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Abstract

This paper studies the fundamental limits of re-
inforcement learning (RL) in the challenging
partially observable setting. While it is well-
established that learning in Partially Observable
Markov Decision Processes (POMDPs) requires
exponentially many samples in the worst case, a
surge of recent work shows that polynomial sam-
ple complexities are achievable under the reveal-
ing condition—A natural condition that requires
the observables to reveal some information about
the unobserved latent states. However, the funda-
mental limits for learning in revealing POMDPs
are much less understood, with existing lower
bounds being rather preliminary and having sub-
stantial gaps from the current best upper bounds.

We establish strong PAC and regret lower bounds
for learning in revealing POMDPs. Our lower
bounds scale polynomially in all relevant prob-
lem parameters in a multiplicative fashion, and
achieve significantly smaller gaps against the cur-
rent best upper bounds, providing a solid starting
point for future studies. In particular, for multi-
step revealing POMDPs, we show that (1) the
latent state-space dependence is at least 2(S*-%)
in the PAC sample complexity, which is notably
harder than the ©(S) scaling for fully-observable
MDPs; (2) Any polynomial sublinear regret is at
least (T%/3), suggesting its fundamental differ-
ence from the single-step case where O(+/T) re-
gret is achievable. Technically, our hard instance
construction adapts techniques in distribution test-
ing, which is new to the RL literature and may be
of independent interest. We also complement our
results with new sharp regret upper bounds for
strongly B-stable PSRs, which include single-step
revealing POMDPs as a special case.
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1. Introduction

Partial observability—where the agent can only observe
partial information about the true underlying state of the
system—is ubiquitous in real-world applications of Rein-
forcement Learning (RL) and constitutes a central challenge
to RL (Kaelbling et al., 1998; Sutton & Barto, 2018). It
is known that learning in the standard model of Partially
Observable Markov Decision Processes (POMDPs) is much
more challenging than its fully observable counterpart—
Finding a near-optimal policy in long-horizon POMDPs
requires a number of samples at least exponential in the hori-
zon length in the worst-case (Krishnamurthy et al., 2016).
Such an exponential hardness originates from the fact that
the agent may not observe any useful information about
the true underlying state of the system, without further re-
strictions on the structure of the POMDP. This is in stark
contrast to learning fully observable (tabular) MDPs where
polynomially many samples are necessary and sufficient
without further assumptions (Kearns & Singh, 2002; Jaksch
et al., 2010; Azar et al., 2017; Jin et al., 2018; Zhang et al.,
2020; Domingues et al., 2021).

Towards circumventing this hardness result, recent work
seeks additional structural conditions that permit sample-
efficient learning. One natural proposal is the revealing
condition (Jin et al., 2020a; Liu et al., 2022a), which at
a high level requires the observables (observations and ac-
tions) to reveal some information about the underlying latent
state, thus ruling out the aforementioned worst-case situa-
tion where the observables are completely uninformative.
Concretely, the single-step revealing condition (Jin et al.,
2020a) requires the (immediate) emission probabilities of
the latent states to be well-conditioned, in the sense that
different states are probabilistically distinguishable from
their emissions. The multi-step revealing condition (Liu
et al., 2022a) generalizes the single-step case by requir-
ing the well conditioning of the multi-step emission-action
probabilities—the probabilities of observing a sequence of
observations in the next m > 2 steps, conditioned on taking
a specific sequence of actions at the current latent state.

Sample-efficient algorithms for learning single-step and
multi-step revealing POMDPs are initially designed by Jin
et al. (2020a) and Liu et al. (2022a), and subsequently devel-
oped in a surge of recent work (Cai et al., 2022; Wang et al.,
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Table 1. A summary of lower bounds and current best upper bounds for learning revealing POMDPs, with our contributions highlighted
in gray cells. The rates presented here only focus on the dependence in S, 0, A, o™, and T (or '), and omit poly(H) and all polylog
factors. We also assume O > Q(SA) (in our upper bounds) and A » poly(H, S, 0, A™, a™*,T) to simplify the presentation. For
regret lower bounds, we additional ignore the min with 7" (due to the trivial O(T') regret upper bound). *Obtained by an explore-then-

exploit conversion.

PAC sample complexity Regret
Problem
Upper bound Lower bound Upper bound Lower bound
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2022; Uehara et al., 2022b; Zhan et al., 2022; Chen et al.,
2022a; Liu et al., 2022b; Zhong et al., 2022). For finding an
€ near-optimal policy in m-step revealing POMDPs, these
results obtain PAC sample complexities (required episodes
of play) that scale polynomially with the number of states,
observations, action sequences (of length m), the horizon,
(1/a) where o > 0 is the revealing constant, and (1/¢),
with the current best rate given by Chen et al. (2022a).

Despite this progress, the fundamental limit for learning in
revealing POMDPs remains rather poorly understood. First,
lower bounds for revealing POMDPs are currently scarce,
with existing lower bounds either being rather preliminary
in its rates (Liu et al., 2022a), or following by direct reduc-
tion from fully observable settings, which does not exhibit
the challenge of partial observability (cf. Section 2.2 for
detailed discussions). Such lower bounds leave open many
fundamental questions, such as the dependence on « in the
optimal PAC sample complexity: the current best lower
bound scales in o~ ! while the current best upper bound
requires o 2. Second, the current best upper bounds for
learning revealing POMDPs are mostly obtained by general-
purpose algorithms not specially tailored to POMDPs (Chen
et al., 2022a; Liu et al., 2022b; Zhong et al., 2022). These
algorithms admit unified analysis frameworks for a large
number of RL problems including revealing POMDPs, and
it is unclear whether these analyses (and the resulting upper
bounds) unveil fundamental limits of revealing POMDPs.

This paper establishes strong sample complexity lower
bounds for learning revealing POMDPs. Our contributions
can be summarized as follows.

* We establish PAC lower bounds for learning both single-
step (Section 3.1) and multi-step (Section 3.2) revealing
POMDPs. Our lower bounds are the first to scale with
all relevant problem parameters in a multiplicative fash-
ion, and settles several open questions about the funda-
mental limits for learning revealing POMDPs. Notably,
our PAC lower bound for the multi-step case scales as

Q(S15), where S is the size of the latent state-space,
which is notably harder than fully observable MDPs
where ©(S) is the minimax optimal scaling. Further,
our lower bounds exhibit rather mild gaps from the cur-
rent best upper bounds, which could serve as a starting
point for further fine-grained studies.

* We establish regret lower bounds for the same settings.
Perhaps surprisingly, we show an Q(7'%/3) regret lower
bound for multi-step revealing POMDPs (Section 4). Our
construction unveils some new insights about the multi-
step case, and suggests its fundamental difference from
the single-step case in which O(+/T) regret is achievable.

* Technically, our lower bounds are obtained by embed-
ding uniformity testing problems into revealing POMDPs,
in particular into an m-step revealing combination lock
which is the core of our hard instance constructions (Sec-
tion 5). The proof further uses information-theoretic
techniques such as Ingster’s method for bounding certain
divergences, which are new to the RL literature.

* We discuss some additional interesting implications to RL
theory in general, in particular to the Decision-Estimation
Coefficients (DEC) framework (Section 6.2).

We illustrate our main results against the current best upper
bounds in Table 1.

1.1. Related work

Hardness of learning general POMDPs It is well-
established that learning a near-optimal policy in POMDPs
is computationally hard in the worst case (Papadimitriou
& Tsitsiklis, 1987; Mossel & Roch, 2005). With regard to
learning, Krishnamurthy et al. (2016); Jin et al. (2020a) used
the combination lock hard instance to show that learning
episodic POMDPs requires a sample size at least exponen-
tial in the horizon H. Kearns et al. (1999); Even-Dar et al.
(2005) developed algorithms for learning episodic POMDPs
that admit sample complexity scaling with A*. A similar
sample complexity can also be obtained by bounding the
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Bellman rank (Jiang et al., 2017; Du et al., 2021; Jin et al.,
2021) or coverability (Xie et al., 2022).

Revealing POMDPs Jin et al. (2020a) proposed the
single-step revealing condition in under-complete POMDPs
and showed that it is a sufficient condition for sample-
efficient learning of POMDPs by designing a spectral type
learning algorithm. Liu et al. (2022a;c) proposed the multi-
step revealing condition to the over-complete POMDPs and
developed the optimistic maximum likelihood estimation
(OMLE) algorithm for efficient learning. Cai et al. (2022);
Wang et al. (2022) extended these results to efficient learning
of linear POMDPs under variants of the revealing condition.
Golowich et al. (2022b;a) showed that approximate planning
under the observable condition, a variant of the revealing
condition, admits quasi-polynomial time algorithms.

The only existing lower bound for learning revealing
POMDPs is provided by Liu et al. (2022a), which modified
the combination lock hard instance (Krishnamurthy et al.,
2016) to construct an m-step 1-revealing POMDP and show
an 2(A™~1) sample complexity lower bound for learning a
1/2-optimal policy. Our lower bound improves substantially
over theirs using a much more sophisticated hard instance
construction that integrates the combination lock with the
tree hard instance for learning MDPs (Domingues et al.,
2021) and the hard instance for uniformity testing (Panin-
ski, 2008; Canonne, 2020). Similar to the lower bound for
uniformity testing, the proof of our lower bound builds on
Ingster’s method (Ingster & Suslina, 2012).

Other structural conditions Other conditions that en-
able sample-efficient learning of POMDPs include reactive-
ness (Jiang et al., 2017), decodablity (Efroni et al., 2022),
structured latent MDPs (Kwon et al., 2021), learning short-
memory policies (Uehara et al., 2022b), deterministic transi-
tions (Uehara et al., 2022a), and regular predictive state rep-
resentations (PSRs) (Zhan et al., 2022). Chen et al. (2022a);
Liu et al. (2022b); Zhong et al. (2022) propose unified struc-
tural conditions for PSRs, which encompasses most existing
tractable classes including revealing POMDPs, decodable
POMDPs, and regular PSRs.

2. Preliminaries

POMDPs An episodic Partially Observable Markov
Decision Process (POMDP) is specified by a tuple
M ={H,S8,0,A, {Th}he[H]v {@h}he[H]7 {Th}he[HLNl}’
where H € Zx; is the horizon length; (S, O, A) are the
spaces of (latent) states, observations, and actions with car-
dinality (5, O, A) respectively; Op(:]-) : S — A(O) is
the emission dynamics at step h (which we identify as an
emission matrix Qy, € RO*S); Ty, (+|-,+) : S x A — A(S)
is the transition dynamics over the latent states (which we

identify as a transition matrix T, € RS*(SxA)): 7, (..)
O x A — [0,1] is the (possibly random) reward function;
w1 = To(-) € A(S) specifies the distribution of initial
state. At each step h € [H], given latent state s;, (which
the agent does not observe), the system emits observation
on ~ Op(|sn), receives action aj, € A from the agent,
emits reward 7, (op,, ap, ), and then transits to the next latent
state sp4+1 ~ Th(-|sk, ap) in a Markovian fashion.

We use 7 = (01, ai,...,0H, aH) = (01:H7 CL1;H) to denote
a full history of observations and actions observed by the
agent, and 75, = (01.5, a1.5,) to denote a partial history up to
step h € [H]. A policy is given by a collection of distribu-
tions over actions = {m,(-[7h—1,08) € A(A)};, ., | o)
where 7y, (+|Th—1, 05, ) specifies the distribution of ay, given
the history (7,—1,0). We denote IT as the set of all
policies. The value function of any policy 7 is denoted
as Var(m) = ]E}{/I[Z}If:l rn(on, ap)], where E7, speci-
fies the law of (01.x,a1.m) under model M and policy
. The optimal value function of model M is denoted
as Vi = maxqen Vas(m). Without loss of generality,
we assume that the total rewards are bounded by one, i.e.
Z,LE[H] rn(on,an) < 1forany (o1.1,a1.1) € (O x A)H.

Learning goals We consider learning POMDPs from ban-
dit feedback (exploration setting) where the agent plays
with a fixed (unknown) POMDP model M for T' € N
episodes. In each episode, the agent plays some policy (),

and observes the trajectory 7(*) and the rewards rﬁq

We consider the two standard learning goals of PAC learning
and no-regret learning. In PAC learning, the goal is to output
a near-optimal policy 7 so that Vi, — Vi (T) < ¢ within as
few episodes of play as possible. In no-regret learning, the
goal is to minimize the regret

Regret(T) := Zthl (Vi = Var(x®)),

and an algorithm is called no-regret if Regret(T) = o(T)
is sublinear in 7. It is known that no-regret learning is no
easier than PAC learning, as any no-regret algorithm can be
turned to a PAC learning algorithm by the standard online-
to-batch conversion (e.g. Jin et al. (2018)) that outputs the
average policy 7 := % Zil 7(®) after T episodes of play.

2.1. Revealing POMDPs

We consider revealing POMDPs (Jin et al., 2020a; Liu et al.,
2022a), a structured subclass of POMDPs that is known to
be sample-efficiently learnable. For any m > 1, define the

m-step emission-action matrix My, ,,, € RO™A™ XS of 4
POMDP M atstep h e [H —m + 1] as
[Mh,m] (0,a),s
= Par(On:htm—1 =0|sh = 8,anhim—2 =2a). (1)
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In the special case where m = 1 (the single-step case),
we have M, ; = O, € R®*S_ je. the emission-action
matrix reduces to the emission matrix. For m > 2, the m-
step emission-action matrix My, ,,, generalizes the emission
matrix by encoding the emission-action probabilities, i.e.
probabilities of observing any observation sequence o €
O™, starting from any latent state s € S and taking any
action sequence a € A™ ! in the next m — 1 steps.

A POMDP is called m-step revealing if its emission-action
matrices {Mp, ;. } he[HH—m+1] admit generalized left inverses
with bounded operator norm.

Definition 1 (m-step a-revealing POMDPs). For m > 1
and o > 0, a POMDP model M is called m-step reveal-
ing, if there exists matrices M}fm € RSxO™A™! satisfy-
ing M;thMT;L_l = T} _1 (generalized left inverse of
My, ) for any h € [H —m + 1]. Furthermore, the POMDP

model M is called m-step a-revealing if each M;{ o Jurther

admits (+ — 1)-operator norm bounded by o~ 1:

HMIermH*"l ‘= max HM}tmle < a_la (2)
’ [ <1 ’

where for any vector x = (x(0,a))oe0m acam-1, we de-
note its star-norm by

= [ Saears (Socom o)) ]

Let cv,, (M)—the m-step revealing constant of model M—
denote the maximum possible o > 0 such that (2) holds, so
that M is m-step a-revealing iff o, (M) =

In Definition 1, the existence of a generalized left inverse
requires the matrix M, ,,, to have full rank in the column
space of Tj_1, which ensures that different states reach-
able from the previous step are information-theoretically
distinguishable from the next m observations and m — 1
actions. The revealing condition—as a quantitative version
of this full rank condition—ensures that states can be prob-
abilistically “revealed” from the observables, and enables
sample-efficient learning (Liu et al., 2022a).

Our choice of the (* — 1)-norm in (2) is different from
existing work (Liu et al., 2022a;b; Chen et al., 2022a); how-
ever, it enables a tighter gap between our lower bounds
and existing upper bounds. In addition, (+ — 1)-norm has
natural probabilistic interpretations: The m-step emission
matrix My, ,,, maps a distribution over S to a collection of
A™=1 distributions over O@™. Then, the 1-norm over RS
and the #-norm over RO™ xA™ ™" directly correspond to the
TV distance (and its aggregated version over A™ 1), which
is arguably a more natural choice than the /5 norm in (Liu
et al., 2022a). Finally, we remark that the choice of the
norms is not important when only polynomial learnability
(not the exact rate of the polynomial) is of consideration, due
to the equivalence between norms up to dimension factors.

Single-step vs. multi-step We highlight that when m = 1,
the emission-action matrix M, ; = O}, does not involve the
effect of actions. This turns out to make it qualitatively
different from the multi-step cases where m > 2, which will
be reflected in our results.

Additionally, we show that any m-step a-revealing POMDP
is also (m + 1)-step a-revealing, but not vice versa (proof
in Appendix C.1; this result is intuitive yet we were unable
to find it in the literature). Therefore, as m increases, the
class of m-step revealing POMDPs becomes strictly larger
and thus no easier to learn.

Proposition 2 (m-step revealing & (m + 1)-step revealing).
For any m > 1 and any POMDP M with horizon H >
m+ 1, we have a41(M) = a,, (M). Consequently, any
m-step a-revealing POMDP is also an (m + 1)-step -
revealing POMDP. Conversely, there exists an (m + 1)-step
revealing POMDP that is not an m-step revealing POMDP.

2.2. Known upper and lower bounds

Upper bounds Learning revealing POMDPs is known to
admit polynomial sample complexity upper bounds (Liu
et al., 2022a;b; Chen et al., 2022a). The current best PAC
sample complexity for learning revealing POMDPs is given
in the following result, which follows directly by adapting
the results of Chen et al. (2022a;b) to our definition of the
revealing condition (cf. Appendix C.2).

Theorem 3 (PAC upper bound for revealing POMDPs (Chen
et al., 2022a)). There exists algorithms (OMLE, EXPLO-
RATIVE E2D & MOPS) that can find an e-optimal policy
of any m-step a-revealing POMDP w.h.p. within

3

o2g2

- 2 m 3
Tgo(s OA™(1 + SA/O)H )

episodes of play.

Lower bounds Existing lower bounds for learning reveal-
ing POMDPs are scarce and preliminary. The only existing
PAC lower bound for m-step a-revealing POMDPs is

Q(min{ﬁ,AH’l} + Am—1

given by Liu et al. (2022a, Theorem 6 & 9) for learning an
¢ = ©(1)-optimal policy, which does not scale with either
the model parameters .S, O or (1/¢) for small €.

In addition, revealing POMDPs subsume two fully observ-
able models as special cases: (fully observable) MDPs with
H steps, min {S, O} states, and A actions (with @ = 1);
and contextual bandits with O contexts and A actions. By
standard PAC lower bounds (Dann & Brunskill, 2015; Latti-
more & Szepesvari, 2020; Domingues et al., 2021) in both
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settings!, this implies an
Q((H min {S,0}A + OA)/e?)

PAC lower bound for m-step a-revealing POMDPs for any
m>1landa < 1.

Both lower bounds above exhibit substantial gaps from the
upper bound (3). Indeed, the upper bound scales multiplica-
tivelyin S, A™ O, a~! and 1/2, whereas the lower bounds
combined are far smaller than this multiplicative scaling.

3. PAC lower bounds

We establish PAC lower bounds for both single-step (Sec-
tion 3.1) and multi-step (Section 3.2) revealing POMDPs.
We first state and discuss our results, and then provide a
proof overview for the multi-step case in Section 5.

3.1. Single-step revealing POMDPs

We begin by establishing the PAC lower bound for the single-
step case. The proof can be found in Appendix E.

Theorem 4 (PAC lower bound for single-step revealing
POMDPs). Forany O > S > 5, A > 3, H > 4log, S,
a € (0,55, € € (0,0.01], there exists a family M of
single-step revealing POMDPs with |S| < S, (0| < O,
|A| = A, and oy (M) > « for all M € M, such that for
any algorithm 2 that interacts with the environment for T
episodes and returns a w°" such that Vi, — Va(7°") <
with probability at least 3/4 for all M € M, we must have

“

)

2

_ {501/2AH SAH/2H}
T > c¢-min 55 ,
a’e

where ¢ > 0 is an absolute constant.

The lower bound in Theorem 4 (and subsequent lower
bounds) involves the minimum over two terms, where
the second term “caps” the lower bound by an exponen-
tial scaling® in H and is less important. The main term
Q(SVOAH /(a?c?)) scales polynomially in 1/a2, 1/¢2,
and (S, 0, A) in a multiplicative fashion. This is the first
such result for revealing POMDPs and improves substan-
tially over existing lower bounds (cf. Section 2.2).

Implications Theorem 4 shows that, the multiplicative de-
pendence on (S, A, O, 1/a, 1/¢) in the the current best PAC
upper bound O(S20A(1 + SA/O)/(a%e?)) (Theorem 3;
ignoring H) is indeed necessary, and settles several open
questions about learning revealing POMDPs:

'With total reward scaled to [0, 1].

2A O(poly(S,0, H)A" /%) PAC upper bound is indeed
achievable for any POMDP (not necessarily revealing) (Even-Dar
et al., 2005); see also the discussions in Uehara et al. (2022b).

o It settles the optimal dependence on « to be O(a™?)
(combining our lower bound with the O(a~?2) upper
bound), whereas the previous best lower bound on «
is Q(a~1) (Liu et al., 2022a).

« For joint dependence on (o, €), it shows that 1/(a%c?)
samples are necessary. This rules out possibilities for bet-
ter rates—such as the O(max{1/a?, 1/¢%}) upper bound
for single-step revealing POMDPs with deterministic
transitions (Jin et al., 2020a)—in the general case.

* It necessitates a poly(O) factor as multiplicative upon
the other parameters (most importantly 1/(a?c?)) in the
sample complexity, which confirms that large observation
spaces do impact learning in a strong sense.

Finally, compared with the current best PAC upper bound,
the lower bound Q(SO'Y2A/(a?c?)) captures all the pa-
rameters and is a S+/O-factor away in the rich-observation
regime where O > Q(SA). This provides a solid starting
point for future studies.

Remark on requiring O > S All of our results require
O = S due to the tree structure in our construction. In the
general case (where we may have O < S), all our lower
bounds still hold with .S replaced by min{.S, O}. In addition,
it is potentially possible to strengthen the lower bound when
O < S, which however may significantly complicate the
constructions, and hence are left for future work.

