(t) ⊙ (1/v(t)), õ(t) = o(t) ⊙ (1/v(t)), (2)

to construct z(t) = [o(t);m(t); m̃(t); õ(t)] as the input fea-
tures to the L2O optimizer. These auxiliary features are
found to benefit the meta-training process (Chen et al.,
2020a; Zheng et al., 2022) as they capture historic infor-
mation along the training process.

The second design is how the L2O optimizer updates
the players’ parameters. Although most existing L2O
works (Chen et al., 2022a) directly predict the exact up-
date amounts, they require an additional factor to scale the
outputs to a reasonable range, which also requires tuning for
every optimization tasks. Instead, we propose to utilize the
optimizer’s predictions to interpolate the three components
aforementioned. In our design, the L2O optimizer outputs
three update coefficients, namely cg, cA and cS ∈ Rd, and
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derive the actual update by the following formula:

opt(z(t),ϕ) = cg ⊙ g(w(t))

+ cA ⊙ (A⊤(w(t))g(w(t)))

+ cS ⊙ (S(w(t))g(w(t))),

(3)

where ⊙ means the point-wise multiplication operation. A
tanh activation function precedes cg, cA and cS, so the
values of elements in them are in (−1, 1). It is noteworthy
that our L2O algorithm generalizes the SGA and ConOpt:
(1) cS = 0 corresponds to SGA; (2) cS = cA corresponds
to ConOpt. Our L2O formulation has higher flexibility
by relaxing these pre-defined constraints, and can achieve
higher performance (refer to Section 4.4).

3.2.2. STABILITY-AWARE META-TRAINING LOSS

Training an L2O optimizer is to minimize an objective func-
tion Lt. Lt is critical in solving games as it characterizes
the solution’s properties. An ideal Lt should lead to fixed
points while being stability-aware: (1) it should find players’
parameters where the simultaneous gradient g(w) is close
to zero (when applicable), and (2) it should repel the players’
parameters from unstable fixed points.

To this end, we propose to use the following stability-aware
sign-based loss function for meta-training:

Lt({li}ni=1,w
(t)) =

1

2
sign(g⊤Sg)∥g∥22, (4)

where g = g(w(t)) and S = S(w(t)).

Proposition 3.1. Any stable fixed point w∗
s is a local min-

imum of the loss Lt in (4). Any unstable fixed point w∗
u

satisfies that for any closed ball B centered at w∗
u , Lt at-

tains its minimum at a point z ̸= w∗
u . To wit, minimizing Lt

leads the players’ parameters to w∗
s , but away from w∗

u .

Proof. For the first claim, we have by definition of a stable
fixed point that g⊤Sg ≥ 0 in a neighborhood of w∗

s , hence
in that neighborhood, Lt =

1
2∥g∥

2
2. Since ∥g∥2 = 0 at w∗

s ,
the claim is true. For the second claim, simply observe that
Lt = − 1

2∥g∥
2
2 in a neighborhood N of w∗

u since g⊤Sg <
0 for g ̸= 0 by unstability. Since S ≺ 0, g cannot be
identically 0 onN hence Lt is not minimized at w∗

u for any
closed ball centered at w∗

u (a closed ball is compact, hence
the infimum is always attained in the ball).

Remark. In Equation 4 the stability constraint is imposed in
a multiplicative form. An alternative is to pursue an additive
regularization form, i.e.,

L′
t({li}ni=1,w

(t)) =
1

2
∥g∥22 −min{g⊤Sg, 0}, (5)

which has similar effects on the training procedure at the
first sight. L′

t is smaller in the neighborhood of stable fixed

points compared to unstable fixed points when the norms
of the gradient g are the same, so stable fixed points are
preferred. However, if a game has only unstable fixed points
w∗

u , then w(t) will be inevitably attracted to w∗
u . As S will

be negative definite around the unstable fixed points, L′
t can

be re-expressed as 1
2∥g∥

2
2 + g⊤(−S)g, which is positive

definite. Moreover, the exact magnitude of g⊤Sg is less
meaningful compared to the signs, which already indicates
the stability around fixed points. Therefore, we choose
to use the multiplicative regularization by default, and we
compare these two regularization forms in Section 4.4 to
empirically validate our proposition.

3.3. Generalizing and stabilizing L2PG

Lastly, as similarly shown in existing L2O literature, train-
ing L2O optimizer often faces the challenge of training in-
stability, and a simply trained L2O optimizer often struggles
when generalizing to unseen problems at the meta-testing
time (See Table 4).

Self-Learning. The unstable behaviors occur at the meta-
training stage and harm the learning stability of the opti-
mizers. To remedy this, we propose a self-learning (SL)
technique that enhances the stability of L2PG. We intro-
duce an additional L2O optimizer with the same structure,
to “mimic” the behaviors of the optimizer normally trained
by L. We update the parameters of this newly introduced
“student” optimizer ϕ′ via two paths: similarity losses and
exponential moving average. In each epoch, the two op-
timizers are required to solve the same set of games with
the same initial players’ parameters, where the student at-
tempts to imitate the accumulated updates to players’ pa-
rameters generated by the original optimizer. Mathemati-
cally speaking, let the players’ parameters updated by the
student optimizer be w′, we update ϕ′ with respect to
Lsim =

∑[T/K]
t=1 ∥w′(t) − w(Kt)∥22, where K is a hyper-

parameter that controls the number of accumulation steps.
In practice, we found K = 5 works well (refer to Table 14).
Additionally, we transfer knowledge from the original op-
timizer to the student by performing an averaged weight
update: ϕ′ ← βϕϕ

′ + (1− βϕ)ϕ. The value of βϕ is set to
0.95 (we show in Table 13 it is not highly sensitive).

Curriculum Learning. To enhance the generalization of
the learned optimizers, we propose to leverage the concept
of curriculum learning (CL). Curriculum learning (Bengio
et al., 2009) is originally introduced to optimize neural net-
works progressively: first only train on subsets of training
data containing only “easy” data points, and then gradually
switch to use all data for training. While existing CL tech-
niques for L2O solely focused on adjusting the number of
training iterations (Shen et al., 2020; Chen et al., 2020a),
the training process of L2PG is actually impeded by the
nature of optimization problems (games) themselves. For
example, games that only have unstable solutions ideally
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require L2PG to predict updates to diverge from any fixed
point, while other games that have stable solutions demand
L2PG to find these stable points. Motivated by this, we
propose a new CL technique called “curriculum learning
on data” (Data-CL). Specifically, we progressively involve
games with more diverse dynamics (e.g., magnitude of coef-
ficients, stability of games) in the meta-training stage, to let
L2PG gradually learn comprehensive knowledge.

