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Abstract
This paper studies the fundamental limits of re-
inforcement learning (RL) in the challenging
partially observable setting. While it is well-
established that learning in Partially Observable
Markov Decision Processes (POMDPs) requires
exponentially many samples in the worst case, a
surge of recent work shows that polynomial sam-
ple complexities are achievable under the reveal-
ing condition—A natural condition that requires
the observables to reveal some information about
the unobserved latent states. However, the funda-
mental limits for learning in revealing POMDPs
are much less understood, with existing lower
bounds being rather preliminary and having sub-
stantial gaps from the current best upper bounds.

We establish strong PAC and regret lower bounds
for learning in revealing POMDPs. Our lower
bounds scale polynomially in all relevant prob-
lem parameters in a multiplicative fashion, and
achieve significantly smaller gaps against the cur-
rent best upper bounds, providing a solid starting
point for future studies. In particular, for multi-
step revealing POMDPs, we show that (1) the
latent state-space dependence is at least ΩpS1.5q

in the PAC sample complexity, which is notably
harder than the rΘpSq scaling for fully-observable
MDPs; (2) Any polynomial sublinear regret is at
least ΩpT 2{3q, suggesting its fundamental differ-
ence from the single-step case where rOp

?
T q re-

gret is achievable. Technically, our hard instance
construction adapts techniques in distribution test-
ing, which is new to the RL literature and may be
of independent interest. We also complement our
results with new sharp regret upper bounds for
strongly B-stable PSRs, which include single-step
revealing POMDPs as a special case.
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1. Introduction
Partial observability—where the agent can only observe
partial information about the true underlying state of the
system—is ubiquitous in real-world applications of Rein-
forcement Learning (RL) and constitutes a central challenge
to RL (Kaelbling et al., 1998; Sutton & Barto, 2018). It
is known that learning in the standard model of Partially
Observable Markov Decision Processes (POMDPs) is much
more challenging than its fully observable counterpart—
Finding a near-optimal policy in long-horizon POMDPs
requires a number of samples at least exponential in the hori-
zon length in the worst-case (Krishnamurthy et al., 2016).
Such an exponential hardness originates from the fact that
the agent may not observe any useful information about
the true underlying state of the system, without further re-
strictions on the structure of the POMDP. This is in stark
contrast to learning fully observable (tabular) MDPs where
polynomially many samples are necessary and sufficient
without further assumptions (Kearns & Singh, 2002; Jaksch
et al., 2010; Azar et al., 2017; Jin et al., 2018; Zhang et al.,
2020; Domingues et al., 2021).

Towards circumventing this hardness result, recent work
seeks additional structural conditions that permit sample-
efficient learning. One natural proposal is the revealing
condition (Jin et al., 2020a; Liu et al., 2022a), which at
a high level requires the observables (observations and ac-
tions) to reveal some information about the underlying latent
state, thus ruling out the aforementioned worst-case situa-
tion where the observables are completely uninformative.
Concretely, the single-step revealing condition (Jin et al.,
2020a) requires the (immediate) emission probabilities of
the latent states to be well-conditioned, in the sense that
different states are probabilistically distinguishable from
their emissions. The multi-step revealing condition (Liu
et al., 2022a) generalizes the single-step case by requir-
ing the well conditioning of the multi-step emission-action
probabilities—the probabilities of observing a sequence of
observations in the next m ě 2 steps, conditioned on taking
a specific sequence of actions at the current latent state.

Sample-efficient algorithms for learning single-step and
multi-step revealing POMDPs are initially designed by Jin
et al. (2020a) and Liu et al. (2022a), and subsequently devel-
oped in a surge of recent work (Cai et al., 2022; Wang et al.,
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Table 1. A summary of lower bounds and current best upper bounds for learning revealing POMDPs, with our contributions highlighted
in gray cells. The rates presented here only focus on the dependence in S,O,A, α´1, and T (or ε´1), and omit polypHq and all polylog
factors. We also assume O ě ΩpSAq (in our upper bounds) and AH

" polypH,S,O,Am, α´1, T q to simplify the presentation. For
regret lower bounds, we additional ignore the min with T (due to the trivial OpT q regret upper bound). ˚Obtained by an explore-then-
exploit conversion.

Problem
PAC sample complexity Regret

Upper bound Lower bound Upper bound Lower bound

1-step
α-revealing

rO
´

S2OA
α2ε2

¯

Ω
´

SO1{2A
α2ε2

¯

rO
´

b

S2O2A
α2 ¨ T

¯

Ω
´

b

SO1{2A
α2 ¨ T

¯

(Chen et al., 2022a) (Theorem 4) (Theorem 8) (Corollary 7)

m-step (m ě 2)
α-revealing

rO
´

S2OAm

α2ε2

¯

Ω
´

pS3{2`SAqO1{2Am´1

α2ε2

¯

rO
´´

S2OAm

α2

¯1{3

T 2{3
¯

Ω
´´

SO1{2Am

α2

¯1{3

T 2{3
¯

(Chen et al., 2022a) (Theorem 5) (Chen et al., 2022a)˚ (Theorem 6)

2022; Uehara et al., 2022b; Zhan et al., 2022; Chen et al.,
2022a; Liu et al., 2022b; Zhong et al., 2022). For finding an
ε near-optimal policy in m-step revealing POMDPs, these
results obtain PAC sample complexities (required episodes
of play) that scale polynomially with the number of states,
observations, action sequences (of length m), the horizon,
p1{αq where α ą 0 is the revealing constant, and p1{εq,
with the current best rate given by Chen et al. (2022a).

Despite this progress, the fundamental limit for learning in
revealing POMDPs remains rather poorly understood. First,
lower bounds for revealing POMDPs are currently scarce,
with existing lower bounds either being rather preliminary
in its rates (Liu et al., 2022a), or following by direct reduc-
tion from fully observable settings, which does not exhibit
the challenge of partial observability (cf. Section 2.2 for
detailed discussions). Such lower bounds leave open many
fundamental questions, such as the dependence on α in the
optimal PAC sample complexity: the current best lower
bound scales in α´1 while the current best upper bound
requires α´2. Second, the current best upper bounds for
learning revealing POMDPs are mostly obtained by general-
purpose algorithms not specially tailored to POMDPs (Chen
et al., 2022a; Liu et al., 2022b; Zhong et al., 2022). These
algorithms admit unified analysis frameworks for a large
number of RL problems including revealing POMDPs, and
it is unclear whether these analyses (and the resulting upper
bounds) unveil fundamental limits of revealing POMDPs.

This paper establishes strong sample complexity lower
bounds for learning revealing POMDPs. Our contributions
can be summarized as follows.

• We establish PAC lower bounds for learning both single-
step (Section 3.1) and multi-step (Section 3.2) revealing
POMDPs. Our lower bounds are the first to scale with
all relevant problem parameters in a multiplicative fash-
ion, and settles several open questions about the funda-
mental limits for learning revealing POMDPs. Notably,
our PAC lower bound for the multi-step case scales as

ΩpS1.5q, where S is the size of the latent state-space,
which is notably harder than fully observable MDPs
where rΘpSq is the minimax optimal scaling. Further,
our lower bounds exhibit rather mild gaps from the cur-
rent best upper bounds, which could serve as a starting
point for further fine-grained studies.

• We establish regret lower bounds for the same settings.
Perhaps surprisingly, we show an ΩpT 2{3q regret lower
bound for multi-step revealing POMDPs (Section 4). Our
construction unveils some new insights about the multi-
step case, and suggests its fundamental difference from
the single-step case in which rOp

?
T q regret is achievable.

• Technically, our lower bounds are obtained by embed-
ding uniformity testing problems into revealing POMDPs,
in particular into an m-step revealing combination lock
which is the core of our hard instance constructions (Sec-
tion 5). The proof further uses information-theoretic
techniques such as Ingster’s method for bounding certain
divergences, which are new to the RL literature.

• We discuss some additional interesting implications to RL
theory in general, in particular to the Decision-Estimation
Coefficients (DEC) framework (Section 6.2).

We illustrate our main results against the current best upper
bounds in Table 1.

1.1. Related work

Hardness of learning general POMDPs It is well-
established that learning a near-optimal policy in POMDPs
is computationally hard in the worst case (Papadimitriou
& Tsitsiklis, 1987; Mossel & Roch, 2005). With regard to
learning, Krishnamurthy et al. (2016); Jin et al. (2020a) used
the combination lock hard instance to show that learning
episodic POMDPs requires a sample size at least exponen-
tial in the horizon H . Kearns et al. (1999); Even-Dar et al.
(2005) developed algorithms for learning episodic POMDPs
that admit sample complexity scaling with AH . A similar
sample complexity can also be obtained by bounding the
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Bellman rank (Jiang et al., 2017; Du et al., 2021; Jin et al.,
2021) or coverability (Xie et al., 2022).