3.2. Multi-step revealing POMDPs

Using similar hard instance constructions (more details
in Section 5), we establish the PAC lower bound for the
multi-step case with m > 2 (proof in Appendix G).

Theorem 5 (PAC lower bound for multi-step revealing
POMDPs). For any m > 2, O = S > 10, A = 3,
H > 8log, S+ 2m, a € (0,0.1], € € (0,0.01], there exists
a family M of m-step revealing POMDPs with |S| < S,
0] <O, |A| = A, and o,y (M) = « forall M € M, such
that any algorithm A that interacts with the environment
and returns a ™" such that Vi, — Vy (7°") < e with
probability at least 3/4 for all M € M, we must have

b

— { (S15 v SA)OVZAM—1H SAH/2H}

o2e? g2

where ¢, = co/m for some absolute constant ¢y > 0.

The main difference in the multi-step case (Theorem 5)
is in its higher A dependence Q(A™~1), which suggests
that the A™ dependence in the upper bound (Theorem 3) is
morally unimprovable. Also, the S!-% scaling in Theorem 5
is higher than Theorem 4, which makes the result qualita-
tively stronger than the single-step case even aside from the
A-dependence. This happens since the hard instance here is
actually a strengthening—instead of a direct adaptation—of
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the single-step case, by leveraging the nature of multi-step
revealing; see Section 5.3 for a discussion.

Again, compared with the current best PAC upper bound
S20A™ (14 SA/O)/(a?e?) (Theorem 3), the lower bound
in Theorem 5 has an v/SOA A Sv/O gap from the current
best upper bound. We believe that the /SO factor in this
gap is unimprovable from the lower bound side under the
current hard instance; see Section 6.3 for a discussion.

+/O dependence Our lower bounds for both the single-
step and the multi-step cases scale as /O in its O-
dependence. Such a scaling comes from the complexity
of the uniformity testing task of size O(O), embedded in the
revealing POMDP hard instances, whose sample complexity
is @(\@/52) (Paninski, 2008; Diakonikolas et al., 2014;
Canonne, 2020). The construction of the hard instances will
be described in detail in Section 5.

4. Regret lower bound for multi-step case

We now turn to establishing regret lower bounds. We show
that surprisingly, for m-step revealing POMDPs with any
m = 2, a non-trivial polynomial regret (neither linear in T’
nor exponential in H) has to be at least (7%/3). The proof
can be found in Appendix F.

Theorem 6 (Q(7T%3) regret lower bound for multi-step
revealing POMDPs). Foranym > 2,0 > S =8, A = 3,
H > 8log, S + 2m, o € (0,0.1], T = 1, there exists
a family M of m-step revealing POMDPs with |S| < S,
0] <O, |A| = A, and v,y (M) = « forall M € M, such
that for any algorithm 2, it holds that

E% [Regret] >
max Ey[Regret]

. SOYV2A™H
Cyp, - 1NIN T

where ¢, = co/m for some absolute constant co > 0.

1/3

T%3 A/SAH2HT, T},

Currently, the best sublinear regret (polynomial in other
problem parameters) is indeed 7%/3 by a standard explore-
then-exploit style conversion from the PAC result (Chen
et al., 2022a). Theorem 6 rules out possibilities for obtaining
an improvement (e.g. to v/T") by showing that 7%/% is rather
a fundamental limit.

Proof intuition The hard instance used in Theorem 6 is
the same as one of the PAC hard instances (see Section 5).
However, Theorem 6 relies on a key new observation that
leads to the Q(7%/3) regret lower bound. Specifically, for
multi-step revealing POMDPs, we can design a hard in-
stance such that the following two kinds of action sequences
(of length m — 1) are disjoint:

* Revealing action sequences, which yield observations
that reveal information about the true latent state;

* High-reward action sequences.

The multi-step revealing condition (Definition 1) permits
such constructions. Intuitively, this is since its requirement
that My, ,,, € RO™A™ XS admits a generalized left inverse
is fairly liberal, and can be achieved by carefully designing
the emission-action probabilities over a subset of action se-
quences. In other words, the multi-step revealing condition
allows only some action sequences to be revealing, such as
the ones that receive rather suboptimal rewards.

Such a hard instance forbids an efficient exploration-
exploitation tradeoff, as exploration (taking revealing ac-
tions) and exploitation (taking high-reward actions) cannot
be simultaneously done. Consequently, the best thing to
do is simply an explore-then-exploit type algorithm?® whose
regret is typically ©(T%/3) (Lattimore & Szepesvari, 2020).

Difference from the single-step case Theorem 6 demon-
strates a fundamental difference between the multi-step and
single-step settings, as single-step revealing POMDPs are
known to admit O(+/T') regret upper bounds (Liu et al.,
2022a). Intuitively, the difference is that in single-step re-
vealing POMDPs, the agent does not need to take specific
actions to acquire information about the latent state, so
that information acquisition (exploration) and taking high-
reward actions (exploitation) can always be achieved simul-
taneously.

Towards /7T regret under stronger assumptions It is
natural to ask whether the (7%/%) lower bound can be cir-
cumvented by suitably strengthening the multi-step reveal-
ing condition (yet still weaker than single-step revealing).
Based on our intuitions above, a possible direction is to ad-
ditionally require that all action sequences (of length m — 1)
must reveal information about the latent state. We leave this
as a question for future work.

5. Proof overview

We now provide a technical overview of the hard instance
constructions and the lower bound proofs. We present a
simplified version of the multi-step revealing hard instance
in Appendix F that is used for proving both the PAC and
the regret lower bounds (Theorem 5 & 6). For simplicity,
we describe our construction in the 2-step case (m = 2); a
schematic plot of the resulting POMDP is given in Figure 1.

3 Alternatively, a bandit-style algorithm that does not take re-
vealing actions but instead attempts to identify the optimal policy
directly by brute-force trying, which corresponds to the v A" T
term in Theorem 6.
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Figure 1. Schematic plot of a simplified version of our hard instance for 2-step revealing POMDPs. The instance consists of three
components: tree, lock, and uniformity testing. In the tree, all transitions are deterministic and fully observable, and the agent fully
controls how to transit from s to a leaf node. The tree transits stochastically to the lock if any action is taken at any leaf of the tree, but
there is a unique (unknown) state s*, step h*, and action a* at which the agent to transit to sg with positive probability. In the lock, the
agent cannot observe the latent states {sg, so}, and they need to enter the correct password a* to stay at sg to eventually receive a high
reward. The agent may also take the revealing action aye, at any ogym to transit to the uniformity testing component, in which they will
receive an observation that slightly reveals whether the previous latent state is sq or sg. See Section 5.1 for a more detailed description.

5.1. Construction of hard instance

A main challenge for obtaining our lower bounds—
compared with existing lower bounds in fully observable
settings—is to characterize the difficulty of partial observ-
ability, i.e. the dependence on O and oL

2-step revealing combination lock To reflect this diffi-
culty, the basic component we design is a “2-step revealing
combination lock™ (cf. the “Lock” part in Figure 1), which
is a modification of the non-revealing combination lock of
Liu et al. (2022a); Jin et al. (2020a). This lock consists of
two hidden states sg, so and an (unknown) sequence of
“correct” actions (i.e. the “password”) aj,._ ,.;;. The only
way to stay at sg is to take the correct action aj at each
step h, and only state sq at step H gives a high reward.
Therefore, the task of learning the optimal policy is equiv-
alent to identifying the correct action aj, at each step. We
make the hidden states sq), s non-observable (emit dummy
observations oqum), SO that a naive strategy for the agent
is to guess the sequence a* from scratch, which incurs an
exp(Q(H)) sample complexity.

A central ingredient of our design is a unique (known) re-
vealing action a},, at each step that is always distinct from
the correct action. Taking a,, will transit from latent state
S to eg which then emits an observation from distribution
He € A(O), and similarly from sg to eo which then emits
an observation from distribution ug € A(O). After this
(single) emission, the system deterministically transits to an

absorbing terminal state with reward 0.

Uniformity testing We adapt techniques from the uni-
formity testing (Canonne, 2020; 2022) literature to pick
{pe, po} that are as hard to distinguish as possible, yet
ensuring that the POMDP still satisfies the a-revealing
condition. Concretely, picking pg Unif(O) to be
the uniform distribution over ©@%, it is known that testing
to from a nearby pg with Dy (pg, o) = o requires
O(+/O/c?) samples (Paninski, 2008). Further, the worst-
case prior for ug takes form ug = Unif(O) + ou/O,
where p1 ~ Unif({(+1,—1),(—1,+1)}°/?). We adopt
such choices of g and jig in our hard instance (cf. the
“Uniformity testing” part in Figure 1), which can also ensure
that the POMDP is © (0! )-revealing.

Tree MDP; rewards To additionally exhibit an HS A fac-
tor in the lower bound, we further embed a fully observable
tree MDP (Domingues et al., 2021) before the combination
lock. The tree is a balanced binary tree with .S leaf nodes,
with deterministic transitions (so that which leaf node to
arrive at is fully determined by the action sequence) and full
observability. All leaf nodes of the tree will transit to the
combination lock (i.e. one of {sg), sg}). However, there ex-
ists a unique (h*, s*,a*) such that only taking aj+ = a* at
sp+ = s* and step h* has a probability ¢ of transiting to sg;
all other choices at leaf nodes transit to sg with probability
one (cf. the “Tree” part in Figure 1).

We further design the reward function so that the agent must
identify the underlying parameters (h*, s*, a*) correctly to

*Technically, we pick jg, jto to be uniformity testing hard
instances on subset of O with size 2K = ©(0). Here we use the
full set O for simplicity of presentation.
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learn a O () near-optimal policy.

5.2. Calculation of lower bound

Base on our construction, to learn an ¢ near-optimal policy
in this hard instance, the agent has to identify (h*, s*,a*),
which can only be achieved by trying all “entrances”
(s,a, h) and testing between

Hy : P(sht+1 = s@lsn = s,an = a) =0,

Hy :P(sp41 = sglsn = s,ap = a) =¢.

for each entrance. As we have illustrated, to achieve this, the
agent has to either (1) guess the password a* from scratch
(using Q(A# =" /e2) samples), or (2) take aj, and perform
uniformity testing using the observations. The latter task
turns out to be equivalent to testing between
Hy = po, Hj =cpg+ (1-¢)ue,

where g is the uniform distribution over 2K = 0(0)
elements, and pig is drawn from the worst-case prior for
uniformity testing. Distinguishing between H{j and H7 is a
uniformity testing task with parameter oe, which requires
n = Q(vO/(s0)?) samples (Paninski, 2008).

With careful information-theoretic arguments, the argu-
ments above will result in a PAC lower bound

(H
o) x 0 min { 40 2271
for learning 2-step © (o~ !)-revealing POMDPs. This rate
is similar as (though slightly worse than) our actual PAC
lower bound (Theorem 5). The same hard instance further
yields a Q(T2/ 3) regret lower bound (though slightly worse
rate than Theorem 6); see a calculation in Appendix E.8.

We remark that the above calculations are heuristic; rig-
orizing these arguments relies on information-theoretic
arguments—in our case Ingster’s method (Ingster & Suslina,
2012) (cf. Appendix D & Lemma E.5 as an example)—for
bounding the divergences between distributions induced by
an arbitrary algorithm on different hard instances.

5.3. Remark on actual constructions

The above 2-step hard instance is a simplification of the
actual ones used in the proofs of Theorem 5 & 6 in sev-
eral aspects. The actual constructions are slightly more
sophisticated, with the following additional ingredients:

* For the m-step case, to obtain a lower bound that scales

with A™, we modify the construction above so that the
agent can take a,, only once per (m — 1)-steps, and
replace a},, by a set | Ae,| = ©(A) of revealing actions,

which collectively lead to an A™~! x A = A™ factor.

¢ We further obtain an extra \/§ factor in Theorem 5 by
replacing the single combination lock with ©(.S) parallel
locks that share the same password but differ in their
emission probabilities. We show that learning in this
setting is least as hard as uniformity testing over ©(SO)
elements, which leads to the extra \/§ factor.

6. Discussions
6.1. Regret for single-step case

As we have discussed, single-step revealing POMDPs can-
not possibly admit a Q(7'%/3) regret lower bound like the
multi-step case, as a O(v/T) upper bound is achievable.
Nevertheless, we obtain a matching Q(+/T) regret lower
bound by a direct reduction from the PAC lower bound
(Theorem 4) using Markov’s inequality and standard online-
to-batch conversion, which we state as follows.

Corollary 7 (Regret lower bound for single-step revealing
POMDPs). Under the same setting as Theorem 4, the same
Sfamily M of single-step a-revealing POMDPs there satisfy
that for any algorithm 2,

max E% [Regret]

SOVZAH )

>c0~mm{ T, SAH/?HT,T},
(6%

where cy > 0 is an absolute constant.

To contrast this lower bound, the current best re-
gret upper bound for single-step revealing POMDPs is
O(+/S303A2(1 + SA/O)a—* - T x poly(H)) (Liu et al.,
2022b)°, which is at least a v/ S202-5 Aa—2-factor larger
than the main term in (5). Here we present a much sharper
regret upper bound, reducing this gap to v/ SO!-5 and im-
portantly settling the dependence on a.

Theorem 8 (Regret upper bound for single-step revealing
POMDPs). There exists algorithms (OMLE, E2D-TA, and
MOPS) that can interact with any single-step a-revealing
POMDP M and achieve regret

Regret < O(\/SCALSIOR 1) )

with high probability.

We establish Theorem 8 on a broader class of sequential
decision problems termed as strongly B-stable PSRs (cf. Ap-
pendix H.1), which include single-step revealing POMDPs
as a special case. The proof is largely parallel to the analysis
of PAC learning for B-stable PSRs (Chen et al., 2022a), and
can be found in Appendix H.

SConverted from their result whose revealing constant is de-
fined in (2 — 2)-norm.
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6.2. Implications on the DEC approach

The Decision-Estimation Coefficient (DEC) (Foster et al.,
2021) offers another potential approach for establishing sam-
ple complexity lower bounds for any general RL problem.
However, here we demonstrate that for revealing POMDPs,
any lower bound given by the DEC will necessarily be
strictly weaker than our lower bounds.

For example, for PAC learning, the Explorative DEC
(EDEC) of m-step revealing POMDPs is known to admit
an upper bound edec, < O(SA™H?a~2/v) (Chen et al.
(2022a); see also Proposition C.2), and consequently any
PAC lower bound obtained by lower bounding the EDEC
is at most Q(SA™H?a~?/e?) (Chen et al., 2022b). Such
a lower bound would be necessarily smaller than our The-
orem 5 by at least a factor of v/O(1 v v/S/A), and impor-
tantly does not scale polynomially in O.

Our lower bounds have additional interesting implications
on the DEC theory in that, while algorithms such as the E2D
achieve sample complexity upper bounds in terms of the
DEC and log covering number for the model class (Foster
etal.,2021; Chen et al., 2022b), without further assumptions,
this log covering number cannot be replaced by that of either
the value class or the policy class, giving negative answers
to the corresponding questions left open in Foster et al.
(2021) (cf. Appendix 1.1 for a detailed discussion).

6.3. Towards closing the gaps

Finally, as an important open question, our lower bounds
still have mild gaps from the current best upper bounds,
importantly in the (S, O) dependence. For example, for
multi-step revealing POMDPs, the (first term in the) PAC
lower bound Q(S'5v/OA™~1/(a?c?)) (Theorem 5) still
has a v/SO A gap from the upper bound (Theorem 3). While
we believe that the A factor is an analysis artifact that may
be removed, the remaining v/SO factor cannot be obtained
in the lower bound if we stick to the current family of hard
instances—There exists an algorithm specially tailored to
this family that achieves an O(S'°v/OA™ /(a%c?)) upper
bound, by brute-force enumeration in the tree and uniformity
testing in the combination lock (Appendix 1.2).

Closing this v/ SO gap may require either stronger lower
bounds with alternative hard instances—e.g. by embedding
other problems in distribution testing (Canonne, 2020)—or
sharper upper bounds, which we leave as future work.

7. Conclusion

This paper establishes sample complexity lower bounds for
partially observable reinforcement learning in the important
tractable class of revealing POMDPs. Our lower bounds
are the first to scale polynomially in the number of states,

actions, observations, and the revealing constant in a mul-
tiplicative fashion, and suggest rather mild gaps between
the lower bounds and current best upper bounds. Our work
provides a strong foundation for future fine-grained studies
and opens up many interesting questions, such as closing
the gaps (from either side), or strengthening the multi-step
revealing assumption meaningfully to allow a /T regret.
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Lemma A.1. For positive real numbers A, B, T, ey > 0, it holds that

A B
sup <5T A 2 A €> > AY3T?3 A\ /BT A g,T.

e€(0,e0]

Proof of Lemma A.1. Suppose that R > 0 is such that R > eT' A % A £ forall € € (0,20]. Then for each € € (0, 0],
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S

eitheraé%,ors? ,ors/% Thus,

(0,20] < (0, 5] [\/g,—koo)u[ipkoo).

Therefore, either % > gg, Or \/% < %, or % < % Combining these three cases together, we obtain

R > eoT A AY3T?3 A /BT.
O

Lemma A.2. Suppose that (R;);>1 is a sequence of positive random variables adapted to filtration (F;)i=1 and T is a
stopping time (i.e. fort = 1, R, is Fy-measurable and the event {T < t} € F;). Then it holds that

T

.
E|[ ][R x [ [E[Re|Fiza]™ ]—1.

t=1 t=1

Equivalently,

T T
E|] ] R x exp (— > logE[Rt|]-"t1]>] =1
t=1

t=1

Lemma A.2 follows immediately from iteratively applications of the tower properties.

Lemma A.3. Suppose that random variable X is o-sub-Gaussian, i.e. E[exp(tX)] < exp ( ) for any t € R. Then for
allt = 0, we have

Eexp(t | X])] < exp (max {0%2, gat})

Proof of Lemma A.3. For any x > 1, we have

1
z

Elexp(t | X )] < Elexp(et | X|)] <E[exp<xtX>]+E[exp<xtX)])i<2iexp(";x>=exp<””+k’g2).

2 x
We consider two cases: 1. If ot > /2log2, then by taking = 1 in the above inequality, we have E[exp(t | X])]
exp(c?t?). 2. If ot < 4/2log2, then by taking z = 7v2;ct>g2 > 1 in the above inequality, we have E[exp(¢ |X|)]
exp(+/2log20t) < exp(%ot). Combining these two cases completes the proof.

(VAN

For probability distributions IP and Q on a measurable space (X', F) with a base measure p, we define the TV distance and
the Hellinger distance between IP, Q as

1
Dy (P,Q) = sup [P(A) — Q(A)| = 5
AeF

dP d
D4 (P.0) - (,/du J;g)

When P « Q, we can also define the KL-divergence and the y?-divergence between P, QQ as
KLP Q) - Beflog ], (El@ - Eo| (E) | -1
= Lp g dQ ) X = LQ d@ .

14
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Lemma A.4. Suppose P,Q,P' Q' are four probability measures on (X, F),
Qla = Q'|q. Then it holds that

Drv (]P/,Q/) = Drv (P, Q) — P(Q°).

Proof of Lemma A.4. Let 11 be a base measure on (X, F) such that P, ', Q, Q' have densities with respect to x (for example,
= (P+P + Q + Q')/4). For notation simplicity, we use P(z) to stand for dP(x)/du(z) and use dz to stand for p(dzx).
Then we have

2Dy (P, Q) J P (z) — Q' (2)| dw = JQ P (z) — Q'(2)| do + JQC P (z) — Q' (2)| do

> f IP(2) — Q' ()| de + [P/(Q°) — Q'(Q9)|

- | @) — )l e + [P - (e
J IP(z) — Q)| dz + P() + Q(Q°) — 2P(0°)
J IP(z) — Q(z)| dz + J [B(z) — Q) dr — 2B(9)
2Dy (P.Q) - 2P(cY).
This completes the proof. 0

Lemma A.5 (Divergence inequalities, see e.g. Sason & Verdd (2016)). For two probability measures P, Q on (X, F), it
holds that

2Dy (P,Q)° < KL(P | Q) < log (1+ x*(P | Q).

Lemma A.6 (Hellinger conditioning lemma, see e.g. Chen et al. (2022a, Lemma A.1)). For any pair of random variables
(X,Y), it holds that

Ex~px [Dfi (Py|x,Qyix)] < 2Df (Px,y,Qx,y).

B. Basics of predictive state representations and B-stability

The following notations for predictive state representations (PSRs) and the B-stability condition are extracted from (Chen
et al., 2022a).

Sequential decision processes with observations An episodic sequential decision process is specified by a tuple
{H, O, AP, {rh}he[H]}, where H € Z; is the horizon length; O is the observation space; A4 is the action space; P
specifies the transition dynamics, such that the initial observation follows 0; ~ Py(:) € A(O), and given the history
T i= (01,41, ,0p,ap) up to step h, the observation follows op 1 ~ P(-|13,); rp : O x A — [0, 1] is the reward function
at h-th step, which we assume is a known deterministic function of (oy,, ay,).