Applying CL and SL. We by default apply the aforemen-
tioned Data-CL and self-learning method during the meta-
training stage. We perform ablation studies in Section 4.4
and empirically prove the effectiveness of our proposals.
Additionally, we follow Chen et al. (2020a) to progressively
increase the number of training iterations in each epoch (we
call this technique “Training-CL”). This technique helps
mitigate the dilemma between the truncation bias and gradi-
ent explosion (Chen et al., 2020a) and hence improves the
quality of the trained L2O optimizer. In practice, we apply
the SL technique after 10% of the whole training period for
better supervision from the “teacher” model. We also clip
the loss with excessively large magnitude to avoid overflow.

4. Experiments
4.1. Implementation Details

Baselines. We compare against two analytical baseline
optimizers (i.e., not learned optimizers): SGA (Letcher et al.,
2019) and consensus optimization (ConOpt) (Mescheder
et al., 2017). SGA updates the players’ parameters by the
following formula: w ← w − α(g + λA⊤g), where α
is the learning rate and λ is the coefficient for adjustment.
ConOpt updates the parameters by w ← w−α(g+λJ⊤g),
with the same meaning of α and λ.

Game Types and Generations. We study two types of
games: (1) quadratic games, whose loss functions are
in the quadratic forms, i.e., li(w) = 1

2w
⊤
i M iiwi +∑

j ̸=i w
⊤
i M ijwj+w⊤

i bi. We consider two variants of the
quadratic games, i.e., a simple two-player game (Ibrahim
et al., 2020), and a more complicated four-player game (Bal-
duzzi et al., 2018). Each player controls only one parameter;
(2) two-dimensional GANs problem studied in Metz et al.
(2016). We sample data for training the generator and dis-
criminator from a mixture of 16 Gaussian distributions ar-
ranged in a 4×4 grid. We follow Letcher et al. (2019) to set
the generator and discriminator network to both have 6 MLP
layers (64 neurons each with ReLU activation (Nair & Hin-
ton, 2010)). The generator will output a two-dimensional
vector while the discriminator outputs a scalar.

Meta-training details. We use an LSTM optimizer with
a hidden dimension of 32 in all experiments. A detailed
explanation of the structure of the L2O optimizer can be
found in Section B. The unroll length (i.e., the value of T )

is set to 10. We batch-ify the training process by simulta-
neously training on 128 different games, and we train the
optimizer for 300 epochs. The number of training iterations
in each epoch takes values from {50, 100, 200, 500, 1000}
increasingly if the Training-CL technique is applied, other-
wise we set the number of training iterations to be 100. We
train the parameters in L2PG (i.e., ϕ) by using the Adam
optimizer (Kingma & Ba, 2014), with an initial learning
rate of 1 × 10−3. We decay the learning rate by 10 every
1/3 of the total number of training epochs. We evaluate the
L2O optimizer on a fixed set of game instances with the
same type (i.e., quadratic or GANs) every 5 epochs, and the
optimizer with the highest evaluation performance will be
used at the meta-testing stage.

To apply the Data-CL technique, we linearly increase the
probability to sample games with unstable fixed points when
meta-training on quadratic games from 0 to 10%. For the
generative networks, we set the standard deviation for initial-
ization to be 2√

dout
(epoch/300+0.5) where epochmeans

the current epoch and dout means the output dimension.

Metrics. We slightly adapt the definition of convergence
from Letcher et al. (2019). For quadratic games, we say an
algorithm has achieved convergence if the average gradient
norm of the last 10 steps is smaller than 1 × 10−3. The
convergence speed is then measured by the total number of
steps. If the convergence is towards the stable fixed point,
then a smaller step is preferred; otherwise, we wish the
step to be large, or even not converging. In practice, we
end the algorithms after 1000 steps no matter the algorithm
converged or not. For GANs, we run 10000 steps.

Evaluation and (meta-)testing details. For the quadratic
games, we sample 20 different game coefficients {M ij , bi}
with stable solutions to constitute the evaluation set. The
elements in M ij and bi are sampled from the standard nor-
mal distribution. We evaluate the performance of L2PG
and tune the hyperparameters of SGA and ConOpt on this
set. Afterward, we compare the convergence speed of L2PG
with other baselines on hold-out testing sets, whose coeffi-
cients are also sampled from standard normal distributions.
We construct two testing sets, each of which contains 20
games with stable and unstable fixed points, respectively.
All the sampled games’ coefficients can be found in the
Appendix. For each game, we randomly draw four differ-
ent initial parameters of the players from the unit disk (i.e.,
∥w(0)∥2 ≤ 1). All the methods will start with the same
initial parameters for a fair comparison, and the average of
steps to convergence is recorded.

4.2. Main Results

L2PG converges faster to stable fixed points. We first
focus on two-player quadratic games. For SGA and ConOpt,
we search the values of hyper-parameters(α and λ) over
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{0.1, 0.2, . . . , 2} on the evaluation set of games to find those
that can lead to the fastest convergence speed.

Table 1 shows the number of updates required before con-
vergence to the stable fixed points, by using L2PG, SGA,
and ConOpt. L2PG brings a significant boost to the con-
vergence speed on the evaluation set by over 20 compared
to both baseline methods, and also generalizes well on the
testing set, demonstrating a substantial performance gap.
We additionally provide the convergence speed of SGA and
ConOpt with different combinations of hyperparameters on
both the evaluation and testing set in Section A.3, where we
can observe that the hyperparameters show great influence
on empirical convergence, and necessitate the ad-hoc tuning
process. L2PG, however, can predict the updates to players’
parameters automatically and achieve fast convergence at
the same time. We also used the Adam (Kingma & Ba,
2014) optimizer to solve the two-player games. The conver-
gence step on the testing set is 248.71, which clearly shows
that utilizing adaptive variants of traditional optimization
techniques (Adam) does not yield satisfactory results.

Table 1. Convergence steps on the testing set of quadratic games
with stable fixed points.