Revealing POMDPs Jin et al. (2020a) proposed the
single-step revealing condition in under-complete POMDPs
and showed that it is a sufficient condition for sample-
efficient learning of POMDPs by designing a spectral type
learning algorithm. Liu et al. (2022a;c) proposed the multi-
step revealing condition to the over-complete POMDPs and
developed the optimistic maximum likelihood estimation
(OMLE) algorithm for efficient learning. Cai et al. (2022);
Wang et al. (2022) extended these results to efficient learning
of linear POMDPs under variants of the revealing condition.
Golowich et al. (2022b;a) showed that approximate planning
under the observable condition, a variant of the revealing
condition, admits quasi-polynomial time algorithms.

The only existing lower bound for learning revealing
POMDPs is provided by Liu et al. (2022a), which modified
the combination lock hard instance (Krishnamurthy et al.,
2016) to construct an m-step 1-revealing POMDP and show
an ΩpAm´1q sample complexity lower bound for learning a
1{2-optimal policy. Our lower bound improves substantially
over theirs using a much more sophisticated hard instance
construction that integrates the combination lock with the
tree hard instance for learning MDPs (Domingues et al.,
2021) and the hard instance for uniformity testing (Panin-
ski, 2008; Canonne, 2020). Similar to the lower bound for
uniformity testing, the proof of our lower bound builds on
Ingster’s method (Ingster & Suslina, 2012).

Other structural conditions Other conditions that en-
able sample-efficient learning of POMDPs include reactive-
ness (Jiang et al., 2017), decodablity (Efroni et al., 2022),
structured latent MDPs (Kwon et al., 2021), learning short-
memory policies (Uehara et al., 2022b), deterministic transi-
tions (Uehara et al., 2022a), and regular predictive state rep-
resentations (PSRs) (Zhan et al., 2022). Chen et al. (2022a);
Liu et al. (2022b); Zhong et al. (2022) propose unified struc-
tural conditions for PSRs, which encompasses most existing
tractable classes including revealing POMDPs, decodable
POMDPs, and regular PSRs.

2. Preliminaries
POMDPs An episodic Partially Observable Markov
Decision Process (POMDP) is specified by a tuple
M “ tH,S,O,A, tThuhPrHs, tOhuhPrHs, trhuhPrHs, µ1u,
where H P Zě1 is the horizon length; pS,O,Aq are the
spaces of (latent) states, observations, and actions with car-
dinality pS,O,Aq respectively; Ohp¨|¨q : S Ñ ∆pOq is
the emission dynamics at step h (which we identify as an
emission matrix Oh P ROˆS); Thp¨|¨, ¨q : S ˆ A Ñ ∆pSq

is the transition dynamics over the latent states (which we

identify as a transition matrix Th P RSˆpSˆAq); rhp¨, ¨q :
O ˆ A Ñ r0, 1s is the (possibly random) reward function;
µ1 “ T0p¨q P ∆pSq specifies the distribution of initial
state. At each step h P rHs, given latent state sh (which
the agent does not observe), the system emits observation
oh „ Ohp¨|shq, receives action ah P A from the agent,
emits reward rhpoh, ahq, and then transits to the next latent
state sh`1 „ Thp¨|sh, ahq in a Markovian fashion.

We use τ “ po1, a1, . . . , oH , aHq “ po1:H , a1:Hq to denote
a full history of observations and actions observed by the
agent, and τh “ po1:h, a1:hq to denote a partial history up to
step h P rHs. A policy is given by a collection of distribu-
tions over actions π “ tπhp¨|τh´1, ohq P ∆pAquh,τh´1,oh

,
where πhp¨|τh´1, ohq specifies the distribution of ah given
the history pτh´1, ohq. We denote Π as the set of all
policies. The value function of any policy π is denoted
as VM pπq “ Eπ

M r
řH

h“1 rhpoh, ahqs, where Eπ
M speci-

fies the law of po1:H , a1:Hq under model M and policy
π. The optimal value function of model M is denoted
as V ‹

M “ maxπPΠ VM pπq. Without loss of generality,
we assume that the total rewards are bounded by one, i.e.
ř

hPrHs rhpoh, ahq ď 1 for any po1:H , a1:Hq P pO ˆ AqH .

Learning goals We consider learning POMDPs from ban-
dit feedback (exploration setting) where the agent plays
with a fixed (unknown) POMDP model M for T P N`

episodes. In each episode, the agent plays some policy πptq,
and observes the trajectory τ ptq and the rewards rptq

1:H .

We consider the two standard learning goals of PAC learning
and no-regret learning. In PAC learning, the goal is to output
a near-optimal policy pπ so that V ‹

M ´ VM ppπq ď ε within as
few episodes of play as possible. In no-regret learning, the
goal is to minimize the regret

RegretpT q :“
řT

t“1

`

V ‹
M ´ VM

`

πptq
˘˘

,

and an algorithm is called no-regret if RegretpT q “ opT q

is sublinear in T . It is known that no-regret learning is no
easier than PAC learning, as any no-regret algorithm can be
turned to a PAC learning algorithm by the standard online-
to-batch conversion (e.g. Jin et al. (2018)) that outputs the
average policy pπ :“ 1

T

řT
t“1 π

ptq after T episodes of play.

2.1. Revealing POMDPs

We consider revealing POMDPs (Jin et al., 2020a; Liu et al.,
2022a), a structured subclass of POMDPs that is known to
be sample-efficiently learnable. For any m ě 1, define the
m-step emission-action matrix Mh,m P ROmAm´1

ˆS of a
POMDP M at step h P rH ´ m ` 1s as

rMh,mspo,aq,s

:“ PM poh:h`m´1 “ o|sh “ s, ah:h`m´2 “ aq. (1)
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In the special case where m “ 1 (the single-step case),
we have Mh,1 “ Oh P ROˆS , i.e. the emission-action
matrix reduces to the emission matrix. For m ě 2, the m-
step emission-action matrix Mh,m generalizes the emission
matrix by encoding the emission-action probabilities, i.e.
probabilities of observing any observation sequence o P

Om, starting from any latent state s P S and taking any
action sequence a P Am´1 in the next m ´ 1 steps.

A POMDP is called m-step revealing if its emission-action
matrices tMh,muhPrH´m`1s admit generalized left inverses
with bounded operator norm.

Definition 1 (m-step α-revealing POMDPs). For m ě 1
and α ą 0, a POMDP model M is called m-step reveal-
ing, if there exists matrices M`

h,m P RSˆOmAm´1

satisfy-
ing M`

h,mMh,mTh´1 “ Th´1 (generalized left inverse of
Mh,m) for any h P rH ´m`1s. Furthermore, the POMDP
model M is called m-step α-revealing if each M`

h,m further
admits p˚ Ñ 1q-operator norm bounded by α´1:

}M`
h,m}˚Ñ1 :“ max

}x}˚ď1
}M`

h,mx}1 ď α´1, (2)

where for any vector x “ pxpo,aqqoPOm,aPAm´1 , we de-
note its star-norm by

}x}˚
:“

”

ř

aPAm´1

´

ř

oPOm |xpo,aq|

¯2ı1{2

.

Let αmpMq—the m-step revealing constant of model M—
denote the maximum possible α ą 0 such that (2) holds, so
that M is m-step α-revealing iff αmpMq ě α.

In Definition 1, the existence of a generalized left inverse
requires the matrix Mh,m to have full rank in the column
space of Th´1, which ensures that different states reach-
able from the previous step are information-theoretically
distinguishable from the next m observations and m ´ 1
actions. The revealing condition—as a quantitative version
of this full rank condition—ensures that states can be prob-
abilistically “revealed” from the observables, and enables
sample-efficient learning (Liu et al., 2022a).

Our choice of the p˚ Ñ 1q-norm in (2) is different from
existing work (Liu et al., 2022a;b; Chen et al., 2022a); how-
ever, it enables a tighter gap between our lower bounds
and existing upper bounds. In addition, p˚ Ñ 1q-norm has
natural probabilistic interpretations: The m-step emission
matrix Mh,m maps a distribution over S to a collection of
Am´1 distributions over Om. Then, the 1-norm over RS

and the ˚-norm over ROm
ˆAm´1

directly correspond to the
TV distance (and its aggregated version over Am´1), which
is arguably a more natural choice than the ℓ2 norm in (Liu
et al., 2022a). Finally, we remark that the choice of the
norms is not important when only polynomial learnability
(not the exact rate of the polynomial) is of consideration, due
to the equivalence between norms up to dimension factors.

Single-step vs. multi-step We highlight that when m “ 1,
the emission-action matrix Mh,1 “ Oh does not involve the
effect of actions. This turns out to make it qualitatively
different from the multi-step cases where m ě 2, which will
be reflected in our results.

Additionally, we show that any m-step α-revealing POMDP
is also pm ` 1q-step α-revealing, but not vice versa (proof
in Appendix C.1; this result is intuitive yet we were unable
to find it in the literature). Therefore, as m increases, the
class of m-step revealing POMDPs becomes strictly larger
and thus no easier to learn.

Proposition 2 (m-step revealing Ĺ pm ` 1q-step revealing).
For any m ě 1 and any POMDP M with horizon H ě

m ` 1, we have αm`1pMq ě αmpMq. Consequently, any
m-step α-revealing POMDP is also an pm ` 1q-step α-
revealing POMDP. Conversely, there exists an pm` 1q-step
revealing POMDP that is not an m-step revealing POMDP.