In an episodic sequential decision process, a policy 7 = {7, : (Ox A)" 1 x O — A(A)} e is a collection of H functions.
At step h € [H], an agent running policy 7 observes the observation o, and takes action aj, ~ 7 (-|7h—1,0r) € A(A)

based on the history (74_1,01) = (01,01,...,0h-1,ar—1,0p). The agent then receives their reward 1, (op, ar), and the
environment generates the next observation oy, 1 ~ P(:|7,) based on 71, = (01, a1, - ,0p,ap) Gf h < H). The episode
terminates immediately after ay is taken.
For any 75, = (01,a1, -+ ,0n,ap), we write
P(7) := P(o1:nlar:n) = H P(on:|Thi—1),
W<h
w(m) = || 7w (an|mw -1, 0m),

h'<h
P™(11,) := P(1p) x 7(13).

Then P™(74,) is the probability of observing 75, (for the first h steps) when executing 7.

15



Lower Bounds for Learning in Revealing POMDPs

PSR, core test sets, and predictive states A fest ¢ is a sequence of future observations and actions (i.e. t € T :=
UWGZ>1 OW x AW—1). For some test t, = (0.1 W —1, @n:h 1w —2) With length W = 1, we define the probability of test
t, being successful conditioned on (reachable) history 7,1 as P(ts|mh—1) := P(on:n+w—1|Th—1; do(ap:n+w—2)), i.€., the
probability of observing op.,+w—1 if the agent deterministically executes actions ap.;,+w —2, conditioned on history 75, 1.
We follow the convention that, if P™(7,—1) = 0 for any 7, then P(¢|7,—1) = 0.

Definition B.1 (PSR, core test sets, and predictive states). For any h € [H|, we say a set U, < T is a core test set at step
h if the following holds: For any W € Z1, any possible future (i.e., test) t;, = (op.nsw—1, annyw—2) € OV x AW—1
there exists a vector by, , € RY"» such that

P(tn|tn-1) = (bey, s [P(ETR—1) Jtets ), Vrp1 e T 1= (0 x AL (7

We refer to the vector o(Th—1) 1= [P(t|Th—1)]tew, as the predictive state at step h (with convention q(Th—1) = 0 if Th—1 is
not reachable), and qq := [P(t)]ics, as the initial predictive state. A (linear) PSR is a sequential decision process equipped
with a core test set {Up } he[ -

Define Ua j, := {a : (0,a) € U, for some o € |+ O} as the set of “core actions™ (possibly including an empty
sequence) in Uy, with Ua := maxje[g [Ua,p|. Further define Up 11 := {0qum} for notational simplicity. The core test sets
(Un) he[m are assumed to be known and the same within a PSR model class.

Definition B.2 (PSR rank). Given a PSR, its PSR rank is defined as dpsr := maxue[p) rank(Dy,), where Dy, =
[a(ma)],, e € RUnt1T" is the matrix formed by predictive states at step h € [H].

For POMDP, it is clear that dpsg < .9, regardless of the core test sets.

B-representation (Chen et al., 2022a) introduced the notion of B-representation of PSR, which plays a fundamental role
in their general structural condition and their analysis.

Definition B.3 (B-representation). A B-representation of a PSR with core test set (Up)perm) is a set of matrices
{(Bp(on, ay) € RUr+1xUn), - qo € RYY such that for any 0 < h < H, policy , history 1, = (01.5,a1.1) € T", and
core test th41 = (Oh4+1:h+W, Oht1:h+W—1) € Uny1, the quantity P(1p,,tp41), i.e. the probability of observing o1.h+w
upon taking actions ai.n+w—1, admits the decomposition

T
P(7h,th+1) = Plotnrwldo(arnsw-1)) = e, ., - Br:a(7a) - do, (8)
where ey, | € RYn+1 js the indicator vector of th+1 € Up41, and

By.1(mh) := Bp(op, an)Br_1(on—1,an—1) - - Bi(o1,a1).

Based on the B-representations of PSRs, (Chen et al., 2022a) proposed the following structural condition for sample-efficient
learning in PSRs.

Definition B.4 (B-stability (Chen et al., 2022a)). A PSR is B-stable with parameter Ag > 1 (henceforth also Ag-stable) if it
admits a B-representation such that for all step h € [H|, policy 7, and x € RY», we have

> m(h.ir) X [Br(om, an) - - Bu(on, ap)z| < Ag max {|z], , |«]y }, ©

Th:H=(0h,Qh,"* ,0H,0H)

where for any vector © = (x(t))te,, we denote its (1,2)-norm by

2l = (Sactin (Zoromyes, [2(0:2))%) "%,

and its TI'-norm by
|2l := maxz Y egg, 7(8) l2(B)],

where Uy, == {t e Uy, : B’ € Uy, such that t is a prefix of '}.
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Equivalently, (9) can be written as |Bz|;; < Ag max {|z|, , ||z| }, where for each step h, vector z € RY», we write

|1Ba:nx|y = max Z T(Th:m) X |Brn (Them )zl - (10)

Th:H

Chen et al. (2022a) showed that B-stability enables sample efficiency of PAC-learning, and we summarize the results in the
following theorem.

Theorem B.5 (PAC upper bound for learning PSRs). Suppose © is a PSR class with the same core test sets {Up}pe[),
and each 0 € © admits a B-representation that is Ag-stable and has PSR rank at most d. Then there exists algorithms
(OMLE/EXPLORATIVE E2D/MOPS) that can find an c-optimal policy with probability at least 1 — 6, within

Tg5<A§dAUAH2log(N@(l/T)/5)>

2

(11
episodes of play, where Ng is the covering number of © (cf. Chen et al. (2022a, Definition A.4)).

When © is a subclass of POMDPs, we have log No (1/T) = @(H (524 + SO)) (Chen et al., 2022a). Therefore, to deduce
Theorem 3 from the above general theorem, it remains to upper bound Ag for m-step a-revealing POMDPs, which is done
in Appendix C.2.

C. Proofs for Section 2
C.1. Proof of Proposition 2

Fix any POMDP M, and we first show that v, 1 (M) > oy, (M). By the definition of a1 (M) (Definition 1), it suffices
to show the following result.
Lemma C.1. Forany h € [H —m), and any choice of generalized left inverse M\ (of My ), the matrix My, , 1 admits

h,m
+ 1 Such that

a generalized left inverse M

N

+
HMh,m+1

i

*—1 *—1 ’

The converse part of Proposition 2 can be shown directly by examples. In particular, our construction in Appendix F readily
provides such an example (see Remark F.10).

Proof of Lemma C.1. Fix an arbitrary action @ € A. Consider the matrix Fj € RO™A™ T xO™A™ (efined as (the unique
matrix associated with) the following linear operator:

~ +1
[Fax](On:htm—1,Ah:h4m—2) i= Z X(Oh:htm—10, Ahihrm—2d), forallxe RO A™

0e©
We first show that F;Mp, 41 = My, 1. Indeed,

[FaMh’er1]O}L:hﬁ»'m.flah:h+1n72;S = Z [Mh’m+1:|(Oh:h+m—10)(ahzh+1n—25);5
0eO

= Z P(Oh:thm = 0h:h+m710|ah:h+m71 = Ap:h+m—2Q, Sp = S)
0O

= P(on:htm—1 = Onhtm—1lah:ntm—2 = Aniham—2, 0 = 8) = [Mpmly, 00

for any (Op:h+m—18h:h+m—2, S), Which verifies the claim. Therefore, for any generalized left inverse M,f m» WE can take
+ Mt
M}L,m+1 T Mh,mFa‘

This matrix satisfies I\\/JI;mHI\\/JIh’mHTh,l = I\\/JI;mFEMh’mHTh,l = M;th’mTh,l = T}_; and is thus indeed a

generalized left inverse of My, ,,,11. Further,

1Fall o »

k—1

+
HMh,erl

- i

+
< HMh,m

*—1 *—1
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so it remains to show that | F;||, . < 1. To see this, note that for any x € RO™ " A™ with HXHi < 1, we have

2
HF&XHi = 2 Z Z X(Oh:h+m7107 ah:h+m72a)
anh+m—26A™ L \On:htm—1€0™ [0€O
2

< Z Z |X(0h:h+m7 ah:h+m—2&)|

anhim—26A™"L \op.pymeOm+1

2

< 2 > [%(0nshms Ainm—1)| | = [x]5 -

Anih4m—1€A™ \op.ppmeOm+1

This proves | F|,_,, < 1 and thus the desired result. -

C.2. Proof of Theorem 3

We will deduce Theorem 3 from the general result (Theorem B.5) of learning PSRs (Chen et al., 2022a). To apply
Theorem B.5, we first invoke the following proposition, which basically states that any m-step c-revealing POMDP is
B-stable with Ag < o~ 1.

Proposition C.2. Any m-step a-revealing POMDP is a o~ -stable PSR with core test set Uy, = (O x A)™® {m=1,H=h} « O,
i.e. it admits a Ag < o~ '-stable B-representation.

Therefore, for M a class of m-step a-revealing POMDPs, M is also a class of PSRs with common core test sets, such that
each M € M is a~!-stable, has PSR rank at most S and U4 = A™ L. Then, Theorem B.5 implies that an e-optimal policy
of M can be learned using OMLE, EXPLORATIVE E2D, or MOPS, with sample complexity

N (SA’””HZ 1og(NM(1/T)/5)> ’

O
o2e?

and we also have log Ny (1/T') = @(H (52A + 50)) (Chen et al., 2022a). Combining these facts completes the proof of
Theorem 3. O

Proof of Proposition C.2. Chen et al. (2022a, Appendix B.3.3) showed that any m-step a-revealing POMDP M is a o~ -
stable PSR with core test set Ufj, = (O x A)™in {m=1LH=h} » O and explicitly constructed the following B-representation for
it: when h < H — m, set

By.(0,a) = M1 Th o diag (On(o]- )M}, he[H—m], (12)
and when h > H — m, take
Bp(on,ar) = [1(tn = (on, an, th+1))](th+1yth,)€uh+1 iy € Ruhﬂxuh, (13)

where 1(¢, = (o, an,thy1)) is 1 if ¢ equals to (op, an, thi1), and O otherwise.
Then, by Chen et al. (2022a, Lemma B.13), for any 1 < h < H, z € R“»| it holds that

1

|Brrnly = max Y [Br(om,an) - Bu(on, an)zly x m(mpr) < max { M7 e] oy} < o™ max {2, , 2] }-

Th:H

Therefore, B-representation provided in (12) and (13) is indeed o~ !-stable, and hence completes the proof. L]

D. Basics of Ingster’s method

In this section, we first introduce the basic notations frequently used in our analysis of hard instances, and then state Ingster’s
method for proving information-theoretic lower bounds (Ingster & Suslina, 2012). Recall that we have introduced the
formulation of sequential decision process in Appendix B.
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Algorithms for sequential decision processes An algorithm 2{ for sequential decision processes (with a fixed number
of episodes T') is specified by a collection of HT functions 2 = {W?}h} he[H],te[T]> Where wf}h maps the tuple of all past

(t))

histories and the current observation (7(1) ... 7(¢=1) T}(Lt_)l, 0;,”) to a distribution over actions A(.A) from which we

sample the next action agl) ~ 77‘2[ (|t T}(L )1, og)). At the end of interaction, the algorithm output a 7°"* € II by

2A LT
taking 7ot = Woutput(T ).

For any algorithm 2( (with a fixed number of episodes T'), we write ]P’%Z to be the law of (7'(1), @ ... ,T(T)) under the
model M and the algorithm 2. We remark that although our formulation seems only to allow deterministic algorithms
where each wffh is a deterministic mapping to A(.A), our formulation indeed allows randomized algorithms: any randomized
algorithm can be written as a mixture of deterministic algorithm B (w) parameterized by w which satisfies a distribution
w ~ (; furthermore, for any B(w) and (, there exists a deterministic algorithm 2l such that the marginal laws of 717

induced by % and 2 are the same, i.e., B, ¢ [Pr ()] = P, (-).

Algorithms with a random stopping time Our analysis requires us to consider algorithms with a random stopping time.
An algorithm 2( with a random stopping time (with at most 7" interaction) is specified by a collection of HI" functions
{W?’lh} ne[H],te[T] along with an exit criterion exit, where W?}h is the strategy at ¢-th episode and h-th step, and exit is a
deterministic function such that

exit(t™M ... 7)) e {TRUE, FALSE}.

Once exit(7™), ... 7(T) = TRUE or T = T, the algorithm 2 terminates at the end of the T-th episode. The random
variable T (induced by the exit criterion exit) is clearly a stopping time. We write P, to be the law of (rM, 7@ o ()
under the model M and the algorithm 2.

The following lemma and discussions hold for algorithms with or without a random stopping time.

Lemma D.1 (Ingster’s method). For a family of sequential decision processes (Par) prem, @ distribution ¢ over M, a
reference model 0 € M, and an algorithm A that interacts with the environment for T episodes (where T is stopping time),
it holds that

.
P (7P (7®)
1+ X (Enr~e[PR] 1P5) = Ear,arrmiacBro . 2 opy n Po(7(1))2 .
t=1

Proof. We only need to consider the case 2( has a random stopping time T. By our definition, P%, is supported on the
following set:

Q= {w — 70T vt < T, exit(r(") = FALSE, and either T = T or exit(r(!'T)) = TRUE}.

For any (7(1), cee 77'(T)) € Qg, we have
T
P%(T(l)’ . 77-(T)) - np%@_(t)h(l:t—n)
t=1
o (#).( t) ) (®)
) (¢ - t)  (t

= [TTTPu o 175) x 7 (@i 17D, 28 0l (14)
t=1h=1
T T H

= n (t) « H n W?fh(af)lT“:t‘”,Tff)l,oﬁf)).
t=1 t=1h=1

Therefore, by definition of X2 divergence, we have

2
Epc[PR (7D, 7(M)]
1+ x2(Epec|P3 ]I P2 =E
X Ennc[Pa] [ P) = Eroy .. rm g PR (D). ,7<T))
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p%1(7(1)7... ’T(T))p?\}/(T(l)’... ,T(T))
]}D%(T(l) 7-(T)>2

=Enmmr~cEro o roop2

75 e W)]

=Enmmr~cBro o rooop2 l
=1

where the last equality is due to (14). This proves the lemma. O

Therefore, in order to upper bound x*(Eas~¢[P3;] | P§'), we just need to upper bound the quantity

T T H oM ).t
P (rOYPyp (rD) Par(0,”[74,21) P (03, |75,21)
Er .. 7 p2 ln Po(r(1)2 =Ero . rmopy H H ®)) () \2 ' (1%
0 O(Oh |Th_1)

t=1 t=1h=1

At this aim, we will leverage the following fact (which is due to Lemma A.2 and (15)):

T T H
P (TP T(t
), +ps l]‘[ M(PO<)T(§32( cxp< Z Z log Ir, a1 rh)l)ﬂ -1, (16)

t=1

where Ips a(Th—1) is defined as

Pas(on|mh—1)Prr (0n|Th—1)
Po(on|Th—1)?

IM,M’(Th—l) = Eo[

Th—1]~ 7)

Early stopped algorithm Consider an algorithm 2 that interacts with the environment for a fixed number of episodes T’
and consider an exit criterion exit. We define the early stopped algorithm 2((exit), which executes the algorithm 2( until
exit = TRUE is satisfied (or T is reached). Clearly, 2l (exit) is an algorithm with a random stopping time. We have the
following lemma regarding how much the TV distance Dy (Ens~¢ [P}, ], P§') is perturbed after changing the algorithm 2
to its stopped version 2A(exit).

Lemma D.2. It holds that
Drv (Ear~c|P3= |, P ) = Dy (Easc[P3], ) — P (3¢ < T, exit(r1)) = TRUE),

Proof. We consider the event 2 = {w = 7(:T) . V¢ < T exit(r(}!)) = FALSE}. To prove this lemma, we only need to
verify that P%, | = IP’QAl/I(eX't) | and then apply Lemma A.4.

Indeed, for w = 7(3T) € ., we have that forall ¢t < T, exit(T(“)) = FALSE. Then, by (14) we have

IEDQl\k/l(exut) (1: T) H]P’M (t H L(1:t=1) T(t})mogf)) — P%I(T(l:T))7
and thus ]P’%f(ex“) (w) = P¥,(w) for any w € ). Applying Lemma A.4 proves the lemma. O
E. Proof of Theorem 4

We first construct a family of hard instances in Appendix E.1. We state the PAC lower bound of this family of hard instances
in Proposition E.1. Theorem 4 then follows from Proposition E.1 as a direct corollary.
E.1. Construction of hard instances and proof of Theorem 4

We consider the following family of single-step revealing POMDPs M that admiits a tuple of hyperparameters (e, o, n, K, H).
All POMDPs in M have the same horizon length H, the state space S, the action space .4, and the observation space O,
defined as follows.

* The state space S = Siree || {S@, S}, Where Siree is a binary tree with level n (so that [Sgree| = 2™ — 1). Let s¢ be the
100t Of Syree, and Siear be the set of leaves of Syree, With [Sjeaf| = 277 L.
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* The observation space O = Syree | | {of, 0p, 0k, 0}} | | {good, bad}. Note that here we slightly abuse notations,
reusing Siree to denote both a set of states and the corresponding set of observations, in the sense that each state
5 € Siree © S corresponds to a unique observation os € Syee O, Which we also denote as s when it is clear from the
context.

* The action space A = {0,1,--- ;A —1}.
Model parameters Each non-null POMDP model M = My ,, € M\{My} is specified by two parameters (6, ;). Here
pe {=1,+1} and 0 = (h*, s*,a*,a*), where

* $* €S at €A ={1,--- JA—1}.

e h*e{n+1,--- ,H—1}

s a* = (aj. q,...,a_)€ AP =I"=1 ig an action sequence indexed by h* +1,--- , H — 1.

For any POMDP Mj ,,, its emmision and transition dynamics Py ,, := P My, are defined as follows.

Emission dynamics

o At states s € Siree, the agent always receives (the unique observation corresponding to) s itself as the observation.

* At state sq and steps b < H, the emission dynamics is given by

1 i _ 1—ou, )
Onn(0f 50) = —5 0 Onulof lse) = — 2, Vie[K].
* Atstate sg and steps h < H, the observation is uniformly drawn from O, := {0f ,07 -+ , 05,05 }:
1
Ou(o] 150) = On(o7 Iso) = per Vi€ [K]

Here we omit the subscript i to emphasize that the dynamic does not depend on .

* At step H, the emission dynamics at {sg, sg} is given by

Op(good|sg) = -,  Op(bad|sg) = -,

I SN U]
I U

@H(g00d|89) = -, (O)H(bad|s@) =

Transition dynamics In each episode, the agent always begins at sg.
e At any node s € Sree\Sieaf» there are three types of available actions: wait = 0, left = 1 and right = 2, such that the
agent can take wait to stay at s, left to transit to the left child of s, and right to transit to the right child of s.°
e At any s € Siaf, the agent can take action wait = 0 to stay at s (i.e. P(s|s,wait) = 1); otherwise, for s € Seaf,
he[H —1],a # wait (i.e. a € A),
Pro(sagls,a) =e-L(h=h*,s =s",a =a”),
Pro(sgls,a) =1—e-1(h=h"s =s",a=a"),
where we use subscript § to emphasize the dependence of the transition probability 5.9 on 6. In words, at step h, state
s € Sieaf, and after a € A, is taken, any leaf node will transit to one of {sg, so}, and only taking a* at state s* and step

h* can transit to the state sq with a small probability ¢; in any other case, the system will transit to the state sg with
probability one.

* At state sq, we set

1, a=aj 0, a=aj
Pro(s@lse, a) = {0’ o ag’ s Pro(solsesa) = {1’ 0 a;”
) Y I 1

* The state sg is an absorbing state, i.e. P (sg|sg,a) = 1 forall a € A.

®For action a € {3,--- , A — 1}, a has the same effect as wait.
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Reward The reward function is known (and only depends on the observation): at the first / — 1 steps, no reward is given;
at step H, we set 7 (good) = 1, rgr(bad) = 0, 7 (so) = (1 + €)/4, and rg(0) = O for any other o € O.

Reference model We use M (or simply 0) to refer to the null model (reference model). The null model M has transition
and emission the same as any non-null model, except that the agent always arrives at sg by taking any action a # wait
at s € Sieaf and h € [H — 1] (i.e., Pp.as, (Sols,a) = 1 for any s € Sieaf, a € A¢, h € [H — 1]). In this model, sg is not
reachable, and hence we do not need to specify the emission dynamics at sgy.

We present the PAC-learning sample complexity lower bound of the above POMDP model class M in the following
proposition, which we prove in Appendix E.2.

\Y

Proposition E.1. For given e € (0,0.1],0 € (0, 55]. n > 1, K > 1, H > 4n, the model class M we construct above

satisfies the following properties:
1 |S| =27 +1,]0] = 2" + 2K + 1, |A| = A.
2. For each M € M (including the null model M), M is single-step revealing with a1 (M)~! < 1+
3. log|M| < Klog2+ Hlog A+ log(SAH).

4. Suppose algorithm 2 interacts with the environment for T episodes and returns 7" such that

SIS

* ou € 3

for any M € M. Then it must hold that

= )
20000 g2

1 . |Sleaf‘ Kl/QAH |Sleaf| AH/2H
022 ’

where we recall that |Sieas| = 27 1.

Proof of Theorem 4  In Proposition E.1, suitably choosing o, n, K, and choosing a rescaled ¢, we obtain Theorem 4.
More specifically, we can take n > 1 to be the largest integer such that 2" < min{S —1,(O — 1)/2}, and take

K = [O*Q#HJ > %, ¢ =¢/8 and o = ﬁ < 557. Applying Proposition E.1 to the parameters (', o, n, K, H)

completes the proof of Theorem 4. O

E.2. Proof of Proposition E.1
All propositions and lemmas stated in this section are proved in Appendix E.3-E.6.