Method Best Evaluation Steps Transfer Test Steps

SGA 61.450 35.963
ConOpt 76.063 44.938

L2PG 41.025 26.375

L2PG can avoid convergence to unstable fixed points.
We then investigate how L2PG and other algorithms update
players’ parameters when the fixed points are unstable. The
convergence speeds are collected in Table 2. On the 20
quadratic games with unstable fixed points, L2PG almost
certainly avoids convergence to unstable fixed points. This
empirically proves that L2PG is able to differentiate the
different dynamics of stable and unstable equilibrium and
predict suitable updates to players.

Table 2. Convergence steps on testing sets of quadratic games with
different types of fixed points (stable and unstable fixed points).

Method Stable Fixed Points Unstable Fixed Points

SGA 35.963 968.1
ConOpt 44.938 1000.0

L2PG 26.375 951.4

L2PG on four-player games. We continue to apply L2PG
to solving the aforementioned four-player games and com-
pare with SGA and ConOpt. Each player controls 1 param-
eter in this series of the game, and the parameters of the

games are characterized as:

Mij =


1, i < j

ϵ/2, i = j

−1, i > j

, bi = 0, (6)

for i, j ∈ {1, 2, 3, 4}. We vary the value of ϵ when train-
ing the optimizer. We use ϵ = {0.1, 0.3, 0.5, 0.7, 0.9}
for the evaluation set, and we benchmark all meth-
ods on the same testing set (ϵ ∈ {0.2, 0.4, 0.6, 0.8} ∪
{1.0, 1.1, 1.2, . . . , 2.5}) . We first report the convergence
speed on the evaluation set and on three unseen ϵ in Table 3.

Table 3. Convergence steps on four-player games with different
values of ϵ. We report the performance on three different ϵ, which
controls the value of Mij in the Eqn. 6.

Method Best Evaluation Steps Transfer Test Steps

ϵ = 0.6 ϵ = 1 ϵ = 2

SGA 47.60 32.25 27.25 1000
ConOpt 53.10 32.00 29.50 1000

L2PG 47.15 31.50 25.00 61.00

We observe a similar trend in the four-player games, i.e.,
the updates to players’ parameters predicted by L2PG lead
to the fastest convergence speed. It is also noteworthy that
with fixed settings of λ and α, both SGA and ConOpt are
not able to find solutions within 1000 steps when ϵ = 2.
Figure 1 visually demonstrates the relationship between the
convergence speed of SGA and ConOpt and the values of ϵ,
with the fixed hyperparameters respectively optimal on the
evaluation set. Their convergence speeds are greatly decel-
erated as the value of ϵ increases, while L2PG exhibits more
stable empirical convergence behaviors. We also provide the
variance analysis in Table 11 to show that the performance
gains are significant.

0

250

500

750

1000

0.0 0.5 1.0 1.5 2.0 2.5
ε

 

ConOpt
L2PG
SGA

Figure 1. The relationship between algorithms’ convergence steps
and the values of ϵ. The results are truncated at 1000 steps for
better visualization.

Performance on GANs. We follow the pipeline described
in Letcher et al. (2019) and train L2PG along with the RM-
Sprop optimizer to optimize a generative adversarial net-
work. The GAN is optimized for 10000 steps. The full
results are shown in Figure 6. While L2PG accelerates the
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Figure 2. Generation results of models updated by SGA, L2PG,
and L2PG∗. Results at 2.5K, 5K and 7.5K steps are reported.
L2PG∗ shows better performance, in terms of the distribution of
generated data and convergence steps

training process at the early stage, it faces difficulties in
optimizing GANs later, due to the notorious and unsolved
problem of “longer horizons” in existing L2O work. To
provide a remedy, we combine analytic gradients, which has
also been applied in Vicol et al. (2021), with L2PG to this
challenge: we first apply L2PG in the early stage of training
(first 2K steps), and switch to use g +Ag afterward. We
call this hybrid pipeline “L2PG∗”. In Figure 2 we observe
that L2PG∗ already shows higher convergence quality at 5K
steps (the peaks are clearer compared to SGA), and shows a
better pattern at 7.5K steps (the grids are neater compared
to SGA). These results show the potential of applying L2PG
to more complicated games. A full comparison between
SGA, L2PG, and L2PG∗ can also be found in Section A.3.

4.3. Visualizations

To better understand the optimization behaviors of L2PG,
we extract the players’ parameters from the two-player
quadratic games and visualize it in Figure 3. We study
two quadratic games with distinct dynamics: (1) l1(x, y) =
0.492x2 − 1.081xy − 0.048x, l2(x, y) = 0.330y2 +
0.001xy − 0.560y; and (2) l1(x, y) = −0.584x2 −
1.012xy + 0.826x, l2(x, y) = −0.826y2 − 1.184xy −
2.312y. The former has a stable fixed point located at
(0.979, 0.846), while the latter has an unstable fixed point.

Generated Updates Coefficients. We first visualize the
prediction of the three update coefficients from L2PG, i.e.,
the values of cg, cA and cS. We collect the predicted update

coefficients from the aforementioned two games and present
them in Figure 5. The figure demonstrates that: (1) On the
games with a stable fixed point as the solution, the output
coefficients of L2PG are substantially different. Specifically,
cg and cA seems to be emphasized while cS is close to 0.
This in fact demonstrates that L2PG has learned certain up-
date patterns; (2) For the games with an unstable fixed point
as the solution, L2PG produces different patterns compared
to those for the games with stable fixed points, which again
demonstrates that L2PG is able to differentiate games by
the fixed point’s stability.

Trajectories of L2PG and SGA. To visually understand
the update behaviors of L2PG and SGA, we draw the trajec-
tories of players’ parameters in the former game (i.e., with a
stable fixed point) updated by the two methods in Figure 3.
As we can observe, while the two methods are approaching
the same solution where g = 0, L2PG updates the players’
parameters significantly faster. In detail, L2PG takes merely
two update steps to reach around (0.75, 0.75), while SGA
takes approximately 9 steps to approach the same region. In
total, L2PG takes around 20 steps to converge, while SGA
converges much slower (needs around 60 steps). We also
provide more visualization in Section C, where we show the
update behaviors on different games.