2.2. Known upper and lower bounds

Upper bounds Learning revealing POMDPs is known to
admit polynomial sample complexity upper bounds (Liu
et al., 2022a;b; Chen et al., 2022a). The current best PAC
sample complexity for learning revealing POMDPs is given
in the following result, which follows directly by adapting
the results of Chen et al. (2022a;b) to our definition of the
revealing condition (cf. Appendix C.2).

Theorem 3 (PAC upper bound for revealing POMDPs (Chen
et al., 2022a)). There exists algorithms (OMLE, EXPLO-
RATIVE E2D & MOPS) that can find an ε-optimal policy
of any m-step α-revealing POMDP w.h.p. within

T ď rO
ˆ

S2OAmp1 ` SA{OqH3

α2ε2

˙

(3)

episodes of play.

Lower bounds Existing lower bounds for learning reveal-
ing POMDPs are scarce and preliminary. The only existing
PAC lower bound for m-step α-revealing POMDPs is

Ωpmin
␣

1
αH , AH´1

(

` Am´1q

given by Liu et al. (2022a, Theorem 6 & 9) for learning an
ε “ Θp1q-optimal policy, which does not scale with either
the model parameters S,O or p1{εq for small ε.

In addition, revealing POMDPs subsume two fully observ-
able models as special cases: (fully observable) MDPs with
H steps, min tS,Ou states, and A actions (with α “ 1);
and contextual bandits with O contexts and A actions. By
standard PAC lower bounds (Dann & Brunskill, 2015; Latti-
more & Szepesvári, 2020; Domingues et al., 2021) in both
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settings1, this implies an

Ω
`

pHmin tS,OuA ` OAq{ε2
˘

PAC lower bound for m-step α-revealing POMDPs for any
m ě 1 and α ď 1.

Both lower bounds above exhibit substantial gaps from the
upper bound (3). Indeed, the upper bound scales multiplica-
tively in S,Am, O, α´1 and 1{ε2, whereas the lower bounds
combined are far smaller than this multiplicative scaling.

3. PAC lower bounds
We establish PAC lower bounds for both single-step (Sec-
tion 3.1) and multi-step (Section 3.2) revealing POMDPs.
We first state and discuss our results, and then provide a
proof overview for the multi-step case in Section 5.

3.1. Single-step revealing POMDPs

We begin by establishing the PAC lower bound for the single-
step case. The proof can be found in Appendix E.

Theorem 4 (PAC lower bound for single-step revealing
POMDPs). For any O ě S ě 5, A ě 3, H ě 4 log2 S,
α P p0, 1

5H s, ε P p0, 0.01s, there exists a family M of
single-step revealing POMDPs with |S| ď S, |O| ď O,
|A| “ A, and α1pMq ě α for all M P M, such that for
any algorithm A that interacts with the environment for T
episodes and returns a πout such that V ‹

M ´ VM pπoutq ă ε
with probability at least 3{4 for all M P M, we must have

T ě c ¨ min

"

SO1{2AH

α2ε2
,
SAH{2H

ε2

*

, (4)

where c ą 0 is an absolute constant.

The lower bound in Theorem 4 (and subsequent lower
bounds) involves the minimum over two terms, where
the second term “caps” the lower bound by an exponen-
tial scaling2 in H and is less important. The main term
ΩpS

?
OAH{pα2ε2qq scales polynomially in 1{α2, 1{ε2,

and pS,O,Aq in a multiplicative fashion. This is the first
such result for revealing POMDPs and improves substan-
tially over existing lower bounds (cf. Section 2.2).

Implications Theorem 4 shows that, the multiplicative de-
pendence on pS,A,O, 1{α, 1{εq in the the current best PAC
upper bound rOpS2OAp1 ` SA{Oq{pα2ε2qq (Theorem 3;
ignoring H) is indeed necessary, and settles several open
questions about learning revealing POMDPs:

1With total reward scaled to r0, 1s.
2A rOppolypS,O,HqAH

{ε2q PAC upper bound is indeed
achievable for any POMDP (not necessarily revealing) (Even-Dar
et al., 2005); see also the discussions in Uehara et al. (2022b).

• It settles the optimal dependence on α to be Θpα´2q

(combining our lower bound with the Opα´2q upper
bound), whereas the previous best lower bound on α
is Ωpα´1q (Liu et al., 2022a).

• For joint dependence on pα, εq, it shows that 1{pα2ε2q

samples are necessary. This rules out possibilities for bet-
ter rates—such as the rOpmaxt1{α2, 1{ε2uq upper bound
for single-step revealing POMDPs with deterministic
transitions (Jin et al., 2020a)—in the general case.

• It necessitates a polypOq factor as multiplicative upon
the other parameters (most importantly 1{pα2ε2q) in the
sample complexity, which confirms that large observation
spaces do impact learning in a strong sense.

Finally, compared with the current best PAC upper bound,
the lower bound ΩpSO1{2A{pα2ε2qq captures all the pa-
rameters and is a S

?
O-factor away in the rich-observation

regime where O ě ΩpSAq. This provides a solid starting
point for future studies.

Remark on requiring O ě S All of our results require
O ě S due to the tree structure in our construction. In the
general case (where we may have O ă S), all our lower
bounds still hold with S replaced by mintS,Ou. In addition,
it is potentially possible to strengthen the lower bound when
O ă S, which however may significantly complicate the
constructions, and hence are left for future work.

3.2. Multi-step revealing POMDPs

Using similar hard instance constructions (more details
in Section 5), we establish the PAC lower bound for the
multi-step case with m ě 2 (proof in Appendix G).

Theorem 5 (PAC lower bound for multi-step revealing
POMDPs). For any m ě 2, O ě S ě 10, A ě 3,
H ě 8 log2 S ` 2m, α P p0, 0.1s, ε P p0, 0.01s, there exists
a family M of m-step revealing POMDPs with |S| ď S,
|O| ď O, |A| “ A, and αmpMq ě α for all M P M, such
that any algorithm A that interacts with the environment
and returns a πout such that V ‹

M ´ VM pπoutq ă ε with
probability at least 3{4 for all M P M, we must have

T ě cm ¨ min

"

pS1.5 _ SAqO1{2Am´1H

α2ε2
,
SAH{2H

ε2

*

,

where cm “ c0{m for some absolute constant c0 ą 0.

The main difference in the multi-step case (Theorem 5)
is in its higher A dependence ΩpAm´1q, which suggests
that the Am dependence in the upper bound (Theorem 3) is
morally unimprovable. Also, the S1.5 scaling in Theorem 5
is higher than Theorem 4, which makes the result qualita-
tively stronger than the single-step case even aside from the
A-dependence. This happens since the hard instance here is
actually a strengthening—instead of a direct adaptation—of

5



Lower Bounds for Learning in Revealing POMDPs

the single-step case, by leveraging the nature of multi-step
revealing; see Section 5.3 for a discussion.

Again, compared with the current best PAC upper bound
S2OAmp1`SA{Oq{pα2ε2q (Theorem 3), the lower bound
in Theorem 5 has an

?
SOA ^ S

?
O gap from the current

best upper bound. We believe that the
?
SO factor in this

gap is unimprovable from the lower bound side under the
current hard instance; see Section 6.3 for a discussion.

?
O dependence Our lower bounds for both the single-

step and the multi-step cases scale as
?
O in its O-

dependence. Such a scaling comes from the complexity
of the uniformity testing task of size OpOq, embedded in the
revealing POMDP hard instances, whose sample complexity
is Θp

?
O{ε2q (Paninski, 2008; Diakonikolas et al., 2014;

Canonne, 2020). The construction of the hard instances will
be described in detail in Section 5.

4. Regret lower bound for multi-step case
We now turn to establishing regret lower bounds. We show
that surprisingly, for m-step revealing POMDPs with any
m ě 2, a non-trivial polynomial regret (neither linear in T
nor exponential in H) has to be at least ΩpT 2{3q. The proof
can be found in Appendix F.

Theorem 6 (ΩpT 2{3q regret lower bound for multi-step
revealing POMDPs). For any m ě 2, O ě S ě 8, A ě 3,
H ě 8 log2 S ` 2m, α P p0, 0.1s, T ě 1, there exists
a family M of m-step revealing POMDPs with |S| ď S,
|O| ď O, |A| “ A, and αmpMq ě α for all M P M, such
that for any algorithm A, it holds that

max
MPM

EA
M rRegrets ě

cm ¨ min

#

ˆ

SO1{2AmH

α2

˙1{3

T 2{3,
a

SAH{2HT, T

+

,

where cm “ c0{m for some absolute constant c0 ą 0.

Currently, the best sublinear regret (polynomial in other
problem parameters) is indeed T 2{3 by a standard explore-
then-exploit style conversion from the PAC result (Chen
et al., 2022a). Theorem 6 rules out possibilities for obtaining
an improvement (e.g. to

?
T ) by showing that T 2{3 is rather

a fundamental limit.