Claim 1 follows directly by the counting the number of states, observations, and actions in construction of M. Claim 3
follows as we have |[M| = [{(h*, s*,a*,a*)}| x [{£1}*]| +1 < HSA x A" x 2K Taking logarithm yields the claim.
Claim 2 follows directly by the following proposition with proof in Appendix E.3.

Proposition E.2. For any M € M, M is single-step revealing with ca; (M)~! < % + 1

We now prove Claim 4 (the sample complexity lower bound). We begin by using the following lemma to relate the PAC
learning problem to a testing problem, using the structure of M. Intuitively, the lemma states that a near-optimal policy of

any M # 0 cannot “stay” at so, whereas a near-optimal policy of model M = 0 has to “stay” at so. The proof of the lemma
is contained in Appendix E.4.

Lemma E.3 (Relating policy suboptimality to the probability of staying). For any M € M such that M # 0 and any policy
w, it holds that

* E T
Var — Vu(m) = EP]M(OH =$p). (18)

On the other hand, for the reference model O and any policy w, we have
* € us
VO - V()(ﬂ') = ZPO (OH #* 80). (19)
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Notice that the probability P7, (o = so) actually does not depend on the model M € M, i.e.
P (o = so) = Pf (o = so).

This is because once the agent leaves sg, it will never come back (for any model M € M). In the following, we define
w(m) := PZ(oy = so). Note that m°"¢ is the output policy that depends on the observation histories 717, and thus w(7°1*)
is a deterministic function of the observation histories 747

By Lemma E.3 and our assumption that P%; (V3 — Vas (7°") < £) > 2 for any M € M, we have

1\ _3
2) > 7, while P3; (w(ﬂ")“t) <

1 3
)24, VM # 0.

P2 (1 —w(r") < 5

Now we consider p ~ Unif({£1}%) to be the uniform prior over the parameter 1. For any fixed 6, we consider averaging
the above quantity over the non-null models M = (6, i) when p ~ Unif ({£1}%),

ou 1 ou 1 3
E,u~unif|:]P>§{H] (ﬂ)(’ﬂ' t) < 2> = ]E,u,~unif [Pg# (w(w t) < 2>:| = Z

However, we also have
2A out 1 2A out 1 A out 1 1
Pylw(@®™) < - ) =1-P5|lw@®™) =< ) <1-P5|w@") > -] <-.
2 2 2 4
Thus by the definition of TV distance we must have

DTV (P(Q)l, E,u««unif [Pg#]) =

1 1 1
P2 <w(7r0ut) < 2) - Euwnif[ﬂbg,ﬂ] <U/(7T0m) < 2)‘ = 5 (20)

As the core of the proof, we now use (20) to derive our lower bound on 7". Recall that IF’%} is the law of (T(l), @ T(T))

induced by letting 2 interact with the model M. For any event E < (O x A)¥, we denote the visitation count of £ as
T
N(E):= > 1(r" e B).
t=1

Since N (E) is a function of 7(::7) we can talk about its expectation under the distribution P%, for any M € M. We present

the following lemma on the lower bound of the expected visitation count of some good events, whose proofs are contained
in Appendix E.5.

Lemma E4. Fixa 6 = (h*,s*,a*,a*). We consider events

Ef = {on = s aps = (a*, @5 1.) }, Vhe {h* +1,...,H — 2},

Egorrect = {Oh* =s" apg-1 = (a*,a*)}.

Then for any algorithm A with § := Dy (IP%[, E,i~unif []P’gl’u]) > 0, we have

H-2
. OVK  HS 5B
cither 3, BY[N(Bro )] > w55 - or EQ[N(Bowea)| 2 55— ¢
h=h*
Applying Lemma E.4 for any parameter tuple 6 = (h*, s*,a*,a*) with § = %, we obtain
H—2
. A (h*75*7a*7a*) \/? A (h*,s*,a*,a*) 1
cither 3 B3 [N (BL; )= o5 o E3[N(BL )] 2 21

h=h*

by our choice that & € (0,0.1] and o € (0, 757 ].
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Fix a tuple (h*, s*,a*) with s* € Sjear, a* € A, h* € [n + 1, %] By (21), we know that for all a € AH=h"=1 it holds that

fif Ed [N (Er(glths*,a*,a))] + AH-R -1 g2 [N (Ec(gr:éi:’“*va))] > Wl()() min {;ﬁi, Ai/j_l } = w. (22)
h=h*

Notice that by definition,

h*,s*,a*,a * *
Z Eg[ [N(Eéorrect ))] = Z E%l[N(Oh* =S8 ,ap*:H-1 = (CL 7a))]

ac AH—-h*—1 ac AH—h*—1

:]E%[l Z N(ops = 8™, ape.r—1 = (a*,a))]

acAH—h* 1

=]E§I[N(0h* = s, ap = a”)],

and similarly for each h € [h*, H — 2], it holds

h*’ "7 "7
> EN(ELTTY)) = X EINGw =5t = (@ 2 1a)
ac AH-h*-1 ac AH—h*—1
= > ES [N (ons = 5", ape:n = (a*, ape11:4))] - > 1
apryq1.p €AY api1.g—1€AH -1

=E3[N(op+ = %, ap+ = a*)] - AH"1,

Therefore, summing the bound (22) over all a € AZ~""~1 we get
H72 * * * * * *
AH-R =1, _ Z w < Z [ 2 E%[N(Er(glhs a ,a))] 4 AH-R -1 ']E%[[N<Ec(grréit’a ,a))]]
ac AH—h*—1 ac AH—h*—1 [ h=h*

H=2
—( 2 AH=P=1 AH_h*_:L)Eg[[N(oh* = s, ap = a”)]
h=h*

<BAT M TEX[N (o = 5%, aps = a*)],

— H—h
where the last inequality is due to ZhHZhQ, AH—h=1 = A=A <o AH-h=1 for A > 3.

Therefore, we have shown that E3'[N (o5« = s*, ap = a*)] = g for each s* € Sjear,a* € A, W € [n+1, %] Taking
summation over all such (h*, s*, a*), we derive that

[H/2]-1

Serl A (| 5] <n) 5= 8 8% BN = st — ) < T,

$*ESjeaf a*€A. h*=n+1

A

where the second inequality is because events {0+ = $*, ap+» = a*} are disjoint. Plugging in |A.| = A — 1, H > 4n and
the definition of w in (22) completes the proof of Proposition E.1. O
E.3. Proof of Proposition E.2

We first consider the case M = My ,. At the step h < H, the emission matrix Oy, can be written as (up to some
permutation of rows and columns)

log+op log
2K 2K 02K x Siyee Oxs
@h;ﬂ = OStree x1 OStvee x1 Istree X Stree € R )
O2x1 O2x1 02x Siree

where i = [p; —p] € {—1, 1}2K, and 1 = 1, is the column vector in R?X with all entries being one. A simple calculation
shows that
1+op 1177 1. L1
[ 2K ’ZK] B [0“’ a'u]’

24




Lower Bounds for Learning in Revealing POMDPs

whose 1-norm is bounded by 2 + 1. Hence H@ILMH <241
il

Similarly, for h = H, Qg has the form (up to some permutation of rows and columns)

3 1
1 ] 01 % Siyee
Op=| 1 1 OixSwee | ¢ pOXS.

Ostree x1 OStree x1 IStree X Stree
Ookx1 O2kx1 02K xSy

3 1
2 32], and hence H@LH <2
b 1

3 1717t
Notice that [‘1‘ é] = [ 1

4 4 2
Finally, by Definition 1 and noting that M, ; = @), and taking the generalized left inverse MZ@ = (O)L to be the pseudo-
inverse for all h € [H], this gives (a1 (M))™' <max {2 +2,2} =2 +1.

We next consider the case M = 0. In this case, sq is not reachable, and hence for each step h, we can consider the
generalized left inverse of O, given by

O} = [1(On(ols) > 0)],.,) € RS*?,

with the convention that 1(Qy(o|sg) > 0) = 0 for all 0 € O as Op(+|sg) is not defined. Then it is direct to verify
0} Ope, = e, for all state s # sg, (because the supports supp(Qj,(+|s)) are disjoint by our construction). It is clear that
H@Z H1H1 < 1, and hence (a1 (M))~! < 1, which completes the proof. O

E.4. Proof of Lemma E.3

By definition, for any model M € M and policy m,

1+e
Vi (m) = Efy[ru(om)] = 1 P73 (om = s0) + Py (on = good)
1+e¢ 3 1
=~ P (om = s0) + ZP%(SH = sg) + EPL(SH = sg),

where we have used the following equality due to our construction:
P (o = good) =Py (o = good|sy = sg) - P (sy = sg) + Py (og = good|sy = sg) - Pi;(sg = sg)
:%E”M(SH = s@) + EP%(SH = so)-
We next prove the result for the case M = 0 and M # 0 separately.

1+e

=5 which is

Case 1: M = 0. In this case, sg is not reachable, and hence we have V' = max, Vy(7) = max{
attained by staying at sg. Thus, for any policy m,

I

PN

—
Il

. 1+e 1+4+e__ 1.
Vo = Vo(m) = i PG (o = s0) — ZP()(SH = s0)

1+e . 1

=— o (om # s0) — Z}P’o(sH = s0)
1 £

:Z( 0(om # s0) =Pl (su = sg)) + ZPBF(OH # 50)
&

>ZP8—(OH #* 80).

Case 2: M = (6, ) for some 6 = (h*, s*,a*,a*). In this case, sq is reachable only when o« = s* and ap« = a*, and
Pi(su = sg) =Pl (sg = sglon = 8, an = a*)Ph(ops = s, ap = a*) < ePhy(op = s%,ap = a”) <,

where the equality can be attained when 7 is any deterministic policy that ensure op» = s*,ap+ = a*,apr41:H—1 = A~.
Thus, in this case V}; = max, Va/(7) = max {13=, 3¢ 4 12e} — 142 apq

_1+2£_1+€ 3

* 7T 7T 1 7T
Vir — Va(m) 1 1 Py (o = s0) — ZPM(SH = sg) — ZPM(SH = sg)
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€ 1+2e_ 3 . 1.

:ZPM(OH = s0) + 1 —— P (o # s0) — EIP’M(SH = sg) — ZPM(SH = sg)
€ € 1

ZZ]P’}L[(OH = 50) + 5]13”]{/[(01{ # 50) — 5113”]{/[(3}1 = s@)
€

>7P7]T\/[(OH = 80)7
4

where the first inequality is because P, (sg = sg) + P5,;(sg = sg) < Pj,(om # so) by the inclusion of events. O

E.5. Proof of Lemma E.4

We first prove the following version of Lemma E.4 with an additional condition that the visitation counts are almost surely
bounded under P§', and then prove Lemma E.4 by reducing to this case using a truncation argument.

Lemma E.5. Suppose that algorithm 2 (with possibly random stopping time T) satisfies ), N (Eiwh) < N, and

N(ES, ect) < N, almost surely under Pg, for some fixed N, N ... Then
- K — &
eltherN()Zm, OrNT>@7

where 8 = Dy (P8, Bypunie| P3| )-

Proof of Lemma E.5. By Lemma D.1, we have

T
Po,,u (7)) Py, (1)
1+ x*(Epunit [Pgu] | P8) = By munifBr o ron [H : ]P)O(T(t);; :
t=1

To upper bound the above quantity, we invoke the following lemma, which serves a key step for bounding the above
“x2-inner product” (Canonne, 2022, Section 3.1) between Py , /Po and Py, o /Po (proof in Appendix E.6).

Lemma E.6 (B}({)und on the y2-inner product). Under the conditions of Lemma E.5 (for a fixed 0), it holds that for any
€ {=1,1}7,

.
Pg. . (T Py (7)) — Co
Eg (][~ IP’O(T“);? <exp (N, |<u W+ 3 loew, (23)

where C := (1 +0)* <easo < 7.

Now we assume that Lemma E.6 holds and continue the proof of Lemma E.5. Taking expectation of (23) over pu, p' ~
Unif({—1, +1}"), we obtain

T
Py, (7)) Py, (71)
1+ XQ(]Eu~unif [Pgtu] H Pgl) :Eu,u’~unifE7—(1)7... ,T(T)M[Pgl lH £ Po(’r(t))uz
t=1

— Co?
<Eu,,u’~unif [exp <N d 6

sty] + 3028, ) |

Notice that p;, u; are i.i.d. Unif({#1}), and hence py ), - -, pr pye are ii.d. Unif({#1}). Then by Hoeffding’s lemma, it
holds that E,, ,,/unif [exp (m Zfil Hiﬂg)] < exp (KI’Q/Q) for all z € R, and thus by Lemma A.3, we have

CN, C204A N> 4 Co22N
E;t,;4’~unif [GXP( U E ’< My >|)] < exp (max{ O-I? O,g U\/} 9 .

Therefore, combining the above inequalities with Lemma A.5, we obtain

N 2.2 22 4.4
262 = 2D7v (Eu~unif[P§EH]7P§l>2 < log (1 + XZ(E#~unif []P%l,,u] ” ]P)om)) < max {gNO\(/j%S ) NOCKU < } + éCEZNT.

26



Lower Bounds for Learning in Revealing POMDPs

or it holds

i ) ANoCoe? N2 0201 .
13~ VE = K =0

Then, we either have N, > 43 o

%52 (as 9 < 1). Using the fact that C' < e completes the proof of
Lemma E.5. O

Proof of Lemma E 4. We perform a truncation type argument to reduce Lemma E.4 to Lemma E.5. Let us take N, =
[65 1E9‘[ H-2 N(pY )H and NV, = [66~'EX N (E?

rev,h correct
( Z N Erev h N )
h=h*

Therefore, we can consider the following exit criterion exit for the algorithm £:

)|- By Markov’s inequality, we have

correct)

o PO(N(E

GB\Oﬁ
O:\%

N <

I _ T/
exit(rT)) = TRUE  iff Z Z 1(7 e By ) = Noor 2 1(r0 € Elyeer) = N
t=1

t=1 h=h*
The criterion exit induces a stopping time 7T, and we have

H-2

P%[Gt <T, eXit(T(lzt)) = TRUE) < Pg( Z N(Erev h) N or N(Ecorrect) = NT) < + o<

D>
D>
[SUNRS

h=h*
Therefore, we can consider the early stopped algorithm 2((exit) with exit criterion exit (cf. Appendix D), and by Lemma D.2

we have

Dy (Pgl(eXit),Emef [Pif“”]) > Drv (P2, Epunie[P2,]) — PR (3t < T, exit(r")) = TRUE) > =

Notice that by our definition of exit and stopping time T, in the execution of 2 (exit), we also have

Texit—1 H—2 Toit—1

Z ]1( ®) € Erev h) < Noa Z ]1( ®) € Ecorrect) < Nr-

t=1 h=h* t=1
Therefore, algorithm 2((exit) ensures that

H-2 Texiv H—2 Texit

Z rev h Z Z ( " © Eivﬁ) < NO +H - 1’ N(Egorrect) = Z ( ® € EcorreCt) < Wr.

h=h* t=1h=h* t=1

Applying Lemma E.5 to the algorithm 2(exit) (and 8’ = 24), we can obtain

: PVK 12 & P2 _ 12 0
either 05— < No+H-1<6""EJ| > N(EL,,)|+H, or o5 < Ny <66 'E [N(ES )] + 1,
h=h*
and rearranging gives the desired result. O
E.6. Proof of Lemma E.6

Throughout the proof, the parameters 6, i, i are fixed.

By our discussions in Appendix D, using (16), we have

T H
E 1—[ IPM( (t ))PM’( Z Z 1 I =1 (24)
(1) s (T P2 Po(r )2 " €Xp 0g Th D=1

t=1 t=1h=1
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.

Notice that the model Py ,, and [Py are different only at the transition from s+ = s*,a,« = a* to sg and the transition
dynamic at state sg. Therefore, for any (reachable) trajectory 7, = (01, a1, -, 01,a1), Po (0141 = -|71) # Po(0141 = -|71)
only if op« = s*, ap« = a*. In other words, I(7;) = 1if 7y ¢ {op> = s*,ap> = a*}.

where for any partial trajectory 7; up to step [ € [H], I(7;) is defined as

Py . (0141|7)Po w (0141|71)
1 =E L L
() 0 [ Po(0r41|m)?

We next compute I(7;) for 7, € {op+ = s*,ap« = a*}. By our construction, we have

Po (0141 = o) =Py (0141 = olsiy1 = s@) - Po,u(s141 = s|71)
+ Py (0141 = 0|si41 = sg) - Po u(s141 = so|m) (25)
= (O, (0lsg) — Oi(olsg)) - Po,u(si+1 = sgl|m) + Ou(olse)-

Notice that if 7; ¢ Eyey 1, then s;11 must be sg, and hence Py , (0111 = +|71) = On(:|sg) = Po(014+1 = -|7) which implies
that I(r;) = 1.
We next consider the case 7; € Erey 1, 1.€. Gpey10 = @fa 1.0

Py u(si+1 = se|m) = Po,u(s141 = S@lonr = ™, an = a*, 0ps41.0, Gpr41:1)

_ Poulons1, 141 = sglon = 5%, an = a*, apri1:)
Po.ju(0n*41:1]on = 8%, ap = a*, apx41.1)
€ - Po . (On*4+1:1|5h*+1 = S@, Qhr+1:1)

€ Py (on41:4]5n 41 = @, anr+1:0) + (1 =€) - Po p(On+4+1:4]Sh* 41 = S, Ghr+1:1)
€

Po,p(0n* 4 1:0]Sh* +1=50,an* 1)’
+(1—e). Do : Y
( ) Po,u(0n* 41:118n* 11=5@:@n* y1.1)

where the third equality is because Py ,,(Sp« 41 = S@lonr = s*,apx = a*) = £. Notice that

I
P 11 il = 11 Qy,.

8, i 0.u(0n* +1:1[Sh* 11 = S@, Anrt1:) _ 11 hi(0n|se) <(1+0)",
Po.u(ons1:lsne1 = sg anepra) 52 Onlonlse)

where the inequality holds by our construction of O, as long as 7; is reachable (i.e. op*41.; € Ol*h’). Thus, for

B

—P - S/
Cr, O,u(lerl 8@|Tl) 567—1 11— E,

we have ¢, < (1 + U)H = +/C.. Notice that by (25) and the equation above we have

1+ e e0u; B 1= ¢ eou .
when! < H — 1, Py, (0141 = OZ-+|7'[) = %, Py u(0141 = 0; |11) = % Vi e [K],
14 2¢, € 3—2¢cr, €
when! = H — 1, Py, (on = good|Th_1) = %, Py . (og = bad|Tg_1) = +
On the other hand, when | < H — 1, Py ,(0;41 = -|7) = Unif ({0}, 07, -+ , 0%, 05 }). Hence,

P Py v
I(r) =Eq [ 9,u(01+1|7'l) 0,1 (20l+1|Tl) Tl]
Po(0141|m)
> Fo OlH = o|n)Py,w (0111 = o|7)
2K €0, o(or+1 = olm)?
K
1 , )
T Z(l + creou)(1+ cneop) + (1 — creou)(1 — creopus))
im1
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2 2 2 K
C_E"0
:1 + TLK Z/’(‘llu’l x

Similarly, when [ = H — 1, we can compute

Py . (or|TH-1)Po,1w (08 |TH-1)
I =F o# £ al=1+=¢ 1+ -C
(TH-1) 0 [ Polon 712 H-1 Cr s €
Therefore, combining all these facts above, we can conclude that
I(n) =1, < h*,

+ (Tl € Erev l) ’ 08202 ‘</1‘7M/>| ) h*<l<H-— 11
I(TH71)< -‘r]l(TH 1EEco"ect)-%C€2, l=H-1,

where we use the fact that E?

Oorrect = B, g1 by definition. Hence, using the fact log(1 + ) < x, we have

T H-1 T H-1
Z Z logI(1,”) = Z Z log I'( ())
t=1 1=0 t=11=h*+1
T H-2
Ce?0? 4
< Z Z ( rev l) % |< >| + ]I(TH) 1 € Ec‘:gorrect) ' 3052
t=11=h*+
H—
C 4
= Z fevl : 0 |<[L,,U, >‘ + N( correct) ' 5052

<N, Ce o?

|y 1)) + N 7052.

Plugging the above inequality into (24) completes the proof of Lemma E.6. O

F. Proof of Theorem 6

We first construct a family of hard instances in Appendix F.1. We state the regret lower bound of this family of hard instances
in Proposition F.1. Theorem 6 then follows from Proposition F.1 as a direct corollary. Proposition F.1 also implies a part of
the PAC lower bound stated in Theorem 5.

F.1. Construction of hard instances and proof of Theorem 6

We consider the following family of m-step revealing POMDPs M that admits a tuple of hyperparameters (&, o, n, m, K, H).
All POMDPs in M share the state space S, action space .4, observation space O, and horizon length H, defined as following.

* The state space S = Stree || {S@, S5 €@, €0, terminal}, where Siree is a binary tree with level n (so that |Sree| =
™ —1). Let sg be the root of Siree, and Sieaf be the set of leaves of Siyee, With |Sieas| = 2771

* The observation space O = Syee | | {07, 07, , 0%, 0 } || {lock, good, bad, terminal}. 7
* The action space A = {0,1,--- ;A —1}.
We further define Ao, = {0,1,--- , Ay — 1}, Ay, = {A1, - ,A— 1}, with 4; =1+ |A/6].

Model parameters Each non-null POMDP model M = M, ,, € M\{My} is specified by two parameters (6, ;). Here
K *
we{-1,+1}",and § = (h*,s*,a*,a},,,a*), where

» “rev?