4.4. Ablation Studies

Curriculum Learning and Self-Learning We perform
an ablation study to understand the practical benefits brought
by curriculum learning (CL) and self-learning (SL) tech-
niques. We meta-train the optimizers with different combi-
nations of techniques (Data-CL, Training-CL, and SL) on
quadratic games, and report the steps to converge on both
the evaluation and testing set we previously used. Table 4
shows that: (1) Although a naively trained L2O can already
achieve convergence in practice, the convergence speed is
not satisfactory; (2) Both curriculum learning techniques,
i.e., Data-CL and Training-CL are useful, and combining
them brings more performance gain; (3) Applying Self-
learning solely can improve the convergence speed, and
further combining the CL techniques is more beneficial. In
conclusion, both the CL techniques and SL are vital to the
learned optimizers with better quality.

Different Update Components One of the key designs of
L2PG is using the three components (g,A⊤g, and Sg) to
construct the input features to the optimizer, and calculate
the actual updates to players’ parameters by interpolating
them with the predicted update coefficients cg, cA and cS.
To examine the critical roles of these components, we al-
ternatively remove one or multiple components from both
the inputs features and update coefficients, at both the meta-
training and meta-testing stages.

The performance is shown in Table 5, where we can observe
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Table 4. Performance on the evaluation and testing set of quadratic
games. We report the convergence steps on the evaluation set
and two testing sets aforementioned, one containing games with
stable fixed points and another containing games with unstable
fixed points.

CL SL Performance

Data-CL Training-CL Evaluation Testing

✗ ✗ ✗ 402.575 358.763
✓ ✗ ✗ 54.313 31.163
✗ ✓ ✗ 91.113 79.025
✓ ✓ ✗ 51.875 32.463
✗ ✗ ✓ 153.938 248.525
✓ ✓ ✓ 41.025 26.375

Player 1 Player 2
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Figure 3. Trajectories of players’ parameters updated by L2PG
and SGA. We separately visualize the gradient of the two players’
parameters in two plots. The contour lines in the background show
the levels of gradients of each player.

that enabling all update components is crucial to the best per-
formance. Combining all three components for constructing
inputs will help capture richer information for training the
L2PG, and using all of them to generate updates to players’
will give the optimizer more flexibility and hence leads to
better performance.

Different Regularization Form As aforementioned, the
additive regularization form cannot avoid convergence to
unstable fixed points if they are the only fixed points.
To provide empirical support to our claim, we compare
L2PG trained with the additive and the multiplicative reg-
ularization, and an additional baseline that does not use
any regularization term for stability. Figure 4 shows the
players’ update trajectory on the game with l1(x, y) =
−0.073x2 + 0.409xy − 0.277x, l2(x, y) = −0.074y2 −
0.539xy + 1.007y, which has an unstable fixed point lo-
cated at (−5.049, 5.015). We can observe that L2PG trained
without regularization or with additive regularization form
both show convergence to the unstable fixed point where
g is close to 0. Although the additive regularization seems
to help the players’ parameters to diverge at the first few

Table 5. Ablation study on different update components. The opti-
mizer are trained with different update components, and predict
updates based on the same set of components.

Components Performance

cg cA cS Evaluation Testing

✓ ✗ ✗ 67.975 64.813
✗ ✓ ✗ 291.163 354.100
✗ ✗ ✓ 189.988 372.263
✓ ✓ ✗ 45.350 31.313
✓ ✗ ✓ 52.838 35.688
✗ ✓ ✓ 106.463 166.775
✓ ✓ ✓ 41.025 26.375

iterations (similar to the first few iterations of using the
multiplicative regularization), it eventually converges to the
unstable point. Meanwhile, the multiplicative regularization
is able to avoid convergence to the unstable fixed point and
show clear divergent patterns.
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Figure 4. Comparison on the effects of different forms of regular-
ization for avoiding unstable fixed points. We find that not using
regularization (“No Reg”) and using additive regularization (“Addi-
tive”) may result in convergence to the unstable fixed point, while
using the multiplicative form (“Multiplicative”) leads to a clear
divergent pattern from the unstable fixed point. Contour lines in
the background show the levels of gradients of each player.

More Ablations We provide more ablation results in Sec-
tion A.3. Specifically, we demonstrate the effectiveness of
stability-awareness loss, decomposed update, and regular-
ization techniques for training separately.

5. Conclusions
In this work, we formulate an L2O framework for solving
general games that aim at finding stable fixed points for
players’ parameters. We propose a novel stability-aware
sign-based loss for meta-training, which helps the optimizer
to find stable fixed points and avoid unstable fixed points.
To further overcome the training instability and improve the
generalization ability, we propose two additional techniques,
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data curriculum learning, and self-learning. Extensive ex-
periments on quadratic games and GANs show that our pro-
posed L2PG can find stable fixed points faster than baseline
methods (SGA, ConOpt). We further justify by experiments
that our proposed techniques are vital to fast convergence,
and more importantly, our method can empirically avoid
convergence to unstable fixed points.

Limitations. Our work has applied learned optimization
rules to find stable fixed points in differentiable games.
While focusing solely on empirical results, the theoretical
understanding of our method is out of scope and is overall
challenging for L2O-based methods. Therefore, we leave
the theoretical guarantees for future works.
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A. Additional Experiments and Details
A.1. Algorithms

We provide a summary to L2PG’s pipeline in Algorithm 1.

Algorithm 1 L2PG
Input: optimizer opt(·; ·), current training step t, a training set of games Dtrain, a fixed evaluation set of games Deval,
unroll length T , training steps N for each epoch, the evaluation frequency NE and the number of epochs E.
Output: Optimal optimizer weights ϕ
Initialize ϕ = ϕ0 and epoch = 0
for epoch < E do

Sample losses {li}ni=1 from Dtrain

Initialize players’ parameters w0

for j = 0, T, 2T . . . , ([N/T ]− 1)× T do
Set L ← 0
for k = 0, 1, 2 . . . , T − 1 do
t := j + k
Calculate o(t) = [g;A⊤g;Sg] at w(t).
Calculate m(t), m̃(t), õ(t) by Equation 2.
Construct z(t) from o(t),m(t), m̃(t), õ(t).
Update w(t+1) ← w(t) − opt(z(t);ϕ)
L ← L+ Lt({li}ni=1,w

(t+1))
end for
Update ϕ for one step by minimizing L.

end for
if epoch % NE == 0 then

Evaluate opt on Deval and find the ϕ with the highest evaluation performance.
end if

end for

A.2. Sampled Game Coefficients

As aforementioned, we have sampled a fixed evaluation set and two testing sets of quadratic games. The coefficients of
the 60 games are provided in the three files: “evaluation.txt”, “test stable.txt” and “test unstable.txt”. Each line in the file
represents a game, containing 6 numbers that represent M11,M22,M12,M21, b1, b2, respectively.