Proof intuition The hard instance used in Theorem 6 is
the same as one of the PAC hard instances (see Section 5).
However, Theorem 6 relies on a key new observation that
leads to the ΩpT 2{3q regret lower bound. Specifically, for
multi-step revealing POMDPs, we can design a hard in-
stance such that the following two kinds of action sequences
(of length m ´ 1) are disjoint:

• Revealing action sequences, which yield observations
that reveal information about the true latent state;

• High-reward action sequences.

The multi-step revealing condition (Definition 1) permits
such constructions. Intuitively, this is since its requirement
that Mh,m P ROmAm´1

ˆS admits a generalized left inverse
is fairly liberal, and can be achieved by carefully designing
the emission-action probabilities over a subset of action se-
quences. In other words, the multi-step revealing condition
allows only some action sequences to be revealing, such as
the ones that receive rather suboptimal rewards.

Such a hard instance forbids an efficient exploration-
exploitation tradeoff, as exploration (taking revealing ac-
tions) and exploitation (taking high-reward actions) cannot
be simultaneously done. Consequently, the best thing to
do is simply an explore-then-exploit type algorithm3 whose
regret is typically ΘpT 2{3q (Lattimore & Szepesvári, 2020).

Difference from the single-step case Theorem 6 demon-
strates a fundamental difference between the multi-step and
single-step settings, as single-step revealing POMDPs are
known to admit rOp

?
T q regret upper bounds (Liu et al.,

2022a). Intuitively, the difference is that in single-step re-
vealing POMDPs, the agent does not need to take specific
actions to acquire information about the latent state, so
that information acquisition (exploration) and taking high-
reward actions (exploitation) can always be achieved simul-
taneously.

Towards
?
T regret under stronger assumptions It is

natural to ask whether the ΩpT 2{3q lower bound can be cir-
cumvented by suitably strengthening the multi-step reveal-
ing condition (yet still weaker than single-step revealing).
Based on our intuitions above, a possible direction is to ad-
ditionally require that all action sequences (of length m´1)
must reveal information about the latent state. We leave this
as a question for future work.

5. Proof overview
We now provide a technical overview of the hard instance
constructions and the lower bound proofs. We present a
simplified version of the multi-step revealing hard instance
in Appendix F that is used for proving both the PAC and
the regret lower bounds (Theorem 5 & 6). For simplicity,
we describe our construction in the 2-step case (m “ 2); a
schematic plot of the resulting POMDP is given in Figure 1.

3Alternatively, a bandit-style algorithm that does not take re-
vealing actions but instead attempts to identify the optimal policy
directly by brute-force trying, which corresponds to the

?
AHT

term in Theorem 6.
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a⋆𝗋𝖾𝗏

Each  
in lock

o𝖽𝗎𝗆

Figure 1. Schematic plot of a simplified version of our hard instance for 2-step revealing POMDPs. The instance consists of three
components: tree, lock, and uniformity testing. In the tree, all transitions are deterministic and fully observable, and the agent fully
controls how to transit from s0 to a leaf node. The tree transits stochastically to the lock if any action is taken at any leaf of the tree, but
there is a unique (unknown) state s‹, step h‹, and action a‹ at which the agent to transit to s‘ with positive probability. In the lock, the
agent cannot observe the latent states ts‘, sau, and they need to enter the correct password a‹ to stay at s‘ to eventually receive a high
reward. The agent may also take the revealing action a‹

rev at any odum to transit to the uniformity testing component, in which they will
receive an observation that slightly reveals whether the previous latent state is s‘ or sa. See Section 5.1 for a more detailed description.

5.1. Construction of hard instance

A main challenge for obtaining our lower bounds—
compared with existing lower bounds in fully observable
settings—is to characterize the difficulty of partial observ-
ability, i.e. the dependence on O and α´1.

2-step revealing combination lock To reflect this diffi-
culty, the basic component we design is a “2-step revealing
combination lock” (cf. the “Lock” part in Figure 1), which
is a modification of the non-revealing combination lock of
Liu et al. (2022a); Jin et al. (2020a). This lock consists of
two hidden states s‘, sa and an (unknown) sequence of
“correct” actions (i.e. the “password”) a‹

h‹`1:H . The only
way to stay at s‘ is to take the correct action a‹

h at each
step h, and only state s‘ at step H gives a high reward.
Therefore, the task of learning the optimal policy is equiv-
alent to identifying the correct action a‹

h at each step. We
make the hidden states s‘, sa non-observable (emit dummy
observations odum), so that a naive strategy for the agent
is to guess the sequence a‹ from scratch, which incurs an
exppΩpHqq sample complexity.

A central ingredient of our design is a unique (known) re-
vealing action a‹

rev at each step that is always distinct from
the correct action. Taking a‹

rev will transit from latent state
s‘ to e‘ which then emits an observation from distribution
µ‘ P ∆pOq, and similarly from sa to ea which then emits
an observation from distribution µa P ∆pOq. After this
(single) emission, the system deterministically transits to an
absorbing terminal state with reward 0.

Uniformity testing We adapt techniques from the uni-
formity testing (Canonne, 2020; 2022) literature to pick
tµ‘, µau that are as hard to distinguish as possible, yet
ensuring that the POMDP still satisfies the α-revealing
condition. Concretely, picking µa “ UnifpOq to be
the uniform distribution over O4, it is known that testing
µa from a nearby µ‘ with DTV pµ‘, µaq — σ requires
Θp

?
O{σ2q samples (Paninski, 2008). Further, the worst-

case prior for µ‘ takes form µ‘ “ UnifpOq ` σµ{O,
where µ „ Unifptp`1,´1q, p´1,`1quO{2q. We adopt
such choices of µa and µ‘ in our hard instance (cf. the
“Uniformity testing” part in Figure 1), which can also ensure
that the POMDP is Θ

`

σ´1
˘

-revealing.

Tree MDP; rewards To additionally exhibit an HSA fac-
tor in the lower bound, we further embed a fully observable
tree MDP (Domingues et al., 2021) before the combination
lock. The tree is a balanced binary tree with S leaf nodes,
with deterministic transitions (so that which leaf node to
arrive at is fully determined by the action sequence) and full
observability. All leaf nodes of the tree will transit to the
combination lock (i.e. one of ts‘, sau). However, there ex-
ists a unique ph‹, s‹,a‹q such that only taking ah‹ “ a‹ at
sh‹ “ s‹ and step h‹ has a probability ε of transiting to s‘;
all other choices at leaf nodes transit to sa with probability
one (cf. the “Tree” part in Figure 1).

We further design the reward function so that the agent must
identify the underlying parameters ph‹, s‹, a‹q correctly to

4Technically, we pick µ‘, µa to be uniformity testing hard
instances on subset of O with size 2K “ ΘpOq. Here we use the
full set O for simplicity of presentation.
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learn a Θpεq near-optimal policy.

5.2. Calculation of lower bound

Base on our construction, to learn an ε near-optimal policy
in this hard instance, the agent has to identify ph‹, s‹, a‹q,
which can only be achieved by trying all “entrances”
ps, a, hq and testing between

H0 : Ppsh`1 “ s‘|sh “ s, ah “ aq “ 0,

H1 : Ppsh`1 “ s‘|sh “ s, ah “ aq “ ε.

for each entrance. As we have illustrated, to achieve this, the
agent has to either (1) guess the password a‹ from scratch
(using Ω

`

AH´h{ε2
˘

samples), or (2) take a‹
rev and perform

uniformity testing using the observations. The latter task
turns out to be equivalent to testing between

H 1
0 “ µa, H 1

1 “ εµ‘ ` p1 ´ εqµa,

where µa is the uniform distribution over 2K “ ΘpOq

elements, and µ‘ is drawn from the worst-case prior for
uniformity testing. Distinguishing between H 1

0 and H 1
1 is a

uniformity testing task with parameter σε, which requires
n ě Ωp

?
O{pεσq2q samples (Paninski, 2008).

With careful information-theoretic arguments, the argu-
ments above will result in a PAC lower bound

ΘpSAHq ˆ Ω
´

min
!

?
O

σ2ε2
,
AΘpHq

ε2

)¯

,

for learning 2-step Θpσ´1q-revealing POMDPs. This rate
is similar as (though slightly worse than) our actual PAC
lower bound (Theorem 5). The same hard instance further
yields a ΩpT 2{3q regret lower bound (though slightly worse
rate than Theorem 6); see a calculation in Appendix F.8.

We remark that the above calculations are heuristic; rig-
orizing these arguments relies on information-theoretic
arguments—in our case Ingster’s method (Ingster & Suslina,
2012) (cf. Appendix D & Lemma E.5 as an example)—for
bounding the divergences between distributions induced by
an arbitrary algorithm on different hard instances.

5.3. Remark on actual constructions

The above 2-step hard instance is a simplification of the
actual ones used in the proofs of Theorem 5 & 6 in sev-
eral aspects. The actual constructions are slightly more
sophisticated, with the following additional ingredients:

• For the m-step case, to obtain a lower bound that scales
with Am, we modify the construction above so that the
agent can take a‹

rev only once per pm ´ 1q-steps, and
replace a‹

rev by a set |Arev| “ ΘpAq of revealing actions,
which collectively lead to an Am´1 ˆ A “ Am factor.