* s eSleaf, a* e-Ac = {17 3 _1}, a:eve-Arew

"Similarly to Appendix E, here we slightly abuse notation to reuse Sy to denote both a set of states and a corresponding set of
observations, in the sense that each state s € Syree © S corresponds to a unique observation o5 € Siree € O, Which we also denote as s
when it is clear from the context.
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e h*eH:={h=n+Im:h<H]IleZso}
*a* = (aj.,q,...,a_1) € AH=h"=1 i an action sequence indexed by h* + 1,--- , H — 1, such that when h € H,
we have a; € Ayi. We use Acoge 1+ to denote the set of all such a*.

Our construction ensures that, only at steps h € H and states s;, € {sg, So}, the agent can take actions in A, and transits
to {eq, eo}.
For any POMDP My ,, its system dynamics Py ,, := Py, , is defined as follows.
Emission dynamics At state s € Siee U {terminal}, the agent always receives (the unique observation corresponding to)
s itself as the observation.

At state eq, the emission dynamic is given by

1+0',U,i _ N 1_0—,“2
2K ) ®#(Oi ‘e(‘B) - 2K

where we omit the subscript h because the emission distribution does not depend on h.

Op(of lea) = . Vie[K],

* At state eg, the observation is uniformly drawn from O, := {of, 07, , 0k, 0 }.ie. O(-|eg) = Unif(O,).
o Atstates s € {sq, so} and steps h € [H — 1], the agent always receives lock as the observation; At step H, the emission
dynamics at {sg, sg} is given by

Op(good|sg) = —, Op(bad|sg) =

)

N e RN
N R N

Op(good|sg) = —, Op(bad|sg) =

Transition dynamics In each episode, the agent always starts at state sg.
o At any node s € Sree \Sieaf» there are three types of available actions: wait = 0, left = 1 and right = 2, such that the
agent can take wait to stay at s, left to transit to the left child of s and right to transit to the right child of s.
e At any s € Siaf, the agent can take action wait = 0 to stay at s (i.e. P(s|s,wait) = 1); otherwise, for s € Seaf,
he[H — 1], a # wait,
Pro(sgls,a) =e-L(h=h*,s =s",a = a”),
Pro(sgls,a) =1—e-1L(h=h*s=s"a=a").
where we use subscript 6 to emphasize the dependence on 6. In words, at step h*, at any leaf node taking any action, the

agent will transit to one of {sg), sg}; only by taking a* at s*, the agent can transit to state sg with a small probability
¢; in any other case the agent will transit to state sg with probability one.

* The state s € {eg, eg} always transits to terminal, regardless of the action taken.

* The terminal state is an absorbing state.

» At state sg:
— For steps h € H and a € Aoy, we set Pj.p(eo|sg, a) = 1, i.e. taking a € Aye, always transits to eg.
— For steps h ¢ H or a € Ay, we set P.9(so|se,a) = 1, i.e. taking such action always stays at sg.

* At state sq, we only need to specify the transition dynamics for steps h > h* + 1:

— Forsteps h € Hopr» = H n{h > h*} and a € Ay, We set
Pro(eolse,a) = L(a = afe,),  Puoleg|se,a) = 1(a # ar,).

In words, at steps h € H~» and states sy, € {sq, Sg} (corresponding to oy, = lock), the agent can take actions
ap € Ayey to transit to {eg, eg }; but only by taking a5, = aj, “correctly” at sq the agent can transit to eg; in any
other case the agent will transit to state eg with probability one. Note that H = {h =n +Im : h < H,l € Zo},
so we only allow the agent to take the reveal action a;,, every m steps, which ensures that our construction is
(m + 1)-step revealing.

— For steps h ¢ H or a € Ay, we set

Pro(sglse,a) = 1(a=a}),  Pro(solse,a) = 1(a # aj}).
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Reward The reward function is known (and only depends on the observation): at the first / — 1 steps, no reward is given;
at step H, we set 7 (good) = 1, rgr(bad) = 0, 7 (so) = (1 + €)/4, and rg(0) = O for any other o € O.

Reference model We use M (or simply 0) to refer to the null model (reference model). The null model M, has transition
and emission the same as any non-null model, except that the agent always arrives at s by taking any action ¢ # wait
at s € Siear and h € [H — 1] (i.e., Ph.ps, (sgls,a) = 1 for any s € Siear, @ € A¢, h € [H — 1]). In this model, sg is not
reachable (and so does eg), and hence we do not need to specify the transition and emission dynamics at sg), eg.

We present the expected regret lower bound and PAC-learning sample complexity lower bound of the above POMDP model
class M in the following proposition, which we prove in Appendix F.2.

Proposition F.1. For given ¢ € (0,0.1],0 € (0,1], m,n =1, K > 2, H > 8n + m + 1, the above model class M satisfies
the following properties.

1. |S§|=2"+4,]0] =2"+2K + 3, |A| = A
2. Foreach M € M, M is (m + 1)-step revealing with oy, 1 (M)™' <1+ 2,
3. log|M| < Klog2 + Hlog A + log(SAH).
4. Suppose algorithm 2 interacts with the environment for I episodes, then
A . ‘Sleaf| Kl/zAerlH |Sleaf| AH/QH
mnax By [Regret] > 55505 min { mo?e? e T

where we recall that |Sieas| = 27 1.

i

. Suppose algorithm U interacts with the environment for T episodes and returns w°%* such that

B3y (Vi — Vi (n™) < %) > Z

for any M € M, then it must hold that

=z — )
60000 o2e? €2

1 . { ‘Sleaf| Kl/QAerlH |Sleaf| AH/QH}

min .
Proof of Theorem 6  We only need to suitably choose parameters when applying Proposition F.1. More specifically, given
(S,0,A, H,a,m), we can let m' = m—1, and take n > 1 to be the largest integer such that 2" < min {S — 4, (O — 5)/2},
and take K = [O%HJ > Of’, ¢ =¢/8, and o = ﬁ < 1. For any fixed ¢ € (0, 0.1], applying Proposition F.1 to the
parameters (g, 0,n, m’, K, H), we obtain a model class M. such that for any algorithm 2,

{SOl/2AmH SAH2 [ }
Ty,

A .
max Ej;|Regret| > comin
ul ] ma2e2 7 me

MeM.

where cg is a universal constant. We can then take the ¢ € (0, 0.1] that maximizes the RHS of the above inequality, and
applying Lemma A.1 completes the proof of Theorem 6. O

Remark F.2. The requirement .S < O in Theorem 6 (and Theorem 5) can actually be relaxed to S < O™. The reason why
we require S < O in the current construction is that we directly embed Syee directly into the observation space O, i.e. for

each state s € Sy it emits the corresponding o, € O. However, when O™ > |Syee| » O, we can alternatively take an

embedding Siree — O™, i.e. for each state s € Siree such that s +—> (ogl), e 7ogm)), it emits 0" ™4™ ¢ O at step h.

F.2. Proof of Proposition F.1
All propositions and lemmas stated in this section are proved in Appendix F.3-F.7.

Claim 1 follows directly by counting the number of states, observations, and actions in models in M. Claim 3 follows as we
have |M| = |{(h*, s*,a*, a},,a*)}| x ‘{il}K‘ +1 < HSAH x 2K Taking logarithm yields the claim.

Claim 2 follows from this lemma, which is proved in Appendix F.3.
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Lemma F.3. For each M € M, it holds that 41 (M)~ < 2 + 1.

We now prove Claim 4 & 5. Similar to the proof of Proposition E.1, we begin by relating the learning problem to a
testing problem. Recall that P%; is the law of (W, 7@ ... 7(1)) induced by algorithm 2l and model M. For any event
E < (0 x A)#, we denote the visitation count of E as

N(E) := i 1(r® e E).

Since N (E) is a function of 7(:7) we can talk about its expectation under the distribution P%, for any M € M. We first

relate the expected regret to the expected visitation count of some “bad” events, giving the following lemma whose proof is
contained in Appendix F.4.

Lemma F.4 (Relating regret to visitation counts). For any M € M such that M # 0, it holds that
E% [Regret] > ZE%{[N(OH = 50)]- (26)
On the other hand, for the reference model 0, we have
Eg [Regret] > ZE%‘ [N(om # s0)] + EE%‘ [N (Erev)]- 27)

where we define Eye, := {T : for some h € H, o, = lock, ap € Arey}-

On the other hand, for any policy 7, we have

3 €
Var — Vu(m) = Z]P’}LI(OH =s0) VM #0, and Vo —Vo(m) = =Pf (om # o). (28)

S

Therefore, we can relate the regret (or sub-optimality of the output policy) to the TV distance (under p ~ Unif ({—1, +1}K)
the prior distribution of parameter p), by an argument similar to the one in Appendix E.2, giving the following lemma whose
proof is contained in Appendix F.5.

Lemma FE.5. Suppose that either statement below holds for the algorithm 2:
(a) For any model M € M, E3,;[Regret] < Te/32.

(b) For any model M € M, the algorithm 2 outputs a policy ™" such that IP’%[/[ (VI;I — Var(mo%t) < %) >

0o

Then we have

. ve. (29)

1
Drvy (Pgl7E,u~unif[P§£M]) > 5

By our assumptions in Claim 4 (or 5), in the following we only need to consider the case that (29) holds for all §. We
will use (29) to derive lower bounds of EJ'[N (om # s0)] and EJ [N (Erey )], giving the following lemma whose proof is
contained in Appendix F.6.

Lemma F.6. Fixa 0 = (h*,s*,a*, a},,,a"). We consider events

0 .
E,., = {oh* = 8" ape:n = (0", @54 1.1, rey) for some h € ’H>;L*},

Eforrect = {Oh* = 5*7ah*:H—1 = (a*,a*)}.

Then for any algorithm A with § := Dy (IP’%‘, E i ~unif [Pgl,u]) > 0, we have

, FPVEKE 0 &2 6
either E%‘[N(Ergev)] = 182242 - 6’ or ]E%[ [N(Ecgorrect)] = @ - 6
Applying Lemma F.6 for any parameter tuple 6 = (h*,s*,a*,al,,a*) with § = 1, we obtain
. A (h*,s*,a*,a},,,a") \/F A (h*,s%,a%,ar,,a") 1
either [N (Ere\, )] > 3002252 or Ej [N (EcorreCt )] > 30022 (30)
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as we choose ¢ € (0,0.1].

Fix a tuple (h*, s*,a*) such that h* € H and h* < n + m|H/10m|, s* € Siear, a* € A.. By (30), we know that for all

a* € Acode h*s Opey € Arey, 0 = (R*, s*,a*, al,, a*), real constant r > 0, it holds that

- h*,s*,a*,a,,a" h*,s*,a*,al, 8"
‘AreV|Am ! E%[N(Er(eV T ee® )>] +T“'AcodE,h*‘ 'E%[N(Ec(oﬁrrej:t o e )):|

1 |‘Are"| . VE T |Acode.h*| 1 . ‘.Arev| Amil\/ K ’I"AH/271
Z 350 N 252 ’ 7 Z aq Win 2 9 ’ 2 =1 Wr,
300 g0 € 300 e‘o €
where the last inequality follows from a direct calculation (see Lemma F.7). Notice that
h* * * * *
S R (p )]
a:evEArewa*e*Acode,h*
2
= Z Eg [N (op+ = 8%, apen = (a*, @fs 1.1, aje,) for some h € Hope) |
a:evEArewa*e«Acode,h*
2
< Z EO [N(Oh* = 3*7 Ap*:h*+m—1 = (CL*, a;f—‘rl:h*-&-m—l)’ an = CL:(ev for some h € H>h*)]

al €Ay, a* EAcoge, h*

— Z EZ[N (ops = 8%, aneinrsm—1 = (a*,a),ap = a’, for some h € Hp+)] - Z 1
aj, €A ,acAm—1 a*€Acode, n*
a* begins with a
|Acode,h* |

= Z EZ[N (ons = 8%, aneihr ym—1 = (a*,a), ap = a, for some h € H-p+)] - =1

ak, EAw ,acAm—1

Acode,h*
= % "EJ[N(op = s*,ap = a*,ap, € Are, for some h € Hop+)],
where the second line is due to the inclusion of events, the fourth line follows from our definition of Ayge,»+, and the last
line is because the events {0+ = $*, ap+.pr+m—1 = (a*,a),ap = aj, for some h € H~p+} are disjoint and their union is
simply {op+ = s*,ap» = a*,ap € Ao, for some h € H~p+}. Similarly we have

2A (h*aS*’a*’a‘:v#a*) A * * *
Eq [N<Ecorrect ¢ = Z Eq [N(Oh* =5,0p:H-1= (a’ a ))]
a:eve'Arera*e-Acode,h* ar:veAfeV’a*e'Acode‘h"

= ‘Arev| ’ Z Egl[N(oh* = 3*7ah*:H71 = (a*7a*))]

a* e"4<:ode, h*

= |Arev| - ES[N(op = s*,ap = a*,ap41.7-1 € Acode.n*)]-

Combining all these facts, we obtain

*

1 _ h*,s*,a*,ak,,a") (h*,s*,a*,a),,a")
r < Arev A™ 1]E2l [N (Er(ev e )] + Aco e. h* ]E91 [N (E ey )])
“ |-Arev‘ |-Acode,h*| 2 (| | 0 T| del | 0 correct

*
a EArey,
*
a*eAge, n*

< E%[N(oh* = s, ap = a”*,ap € A for some h € Hop+)] + TE%[N(O}L* = 5", ap- = a*)]
Notice that the above inequality holds for any given s* € Siear, a* € A¢, h* € H such that h* < n + m |H/10m/, and any

r = 0. Therefore, we can take summation over all s* € Sieaf, a* € Ao, h* = n +Im € H with 0 < I < |H/10m/, and
obtain

|Arev‘Am_1\/F AH/2—1
- =2 2

|Sieat| [Ac| (|H/10m] + 1) - min 300202 ' 30022

Wy

5*€Sjeaf a*€A:.  h*=n+Im:
0<I<|H/10m|

< 2 Z Z E%‘[N(oh* = s, ap = a”,ap € Ay, for some h € Hops)] + rE%‘[N(oh* = s, ap = a”)]

$*ESjeaf a*€A, h*=n+Ilm:
0<I<|H/10m|
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< E%[N(EreV)] + TE%[N(OH # 50)],
where the last inequality is because

{opr = s*,ap» = a”,ap € Ay, for some h € H-p+} < {for some h € H, 05, = lock, ap € Arey} = Frev,
5*ESjeaf,a* €A h*eH

and | | s, area, nrer 100t = 8", ane = a*} S {om # so}. Plugging in our choice [A| = A —1 > 2A, || =
1+ |A/6] = A/6 and |H/10m| + 1 = H/10m, we conclude the proof of the following claim:
Claim: as long as (29) holds, we have
2 2 Sieaf| H . | AmHIVEK rAH/2
EJ[N(Erev)] + rEG[N(om # s0)] = 30000 -mln{ S 2 (0 Vr = 0. 31

To deduce Claim 4 from the above fact, we notice that either (1) ]E%b [Regret] > Te/32 for some M € M, or (2)
IE?& [Regret] < T'e/32 for any M € M, and then by Lemma F.5, (29) holds, and hence we have

|S|eaf‘ H . {Aerl\/E AH/2 }
> ———— -mnin<s ——

E2[Regret] > ~E2[N(Ee,)] + i]Egl[N(oH £ 50)]

1
4 ~ 120000m 202 7 ¢

by setting » = ¢ in (31). Combining these two cases, we complete the proof of Claim 4 in Proposition F.1.

Similarly, suppose that the condition in Claim 5 holds, which implies (29) (by Lemma E.5). Then we can set r = 1 in (31)
to obtain

m+1 H/2
2T > B[N (B)] + B2 [N(om # 50)] > oL iy {Am 4 }

= 30000m 202 7 g2

and hence complete the proof of Claim 4. This completes the proof of Appendix F.2. O

Lemma F.7. As long as |Arey| = A1 < 1+ |A/6], we have | Acoge,nr| = AH2=Y for b* € H such that h* < n +
m | H/10m)|.

Proof. We denote Hy = |(H — n)/m/|, and assume that h* = n + ml. Recall that
Acodens = {a* = @y, 8l ) € AT gt e A Vhe HW}.
Hence, noticing that [H~p«| = Hy — I, |A| = A, | Ay | = A — A;, we have
| Acode | = AT 71=Ho=l o (4 — Ay )Hot,
Thus, we only need to prove that
H—h*—l—(HO—l)Jrg(Ho—l)>§—1. (32)

log(A—A4) ~ log2
log A = log3

Notice that as long as A; < 1 + | A/6|, it holds that
(32) holds if

H _ o _ _
< 2 n— (1 —w)Hy ol
m—1+4+w

Now, using our assumption that H > 10n, we have

l L _n—(1-w)(H-n) (w—05)H —wn _ (w—05H—01wH _ H
0 = = = =

)
mw mw mw 10m

where the last inequality uses w > 5. Therefore, as long as | < [H/10m] (i.e. h* < n + m|H/10m]), we have | < o,
which implies (32) and hence completes the proof. O
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F.3. Proof of Lemma F.3

The idea here is similar to the proof of Proposition E.2, but as our construction is more involved, the direct description of
M, m+1 can be very complicated (even though actually only a few of its entries are non-zero). Therefore, in order to upper
bound My, ,,,+1, we invoke the following lemmas, which will make our discussion cleaner.

LemmaFE8. Form > 1, h € [H — m], a € A™, we consider
m+1
Mp,a = [P(0n:htm = O[sh = 8, an:htm—1 = )| geom+1 ses € RO™ xS,
Then it holds that

mln HM

mln HM

h,m+1

k—1 1-1 ’

where minM;r . is taken over all M;a such that M;aMh,aThq = Tr_1 (cf. Definition 1).

Proof of Lemma F.8. Notice that given a a € A™, M _ such that M) M, 2 Tj,_1 = Tj,_1, we can construct a generalized
left inverse of My, ,,, as follows:

M, = |1 - a)M;, ,
: a’eA™
and clearly HM;{M et < HMZa .t O
In the following, for any matrix M, we write
y(M):i= min M

M+:M+tM=I

Lemma F.9. Fix a step h and a set of states Sy,. Suppose that Sy, contains all s € S such that 3(s',a) € S x A,
Th—1(s|s’,a) > 0. Further, suppose that S, can be partitioned as S, = | |!_, S}, such that for eachi # j, s€ S}, s' € Sj,

supp(Miya(-]5)) [ | supp(M.a(|s) = &,
i.e. the observations emitted from different Sﬁ are different.® Then it holds that

mln HM

< max {’y(Mh@(S;lL)), (M a(SP)) Y

where

41 ,
M}ha(sl) = [P(Oh:}L+7n = 0|5h = 8, Qh:h+m—1 = a)]on7n,+l’SES/ € Rom xS s for S < Sy,.

Proof of Lemma F9. We first note that min, + HMZa < y(Mp, a(Sh)), because the matrix My, »(Sp,) directly gives
h,a ’ 1

a generalized left inverse of M, 5 (because Sy, contains all s € S such that 3(s’,a) € S x A, T,_1(s|s’,a) > 0).

Next, as each S} has the disjoint set of possible observation, the matrix My, o(Sp) can be written as (up to permutation of
rows and columns, and any empty entry is zero)

Mh,a(sé)
Mp,a(S7)

)

IMlh,a (Sh) =
Mh,a (8}?)

$In particular, this condition is fulfilled if for each i # 7, s € Sp, s’ € S}, we have supp(Op(-|s)) () supp(OQr(-|s")) = &.
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Therefore, suppose that for each ¢ we have a left inverse I\/JIh,a(S,i)+ of M, a(S}L) then we can form a left inverse of
Mh,a(Sh) as

M1L7a(5}11)+
Ma(S7)*
IMIh,a(Sh)Jr = )
My a(Sy)*
and hence we derive that v(Mj a(Sy)) < max {y(Mpa(S})), . Y(Mpa(SP))}- O
An important observation is that, for matrix M € R™*!, we have v(M) < ﬁ Thus, when the sum of entries of M
1

equals 1, then y(M) < 1. With the lemmas above, we now provide the proof of Lemma F.3.

Proof of Lemma F.3. We first show that the null model 0 is 1-step 1-revealing. In this model, the state sq and eg are not
reachable, and hence for each step h, we consider the set S’ = Siree || {So, €0, terminal}. For different states s, s’ € S’, the
support of O (+|s) and Oy (+|s") are disjoint by our construction, and hence applying Lemma F.9 gives

min |03, 1 < max+(On(s) < 1.

Applying Proposition 2 completes the proof for null model 0.

We next consider the non-null model M = My, € M\{My}. By our construction, for h < h*, state sg and eg

are not reachable, and hence by the same argument as in the null model, we obtain that min+ <

h,m+1

M-‘r
) h,m+1 sl

ming; |0, ], <1.

Hence, we only need to bound the quantity miny,+ for a fixed step h > h*. In this case, there

h,m+1 h erl H
existsal € Hsuchthath <! < h+m — 1, and we write r = [ — h + 1. By Lemma C.1, we only need to bound

mlnM+

€ A", and we partition S as
h,r+1

rev )

+ . .
‘Mh el H*_)l. Consider the action sequence a = (aj,,_,, a;.
|_| {s} L {s@, so} L {eq, eo} L {terminal}.
SESkree
It is direct to verify that, in Mj ,,, for states s, s" come from different subsets in the above partition, the support of M, o(+|s)

and M, »(-|s’) are disjoint. Then, we can apply Lemma F.8 and Lemma F.9, and obtain

. +
min HMh,rH
Mh,7'+1

mln HM

< max {1’ V(Mh,a({8®7 5@}))’ V(Mh,a({e®7 e@}))}

k—1 1-1

Therefore, in the following we only need to consider left inverses of the matrix My, o ({Sq, Sg}) and M}, a({eq, e }).