A.3. Additional Experimental Results

Grid Search on the hyper-parameters of SGA and ConOpt We report the convergence steps of SGA and ConOpt on
the evaluation set of games using different α and λ. Table 6 and Table 7 report the 20 settings of α and λ that yield the
fastest convergence speed by using SGA and ConOpt, respectively. On each individual game, the optimal setting is not
consistent: for example, on Game 1, SGA achieves the fastest convergence speed with α = 0.4 and λ = 1, while on Game 2
SGA achieves the fastest convergence speed with α = 0.6 and λ = 0.1. ConOpt shows a similar phenomenon and exhibits a
larger variety of performance when applying the same hyperparameters to different games, and when applying different
values of hyperparameters. More “1000” can be observed in the results, which necessitates careful hyperparameter selection.

Table 8 and Table 9 provide the convergence steps of the two algorithms on the testing set of games with stable fixed points.
We can observe that the optimal choices of hyperparameters on the evaluation set are not achieving the fastest convergence
speed on the testing samples.

Finally, we report the convergence steps of L2PG on these two sets of games in Table 10. L2PG achieves faster convergence
in general, achieving a performance gain of more than 20 steps on the evaluation set of games and also performing better on
unseen testing games.

11



Learning to Optimize Differentiable Games

Table 6. Convergence steps of SGA on games in the evaluation set.

α λ
Game Mean

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.5 0.3 24.25 22.5 94.0 23.0 15.5 26.5 29.0 44.0 19.0 22.0 28.25 80.5 37.25 17.0 13.75 19.0 28.5 26.25 62.25 596.5 61.45

0.5 0.2 26.75 22.75 92.0 22.0 15.25 26.5 28.75 40.25 19.0 29.75 26.5 80.25 36.0 17.25 13.0 19.0 28.25 26.0 73.5 595.75 61.92

0.5 0.4 21.75 22.5 95.5 24.0 15.5 26.75 29.25 61.0 19.25 18.5 30.25 81.25 38.25 17.0 15.0 19.25 28.25 26.5 53.75 597.25 62.04

0.5 0.1 30.25 22.25 89.25 20.5 15.5 26.5 29.25 39.5 18.0 49.0 30.25 79.75 34.0 17.25 14.75 18.5 28.25 25.5 90.75 595.25 63.71

0.5 0.5 19.75 22.0 97.0 24.5 15.5 26.75 29.5 141.5 19.0 16.0 31.75 82.0 39.25 17.0 16.25 19.5 28.25 26.25 47.25 597.25 65.81

0.6 0.1 28.25 19.25 75.0 18.5 13.5 23.0 25.25 208.75 44.25 79.5 26.25 66.75 29.25 15.25 15.25 16.5 24.5 22.0 85.75 496.25 66.65

0.4 0.9 18.0 26.5 125.0 28.25 17.25 32.75 37.25 44.0 13.0 13.5 40.75 107.0 49.0 19.5 14.75 22.25 33.25 28.5 39.25 744.5 72.71

0.4 1.0 18.25 26.25 125.25 27.0 17.75 32.5 37.75 48.75 13.0 15.75 40.25 108.25 49.25 19.0 15.0 22.25 33.0 27.0 36.0 743.0 72.76

0.4 0.8 18.75 26.0 124.25 28.75 17.0 32.5 36.25 45.0 13.25 12.0 40.75 106.0 49.25 19.75 14.75 22.75 33.5 30.0 42.25 745.25 72.90

0.4 0.7 20.75 25.25 123.5 29.5 17.75 32.5 35.5 46.75 13.25 13.0 40.75 104.25 49.0 19.75 15.25 23.0 34.0 31.0 45.25 745.5 73.28

0.4 1.1 18.5 26.25 125.25 26.25 17.5 32.5 38.5 69.25 13.0 18.75 40.0 109.25 48.75 18.75 15.25 21.5 32.75 26.0 33.75 741.5 73.66

0.4 0.6 22.25 25.25 122.25 29.25 18.25 32.5 35.75 47.75 13.25 14.5 40.0 103.25 48.75 20.0 15.25 23.25 34.25 31.5 50.75 746.0 73.70

0.4 0.5 23.25 26.75 120.75 29.75 18.5 32.5 36.0 48.5 13.25 16.0 39.0 102.25 48.0 20.0 16.25 23.0 34.25 32.0 55.75 746.0 74.09

0.4 0.4 25.25 27.0 118.75 29.25 17.5 32.5 35.75 47.5 13.5 18.25 37.0 101.0 47.25 20.0 16.25 23.0 34.5 32.25 63.0 746.0 74.28

0.4 0.3 28.25 27.0 116.75 28.0 18.0 32.5 35.0 44.75 13.5 22.0 34.5 100.25 45.75 20.0 16.5 22.75 34.5 32.0 71.75 745.0 74.44

0.4 0.2 30.25 27.0 114.0 26.25 18.0 32.25 35.25 48.0 13.25 28.0 32.25 99.25 44.0 20.0 15.75 22.75 34.5 31.75 84.5 744.75 75.09

0.4 0.1 34.75 26.75 111.25 24.75 18.0 32.0 35.75 48.5 12.75 41.0 36.75 99.25 41.5 20.0 16.0 22.25 34.5 31.0 101.0 743.0 76.54

0.4 1.2 18.75 25.75 125.25 24.5 17.0 32.5 38.75 130.5 13.0 23.5 39.25 110.25 48.0 18.75 15.25 21.25 32.0 26.25 32.25 740.0 76.64

0.3 1.5 22.0 31.25 163.75 29.25 20.25 43.0 50.0 42.25 14.0 17.0 48.25 150.25 60.25 21.25 14.0 24.75 39.25 31.0 35.5 977.25 91.72

0.3 1.4 22.75 32.0 164.75 29.75 19.75 43.0 50.5 44.25 13.75 15.75 49.25 149.25 61.5 22.25 13.0 25.25 39.0 32.0 38.0 980.25 92.30

More Ablation Results In Table 11 we present the mean and the confidence intervals (CI) of the gain for 10 random
initial players’ parameters on four-player quadratic games. We run experiments with two different ϵ values. From the table
we can observe that the gains are significantly larger than 0.