• We further obtain an extra
?
S factor in Theorem 5 by

replacing the single combination lock with ΘpSq parallel
locks that share the same password but differ in their
emission probabilities. We show that learning in this
setting is least as hard as uniformity testing over ΘpSOq

elements, which leads to the extra
?
S factor.

6. Discussions
6.1. Regret for single-step case

As we have discussed, single-step revealing POMDPs can-
not possibly admit a ΩpT 2{3q regret lower bound like the
multi-step case, as a rOp

?
T q upper bound is achievable.

Nevertheless, we obtain a matching Ωp
?
T q regret lower

bound by a direct reduction from the PAC lower bound
(Theorem 4) using Markov’s inequality and standard online-
to-batch conversion, which we state as follows.

Corollary 7 (Regret lower bound for single-step revealing
POMDPs). Under the same setting as Theorem 4, the same
family M of single-step α-revealing POMDPs there satisfy
that for any algorithm A,

max
MPM

EA
M rRegrets

ě c0 ¨ min
!

c

SO1{2AH

α2
T ,

a

SAH{2HT, T
)

,

(5)

where c0 ą 0 is an absolute constant.

To contrast this lower bound, the current best re-
gret upper bound for single-step revealing POMDPs is
rOp
a

S3O3A2p1 ` SA{Oqα´4 ¨ T ˆ polypHqq (Liu et al.,
2022b)5, which is at least a

?
S2O2.5Aα´2-factor larger

than the main term in (5). Here we present a much sharper
regret upper bound, reducing this gap to

?
SO1.5 and im-

portantly settling the dependence on α.

Theorem 8 (Regret upper bound for single-step revealing
POMDPs). There exists algorithms (OMLE, E2D-TA, and
MOPS) that can interact with any single-step α-revealing
POMDP M and achieve regret

Regret ď rO
´

b

S2O2Ap1`SA{OqH3

α2 ¨ T
¯

(6)

with high probability.

We establish Theorem 8 on a broader class of sequential
decision problems termed as strongly B-stable PSRs (cf. Ap-
pendix H.1), which include single-step revealing POMDPs
as a special case. The proof is largely parallel to the analysis
of PAC learning for B-stable PSRs (Chen et al., 2022a), and
can be found in Appendix H.

5Converted from their result whose revealing constant is de-
fined in p2 Ñ 2q-norm.
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6.2. Implications on the DEC approach

The Decision-Estimation Coefficient (DEC) (Foster et al.,
2021) offers another potential approach for establishing sam-
ple complexity lower bounds for any general RL problem.
However, here we demonstrate that for revealing POMDPs,
any lower bound given by the DEC will necessarily be
strictly weaker than our lower bounds.

For example, for PAC learning, the Explorative DEC
(EDEC) of m-step revealing POMDPs is known to admit
an upper bound edecγ ď rOpSAmH2α´2{γq (Chen et al.
(2022a); see also Proposition C.2), and consequently any
PAC lower bound obtained by lower bounding the EDEC
is at most ΩpSAmH2α´2{ε2q (Chen et al., 2022b). Such
a lower bound would be necessarily smaller than our The-
orem 5 by at least a factor of

?
Op1 _

?
S{Aq, and impor-

tantly does not scale polynomially in O.

Our lower bounds have additional interesting implications
on the DEC theory in that, while algorithms such as the E2D
achieve sample complexity upper bounds in terms of the
DEC and log covering number for the model class (Foster
et al., 2021; Chen et al., 2022b), without further assumptions,
this log covering number cannot be replaced by that of either
the value class or the policy class, giving negative answers
to the corresponding questions left open in Foster et al.
(2021) (cf. Appendix I.1 for a detailed discussion).

6.3. Towards closing the gaps

Finally, as an important open question, our lower bounds
still have mild gaps from the current best upper bounds,
importantly in the pS,Oq dependence. For example, for
multi-step revealing POMDPs, the (first term in the) PAC
lower bound ΩpS1.5

?
OAm´1{pα2ε2qq (Theorem 5) still

has a
?
SOA gap from the upper bound (Theorem 3). While

we believe that the A factor is an analysis artifact that may
be removed, the remaining

?
SO factor cannot be obtained

in the lower bound if we stick to the current family of hard
instances—There exists an algorithm specially tailored to
this family that achieves an rOpS1.5

?
OAm{pα2ε2qq upper

bound, by brute-force enumeration in the tree and uniformity
testing in the combination lock (Appendix I.2).

Closing this
?
SO gap may require either stronger lower

bounds with alternative hard instances—e.g. by embedding
other problems in distribution testing (Canonne, 2020)—or
sharper upper bounds, which we leave as future work.

7. Conclusion
This paper establishes sample complexity lower bounds for
partially observable reinforcement learning in the important
tractable class of revealing POMDPs. Our lower bounds
are the first to scale polynomially in the number of states,

actions, observations, and the revealing constant in a mul-
tiplicative fashion, and suggest rather mild gaps between
the lower bounds and current best upper bounds. Our work
provides a strong foundation for future fine-grained studies
and opens up many interesting questions, such as closing
the gaps (from either side), or strengthening the multi-step
revealing assumption meaningfully to allow a

?
T regret.
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A. Technical tools
Lemma A.1. For positive real numbers A,B, T, ε0 ą 0, it holds that

sup
εPp0,ε0s

ˆ

εT ^
A

ε2
^

B

ε

˙

ě A1{3T 2{3 ^
?
BT ^ ε0T.

Proof of Lemma A.1. Suppose that R ą 0 is such that R ě εT ^ A
ε2 ^ B

ε for all ε P p0, ε0s. Then for each ε P p0, ε0s,
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either ε ď R
T , or ε ě

b

A
R , or ε ě B

R . Thus,

p0, ε0s Ď p0,
R

T
s Y r

c

A

R
,`8q Y r

B

R
,`8q.

Therefore, either R
T ě ε0, or

b

A
R ď R

T , or B
R ď R

T . Combining these three cases together, we obtain

R ě ε0T ^ A1{3T 2{3 ^
?
BT.

Lemma A.2. Suppose that pRtqtě1 is a sequence of positive random variables adapted to filtration pFtqtě1 and T is a
stopping time (i.e. for t ě 1, Rt is Ft-measurable and the event tT ď tu P Ft). Then it holds that

E

«

T
ź

t“1

Rt ˆ

T
ź

t“1

ErRt|Ft´1s´1

ff

“ 1.

Equivalently,

E

«

T
ź

t“1

Rt ˆ exp

˜

´

T
ÿ

t“1

logErRt|Ft´1s

¸ff

“ 1.

Lemma A.2 follows immediately from iteratively applications of the tower properties.

Lemma A.3. Suppose that random variable X is σ-sub-Gaussian, i.e. ErexpptXqs ď exp
´

σ2t2

2

¯

for any t P R. Then for
all t ě 0, we have

Erexppt |X|qs ď exp

ˆ

max

"

σ2t2,
4

3
σt

*˙

.

Proof of Lemma A.3. For any x ě 1, we have

Erexppt |X|qs ď Erexppxt |X|qs
1
x ď pErexppxtXqs ` Erexpp´xtXqsq

1
x ď 2

1
x exp

ˆ

σ2t2x

2

˙

“ exp

ˆ

σ2t2x

2
`

log 2

x

˙

.

We consider two cases: 1. If σt ě
?
2 log 2, then by taking x “ 1 in the above inequality, we have Erexppt |X|qs ď

exppσ2t2q. 2. If σt ă
?
2 log 2, then by taking x “

?
2 log 2
σt ą 1 in the above inequality, we have Erexppt |X|qs ď

expp
?
2 log 2σtq ď expp 4

3σtq. Combining these two cases completes the proof.

For probability distributions P and Q on a measurable space pX ,Fq with a base measure µ, we define the TV distance and
the Hellinger distance between P,Q as

DTV pP,Qq “ sup
APF

|PpAq ´ QpAq| “
1

2

ż

X

ˇ

ˇ

ˇ

ˇ

dP
dµ

pxq ´
dQ
dµ

pxq

ˇ

ˇ

ˇ

ˇ

dµpxq,

D2
H pP,Qq “

ż

X

˜

d

dP
dµ

´

d

dQ
dµ

¸2

dµ.

When P ! Q, we can also define the KL-divergence and the χ2-divergence between P,Q as

KLpP } Qq “ EP

„

log
dP
dQ

ȷ

, χ2pP } Qq “ EQ

«

ˆ

dP
dQ

˙2
ff

´ 1.
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Lemma A.4. Suppose P,Q,P1,Q1 are four probability measures on pX ,Fq, and Ω is an event such that P|Ω “ P1|Ω,
Q|Ω “ Q1|Ω. Then it holds that

DTV

`

P1,Q1
˘

ě DTV pP,Qq ´ PpΩcq.