(1) The matrix M, 2 ({s@, so}). By our construction, taking a at s, = sq will lead to 05,y = lock and 0;11 ~ O, (-|eg);
taking a at s;, = sg will lead to 05, = lock and 0,11 ~ O,(-leg). Hence, M}, a({5q, So}) can be written as (up to
permutation of rows)

log+op Log

M a ({50, 50}) = [ i QK] eROIX2,

0 0

where [ = [p; —p] € {—1, 1}2K, 1 = 1y is the vector in R with all entries being one. Similar to Proposition E.2, we
can directly verify that y(Mp, a({sg, so})) < 2 + 1.

(2) The matrix M}, a({eq, eo}). By our construction, at s;, = eg, we have o, ~ O, (-|leg) and op41.441 = terminal;
at s, = eg, we have o, ~ O,(-|leg) and 011441 = terminal. Thus, M, a({e@, eg}) can also be written as (up to
permutation of rows)

loxtop 1ok

My, a({eg, eo}) = [ 2K QK] eRO"X2,

0 0
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and hence we also have y(Mj, a({eg, eo})) < £ + 2.

Combining the two cases above gives

. . . 2
min |M; < min |M; < min | M <—-+1
M+ h,m+1 sl Mt h,r+1 $o1 M+ h,a 151 p )
hym+1 h,r+1 h,a
and hence completes the proof of Lemma F.3. O

Remark F.10. From the proof above, it is not easy to see the POMDP M = My ,, is not m-step revealing for any parameters
(0, ). Actually, for @ = (h*,s*,a*,a},,,a*), we can show that the matrix My 41 ,,, does not admit a generalized left

? F'rev)

inverse. This is because for any a € A™~1 we have
Py 1 (0nr+1:h +m = “|Shr 11 = S@s Ahr41:hr+m—1 = &) = Pg 1 (0On*+1:hx4m = “[Shr41 = S0, Ah* +1:h* +m—1 = A),

because both of the distributions are supported on the dummy observation lock®™. However, it is clear that €sg, €50 €

)

. . . . T ot =
colspan(T}+), and hence if M}« 41 ,,, admits a generalized left inverse My g o thenesg = ML ) Mpsiq nesg =
M,JLZ +17th*+1,mes@ = €55, 8 contradiction! Therefore, we can conclude that M« 1 ,,, does not admit a generalized left

inverse, and hence M is not m-step revealing.

F.4. Proof of Lemma F.4

In the following, we prove (26) and (27). This proof is very similar to the proof of Lemma E.3. The proof of (28) is very
similar and hence omitted for succinctness.

Notice that by the definition of Regret and our construction of reward function, we have

1+
E3[Regret] =T -V, —E3, lz TH(OE-_tI)) =T -V —E¥ [E -N(og = so) + N(og = good)]

t=1

= (Vi = 55 ) BN Gon = 50 + VBN (on # s0)] ~ B[N o = good)]

and

E3,[N(og = good)] = E

252
1=

H
Il
—

Bur[ 10 = go0)| 7l 1”

|
&=
=R

1=

Prs(on = good|ry_1) - L(r) | = THl)]

H_
Il
—_
N
T

&=
=R
£

- >

TH-1

TH-1)] - Pp(omg = good|Tg—1).

We prove the result for the M # 0 and the case M = 0 separately.
Case 1: M = (0, 1) # 0. In this case, we have

3 1 1 1
]PM(OH = gOOd|TH_1) = *]P)M(SH = S@|TH_1) + *]P)M(SH = S@‘TH_1) < -+ *]P)M(SH = S@|TH_1) <

4 4 4 2 *

=~ =
N —

because Pps(sg = Sg|Tr—1) < € by our construction. Thus, we have shown that

E3,[N(og = good)] < (i + ;e>EQA‘/[[N(0H # 50)].

Notice that by this way we can also show that V;, = 12&. Therefore, combining the equations above, we conclude that
€
E3 [Regret] > ZE?\[/I[N(OH = 50)]-
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Case 2: M = 0. In this case, sg is not reachable, and hence we have

1

1
Po(og = good|tg—1) = ZPO(SH = S@|TH_1) < 1

Also notice that, for any trajectory T € E,e,, we have Py(oy = good|rg_1) = 0. Thus, we have shown that

B3 [N (orr = g00d)] < 7ER[N({orr # so} ~ Ere)] = {ES [N (o # s0)] ~ {ESIN (Er)]
By this way we can also show that V" = 1%. Therefore, we can conclude that
E2[Regret] — - Z “E[N(om # s0)] — EX[N(og = good)]
> SEJ[N(on # s0)] + i]Eg‘ [N(Ee)]-
This completes the proof of Lemma F.4. O

F.5. Proof of Lemma F.5

We first consider case (a), i.e. suppose that E¥,[Regret] < T=/32 for all M € M. By Markov’s inequality and (26) and
(27), it holds that

P (N (oxr # s0) = T/2) <

P2, (N(op = so) = T/2) <

1
47
L var#o
4 '

In particular, for any fixed 6, we consider the prior distribution of M = (6, u) with o ~ Unif ({—1, I}K), then

==

Eyiunit [P, ] (N (0m = s0) = T/2) <
Howeyver, we also have

P2 (N (o = s0) = T/2) = P& (N(og # s0) < T/2) =1 —PF(N(og # s0) > T/2) =

)

>

and then by the definition of TV distance it holds

1

D (B8 Eymans [P, > 3.

The proof of case (b) follows from an argument which is the same as the proof of (20), and hence omitted. O

F.6. Proof of Lemma F.6

We first prove the following version of Lemma F.6 with an additional condition that the visitation counts are almost surely
bounded under P¥, and then prove Lemma F.6 by reducing to this case using a truncation argument.

To upper bound the above quantity, we invoke the following lemma, which serves a key step for bounding the above
“x2-inner product” (Canonne, 2022, Section 3.1) between Py ,, /Py and Py s /Pq (proof in Appendix E.7).

Lemma F.11 (Bound on the Xz—inng product). Suppose that algorithm 24 (with possibly random stopping time T) satisfies
N(EY,) < N, and N(EZ, ...) < N, almost surely, for some fixed N ,, N .. Then

30°VK T 3462
———.,0rN, > ,
4 €202 4 g2

either N, >

where § = Drv <P%)Eu~unif [Pg#])
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Proof of Lemma F.11. By Lemma D.1, it holds that

T
Py, (T Py s (7
1+ X2 (E,u~un|f []Pe #] H Pm) E,u w ~un|fET(1) T(T)~IP§1 ln 0’#( ) 6.t ( ) .

t=1 Py (7(1))?
In the following lemma (proof in Appendix F.7), we bound the LHS of the equality above.

Lemma F.12. Under the conditions of Lemma F.11, it holds that for any u, i/ € {—1, l}K

.
Po. . (TM)Pg . (1) —  o%? 4 ,—
2 O,u 0,u . / =2
Eg t|:1| EREOIE < exp <No I |y ] + 3¢ NT>. (33)

With Lemma F.12, we can take expectation of (33) over y, i/ ~ Unif({—1, +1}*), and then

)
I1 Po,,. (1) Py (r®)
P, (T<t>)2

14 X (Bpmunit[PE ] | PG) =By munitBroy ... rm) [

S (%2 5 [0+ 12 |

Notice that y;, 44 are i.i.d. Unif({£1}), and hence pyuf, - - , pi ' are i.i.d. Unif({£1}). Then by Hoeffding’s lemma, it
holds that E,, ,,/ <unif [exp (;1: Zfil uiu;)] < exp (KI’Q/Q) for all z € R, and thus by Lemma A.3, we have

B _ N o2e? K >‘ - 0454N3 é0252NO
o’ ~unif | €XP K < €Xp | max K '3 VK .

Therefore, combining the above inequalities with Lemma A.5, we obtain

42
+ =
35

N,.

N 2.2 N2gdod
26% = 2Dy (Ewunif [P%MLIF%)Q <log (14 x*(Ep~unie[P5,] | PJ)) < max { ANqo7e" Noo'e }

3 VK @K

Then, we either have N, > 4 2 , or it holds

— —2
4 N,0%c? N, o4t )
max { — > 07,

3 VE = K

which implies that N%;EQ > min { g, 252} = %52 (as § < 1). The proof of Lemma F.11 is completed by rearranging. [J
Proof of Lemma F.6. We perform a truncation type argument to reduce Lemma F.6 to Lemma F.11, which is similar to the
proof of Lemma E.4.

Let us take N, = [66 'EJ [N (EL,) || and N, = [66 B [N (ES,ect) | |- By Markov’s inequality, we have

rev

_ ) — )
P%l (N(Efev) NO) < 67 ]P%‘ (N(Ecgorrect) =N ) 6
Therefore, we can consider the following exit criterion exit for the algorithm £I:
exit(r("T)) = TRUE  iff Z ( € Efev) > N, or Z ( correct) >N,.
The criterion exit induces a stopping time 7., and we have
2 o (1:t) 2 ) — )
Py (3t < T, exit(t"""") = TRUE) < P (N(Erev) > N,or N(ES ...) = Nr) < 5 + 6 < 3
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Therefore, we can consider the early stopped algorithm 2((exit) with exit criterion exit (cf. Appendix D), and by Lemma D.2
we have

Dy (Pm(exw) E i~ unif [Pifxn)]) > Drv (P3LEpeunit[P5,]) — PO (3t < T, exit(r"*")) = TRUE) > —

Notice that by our definition of exit and stopping time Te;t, in the execution of 2 (exit), we also have

Texit—1 o Texit—1 o
( ® € Eiv) < N07 Z ( ® € Ecorrect) < NT"
t=1

t=1

Therefore, algorithm 2((exit) ensures that

ﬁ

it

Texit
N(Erev h) Z ( ® € Efev) < Nov N(Eceorrect) = ]1( ® € Ecorrect) < Nr-

t=1

-
Il
—

. . . 2 .
Applying Lemma F.11 to the algorithm 2f(exit) (and ¢’ = £J), we can obtain

2 2

cither -5~ < N, <65 'EJ [N(EL,)] + 1, or 5 < N, <65 'EJ [N(BS )] + 1,
and rearranging gives the desired result of Lemma F.6. O
F.7. Proof of Lemma F.12

Throughout the proof, the parameters 6, i, i are fixed.

By our discussion in Appendix D, using (16), we have

T T H
]P)M(T(t))]P)]V[/(
Erw ..z p [n Bo(r0)2 - exp Z Z log I(r\") | | = 1, (34)

t=1
Tl] .

Notice that the model Py ,, and [Py are different only at the transition from sp« = s*, ap+ = a* to sg and the dynamic at the
component {sg, eg}. Therefore, for any (reachable) trajectory 7; = (01, a1, -+ , 01, a;), we can consider the implication of
Py, (0141 = |71) # Po(0141 = -|71):

1. Clearly, op» = s*, ap~ = a* (i.e. [ = h* + 1 and taking action a.,+_1 from sy will result in s* at step h*).

2. Either ap+ 414 = (@f+ 1,1, 0pe,) forsome l € Hops,orl = H — 1 and apr1.5-1 = A",

where we have defined I(7;) for any partial trajectory 7; up to step [ € [H] as

I(r):=E Py, (014+1]7)Po, (0141|71)
Vo Po(0141|m)?

Hence, for | € H~+, we define
0 . L * ok *
Erev,l T {Oh* =S5 ,0p*] = (a’ 7ah*+1:l—1aarev)}'

Also recall that we deﬁne El et = {oh* = s*, ap.g—1 = (a*,a*)}. Then if Py ,(-|7;) # Po(:|7), then either [ €

Hops, T € Erev porl=H—1,1g_; € Ecorrect In other words, for any 7; (that is reachable under Py), we have I(7;) = 1

except for these two cases, and it remains to compute I(7;) for these two cases.

Case1: [ € H-p», 7 € E? . In this case, we have

rev,l*

Py, (0141 = o) =Py (0141 = olsit1 = eq)Po (5141 = eq|m) + Po (0141 = olsiy1 = eg)Po u(s141 = eo|T1)
= (Op(oleg) — O(oleg)) - Po,u(s1+1 = ea|m) + O(oleg),

where the second equality is because conditional on 7;, we have s;11 € {eg), eg}. Now, we have
* * * *
Pe,p(sHl = €®|Tl) = Pe,u(slﬂ = €®|0h* =s"ap = (a ’ah*+1:1717arev))
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=Py, (shr41 = S@lopx = s, aps = a*) =¢.
Hence, by the definition of O, (-|eq) and O(-|eg), we can conclude that

1+ eou; _ 1—cou; .
Pp (0141 = o |7) = 721(# ; Py (0141 = 0] |11) = 72[(” , Vi e [K].

On the other hand, clearly Py(0;41 = -|7;) = Unif({o], 07, ,0},0%}). Hence, it holds that
P Py v
P [ 0111 |7)Po (011 |m)

.
Po(01+1\71)2 l]

Z Py . Oz+1 = o|1)Pq, v (0141 = o|T1)
2K Po(o14+1 = o|m)?

00,
| K
5k Z(l +eow;)(1+eou;) + (1 —eop;) (1 —eopl)
i=1
242 K
7 D Mkt =

1=

=

Case2: | = H — 1.7y € EY ... In this case, the distribution P(ogr = -|75r_1) is supported on {good, bad}. Similar to
case 1, we have

Po . (on = |11) =Py p(on = -[sg = 5@)Po u(sH = s@|TH-1) + Py u(om = -|su = 50)Py u(sH = so|TH-1)
= (0u(lsg) = Ou(-lse)) - Po,u(su = sgltu-1) + On(:|se),

where the second equality is because conditional on 7571 € EY ., we have sy € {sg), sg}. Now, we have
Py u(sa = s@|Tr-1) = Po,u(sa = selon = s, ap.—1 = (a*,a%)) = Py u(spr41 = Sglonr = s™,an» = a*) = €.
Hence, by the definition of O (-|sg) and Oy (+|sg), we have

1+42¢
Pe,u(oH = 0|TH*1) = 3:125,
4

3

0 = good,
o = bad.

On the other hand, clearly Py(og = good|ri_1) = i, Po(opg = bad|ryg_1) = %. Therefore, in this case, we have

TH1:| = x <(1+26)/4)2+ 3 ((3_26)/4>2 = 1+§52.

1/4 3/4
2 _2
T+ 5=y, 1€ Hope, TlEErevlv
I(Tl) =<1+ %52, l=H-1 yTH-1 € Ecorrect’
1, otherwise.

Py (0n|Tr-1)Po,w (0m |TH-1)
Po(om|TH-1)?

|
e |

I(tg—1) = Ep [

Combining the two cases above, we obtain

Hence, for each t € [T],

H-1
Z log I(Tl( )
1=0

H-1
=0

2 ]].(Tl EErevl>

leH g *

2
€ 4
]]-<T(t) € Efev) T <,u I > + ]]‘<TI({) € Egorrect) ' §€2a

2.2 4
]l<l € H>h*a7-l(t) € Eiv,l) : IOg (1 + 570- <,LL,,LLI>> + ]l<TI(-}5) 1€ Ecorrect) ’ log (1 + 352)

4
(Tg),l € Egorrect) : 562

N
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where the last equality is because EY,, = | | LleH ;- Taking summation over ¢ € [T], we obtain

Sh* reV
T H-1 T 2 2
4 5 ‘o
Z 2 IOgI Z ( € Egorrect) ’ 56 + ]]'(TI(J) € Er9ev> ’ K <ﬂ:u/>
t=1 =0 t=1
0 4 o\ €
= N(Ecorrect) - 38" + N(Frey) <u,u>

N

__ 4 _ 2
Nr'§52+No'€7’<:u7ul>|'

Plugging the above inequality into (34) completes the proof of Lemma F.12. O

F.8. Regret calculation for hard instance in Section 5

For the hard instance presented in Section 5, we notice that any algorithm either incurs a Q(¢7T') regret, or must have
successfully identified (h*, s*, a*) within T episodes of play, which requires either at least Q(SAH x v/O/(c%¢?)) episodes
of taking revealing actions, each being © (1)-suboptimal, or at least Q(SAH x A®H) /=2) episodes of trying out all possible
action sequences, each being O(e)-suboptimal. This yields a regret lower bound

£2 2

Q(SAH x min{UQ@ A% e}) A QET).

Optimizing over € > 0, we obtain a Q(T%/3)-type regret lower bound (for T « A®)) similar as (though slightly worse
rate than) Theorem 6.

G. Proof of Theorem 5

We first construct a family of hard instances in Appendix G.1. We then state the PAC lower bound of this family of hard
instances in Proposition G.1. Theorem 5 then follows from combining Proposition G.1 with Proposition F.1.

G.1. Construction of hard instances and proof of Theorem 5

We consider the following family of m-step revealing POMDPs M that admits a tuple of hyperparameters
(e,0,n,m,K, L, H). All POMDPs in M share the state space S, action space .4, observation space O, and horizon
length H, defined as following.

* The state space S = Siree |_|f:1 {sg@, sé, eé, eé, terminal’ }, where Syree is a binary tree with level n (so that |Siree| =
2" — 1). Let s¢ be the root of Syee, and Sieas be the set of leaves of Syee, With |Sjeaf| = 277 1.
* The observation space O = Siree| | {of, 01,05k, 01_(} | | {lock, good, bad} Ule {Iockj, terminalj}.
* The action space A = {0,1,--- ;A — 1}.
We further define reveal = 0e A, A. = {1,--- ,A—1}.

Model parameters Each non-null POMDP model M = M, € M\{My} is specified by parameters (6, 1), where
pe{—1,+1}"*% and 0 = (h*, s*,a*,a*), where

® S*esleaf’a*e-Ac = {laaA_l}
e h*eHi={h=n-+lm:leZsgh<H}

*a* = (aj.,q,...,a_1) € AH=h"=1 i an action sequence indexed by h* + 1,--- , H — 1, such that when h € H,
we have a; # reveal. We use Acode 1+ to denote the set of all such a*.

Our construction will ensure that, only at steps h € H and states s, € {sg, So}, the agent can observe lock’ and take action
reveal to transit to {e@, e@}

For any POMDP My ,, its system dynamics Pg , := Py, , is defined as follows.
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Emission dynamics At state s € Siee U {terminal}, the agent always receives (the unique observation corresponding to)
s itself as the observation.

o At state ej@, the emission dynamics is given by

1+ Olhji
2K

1-— O',U,]‘J;

0, (0f ef) = 0, (07 |ef) =

where we omit the subscript h because the emission distribution does not depend on h.
At state eé, the observation is uniformly drawn from O, := {0}, 07, -+ , 0%, 0% }. i.e. @(~|eé) = Unif(O,).
o At states s € {sé, sé}:
— For steps h € H, the agent always receives lock’ as the observation.

— For steps b < H — 1 that does not belong to 7, the agent always receives lock as the observation.
— Atstep H, the emission dynamics at {sé, sé} is given by
Op(good|sh) = =,  Op(bad|s}) =

)

N SN V)
PG IGURTNG

Op(good|sh) = =,  Op(bad|s) =

Transition dynamics In each episode, the agent always starts at sg.

* Atany node s € Siree\Sieaf, there are three types of available actions: wait = 0, left = 1 and right = 2, such that the
agent can take wait to stay at s, left to transit to the left child of s and right to transit to the right child of s.

e At any s € Siaf, the agent can take action wait = 0 to stay at s (i.e. P(s|s,wait) = 1); otherwise, for s € Seaf,

he[H — 1], a # wait,

]P’h;g(sj@|s,a) =—-1(h=~h"s=s"a=a"),

Ph;0(5g9|370) = “1(h=h*s=5"a=a").

Sl o

€
L
 The states s € {eé, eé} always transit to terminal’, regardless of the action taken.
* The states terminall, ‘e ,terminaIL are absorbing states.
* Atstates s € {s}, s5}:
— For the step h € H, we set

Ph;g(e’é\sé7 reveal) = 1, Ph;g(ejé|5]é, reveal) = 1.

In words, at steps h € H and states s € {sgB, sje} (corresponding to o = lock?), the agent can take action reveal to

transit to {eé, eé}, respectively. Note that H = {h =n +Ilm : h < H,l € Z=¢}, so we only allow the agent to
take the reveal action reveal every m steps, which ensures that our construction is (m + 1)-step revealing.

— For h ¢ H or a # reveal, we set

Ph;g(s@sj@,a) = 1(a = a}), Ph;g(sé\sgg,a) = 1(a # a}),
=1

Ph;g(sé]sé,a) .

Reward The reward function is known (and only depends on the observation): at the first H — 1 steps, no reward is given;
at step H, we set ry(good) = 1, 7y (bad) = 0, 75 (so) = (1 + £)/4, and 7 (0) = 0 for any other o € O.
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Reference model We use My (or simply 0) to refer to the null model (reference model). The null model M has transition
and emission the same as any non-null model, except that the agent always arrives at sé (with j ~ Unif([L])) by taking
any action a # wait at s € Siear and h € [H — 1] (ie., Py a4, (s]@|s, a) = % for any s € Sjeaf, a € A., h € [H — 1]). In this
model, states in { sé, eé—a, cee sé, eé} are all not reachable, and hence we do not need to specify the transition and emission
dynamics at these states.