In Table 12 we show the ablation on the components we introduce, which verifies the importance of modules to expedite the
convergence.

In Table 13 we provide the ablation studies on the choices of βϕ. We show that either too small (0.1 ∼ 0.9) or too large βϕ

(0.99) has inferior performance. In Table 14 we provide the ablation studies on the choices of K. We show that 5 is an
appropriate choice as it leads to the highest performance among the values we have studied. Overall, the performance is not
highly sensitive to the choice of hyperparameters.

We tried to use exponential moving average techniques (i.e., soft update) to update the weights of the original optimizer
without using SL. In this case, the convergence step is 28.625, which shows that EMA is efficient than our self-learning
approach in expediting convergence.

Other GAN problems we trained a GAN network to learn a 75-dimensional uni-modal Gaussian. This challenge has
also been explored in research by Santurkar et al. (Santurkar et al., 2018) and Balduzzi et al. (Balduzzi et al., 2018). The
difficulty arises from boundary distortion, which is a type of covariate shift that causes the generator to struggle in accurately
modeling the true data distribution. In Table 15, we present the mean absolute error (MAE) of the eigenvalues of the
covariate matrix of data generated by a three-layer GAN used in Balduzzi et al. (2018), where we employed L2PG* and
SGA to train the network, respectively. Our observations indicate that: (1) L2PG attains lower error in the initial stage; (2)
By utilizing the analytical optimizer following L2PG, L2PG* ultimately outperforms SGA by a considerable margin. These
findings demonstrate the effectiveness of our approach.

B. Additional Details on Methods
L2O Optimizer Structures. The structure of the learned optimizer in L2PG is a single-layer LSTM network with a
hidden dimension of 32. The optimizer is being applied in a coordinate-wise way, i.e. the LSTM network will generate
updates to every single position of the variables to update, which is a canonical way in L2O literature (Chen et al., 2022a).
At the meta-training stage, the “hidden” and “cell” variables in the LSTM network are only reset after each epoch, and at the
meta-testing stage, these two variables are never re-initialized.
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Table 7. Convergence steps of ConOpt on games in the evaluation set.
α λ

Game Mean
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.4 0.1 33.25 25.5 112.25 24.25 16.5 30.75 34.25 48.5 20.5 43.0 32.75 97.25 42.75 19.0 14.75 21.25 33.0 30.0 98.75 743.0 76.06

0.3 0.2 34.75 31.75 153.25 33.75 19.75 38.5 42.75 62.0 17.25 30.0 42.0 128.0 58.0 22.25 16.75 26.0 41.25 38.75 98.0 991.0 96.29

0.3 0.1 40.5 33.0 149.25 31.25 20.5 39.75 43.75 63.0 12.75 41.0 41.25 129.25 55.75 23.5 17.0 27.0 43.0 39.0 118.0 990.25 97.94

0.2 0.5 33.75 40.75 239.5 49.5 23.25 50.25 58.0 98.25 20.0 21.75 70.25 191.25 87.0 25.75 20.25 32.75 54.0 52.25 93.5 1000.0 113.10

0.2 0.4 37.25 42.5 237.0 49.75 23.5 52.0 61.25 85.25 15.25 25.0 69.5 191.25 87.25 27.25 21.5 34.25 56.0 54.0 102.0 1000.0 113.59

0.2 0.3 43.5 44.5 233.75 49.75 25.25 53.75 62.0 85.0 13.0 29.5 67.25 191.25 86.5 29.0 22.5 35.5 58.5 55.25 119.0 1000.0 115.24

0.2 0.2 48.5 46.0 229.0 49.0 27.25 56.0 62.5 91.25 14.25 36.5 62.25 192.25 85.25 31.5 23.25 37.0 60.75 56.75 138.5 1000.0 117.39

0.2 0.1 55.25 47.75 222.75 45.5 28.75 58.25 64.5 93.25 15.5 48.5 58.0 193.25 81.75 33.5 23.25 38.25 63.25 57.5 165.25 1000.0 119.70

0.3 0.3 31.0 30.75 156.25 34.25 18.5 37.0 42.5 1000.0 35.5 24.5 45.5 127.75 59.0 20.5 16.5 25.0 40.0 38.0 83.25 991.25 142.85

0.4 0.2 28.25 25.0 115.25 26.0 16.25 29.75 33.0 1000.0 648.25 30.0 32.25 96.25 44.25 17.75 13.25 20.75 32.0 29.75 80.75 743.75 153.12

0.6 0.2 23.5 22.0 77.5 19.0 23.0 21.0 23.0 1000.0 1000.0 63.5 22.5 64.5 30.5 54.75 41.75 24.5 22.75 21.25 66.25 496.25 155.88

0.1 1.2 39.5 57.5 482.0 81.0 32.5 78.75 110.75 161.5 16.75 21.25 129.75 378.5 159.75 33.75 26.5 47.0 83.25 81.5 103.25 1000.0 156.24

0.6 0.1 28.0 18.75 75.25 17.25 15.0 22.0 24.0 1000.0 1000.0 135.25 24.25 65.5 29.75 20.0 16.0 16.0 23.5 21.5 84.25 496.25 156.62

0.2 0.6 31.75 39.0 241.0 48.25 22.75 48.5 57.0 1000.0 33.25 19.5 70.5 191.5 87.0 24.25 19.25 31.5 52.0 50.5 82.75 1000.0 157.51

0.1 1.1 41.75 60.0 483.5 83.0 33.5 81.25 112.0 164.0 14.75 22.25 132.0 379.5 162.0 35.25 27.5 48.75 86.25 83.75 106.75 1000.0 157.89

0.5 0.2 25.25 20.75 92.75 22.0 15.25 24.5 26.75 1000.0 1000.0 36.75 26.5 77.5 36.0 19.25 19.0 17.5 26.25 25.0 70.75 595.5 158.86

0.1 1.0 43.75 63.0 484.5 85.75 35.25 83.25 112.75 166.25 14.0 23.5 134.25 380.5 164.25 37.0 28.5 50.75 89.0 86.75 112.25 1000.0 159.76

0.5 0.1 29.25 21.75 90.0 20.25 14.5 25.5 27.75 1000.0 1000.0 57.0 27.75 78.5 35.0 16.25 14.5 18.0 27.25 25.0 88.75 594.75 160.59

0.1 1.3 38.0 54.5 480.25 78.75 31.5 77.0 109.0 291.5 19.0 20.5 127.5 377.0 157.5 32.5 25.5 46.0 81.25 78.75 100.0 1000.0 161.30

0.1 0.9 46.25 65.5 484.75 88.0 36.75 85.75 113.5 168.75 13.5 25.25 136.0 381.5 166.25 38.75 30.5 52.75 91.75 89.5 126.25 1000.0 162.06

C. Additional Visualization
We visualize the values of cg, cA and cS predicted by L2PG in Figure 5. L2PG exhibits different behaviors on different
types of games. In Figure 6 we visualize the mixed Gaussian distribution generated by SGA, L2PG and L2PG∗. Overall,
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Figure 5. The prediction of L2PG on the two quadratic games (with stable and unstable fixed points). The update coefficients, i.e., cg, cA
and cS are shown in the three figures. The figures are truncated at 50 steps for better visualization quality. The stable fixed games are
converged at 19 steps.