Proof of Lemma A.4. Let µ be a base measure on pX ,Fq such that P,P1,Q,Q1 have densities with respect to µ (for example,
µ “ pP ` P1 ` Q ` Q1q{4). For notation simplicity, we use Ppxq to stand for dPpxq{dµpxq and use dx to stand for µpdxq.
Then we have

2DTV

`

P1,Q1
˘

“

ż

X

ˇ

ˇP1pxq ´ Q1pxq
ˇ

ˇ dx “

ż

Ω

ˇ

ˇP1pxq ´ Q1pxq
ˇ

ˇ dx `

ż

Ωc

ˇ

ˇP1pxq ´ Q1pxq
ˇ

ˇ dx

ě

ż

Ω

ˇ

ˇP1pxq ´ Q1pxq
ˇ

ˇ dx `
ˇ

ˇP1pΩcq ´ Q1pΩcq
ˇ

ˇ

“

ż

Ω

|Ppxq ´ Qpxq| dx ` |PpΩcq ´ QpΩcq|

ě

ż

Ω

|Ppxq ´ Qpxq| dx ` PpΩcq ` QpΩcq ´ 2PpΩcq

ě

ż

Ω

|Ppxq ´ Qpxq| dx `

ż

Ωc

|Ppxq ´ Qpxq| dx ´ 2PpΩcq

“2DTV pP,Qq ´ 2PpΩcq.

This completes the proof.

Lemma A.5 (Divergence inequalities, see e.g. Sason & Verdú (2016)). For two probability measures P,Q on pX ,Fq, it
holds that

2DTV pP,Qq
2

ď KLpP } Qq ď log
`

1 ` χ2pP } Qq
˘

.

Lemma A.6 (Hellinger conditioning lemma, see e.g. Chen et al. (2022a, Lemma A.1)). For any pair of random variables
pX,Y q, it holds that

EX„PX

“

D2
H

`

PY |X ,QY |X

˘‰

ď 2D2
H pPX,Y ,QX,Y q .

B. Basics of predictive state representations and B-stability
The following notations for predictive state representations (PSRs) and the B-stability condition are extracted from (Chen
et al., 2022a).

Sequential decision processes with observations An episodic sequential decision process is specified by a tuple
␣

H,O,A,P, trhuhPrHs

(

, where H P Zě1 is the horizon length; O is the observation space; A is the action space; P
specifies the transition dynamics, such that the initial observation follows o1 „ P0p¨q P ∆pOq, and given the history
τh :“ po1, a1, ¨ ¨ ¨ , oh, ahq up to step h, the observation follows oh`1 „ Pp¨|τhq; rh : OˆA Ñ r0, 1s is the reward function
at h-th step, which we assume is a known deterministic function of poh, ahq.

In an episodic sequential decision process, a policy π “ tπh : pOˆAqh´1ˆO Ñ ∆pAquhPrHs is a collection of H functions.
At step h P rHs, an agent running policy π observes the observation oh and takes action ah „ πhp¨|τh´1, ohq P ∆pAq

based on the history pτh´1, ohq “ po1, a1, . . . , oh´1, ah´1, ohq. The agent then receives their reward rhpoh, ahq, and the
environment generates the next observation oh`1 „ Pp¨|τhq based on τh “ po1, a1, ¨ ¨ ¨ , oh, ahq (if h ă H). The episode
terminates immediately after aH is taken.

For any τh “ po1, a1, ¨ ¨ ¨ , oh, ahq, we write

Ppτhq :“ Ppo1:h|a1:hq “
ź

h1ďh

Ppoh1 |τh1´1q,

πpτhq :“
ź

h1ďh

πh1 pah1 |τh1´1, oh1 q,

Pπpτhq :“ Ppτhq ˆ πpτhq.

Then Pπpτhq is the probability of observing τh (for the first h steps) when executing π.
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PSR, core test sets, and predictive states A test t is a sequence of future observations and actions (i.e. t P T :“
Ť

WPZě1
OW ˆ AW´1). For some test th “ poh:h`W´1, ah:h`W´2q with length W ě 1, we define the probability of test

th being successful conditioned on (reachable) history τh´1 as Ppth|τh´1q :“ Ppoh:h`W´1|τh´1; dopah:h`W´2qq, i.e., the
probability of observing oh:h`W´1 if the agent deterministically executes actions ah:h`W´2, conditioned on history τh´1.
We follow the convention that, if Pπpτh´1q “ 0 for any π, then Ppt|τh´1q “ 0.

Definition B.1 (PSR, core test sets, and predictive states). For any h P rHs, we say a set Uh Ă T is a core test set at step
h if the following holds: For any W P Zě1, any possible future (i.e., test) th “ poh:h`W´1, ah:h`W´2q P OW ˆ AW´1,
there exists a vector bth,h P RUh such that

Ppth|τh´1q “ xbth,h, rPpt|τh´1qstPUh
y, @τh´1 P T h´1 :“ pO ˆ Aqh´1. (7)

We refer to the vector qpτh´1q :“ rPpt|τh´1qstPUh
as the predictive state at step h (with convention qpτh´1q “ 0 if τh´1 is

not reachable), and q0 :“ rPptqstPU1
as the initial predictive state. A (linear) PSR is a sequential decision process equipped

with a core test set tUhuhPrHs.

Define UA,h :“ ta : po,aq P Uh for some o P
Ť

WPN` OW u as the set of “core actions” (possibly including an empty
sequence) in Uh, with UA :“ maxhPrHs |UA,h|. Further define UH`1 :“ todumu for notational simplicity. The core test sets
pUhqhPrHs are assumed to be known and the same within a PSR model class.

Definition B.2 (PSR rank). Given a PSR, its PSR rank is defined as dPSR :“ maxhPrHs rankpDhq, where Dh :“

rqpτhqsτhPT h P RUh`1ˆT h

is the matrix formed by predictive states at step h P rHs.

For POMDP, it is clear that dPSR ď S, regardless of the core test sets.

B-representation (Chen et al., 2022a) introduced the notion of B-representation of PSR, which plays a fundamental role
in their general structural condition and their analysis.

Definition B.3 (B-representation). A B-representation of a PSR with core test set pUhqhPrHs is a set of matrices
tpBhpoh, ahq P RUh`1ˆUhqh,oh,ah

,q0 P RU1u such that for any 0 ď h ď H , policy π, history τh “ po1:h, a1:hq P T h, and
core test th`1 “ poh`1:h`W , ah`1:h`W´1q P Uh`1, the quantity Ppτh, th`1q, i.e. the probability of observing o1:h`W

upon taking actions a1:h`W´1, admits the decomposition

Ppτh, th`1q “ Ppo1:h`W |dopa1:h`W´1qq “ eJ
th`1

¨ Bh:1pτhq ¨ q0, (8)

where eth`1
P RUh`1 is the indicator vector of th`1 P Uh`1, and

Bh:1pτhq :“ Bhpoh, ahqBh´1poh´1, ah´1q ¨ ¨ ¨B1po1, a1q.

Based on the B-representations of PSRs, (Chen et al., 2022a) proposed the following structural condition for sample-efficient
learning in PSRs.

Definition B.4 (B-stability (Chen et al., 2022a)). A PSR is B-stable with parameter ΛB ě 1 (henceforth also ΛB-stable) if it
admits a B-representation such that for all step h P rHs, policy π, and x P RUh , we have

ÿ

τh:H“poh,ah,¨¨¨ ,oH ,aHq

πpτh:Hq ˆ |BHpoH , aHq ¨ ¨ ¨Bhpoh, ahqx| ď ΛB max
␣

}x}˚ , }x}Π1

(

, (9)

where for any vector x “ pxptqqtPUh
, we denote its p1, 2q-norm by

}x}˚
:“

`
ř

aPUA,h

`
ř

o:po,aqPUh
|xpo,aq|

˘2˘1{2
,

and its Π1-norm by
}x}Π1 :“ maxπ̄

ř

tPUh
π̄ptq |xptq| ,

where Uh :“ tt P Uh : Et1 P Uh such that t is a prefix of t1u.
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Equivalently, (9) can be written as }Bx}Π ď ΛB max
␣

}x}˚ , }x}Π1

(

, where for each step h, vector x P RUh , we write

}BH:hx}Π :“ max
π

ÿ

τh:H

πpτh:Hq ˆ |BH:hpτh:Hqx| . (10)

Chen et al. (2022a) showed that B-stability enables sample efficiency of PAC-learning, and we summarize the results in the
following theorem.

Theorem B.5 (PAC upper bound for learning PSRs). Suppose Θ is a PSR class with the same core test sets tUhuhPrHs,
and each θ P Θ admits a B-representation that is ΛB-stable and has PSR rank at most d. Then there exists algorithms
(OMLE/ EXPLORATIVE E2D/ MOPS) that can find an ε-optimal policy with probability at least 1 ´ δ, within

T ď rO
ˆ

Λ2
BdAUAH

2 logpNΘp1{T q{δq

ε2

˙

(11)

episodes of play, where NΘ is the covering number of Θ (cf. Chen et al. (2022a, Definition A.4)).