We summarize the results of the hard instances we construct in the following proposition, which we prove in Appendix G.2.
Proposition G.1. For givene € (0,0.1],0 € (0,1}, m,n =1, K,L > 1, H > 8n + m + 1, the above model class M
satisfies the following properties.

1. |S|=2"+5L, |0 =2"+2K + 2L + 3, |A| = A.

2. For each M € M, M is (m + 1)-step revealing with 11 (M) < 1+

3. log|M| < LKlog2+ Hlog A+ log(SAH).

4. Suppose algorithm 2 interacts with the environment for T episodes and returns 7" such that

SIS

. € 3
P%,(VM — Var(n®t) < g) >

for any M € M. Then it must hold that

T 1 N |Sieaf| VEKA™H  |Sieas| AP H
= min , .
10000m o2e? X

Proof of Theorem 5  We have to suitably choose parameters when applying Proposition G.1. More specifically, given
(S,0,A, H,a,m), we can let m’ = m — 1, and take n > 1 to be the largest integer such that 2" < S/4, and take
L =[(S—2")/5], K = |2&=232L=3| 2 O (because O > S > 10), &’ = ¢/8, and 0 = =%~ < 1. Applying
Proposition G.1 to the parameters (¢,0,n,m’, K, L, H), we obtain a model class M of m-step a-revealing POMDPs,
such that if there exists an algorithm 2/ that interacts with the environment for 7" episodes and returns a 7% such that
Vi — Var(7°") < e with probability at least 3/4 for all M € M, then

Co .
T > — min
m

9

£2

53/201/2Am—1H SAH/2H
a?e? }’

where ¢ is a universal constant.

Furthermore, we can apply Proposition F.1 (claim 5) instead, and similarly obtain a model class M’ of m-step a-revealing
POMDPs, such that if there exists an algorithm 2{ that interacts with the environment for T" episodes and returns a 7% such
that Vi, — Vi (7°"") < e with probability at least 3/4 for all M € M’, then

¢y . (SOY2PAmH SA"H
T > — min 55 , 5 ,
m ‘e €
where ¢{, is a universal constant.
Combining these two cases completes the proof of Theorem 5. O

G.2. Proof of Proposition G.1
All propositions and lemmas stated in this section are proved in Appendix G.3-G.4.

Claim 1 follows directly by counting the number of states, observations, and actions in models in M. Claim 3 follows as we
have |M| = |{(h*, s*,a*,a*)}| x ){J_rl}LXK‘ +1 < HSAH x 2K Taking logarithm yields the claim.

Claim 2 follows from this lemma, which is proved in Appendix G.3.
Lemma G.2. For each M € M, it holds that o1 (M)~ < 2 + 1.
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By our construction, we can relate the sub-optimali}gy of the output policy to the TV distance between models (under the prior
distribution of parameter p ~ Unif ({—1, +1}L *), by an argument similar to the one in Appendix E.2. We summarize
the results in the following lemma, whose proof is omitted for succinctness.

Lemma G.3 (Relating learning to testing). In holds that

[0

€
Vi — Vu(m) = ZIP”]{/[(OH =sg9) VM # 0, and Vo = Vo(m) = =Pf (om # o).

e

Therefore, suppose that the algorithm 2 outputs a policy w°%* such that IP%I (VA} — Var(mo%t) < %) > % for any model
M € M, then we have

Drv (P, Bpeuni[P3,]) = 5, V0. (35)

N

In the following, we use (35) to derive lower bounds of the expected visitation count of some good events, and then deduce
a lower bound of T, giving the following lemma whose proof is contained in Appendix G.4.

Lemma G.4. Fixa 6 = (h*,s*,a*,a*). We consider events

Efeach = {oh* = 5", apr e eme1 = (a*,a,*wrl:hurm_l)},

Egorrect = {op = 8", ap~.g—1 = (a*,a")}.

Then for any algorithm 2 with § := Dy (IP%[, E,i~unif [P?,u]) > 0, we have

. 63\/ LK 1) < 63 S
either E%[ [N(EfeaCh)] = W - 67 or E(%[ [N(Eceorrect)] = 1822 - 6

Applying Lemma G.4 for any parameter tuple 6 = (h*, s*, a*,a*) with § = 3, we obtain

. A (h*,s*,a*,a*) \/ﬁ A (h*,s*,a*,a") 1
cither B [N (ELy )| > 25, or BYN(EGl )] 2 oo (36)

by our choice that € € (0,0.1].

Fix a tuple (h*, s*,a*) such that h* € H and h* < n + m|H/10m|, s* € Siear, a* € A.. By (36), we know that for all
a* € Acode, b+, it holds that

reach

1 . {Aml VLK |Acode,h*| } 1 {Aml\/ LK AH/271 } W (37

A B N (BG4 Acosene| - BY | N (Bl

> —— min > —— min
300 202 g2 300 202 7 g2

where the last inequality uses the fact that [Acode n+| = AX 2=Lforh* <n+m | H/10m/|, which follows from a direct
calculation (Lemma F.7). Notice that by our definition of Ejeach,

2A h*.s*.a*.a*
Z IEO [N (Er(each : )>]

Z E%[N(Oh* = S*7a'h*:h*+WL—1 = (a’*7a;(b"+1:h*+m—1))]

are AH—h*—1 a*eA de, n*

= Z ES [N (ons = 8%, apeinr4m—1 = (a*,a))] - Z 1

acAm—1 a*€Acoge, n+
a* begins with a
EQ{ * * |Acode,h*|

= Z 0 [N(Oh* =S ,Ap*:h*+m—1 = (a ’a))] : W

acAm—1
Acode,h
=Eg[N(ons = 8", ap- = a*)]- |;n78—1|
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Similarly, by our definition of Ecoprect, We have

> O EN(ELE )] = Y ERN(ow = % ann = (a7,2%)]

a*€A de, n* a*€A de, n*

=EJ[N(op = 8%, an = a*, aprs1:0-1 € Acode,nt)] < ES [N (op+ = 8%, aps = a*)].

Therefore, taking average of (37) over all a € Acoqde 5+ and using the equations above, we get

]. — a a
w gm Z [Am 1 . Egl [N (Er(e};chg 7(1 )] + ‘Acode,h*| : Egl [N (Eégrrezt a ))]]
code,h* aEAcode,h*

L2EY [N (op = 8%, ap = a*)].

Now, we have shown that EZ [N (o« = s*,ap = a*)] = ¢ for each 5* € Siear,a* € A, h* € H such that h* <
n + m|H/10m|. Taking summation over all such (h*, s*, a*), we derive that

[Siea| || (LH/10m] +1) {Am LK AH/2- 1}< Yy oy

A * *
600 242 T2 Eg[N(opr = 8% ap = a")] < T,
$*ESjeaf A*€EA.  h*=n+lm:
0<I<|H/10m)|

where the second inequality is because events ({op+ = s*, an+ = a*}),. ;. .. are disjoint. Pluggingin [A.| = A—1> 24,
|H/10m| + 1 = H/10m completes the proof of Proposition G.1. O

G.3. Proof of Lemma G.2

The proof is very similar to the proof of Lemma F.3, with only slight modification.

Case 1: We first show that the null model O is 1-step 1-revealing. In this model, the states in {5(19, e(}a, cee sé, eé} are all
not reachable, and hence for each step h, we consider the set S’ = Syree L |_|j;=1 {S]@, eJ@7 terminal’ } For different states

s, 8" € &, the support of Oy, (+|s) and Oy, (+|s") are disjoint by our construction, and hence applying Lemma F.9 gives

min [0, < magxy(On(s) < 1

Applying Proposition 2 completes the proof for null model 0.

Case 2: We next consider the model M = My, € M. By our construction, for h < h*, the states in {s}, ek, -+ , s&, ek}
are all not reachable, and hence by the same argument as in the null model, we obtain

. + . +
min (M, <minfog],, <1
Mh,,m+1 *= (%
Hence, we only need to bound the quantity mingy,+ HMh m +1H for a fixed step h > h*. In this case, there
h,m x—1

existsal € Hsuchthat h <1 < h+m — 1, and we wrlte r =1—h+ 1. By Lemma C.1, we only need to bound

+ . . _ * r e
M}, ;41 H T Consider the action sequence a = (aj,.,_,,reveal) € A", and we partition S as

min, .+
Mh r+1

|_| {s} o |_|{5@75@} L {ely, b} u {terminal’}.
SEStree j=1

It is direct to verify that, in Mj ,,, for states s, s’ come from different subsets in the above partition, the support of Mlj, o (+|s)
and M, »(-|s) are disjoint. Then, we can apply Lemma F.8 and Lemma F.9, and obtain

min HM+

h,r+1
T »
Mh,,r+1

mln HM

- - < m]ax {1, v(Mhya({sé, sé})) , W(Mh,a({eé, eé})) }
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Therefore, in the following we only need to consider left inverses of the matrix Mh,a({sé, sé}) and M;ha({eé, eé}) for
each j e [L].

(1) The matrix Mh@({sé, s]@}) By our cqnstruction, taking a at s, = sé will lead to op.—1 = lock, o = lock?
and 0;41 ~ Qp(-ley); taking a at 55, = s will lead to 0p,y—1 = lock, oy = lock” and 041 ~ ©,(:|e}). Hence,
Mip,a({s% 55}) can be written as (up to permutation of rows)

lox+ofi; 1ok

. . r+1
Mia((shosb)) = | A ero

0

where [i; = [u;; —p;] € {1, 1}2K, 1 = 1,k is the vector in R?X with all entry being one. Similar to Proposition E.2, we
can directly verify that y(Mj, a({sg, so})) < 2 + 1.

(2) The matrix Mh’a({eé eé})j By our construction, at Sh = eé, we have op ~ (O)M(~|ej®) and op,41.141 = terminal’; at
sn = eg, we have o, ~ O, (-le}) and 0p41:41 = terminal’. Thus, My, a({s%, s5}) can also be written as

12K+Uﬂj 1ok

Mh,a({eé,eé}) - [2(1)( 2([){:| c ROT+1><27

and hence we also have 7<Mh)a({eé, eé})) <241

Combining the two cases above gives

2
. + . + . +
min HMh,m+1 < min HMhmH < min HMh’a < —+1,
Mh m+1 =1 Mh.7'+1 *—1 Mh a -1 g
and hence completes the proof of Lemma G.2. O
G.4. Proof of Lemma G.4

Similar to the proof of Lemma F.6, we only need to show the following lemma, and the proof of Lemma G.4 follows by a
reduction argument (see Appendix F.6).

Lemma G.5. Suppose that algorithm 2L (with possibly random stopping time T) satisfies N (Efeach) < Nyand N(EZ, ...) <
N, almost surely, for some fixed N ,, N .. Then

L 3RVIK 38
either N, = 1 252 or N, = 122
where § = Drv <]P%17E,u~unif [IP’S‘,H])-

Proof. Fixa = (h*,s*,a*,a*). Recall that we define Efeach = {oh* =", prprim_1 = (a*,a2,+1:h*+m71)}, and
we further define

E? = {oh* = s, ap+.p, = (a*,a}. 1.1, reveal) for some h € ’H>h*}.

For any model M € Mg := {Mjy,, : p€ {—1, +1}LXK} v {0}, we consider the following “augmented” system dynamics
@MZ

1. For each episode, after the interaction 7;; ~ [P, is finished, the environment generated an extra observation o711 = 0".
2. If gy ¢ Efeach or 7y € Eiv, then 0“8 = dummy. 4

3. If g € Efeach — EY,, thenin 7y = (01,a1, -+ ,0m,ay) we have oy« y,, = lock’ for some j € [L], and then the
environment generates 0“€ as

1-— EO s

M =My, :  Pp.(0™ =0o|ry)= 9K

Vi e [K],
and for M = 0, Py(0®8 = :|75) = Unif({of,of, e 70},01}}).
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Clearly, for each M € My, P, is still a sequential decision process. Under such construction, each policy 7 induces a
distribution of 7 = (7x, 0*"8) ~ @71:4, and the algorithm 2 induce a distribution of 71, ... | 7(T) ~ Fﬁl. By data-processing
inequality, we have

Dy (PY, Epeunif[P3,.]) < Drv (@?aEu~unif [@Z{“]) :

Hence, by Lemma D.1, we only need to bound

TP, (P, (7O
9 =2 Ay I I Py, (7)) Py, (T)
L (Epanit [Pe’“] IPo) = EpprunitBro 2 ~By Ll Po(7®)2 ‘
To upper bound the above quantity, we invoke the following lemma (proof in Appendix G.5).

Lemma G.6 (BI?und on the y2-inner product). Under the conditions of Lemma G.5 (for a fixed 0), it holds that for any
,u,,u’ € {_17 1} ’

T 5 —(N\G =
_2 Py (T(t))p9 ,(T(t)) 022 4
E o < Ny —— S+ e*N,. ). 38
. Lll ENEO)E exp 70 [ )] + 3 (38)
Given Lemma G.6, the desired result follows from a standard argument (see e.g. the proof of Lemma F.11). [

G.5. Proof of Lemma G.6

We first show the following lemma, which is a single-episode version of Lemma G.6.
Lemma G.7. For any policy w and parameter 0, 11, 1/, it holds that
Po,.(T)Po,yu (7) — 0 %0’ / — 0 4 5

E?Nﬁg |:P0(7')2 exp _]]'(T € Ereach) ' ﬁ <N“a 1 > - ]]'(T € Ecorrect) ! 55 <1 (39)
Proof of Lemma G.7. In the following, all expectation and conditional expectation is taken with respect to 7 = (Th,0%"8) ~
Py .
Similar to the proof of Lemma F.12 (in Appendix F.7), the core of our analysis is still computing the quantity I(7;), defined
as

B [PO,#(OZ+1|TI)P9,;L’(OZ+1Tl)
Po(0141|m)?

Tl], Z<H,

Py (0141]m)Pg (0141 |71)
I(Tl) = ]EOL+1~P0(TL)[ == - 2 - (40)
P0(0l+1 ‘Tl> ™ aug ™ aug
]P)gw(o |TH)]P’97M/(O ‘TH)
EOEUE"’PO(TH) — 5 l = H.
]}DO(Oaug|7—H)2
Basically, by Lemma A.2, we have
Py (TI7he 1m)Po,pr (T The m) .
1=E_ 3 S L A 5 cexp | — Z log I(m) || Th*+m |- 41)
© Po (7| 7+ +m) I=h*+m
In the following, we first compute I(7;) for each (reachable) 7;.
An important observation is that, for a trajectory 7, = (01, a1, ,0;,a;) with ! < H, if Py (0141 = -|1) # Po(o141 =
-|71), then
1. Clearly, o5+ = s*, apx = a* (i.e. [ = h* + 1 and taking action a;.+—1 from sy will result in s* at step h*).
2. Either aps 41, = (a2*+1:l—17 reveal) for some ! € Hxpr,orl = H — 1 and apry1.4-1 = a*.

Therefore, for each | € H~j» we define

Efev,l = {Oh* = 5" apey = (0", % 11, reveal)}.
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Then, if Py ,(-|7) # Po(:|m), either (case 1) I € Hopr, TH_1 € Erev por(case2)l = H—1,7 ¢ Ecor,ect, or (case 3)
L= H TH € Ereach Erizv

In the following, we compute I(7;) for these three cases separately. We consider the events £; := {oh*+m — lock? }( je
[L]) to simplify our discussion.

Casel:l € Hops, 7 € E?

rev,l*

observing 7; implies that sp,/ € {sg@, sé} forh <h' <l ,and s;41 € {e@, e@} (because a; = reveal). Therefore,

In this case, there exists a j € [L] such that o« 1, = lock?, i.e. 7 € L;. In other words,

Py, (0111 = o|71) = Py (0141 = ofsi41 = €)Py (5141 = e|m1) + Py u(0i41 = ofs151 = €5)Pyu(s141 = eb|m)
— (0uoled) — Oled)) - Pou(siar = chylm) + Ololed),
Notice that by our construction,

Py u(s141 = €@|Tz) Po,u(s1 = S@\Tl 1,01)

=Pq (51 = S@\Oh* =8, apr-1 = (0", 844 14-1), L))

(

(
=Pp (Shr41 = s®\oh* =", apr—1 = (@, a1 14-1), L5)
_]P’9 (

:E,

Shr41 = S@\Oh* 8, aprg—1 = a", Spry1 € {Sé,sé})

where the first equality is because ;41 = e@ if and only if 5; = s®, ap = reveal, the second 1nequahty is because there are
only lock and lock? in op»+1. are the third equality is because s; = 5® if and only if spx41 = s®, Apr 41:0—1 = ah*+1 d_1-
Combining the above equations with our definition of O, (- \e@) and O(- |e@) gives

1 54 1- j i .
Py, (0141 = 0 |m) = +2€;uj’ ) Py (0141 = 0] |11) = 723?%’ , Vi e [K].
On the other hand, clearly Py(0;41 = -|7;) = Unif({o], 07, ,0},0%}). Hence, it holds that
1 Py (011 = 0|71)Pg v (0141 = o|7) e0? &
I(n) = — 7 7 14+ VA €El, AL, (42
) 2K 55 Po(0141 = o|m)? ;#g 00 forany 7 € ey 0 (42)

Case2: | = H—1,7_1 € E% ... Inthis case, by a calculation exactly the same as the proof of Lemma F.12 (Appendix F.7,
case 2), we can obtain

4
I(tg—1) =1+ 552, forany 7571 € E2 et (43)
Case3: | = H,ty € Ef, — EY,. Suppose that for some j € [L], 757 € (EL,., — E%,) n L;, then by our construction of
P, we have
202 K ;
I(TH) =1+ Z Hj, Z:uj i) for any 7y € (Ereach Erev) ‘Cj' (44)
i=1

Combining (42) (43) (44) together, we have shown that for any 7z that begins with 74+ 4., € Efea N Ly,

H 202 K 4
Z log I(7) = Z 1(r e EL,,) - log <1+ e Z,u”um>+]l(rH 1 € EYect) - log <1+3s>

l=h*+m leHop* i=1

5202 X ,
+ ]I(TH € Ereach rev) IOg K Z Hj il i
i=1
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2 .2

K
=1(ry € EL,) - log < 6}? Z

=1

4
,uw,u7 Z) + ]l(TH € Ecorrect) log (1 + 352>

Z i, z,ug 7,)
Ci(rme Bl tog (14 2L S ) 4 1(rm e B log (1 + 2¢2
(TH € reach) - log + 7 Z Mg ills i + (TH € correct) 0g + §€ )

+ ]]‘(TH € Ezeach rev 10g (

;- We also have Zfih* log I(7;) = 0 for 7«4, ¢ EY
the value of Zfi h*+m 10g I(77) into (41) and using the fact that Py ;, (T+ 1) = Po(7h+4.m) by our construction, we have

Th*er}

where the second equality is because EY,, = | |, E rev, teach- Plugging

4 0\7"
T~P; ﬁo(?)z (1 + ]l(TH € Ecorrect) gE >

2 2 K
o ’
_ {1 + K Zi:l Hjyills i for Thx 4 € Ereach A Ej’

. l Pou ()Po.v (7)

1, if Theym ¢ EC

reach*

Notice that in PF, conditional on Tp+4,—1 € Efeach, Op* +m 18 uniformly distributed over {Iockl7 cee lock” } and hence

Th*-‘rm—l]

— - 4 -1

Po(7)?
Po,.(T)Po,uw (T) 4,\7"
=E [E [ M@O(?); 1+ ]I(TH € Ecorrect) g 2 Th*+m || Th*+m—1
L 202 K 2 2
1 ‘o
= Z le <1+ ZMJ”‘]z) =1+ LK <M7/1’/>
]: =
On the other hand, for 74+ 11,1 ¢ Ereach,
Po,.(T)Po,u (T) 4,\7"
T~Pp l H?O (?); 1+ ]I(T € Ecorrect) 552 Thr4m—1| = 1.

Hence, taking expectation over Tpx 1 ,,—1 gives

Po...(7)Po,(7) | 45\ o .
]E?N@g l[w 1+ ]].(T € Ecorrect) §€ 1+ ]].(T € Ereach LK </,L, 1% > = 1.

Using the fact (1 + x)~! > exp(—x) completes the proof. O

With Lemma G.7 proven, we continue to prove Lemma G.6. Applying Lemma G.7 to algorithm 2(, we obtain that for each
te[T],

E Py . (FO) Py, (7D
?O (?(t))z

4
+ €xXp <_1( ® € Ereach LK <,u /-L> ]1 E Eforrect) 55 ) 7= 1)] < 17

where the expectation is taken over 7(!) ~ @? conditional on 7(1*=1) Therefore, by the martingale property, it holds that

T 5 — = —
Py, (T")Po (T1) o
E?(l),--- ,?(T)~ﬁ§l Ll:[l - FO(?(”; " €Xp ( ® € Ereach LK <M :U’> ]]- ® E(?orrect) : gg <1l
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Notice that N(Ereeach) Zt 1 ( E Ereach) and N(Eforrect) Zt 1 ( E Eceorrect) and hence

Py, (T Py v (1) %o 4
E?(l) T(T)Nﬁgl [H £ = /= £ X exp _N(Ereach LK </.L /’L> N correct) 552

e [EDO(T(t))z
T 5 s =
Pg (T(t))Pg /(T(t)) -_— 5202 -_— 4 2
E?(l) FM B2 . — o X exXp —No+ —— |<Naﬂ/>| —N,-ze .
Py g Py (7(M)2 LK 3
Multiplying both sides by exp (NO : % |y 1] + %52NT.) completes the proof of Lemma G.6. O

H. Regret for single-step revealing POMDPs

In this section, we establish Theorem 8 on a broader class of sequential decision problems termed as strongly B-stable PSRs,
and then deduce the guarantee for single-step revealing POMDPs as a special case. The proof is largely parallel to the
analysis of PAC learning for B-stable PSRs (Chen et al., 2022a), and we follow the notations there: in the following we use
0 to refer to the PSR model, and © to refer to the class of PSR models.