L2PG∗ produces the best performance.
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Table 8. Convergence steps of SGA on games in the testing set of stable games.

α λ
Game Mean

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.7 0.4 21.5 20.75 92.75 31.0 39.5 13.75 58.25 58.5 23.25 19.25 16.5 16.0 15.25 37.5 29.25 22.25 21.0 17.5 20.0 15.0 29.44

0.7 0.3 20.75 20.25 92.75 36.0 39.5 11.75 57.5 58.5 23.25 13.5 15.5 17.75 14.75 49.75 26.25 22.25 20.25 16.75 20.0 14.75 29.59

0.7 0.5 22.25 21.75 92.75 33.75 39.5 18.5 58.5 58.5 23.25 34.0 17.0 14.75 15.5 30.75 32.25 22.5 21.75 18.0 20.0 15.75 30.55

0.6 0.5 24.75 23.25 108.0 19.0 45.5 15.0 68.5 68.0 26.5 18.5 19.25 15.0 17.25 30.75 17.75 25.5 24.25 17.75 22.25 14.75 31.07

0.6 0.4 24.25 23.25 108.0 20.0 45.5 14.0 67.5 68.0 26.5 15.5 18.75 16.0 17.0 37.5 17.25 25.5 23.75 18.0 22.25 14.5 31.15

0.6 0.6 25.25 23.0 108.0 20.5 45.5 17.5 68.75 67.75 26.5 26.25 19.5 13.75 17.75 26.75 18.5 25.75 24.25 17.25 22.25 14.75 31.48

0.6 0.3 23.5 22.75 107.75 23.0 45.5 13.25 66.5 67.75 26.5 15.25 17.5 18.0 16.5 47.25 16.5 25.25 22.75 18.25 22.25 14.25 31.51

0.7 0.2 19.75 19.5 92.5 58.25 39.5 15.0 56.5 58.25 23.25 14.5 15.5 20.25 15.5 74.0 23.5 21.75 19.0 16.75 20.0 14.0 31.86

0.6 0.2 22.25 22.25 107.75 32.0 45.5 15.0 65.5 67.75 26.25 15.25 16.5 20.25 17.0 65.5 16.0 24.75 21.75 18.25 22.25 14.5 32.81

0.6 0.7 25.25 22.75 107.75 60.0 45.5 26.0 69.5 67.5 26.5 53.75 19.25 13.0 18.0 23.75 18.75 25.75 24.25 17.25 22.25 14.75 35.08

0.5 0.6 29.5 27.0 129.0 14.75 54.25 16.0 82.5 81.0 31.25 17.25 22.25 15.0 20.25 28.75 14.5 30.25 28.75 19.75 26.0 16.75 35.24

0.5 0.7 29.75 26.75 129.0 20.0 54.25 16.0 83.25 80.5 31.25 19.5 22.0 14.5 20.5 25.5 14.5 30.25 28.5 19.5 26.0 16.75 35.41

0.5 0.5 29.0 27.25 129.0 15.0 54.25 16.5 81.5 81.25 31.25 16.75 22.25 16.0 20.0 33.0 14.5 30.25 28.25 20.25 26.0 16.5 35.44

0.5 0.4 28.5 27.25 129.0 16.25 54.25 16.0 80.5 81.25 31.25 17.25 21.5 17.75 19.5 38.75 14.5 29.5 27.75 20.5 26.0 16.0 35.66

0.5 0.3 27.25 26.75 129.0 19.0 54.25 15.0 79.5 81.0 31.0 17.25 20.0 19.0 19.0 48.0 14.75 29.5 26.5 20.5 26.0 16.0 35.96

0.5 0.8 29.75 25.75 129.0 40.75 54.0 18.0 83.75 79.75 31.25 25.5 21.75 14.25 21.0 23.0 14.5 30.25 28.0 18.75 26.0 16.25 36.56

0.5 0.2 26.0 25.75 129.0 24.75 54.25 16.25 78.5 80.5 30.5 16.25 18.25 21.75 19.25 63.25 14.75 29.25 25.0 20.75 26.0 16.25 36.81

0.6 0.1 20.0 21.0 107.75 65.25 45.5 18.75 64.5 66.75 26.25 18.75 18.75 23.75 18.25 109.5 15.0 24.5 22.75 18.25 22.25 14.25 37.09

0.8 0.3 18.75 22.0 81.5 139.75 35.0 12.25 50.5 51.75 20.75 16.25 14.25 18.75 13.75 55.5 110.75 20.0 18.0 24.25 18.0 18.25 38.00

0.5 0.1 23.5 24.5 128.75 39.0 54.0 19.5 77.5 80.0 30.5 19.75 21.0 24.5 20.25 94.75 14.5 28.5 26.25 21.0 26.0 16.0 39.49

Table 9. Convergence steps of ConOpt on games in the testing set of stable games.