When Θ is a subclass of POMDPs, we have logNΘp1{T q “ rO
`

HpS2A ` SOq
˘

(Chen et al., 2022a). Therefore, to deduce
Theorem 3 from the above general theorem, it remains to upper bound ΛB for m-step α-revealing POMDPs, which is done
in Appendix C.2.

C. Proofs for Section 2
C.1. Proof of Proposition 2

Fix any POMDP M , and we first show that αm`1pMq ě αmpMq. By the definition of αm`1pMq (Definition 1), it suffices
to show the following result.

Lemma C.1. For any h P rH ´ms, and any choice of generalized left inverse M`
h,m (of Mh,m), the matrix Mh,m`1 admits

a generalized left inverse M`
h,m`1 such that

›

›

›
M`

h,m`1

›

›

›

˚Ñ1
ď

›

›

›
M`

h,m

›

›

›

˚Ñ1
.

The converse part of Proposition 2 can be shown directly by examples. In particular, our construction in Appendix F readily
provides such an example (see Remark F.10).

Proof of Lemma C.1. Fix an arbitrary action ra P A. Consider the matrix F
ra P ROmAm´1

ˆOm`1Am

defined as (the unique
matrix associated with) the following linear operator:

rF
raxspoh:h`m´1,ah:h`m´2q :“

ÿ

oPO
xpoh:h`m´1o,ah:h`m´2raq, for all x P ROm`1Am

.

We first show that F
raMh,m`1 “ Mh,m. Indeed,

rF
raMh,m`1soh:h`m´1ah:h`m´2,s

“
ÿ

oPO
rMh,m`1s

poh:h`m´1oqpah:h`m´2raq,s

“
ÿ

oPO
Ppoh:h`m “ oh:h`m´1o|ah:h`m´1 “ ah:h`m´2ra, sh “ sq

“ Ppoh:h`m´1 “ oh:h`m´1|ah:h`m´2 “ ah:h`m´2, sh “ sq “ rMh,msoh:h`m´1ah:h`m´2,s

for any poh:h`m´1ah:h`m´2, sq, which verifies the claim. Therefore, for any generalized left inverse M`
h,m, we can take

M`
h,m`1 :“ M`

h,mF
ra.

This matrix satisfies M`
h,m`1Mh,m`1Th´1 “ M`

h,mF
raMh,m`1Th´1 “ M`

h,mMh,mTh´1 “ Th´1 and is thus indeed a
generalized left inverse of Mh,m`1. Further,

›

›

›
M`

h,m`1

›

›

›

˚Ñ1
“

›

›

›
M`

h,mF
ra

›

›

›

˚Ñ1
ď

›

›

›
M`

h,m

›

›

›

˚Ñ1
}F

ra}˚Ñ˚ ,
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so it remains to show that }F
ra}˚Ñ˚ ď 1. To see this, note that for any x P ROm`1Am

with }x}
2
˚ ď 1, we have

}F
rax}

2
˚ “

ÿ

ah:h`m´2PAm´1

¨

˝

ÿ

oh:h`m´1POm

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

oPO
xpoh:h`m´1o,ah:h`m´2raq

ˇ

ˇ

ˇ

ˇ

ˇ

˛

‚

2

ď
ÿ

ah:h`m´2PAm´1

¨

˝

ÿ

oh:h`mPOm`1

|xpoh:h`m,ah:h`m´2raq|

˛

‚

2

ď
ÿ

ah:h`m´1PAm

¨

˝

ÿ

oh:h`mPOm`1

|xpoh:h`m,ah:h`m´1q|

˛

‚

2

“ }x}
2
˚ .

This proves }F
ra}˚Ñ˚ ď 1 and thus the desired result.

C.2. Proof of Theorem 3

We will deduce Theorem 3 from the general result (Theorem B.5) of learning PSRs (Chen et al., 2022a). To apply
Theorem B.5, we first invoke the following proposition, which basically states that any m-step α-revealing POMDP is
B-stable with ΛB ď α´1.

Proposition C.2. Any m-step α-revealing POMDP is a α´1-stable PSR with core test set Uh “ pOˆAqmin tm´1,H´hu ˆO,
i.e. it admits a ΛB ď α´1-stable B-representation.

Therefore, for M a class of m-step α-revealing POMDPs, M is also a class of PSRs with common core test sets, such that
each M P M is α´1-stable, has PSR rank at most S and UA “ Am´1. Then, Theorem B.5 implies that an ε-optimal policy
of M can be learned using OMLE, EXPLORATIVE E2D, or MOPS, with sample complexity

rO
ˆ

SAmH2 logpNMp1{T q{δq

α2ε2

˙

,

and we also have logNMp1{T q “ rO
`

HpS2A ` SOq
˘

(Chen et al., 2022a). Combining these facts completes the proof of
Theorem 3.

Proof of Proposition C.2. Chen et al. (2022a, Appendix B.3.3) showed that any m-step α-revealing POMDP M is a α´1-
stable PSR with core test set Uh “ pOˆAqmin tm´1,H´hu ˆO, and explicitly constructed the following B-representation for
it: when h ď H ´ m, set

Bhpo, aq “ Mh`1Th,a diag pOhpo|¨qqM`
h , h P rH ´ ms, (12)

and when h ą H ´ m, take

Bhpoh, ahq “ r1pth “ poh, ah, th`1qqspth`1,thqPUh`1ˆUh
P RUh`1ˆUh , (13)

where 1pth “ poh, ah, th`1qq is 1 if th equals to poh, ah, th`1q, and 0 otherwise.

Then, by Chen et al. (2022a, Lemma B.13), for any 1 ď h ď H , x P R|Uh|, it holds that

}BH:hx}Π “ max
π

ÿ

τh:H

}BHpoH , aHq ¨ ¨ ¨Bhpoh, ahqx}1 ˆ πpτh:Hq ď max
␣
›

›M`
h x

›

›

1
, }x}Π1

(

ď α´1 max
␣

}x}˚ , }x}Π1

(

.

Therefore, B-representation provided in (12) and (13) is indeed α´1-stable, and hence completes the proof.

D. Basics of Ingster’s method
In this section, we first introduce the basic notations frequently used in our analysis of hard instances, and then state Ingster’s
method for proving information-theoretic lower bounds (Ingster & Suslina, 2012). Recall that we have introduced the
formulation of sequential decision process in Appendix B.
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Algorithms for sequential decision processes An algorithm A for sequential decision processes (with a fixed number
of episodes T ) is specified by a collection of HT functions A “ tπA

t,huhPrHs,tPrT s, where πA
t,h maps the tuple of all past

histories and the current observation pτ p1q, ¨ ¨ ¨ , τ pt´1q, τ
ptq
h´1, o

ptq
h q to a distribution over actions ∆pAq from which we

sample the next action a
ptq
h „ πA

t,hp¨|τ p1:t´1q, τ
ptq
h´1, o

ptq
h q. At the end of interaction, the algorithm output a πout P Π by

taking πout “ πA
outputpτ

1:T q.

For any algorithm A (with a fixed number of episodes T ), we write PA
M to be the law of pτ p1q, τ p2q, ¨ ¨ ¨ , τ pT qq under the

model M and the algorithm A. We remark that although our formulation seems only to allow deterministic algorithms
where each πA

t,h is a deterministic mapping to ∆pAq, our formulation indeed allows randomized algorithms: any randomized
algorithm can be written as a mixture of deterministic algorithm Bpωq parameterized by ω which satisfies a distribution
ω „ ζ; furthermore, for any Bpωq and ζ, there exists a deterministic algorithm A such that the marginal laws of τ1:T

induced by B and A are the same, i.e., Eω„ζrPBpωq

M p ¨ qs “ PA
M p ¨ q.

Algorithms with a random stopping time Our analysis requires us to consider algorithms with a random stopping time.
An algorithm A with a random stopping time (with at most T interaction) is specified by a collection of HT functions
tπA

t,huhPrHs,tPrT s along with an exit criterion exit, where πA
t,h is the strategy at t-th episode and h-th step, and exit is a

deterministic function such that

exitpτ p1q, ¨ ¨ ¨ , τ ptqq P tTRUE,FALSEu.

Once exitpτ p1q, ¨ ¨ ¨ , τ pTqq “ TRUE or T “ T , the algorithm A terminates at the end of the T-th episode. The random
variable T (induced by the exit criterion exit) is clearly a stopping time. We write PA

M to be the law of pτ p1q, τ p2q, ¨ ¨ ¨ , τ pTqq

under the model M and the algorithm A.

The following lemma and discussions hold for algorithms with or without a random stopping time.

Lemma D.1 (Ingster’s method). For a family of sequential decision processes pPM qMPM, a distribution ζ over M, a
reference model 0 P M, and an algorithm A that interacts with the environment for T episodes (where T is stopping time),
it holds that

1 ` χ2pEM„ζ

“

PA
M

‰

} PA
0 q “ EM,M 1„iidζEτp1q,¨¨¨ ,τpTq„PA

0

«

T
ź

t“1

PM pτ ptqqPM 1 pτ ptqq

P0pτ ptqq2

ff

.