H.1. Strongly B-stable PSRs

We recall the definition of PSRs and B-stability in Appendix B. To establish v/7-regret upper bound for learning PSRs, we
introduce the following structural condition.

Definition H.1 (Strong B-stability). A PSR is strongly B-stable with parameter Ag > 1 (henceforth also Ag-strongly-stable)
if it admits a B-representation such that for all step h € [H|, policy 7, x € RYr,

D) m(hem) % Brn(mnm)al < Ag Y w(tn) x [a(tn)] - (45)

Th:H theUy

For notational simplicity, from now on we assume that for each step h, Uy, = (O x A)"™ 1 x O for some my, € Z=1, and
we define Q, := (O x A)™»~1; our results also hold for any general U}, using slightly more involved notation.
Proposition H.2 (Error decomposition for strongly B-stable PSRs). Suppose that two PSR models 6,0 admit
(B (on, an) n.on.an, A5} and {{BY (on,an)}h oy .an> Al } as B-representation respectively. Define

1 — —
€0 (m o) =5 max 2 ' trwlries) (rnsr:r) (B (ons an) = B on an) ) @ (1)
h:H

2 /el () 4
_ 1 _
Eholm) = s 2 () > B (1) (a6 — ) |.
? 2 ‘ITEHo(TI')
where we define
Hh(ﬂ') = {77/ : W/‘OX.AXQMJ = 7T|OXA><Qh+1}7 H0(7T> = {7.(/ . 7T/|Q1 _ 7T|Ql}a

i.e. IIy(m) is the set of all policy @' such that for all (op,ap,whrt+1) € O x A X Qpi1, 7 (0n, ap, Whe1|Th—1) =
T(Oh,y Gy Whi1|Th—1)-

Then the following claims hold.

1. (Performance decomposition) It holds that

Drvy (P§ 590 [59 r\T0 Th— 1)]

HME

where for h € [H|, the expectation 7 is taking over 1,1 under model 0 and policy .

2. (Bounding errors by Hellinger distance) Suppose that 0 is Ag-strong-stable and {{BY (o, an)}h oy .ar, A8} satisfies the
stability condition (45). For any step h, policy , it holds that

Ej |&0(m,m-1)?| < 2A3D% (P, P5).
and (€] (m))* < A3 DY (P5, ).

51



Lower Bounds for Learning in Revealing POMDPs

Algorithm 1 OPTIMISTIC MAXIMUM LIKELIHOOD ESTIMATION (OMLE) (LIU ET AL., 2022A; CHEN ET AL., 2022A)
1: Input: Model class ©, parameter 3 > 0.
2: Initialize: ©! = ©,D = {}.
3: foriteration k = 1,...,7 do
4 Set (0%, 7%) = arg maxyeen 5 Vo().
5
6

Execute 7% to collect a trajectory 7%, and add (7%, 7%) into D.
Update confidence set

Qk+1 — {96@ ZWTeplogP (T) = maxgeo 2(x 1yep 108 PG (T )—ﬁ}.

7: end for

H.2. Algorithms and guarantees

In this section, we state the \/T-regret guarantee of the algorithm OMLE (Algorithm 1, (Liu et al., 2022a; Chen et al.,
2022a)). Its proof is in presented Appendix H.4, which is adapted from the analysis of the (explorative) OMLE algorithm in
Chen et al. (2022a). We also remark that the regret upper bound of OMLE in Theorem 8 can also be shown directly for
single-step revealing POMDP, by strengthening the analysis in Liu et al. (2022a) using the ideas of Chen et al. (2022a).

Theorem H.3. Suppose every 0 € © is Ag-strongly stable (Definition H.1), and the true model 0* € © with rank dpsg < d.
Then, choosing 8 = C'log(Ne(1/T))/d) for some absolute constant C' > 0, with probability at least 1 — 6, Algorithm 1
achieves

T
Z V() <O <\/ A2 OAUﬂlH%ﬁT) (46)

= log (1 + TdOAUTAgRg) with Rg := 1 + maxy, o4 |Bn(0,a)|;.

Using analysis entirely parallel to Chen et al. (2022a, Appendix G), we can show that E2D-TA (Chen et al., 2022b) and
MOPS (Chen et al., 2022a, Algorithm 4) both achieve the same regret guarantees as Theorem 8.

Theorem H.4. Suppose © is a PSR class with the same core test sets {Uy, } her), and each 0 € © admits a B-representation
that is Ag-strongly-stable (cf. Definition H.1), and has PSR rank dpsg < d. Then for the coefficients dec and psc introduced
in Chen et al. (2022b), it holds that

A2OAUTdH?

3o, (0) <0( :

A20A H?
). o) < o HOAUTY

v

Therefore, we can apply Chen et al. (2022b, Theorem D.1) (for MOPS) and Chen et al. (2022b, Theorem C.7) (for E2D-TA)
to show that, with suitably chosen parameters, MOPS and E2D-TA both achieve a regret of

Regret < O<\/A§OAUTdH2 log(No(1/T)) /5)T> , @7)
with probability at least 1 — §.

Proof of Theorem 8. To apply Theorem H.3, we first notice that Proposition C.2 readily implies that any single-step a-
revealing is strongly B-stable PSR, with Ag < a~! and core test sets I/}, = O for all h. Therefore, applying Theorem H.3
shows that with a model class M of single-step a-revealing POMDPs, OMLE achieves a regret of

Regret < (5(\/04*QSOAH2 log N (1/T) ~T) ,

asUr =1,d < S,Ag <a!,Rg <aland:. = (’3( 1). Similarly, E2D-TA and MOPS also achieve the same regret
upper bound. Noticing that log N (1/T) = ( (524 + SO)) (Chen et al., 2022a) completes the proof. O
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H.3. Proof of Proposition H.2
Claim 1 follows from the proof of Chen et al. (2022a, Lemma D.1) directly. In the following, we show claim 2.

Fix a step h € [H]. An important observation is that, by the strong Ag-stability of § (Definition H.1), for any 7’ € II (7),
we have Vo € RU»

2 7 (Thp |Th—1) X |B?_I:h(7-h;H).'I;| < A 2 7' (th|mh_1) x |z(tn)| = As Z 7 (tn|Th1) x |z(th)], (48)

Th:H tn€Up theUn

and similarly, for Vo € RYr+1,

Z 7 (Tha1:m|mh) % |BYpar (Therm)7| < A Z m(the1|mn) x |2(the1)] - (49)

Th+1:H th+1€UR+1

Therefore, using use the following formula:
(B! (on, an) = Bf(on, an) ) o (ms-1)
= B (onan) (a”(71-1) = a’(ri-1) ) + (B (on, an)a’(7i-1) — B (on, an)a’ (71-1)),

we have

25§,h(7ra7_h—1) = ,IE%W(( : Z 7 (Them | Th—1) X ‘Bz;hH(ThH;H) (BZ(Oh,ah) - B(;;,,(Oh,ah)) qe(Th—l)‘
g AT Th:H

< max 3 7 (o) (Bl (i) (@ (1) = @’ (710)|
e

+ ,grlla)(C : Z 7 (Them | Th—1) X ‘B(}){;h+1(7'h+1:H) (BZ(Oh,ah)qe(Th—l) - Bi(ohaah)qé(Th—l)N
v h (7T TheE

<A Z 7 (th|Th-1) X

theUy,

+ Ag Z Z T(Ohy @y thy|Th-1) % ’etThH (BZ(O}uah)qe(Th—l) - BZ(Ohaah)qé(Th—l))

Oh,@h th+1€EUR+1

el (a’ (1) = a’(ma1) )|

)

where the last inequality uses (48) and (49). Notice that g (17,_1) = [Pg(t|Th_1 )]theuh’ and hence

Y, wltalrnr) x [ef, (a” (rae1) — @ (71-0))|

tn€Un

= > wtnlmor) x [Po(tnlmn-1) — Py(tnlmn_1)|
thel/lh

< Drv (Ph(ther = “|mh=1), PG (Thimr = *|Th—-1)) -
Also, by the definition of B-representation (cf. Definition B.3), we have
[Bf (0, )a? (Th—1)|(th+1) = Po(tni1|mh-1,0,a) x Pg(o|mh_1) = Py(0,a,tpi1|mh-1),
and therefore

D> w(on antherlmot) x ‘e;thrl (BZ(Ohyah)qe(Th—l) - BZ(Omah)qe(Th—l))‘

Oh,ah th+1€EUR 1

D0 D, wlonanthilmaa) x [Po(on, an, thi1lth-1) = Bg(on, an, tha|ma1)|
Oh,ah tpy1€UR 11

Z Z PG (on, ans ths1|Th—1) — P (0n, an, the1|mh-1)|

Oh,0h th+1€UR 11

< Drv (P§(thenr = |mh=1),P§ (Th:mr = “|Th-1)) -
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Combining the inequalities above, we have already shown that
5g,h(7T,Th71) < AgDrv (PG (therr = *|Th-1), P (Therr = +|Th—1))

for any step h € [H|. Therefore, we can use that fact that Dty < Dy and apply Lemma A.6 to obtain
T 4 T T T 2
E7 [gg,h(W,Thq)Q] <AZE] [DTV (Pg (T = “|T0=1) P (Themr = “[7h-1)) ]
<AZEZ[Df (P§ (thirr = |mn—1), P (Thomr = “|7n—1)) ] < 2A§ D (PF,PF) .
A similar argument can also show that (59910 (m))? < AiDrv (P, ]P”Q—T)2 < AED} (Pg, ]Pg)_ O

H.4. Proof of Theorem H.3

The proof of Theorem H.3 uses the following fast rate guarantee for the OMLE algorithm, which is standard (e.g. Van de
Geer (2000); Agarwal et al. (2020), and a simple proof can be found in (Chen et al., 2022a, Appendix E)).

Proposition H.5 (Guarantee of MLE). Suppose that we choose 3 = 2log No(1/T) + 21og(1/8) + 2 in Algorithm 1. Then
with probability at least 1 — 0, the following holds:

(a) Forallk € [K], 6* € ©F;
(b) Forall k € [K] and any 6 € ©F, it holds that

k—1 . .
t=1

We next prove Theorem H.3. We adopt the definitions of Egi 5 (T, Th—1) as in Proposition H.2 and abbreviate &} , = Eg,: B
We also condition on the success of the event in Proposition H.5.

Step 1. By Proposition H.5, it holds that §* € ©. Therefore, Vy (7*) > V,, and by Proposition H.2, we have

k
N (Ve = Ve (nh) <

M?r

~+
Il
—

o~
Il
—

N
hke

[
A

(Voe (") = Vg (m EDTV (]P’an )
Ern (Tt Tho o]) (50)

<1A5t*0 th7r Th— 1)])

where the expectation [E .« is taken over 7,1 ~ IP’gf. On the other hand, by Proposition H.2, we have

Ene 6 (n' 7o1)?] < 20303 (B B3 ) . &io(n")? < A3D} (P, By ) -

M»

~+
Il
—

Furthermore, by Proposition H.5 we have Zf;ll D% (ng , ]P’g: ) < 2. Therefore, combining the two equations above gives

DI Enel&f(nt o1)?] <4A3B,  Vke[K],0<h<H. (51)

t<k
Step 2. We would like to bridge the performance decomposition (50) and the squared B-errors bound (51) using the
generalized ¢5-Eluder argument. We consider separately the case for h € [H] and h = 0.
Case 1: h € [H]. We denote m = my, 11 such that Uy, 1 = (O x A1 x O, Q1 = (O x A)™~1. By definition,

* 1 * *
Exn(mt mhoa) = 2 plmax D7 (hemltho1) % Bl (Thsrm) (BF (on, an) — Bj(on, an)) o (ta-1)|,
T M) rn
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1ax Z "(Thamett | Tham—1) X T (Thinem—1|T—1) X [Bhrns1 (The1:1) (B (0n, ar) — B (on, an)) a* (7h-1)|
Th:H

l\')\»—l

Z D (o anwn1|Th1) [Blrnim - Bhsm— v (@hir) (BE(on, an) — Bj (on, an)) @ (7h-1) 1,

0h7ah Wh+1€2n 41
where in the last equality we adopt the notation introduced in (10).

To bridge between (50) and (51), we invoke the following generalized ¢5-Eluder lemma, which can be obtained directly by
generalizing Chen et al. (2022a, Proposition C.1 & Corollary C.2) (which correspond to the special case of the following
result with N = 1).

Lemma H.6 (Generalized {>-Eluder argument). Suppose we have a sequence of functions { fi; : R™ — R} ye[r]x[N]*

J
fri(w) := max Z <2, Yretgor)l
Jj=1
which is given by the family of vectors {ykJ,j’T}(k imelK]x[J]xR © R™. Further assume that there exists L > 0 such that

frai(z) < L Hl’Hl

Consider further a sequence of vector (a:t,u)(t’l’i)e[;{] x[N]xZ> Satisfying the following condition

k=1 2
Z i~qy (Z fk:l Tt l,i > <ﬁk7 VkE[K],
t=1

and the subspace spanned by (. ;) has dimension at most d. Then it holds that

k N k
N1 AEiny, lz ft,l(xt,l,i)] < 4Nd(k + ) @) log (1 + hdL max H:ciHl), vk € [K].
t=1 =1 t=1

We have the following three preparation steps to apply Lemma H.6.
1. We define
Ltli = Wt(ol}17a2’w§1+1‘7}’;71) X q*(T}éfl) € Ruh7
1 - N T
Yrkdojom 2= §7T(TijL+m;H) [BH ham (Th 1) Bl 11 (Wht) (BE (0, af,) — B} (o, aﬁz))] e R,

where {7} _,}; is an ordering of all possible 7,1 € (O x A)"1, {T};+m b = (Ohtm>him, - 0m,am)}}—, is an
ordering of all possible 7j, 4. s (and hence n = (OA)H="=m+1) {(ol al w} 1)}, is an ordering of O x .A X Qh+1
(and hence N = OA Q11| < OAU7T), 7 is any policy that starts at step h. We then define

e maXZ|<yklgﬂ7x>|v z e R

It follows from definition that

Mz

Enn(m ho1) = ) 7 (0hs ahy Wiyt ITh—1) X fra(a*(mh_1) Z Sra(zep,i).

=1

2. By the assumption that 6* has PSR rank less than or equal to d, we have dim span(z;; ;) < d. Furthermore, we have
1 < Ua < Ur by definition.

3. It remains to verify that fj, is Lipschitz with respect to 1-norm. Clearly,
1 k k *
Jri(a) < 5 HBH:hq”H + max HBH:hHBh(Oa a)qHH
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1 . 1
< 5|40 tal, + Aemax B0 0)al, | < Jaere lal,

Hence we can take L = 3 AgRg to ensure that fi ;(z) < L|z|;.
Therefore, applying Lemma H.6 yields

k

S 1A Ere[E7 4 (n" mhor)] < o(1 /A%Nchﬂk:) < o(« /AQBOAUTdLBk;> : (52)

t=1
This completes case 1.

Case 2: h = 0. This case follows similarly as

Z LA &) <O (« /A2 OAUTLBIC) (53)

Combining these two cases, we obtain

k (i) k k
Z V Vo« ( gz /\gt() Z th7T Th— 1)]
t=1 t=1 =1

(ii
2o (1 /A2 OAUﬂBk) .0 <1 / A%OAUTdLBk) <0 (1 / HQA%NdLBk) :

where (i) used (50); (ii) used the above two cases (53) and (52). This completes the proof of Theorem H.3 O

HME

I. Additional discussions
I.1. Impossibility of a generic sample complexity in DEC + log covering number of value/policy class

A typical guarantee of DEC theory (Foster et al., 2021; Chen et al., 2022b) asserts that for any model class M and policy
class II, the E2D algorithm achieves

E[Regret] < O(1) - min (T - decll (M) + vlog |M|) (54)
>
Foster et al. (2021) also showed that, letting co(M) denote the convex hull of M (the set of all mixture models of M € M),
there is a variant of E2D that achieves
E[Regret] < O(1) - Inilol (T : decs(co(/\/l)) + vlog |H\)
>

However, dec,}yI (co(M)) is typically intractable large—For example, when M is the class of all tabular MDPs, dec,PyI (co(M))
scales exponentially in S, H (Foster et al., 2022). Therefore, it is natural to ask the following

Question: Is it possible to obtain a regret upper bound that replaces the term log | M| in (54) by log |II| or
log | Faq| (where Foq is a certain class of value functions induced by M)?

The question above is of particular interest when the model class M itself is much larger than the value class (e.g. Q-function
class), for example when M is a class of linear MDPs (Jin et al., 2020b) with a known feature ¢(s, a) but unknown p(s’).
Also, replacing log | M| in (54) by log |TI| could be a decent improvement for specific problem classes such as tabular
MDPs in which case we can take II to be the class of deterministic Markov policies with log |TI| = (SH ), which is
smaller than log |M| = O(log Ny) = (SQAH) by a factor of SA.

However, our lower bounds for revealing POMDPs—specifically our hard instance construction in Appendix F—
provides a (partially) negative answer to this question. For simplicity, consider the m = 2 case, and assume
AH » poly(S,0, A, a1, T)) We have the following basic facts about our model class M.
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1. The structure of M ensures that any possibly optimal policy is a deterministic action sequence (that does not depend
on the history), and hence we can take II = {determinstic action sequences}, with logII = O(H).

2. The general results in Chen et al. (2022a) shows that as long as M is a subclass of 2-step a-revealing POMDPs, it
holds that edec., (M) < O(SA?H?a 2 /v)—where edec is a PAC-learning analogue of the dec—which implies that

~

decy (M) < O(y/SA2H?a~2/v) (Chen et al., 2022b).

3. Proposition F.1 states that worst-case regret within family M for any algorithm is lower bounded by

Q((SYOA2Ha2)15T/3),

Note that the regret lower bound involves a poly(O) factor, which does not appear in the upper bound for the dec. This
leads to the following

Fact: Without further structural assumptions for the problem, a regret upper bound of the form

E[Regret] < O(1) - min (T . decS(M) + v log |H\) (55)

v>0

is not achievable.

The above fact is because that if (55) were achievable, then combining with the aformentioned dec upper bound would result
in a regret upper bound that does not scale with poly(O), contradicting the lower bound.

Similarly, if we view each POMDP M e M as an MDP by viewing each history 7, as a “mega-state”, then naturally the
Q-function of M is given by

H

Qir(mh) = EMl N

h'=1

Th], 77,,6((9><.,4)h,0<h<H7

where 7}, is the optimal policy for M. For our family M, it is straightforward to check that log Q¢ = (5(H ), where
Om = {Q}*VI : M e M}. Therefore, the answer to the question above is also negative if we take the value class to be such a
Q-function class.

I.2. Algorithms for hard instances of Theorem 5

We propose a brute-force algorithm 2l to learn the class of hard instances provided in Appendix G (for proving Theorem 5),
which admits a PAC sample complexity (’)(53/ 201 2AmH) (a252)). Algorithm 2( contains two stages:

1. Stage 1: Foreach h € H, s € Siear, a € A.,a € A™ ™!, the algorithm spends N; episodes on visiting o}, = s, taking
actions ap.p+m = (a, a, reveal), and observing (04 m, Op+m+1)- The observed (0p-+m, On+m+1) should then satisfy
the joint distribution

; 1 i P 1- i i .
P(lock?, o} ) = % Pllock,0;) = — K94, v(j,i) € [L] x [K]
if (h,s,a,a) = (h*,s*,a*,a5._ |.;+ 4 m—1)» and satisfy distribution Unif ({lock®, - - - 7IockL} x O,) otherwise. Using

the standard uniformity testing algorithm (Canonne, 2020), we can distinguish between

Hy : (h,s,a,a) = (h*,s",a*, @} 1.2 sm_1),

Hl : (h, s,a,a) # (h*73*7a*7a;*+1:h*+m71)

with high probability using N1 = (5(\/ KL/(c%?)) samples for every fixed (h, s, a, a). The total sample size needed
in Stage 1 is thus [Sieat| H |Ac| A1 x O(VKL/(0%?)).
2. Stage 2: Once Stage 1 is completed, the algorithm can correctly identify the parameter (h*, s*,a*, @}, 1.5 —1) Gf

M # 0) or find out M = 0. In the latter case, the algorithm can directly terminate and output the optimal policy of

M = 0. In the former case, the algorithm needs to continue to learn the password aj.  .;_;:
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e Foreachh = h* + m,h* + 2m,---:
— For each a € A™, test whether a = aj , . ., by spending IV; episodes on visiting 05+ = s*, taking actions
ap*:hem = (@, @54 1., 1,4, reveal), and observing (0p 4 m, Onym+1)-
— By the same reason as in Stage 1 and by our choice that N; = O(\/KL/(O'2€2)), we can learn aj ;.
with high probability, using the standard uniformity testing algorithm.

Once the algorithm learns the M = (h*, s*,a*,a*), it terminates and outputs the optimal policy of M. The total
sample size needed in Stage 2 is at most A™H x O(vKL/(0?¢?)) many samples.

To summarize, the brute-force algorithm 2 we construct above can learn M with sample size

- KL - KL -~ 3/2 1/2A77LH
(Sieat | H | Ao| A7 x o(j}) (” ) < o(%) ,

where the bound is by our choice of o, Sjeaf, A, K, L.
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