α λ
Game Mean

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.5 0.2 25.75 25.25 126.0 34.0 52.25 13.75 77.25 79.5 29.0 16.25 18.75 20.75 17.0 65.0 29.75 27.25 25.25 19.25 23.5 14.5 37.00

0.5 0.1 24.25 24.5 127.25 47.5 53.0 17.75 76.5 79.5 29.5 17.5 19.0 23.75 18.5 96.0 16.0 27.5 23.75 20.0 25.0 15.25 39.10

0.6 0.1 21.0 21.0 106.5 147.5 44.5 17.0 64.5 66.75 25.5 16.25 17.0 23.75 17.0 114.25 27.25 23.5 20.5 17.5 21.0 14.0 41.31

0.4 0.3 32.25 30.25 155.75 21.0 62.75 17.75 96.25 98.0 34.75 19.75 24.5 19.75 19.25 52.25 22.75 32.25 32.0 21.5 27.25 15.75 41.79

0.4 0.2 31.25 30.5 157.25 25.25 64.25 16.0 96.25 98.75 35.5 19.0 22.25 22.75 20.0 66.5 15.5 33.0 30.75 22.5 28.5 17.0 42.64

0.4 0.4 32.0 30.25 154.25 19.25 61.75 18.25 96.25 97.25 33.75 19.75 25.25 18.0 19.0 43.5 61.0 31.25 32.0 21.0 26.0 15.75 42.77

0.4 0.1 29.75 29.75 158.75 34.0 65.5 19.0 95.5 98.75 36.0 19.75 22.25 25.75 21.75 92.75 15.75 33.75 28.75 23.5 30.0 17.75 44.94

0.3 0.6 40.75 37.5 201.25 14.75 78.75 22.5 127.25 126.5 41.75 22.75 32.5 18.0 22.75 38.5 34.25 38.25 41.5 24.25 31.0 17.25 50.60

0.3 0.5 41.5 38.5 203.25 15.75 80.0 22.75 127.75 128.0 42.75 24.0 32.5 19.75 23.75 43.75 20.75 39.5 41.75 25.25 32.25 18.0 51.08

0.3 0.4 41.5 39.25 205.25 17.75 81.75 22.75 128.0 129.25 43.75 24.5 32.25 21.25 24.0 51.0 16.25 40.75 41.75 26.5 33.5 17.75 51.94

0.3 0.3 41.5 39.75 207.25 19.75 83.0 22.0 128.0 130.25 45.0 24.75 31.25 23.5 24.5 61.0 16.75 41.75 41.5 27.5 35.25 19.5 53.19

0.3 0.2 40.5 39.5 209.25 24.0 84.75 19.75 127.75 130.75 46.25 23.75 28.75 26.75 25.25 75.75 18.0 42.75 39.75 28.75 37.0 21.0 54.50

0.3 0.7 40.25 36.75 199.25 14.25 77.25 22.0 126.25 125.5 40.75 24.5 32.0 16.75 22.5 34.75 151.5 37.25 40.75 23.5 29.75 17.5 55.65

0.3 0.1 38.0 38.5 211.25 32.0 86.25 23.0 127.0 131.0 47.5 24.0 27.25 30.75 27.25 100.75 19.25 44.0 37.0 30.5 39.0 22.0 56.81

0.2 1.1 54.75 48.25 286.25 12.75 106.75 27.5 184.75 178.75 53.75 27.75 43.0 18.75 28.25 34.0 36.0 48.25 54.75 28.25 37.25 20.25 66.50

0.2 1.0 56.0 49.5 289.25 12.5 108.5 28.5 185.75 180.75 55.0 27.5 43.75 19.25 29.0 36.75 24.25 49.5 56.0 29.25 38.5 20.5 67.00

0.2 1.2 53.5 46.75 283.5 14.75 105.0 26.75 182.75 176.5 52.5 30.0 42.0 18.0 27.75 31.75 76.0 47.0 53.5 27.25 36.0 19.5 67.54

0.2 0.9 57.0 51.0 292.0 12.5 110.5 29.5 186.75 182.75 56.5 27.25 44.75 20.0 30.0 39.5 19.25 51.0 57.25 30.25 39.75 21.25 67.94

0.2 0.8 58.0 52.5 295.0 13.75 112.5 30.25 188.0 184.75 58.0 27.0 45.75 20.75 31.25 42.75 17.75 52.75 58.5 31.25 41.5 22.25 69.21

0.2 0.7 59.0 53.5 298.0 14.75 114.5 30.75 189.75 187.0 59.25 29.5 46.5 22.0 32.25 47.0 18.5 54.25 59.75 33.0 43.25 23.0 70.78

Table 10. Convergence steps of L2PG on games in the evaluation set and the testing set of stable games.

Dataset Game Mean
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Evaluation 22.00 16.75 50.25 17.25 14.25 17.75 20.00 23.75 16.00 24.50 24.50 49.50 23.50 15.00 13.00 15.25 19.50 19.25 58.50 360.00 41.03
Testing (Stable) 18.25 19.25 74.25 19.50 33.00 14.75 49.00 46.25 21.75 15.25 17.50 19.00 16.75 53.75 15.00 20.25 22.25 17.75 19.00 15.00 26.38
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Table 11. Mean and 90% CIs of gains in convergence steps on four-
player quadratic games. The experiments are repeated 10 times with
different initial players’ parameters.

Method Mean (CI) of performance gap

ϵ = 0.6 ϵ = 1

L2PG v.s. SGA 0.70±0.47 2.20±1.31
L2PG v.s. ConOpt 0.50±0.30 4.90±1.51

Table 12. Ablation studies on different categories of techniques (Up-
date decomposition, stability-aware training loss, and training tech-
niques). The best performance is marked in bold.

Components Testing

Update Decomposition Stability-Aware Loss CL & SL Stable Unstable

✗ ✗ ✗ 220.375 195.500
✓ ✗ ✗ 140.250 158.213
✗ ✓ ✗ 1000 1000
✗ ✗ ✓ 69.788 66.900
✓ ✓ ✓ 26.375 951.400

Table 13. Ablation studies on βϕ on two-player quadratic games.

βϕ Testing Performance

0.1 28.448
0.5 26.512
0.9 26.825
0.95 26.375
0.99 27.133

Table 14. Ablation studies on K on two-player quadratic games.

K Testing Performance

2 29.118
5 26.375

10 27.122

Table 15. Mean absolute error of the eigenvalues of the covariate matrix of data generated by a three-layer GAN.

Steps SGA L2PG*

500 0.7049 0.7472
1000 0.7197 0.6268
1500 0.6583 0.6318
5000 0.4705 0.7094
6000 0.4326 0.6069
7000 0.4009 0.5006
8000 0.3678 0.3991
9000 0.3500 0.2956

10000 0.3177 0.2166
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Figure 6. Generation results of models updated by SGA, L2PG and L2PG∗. Results at {2.5, 4.5, 5, 6.5, 7.5}K steps are reported. L2PG∗

shows better quality after optimizing for 4.5K steps.
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