Proof. We only need to consider the case A has a random stopping time T. By our definition, PA
M is supported on the

following set:

Ω0 :“
!

ω “ τ p1:Tq : @t ă T, exitpτ p1:tqq “ FALSE, and either T “ T or exitpτ p1:Tqq “ TRUE
)

.

For any pτ p1q, ¨ ¨ ¨ , τ pTqq P Ω0, we have

PA
M pτ p1q, ¨ ¨ ¨ , τ pTqq “

T
ź

t“1

PA
M pτ ptq|τ p1:t´1qq

“

T
ź

t“1

H
ź

h“1

PM po
ptq
h |τ

ptq
1:hq ˆ πA

t,hpa
ptq
h |τ p1:t´1q, τ

ptq
1:h, o

ptq
h q

“

T
ź

t“1

PM pτ ptqq ˆ

T
ź

t“1

H
ź

h“1

πA
t,hpa

ptq
h |τ p1:t´1q, τ

ptq
1:h, o

ptq
h q.

(14)

Therefore, by definition of χ2 divergence, we have

1 ` χ2pEM„ζ

“

PA
M

‰

} PA
0 q “ Eτp1q,¨¨¨ ,τpTq„PA

0

»

–

˜

EM„ζ

“

PA
M pτ p1q, ¨ ¨ ¨ , τ pTqq

‰

PA
0 pτ p1q, ¨ ¨ ¨ , τ pTqq

¸2
fi

fl
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“ EM,M 1„ζEτp1q,¨¨¨ ,τpTq„PA
0

„

PA
M pτ p1q, ¨ ¨ ¨ , τ pTqqPA

M 1 pτ p1q, ¨ ¨ ¨ , τ pTqq

PA
0 pτ p1q, ¨ ¨ ¨ , τ pTqq2

ȷ

“ EM,M 1„ζEτp1q,¨¨¨ ,τpTq„PA
0

«

T
ź

t“1

PM pτ ptqqPM 1 pτ ptqq

P0pτ ptqq2

ff

,

where the last equality is due to (14). This proves the lemma.

Therefore, in order to upper bound χ2pEM„ζ

“

PA
M

‰

} PA
0 q, we just need to upper bound the quantity

Eτp1q,¨¨¨ ,τpTq„PA
0

«

T
ź

t“1

PM pτ ptqqPM 1 pτ ptqq

P0pτ ptqq2

ff

“ Eτp1q,¨¨¨ ,τpTq„PA
0

«

T
ź

t“1

H
ź

h“1

PM po
ptq
h |τ

ptq
h´1qPM 1 po

ptq
h |τ

ptq
h´1q

P0po
ptq
h |τ

ptq
h´1q2

ff

. (15)

At this aim, we will leverage the following fact (which is due to Lemma A.2 and (15)):

Eτp1q,¨¨¨ ,τpTq„PA
0

«

T
ź

t“1

PM pτ ptqqPM 1 pτ ptqq

P0pτ ptqq2
¨ exp

˜

´

T
ÿ

t“1

H
ÿ

h“1

log IM,M 1 pτ
ptq
h´1q

¸ff

“ 1, (16)

where IM,M 1 pτh´1q is defined as

IM,M 1 pτh´1q :“ E0

„

PM poh|τh´1qPM 1 poh|τh´1q

P0poh|τh´1q2

ˇ

ˇ

ˇ

ˇ

τh´1

ȷ

. (17)

Early stopped algorithm Consider an algorithm A that interacts with the environment for a fixed number of episodes T
and consider an exit criterion exit. We define the early stopped algorithm Apexitq, which executes the algorithm A until
exit “ TRUE is satisfied (or T is reached). Clearly, Apexitq is an algorithm with a random stopping time. We have the
following lemma regarding how much the TV distance DTV

`

EM„ζ

“

PA
M

‰

,PA
0

˘

is perturbed after changing the algorithm A
to its stopped version Apexitq.

Lemma D.2. It holds that

DTV

´

EM„ζ

”

PApexitq
M

ı

,PApexitq
0

¯

ě DTV

`

EM„ζ

“

PA
M

‰

,PA
0

˘

´ PA
0 pDt ă T, exitpτ p1:tqq “ TRUEq.

Proof. We consider the event Ω “ tω “ τ p1:T q : @t ă T, exitpτ p1:tqq “ FALSEu. To prove this lemma, we only need to
verify that PA

M |Ω “ PApexitq
M |Ω and then apply Lemma A.4.

Indeed, for ω “ τ p1:T q P Ω, we have that for all t ă T , exitpτ p1:tqq “ FALSE. Then, by (14) we have

PApexitq
M pτ p1:T qq “

T
ź

t“1

PM pτ ptqq ˆ

T
ź

t“1

H
ź

h“1

πA
t,hpa

ptq
h |τ p1:t´1q, τ

ptq
1:h, o

ptq
h q “ PA

M pτ p1:T qq,

and thus PApexitq
M pωq “ PA

M pωq for any ω P Ω. Applying Lemma A.4 proves the lemma.

E. Proof of Theorem 4
We first construct a family of hard instances in Appendix E.1. We state the PAC lower bound of this family of hard instances
in Proposition E.1. Theorem 4 then follows from Proposition E.1 as a direct corollary.

E.1. Construction of hard instances and proof of Theorem 4

We consider the following family of single-step revealing POMDPs M that admits a tuple of hyperparameters pε, σ, n,K,Hq.
All POMDPs in M have the same horizon length H , the state space S, the action space A, and the observation space O,
defined as follows.

• The state space S “ Stree

Ů

ts‘, sau, where Stree is a binary tree with level n (so that |Stree| “ 2n ´ 1). Let s0 be the
root of Stree, and Sleaf be the set of leaves of Stree, with |Sleaf | “ 2n´1.
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• The observation space O “ Stree

Ů
␣

o`
1 , o

´
1 , ¨ ¨ ¨ , o`

K , o´
K

(
Ů

tgood, badu. Note that here we slightly abuse notations,
reusing Stree to denote both a set of states and the corresponding set of observations, in the sense that each state
s P Stree Ă S corresponds to a unique observation os P Stree Ă O, which we also denote as s when it is clear from the
context.

• The action space A “ t0, 1, ¨ ¨ ¨ , A ´ 1u.

Model parameters Each non-null POMDP model M “ Mθ,µ P MztM0u is specified by two parameters pθ, µq. Here
µ P t´1,`1u

K , and θ “ ph‹, s‹, a‹,a‹q, where

• s‹ P Sleaf , a‹ P Ac :“ t1, ¨ ¨ ¨ , A ´ 1u.

• h‹ P tn ` 1, ¨ ¨ ¨ , H ´ 1u.

• a‹ “ pa‹
h‹`1, . . . ,a

‹
H´1q P AH´h‹

´1 is an action sequence indexed by h‹ ` 1, ¨ ¨ ¨ , H ´ 1.

For any POMDP Mθ,µ, its emmision and transition dynamics Pθ,µ :“ PMθ,µ
are defined as follows.

Emission dynamics

• At states s P Stree, the agent always receives (the unique observation corresponding to) s itself as the observation.

• At state s‘ and steps h ă H , the emission dynamics is given by

Oh;µpo`
i |s‘q “

1 ` σµi

2K
, Oh;µpo´

i |s‘q “
1 ´ σµi

2K
, @i P rKs.

• At state sa and steps h ă H , the observation is uniformly drawn from Oo :“
␣

o`
1 , o

´
1 , ¨ ¨ ¨ , o`

K , o´
K

(

:

Ohpo`
i |saq “ Ohpo´

i |saq “
1

2K
, @i P rKs.

Here we omit the subscript µ to emphasize that the dynamic does not depend on µ.

• At step H , the emission dynamics at ts‘, sau is given by

OHpgood|s‘q “
3

4
, OHpbad|s‘q “

1

4
,

OHpgood|saq “
1

4
, OHpbad|saq “

3

4
.

Transition dynamics In each episode, the agent always begins at s0.

• At any node s P StreezSleaf , there are three types of available actions: wait “ 0, left “ 1 and right “ 2, such that the
agent can take wait to stay at s, left to transit to the left child of s, and right to transit to the right child of s.6

• At any s P Sleaf , the agent can take action wait “ 0 to stay at s (i.e. Pps|s,waitq “ 1); otherwise, for s P Sleaf ,
h P rH ´ 1s, a ‰ wait (i.e. a P Ac),

Ph;θps‘|s, aq “ ε ¨ 1ph “ h‹, s “ s‹, a “ a‹q,

Ph;θpsa|s, aq “ 1 ´ ε ¨ 1ph “ h‹, s “ s‹, a “ a‹q,

where we use subscript θ to emphasize the dependence of the transition probability Ph;θ on θ. In words, at step h, state
s P Sleaf , and after a P Ac is taken, any leaf node will transit to one of ts‘, sau, and only taking a‹ at state s‹ and step
h‹ can transit to the state s‘ with a small probability ε; in any other case, the system will transit to the state sa with
probability one.

• At state s‘, we set

Ph;θps‘|s‘, aq “

#

1, a “ a‹
h,

0, a ‰ a‹
h,

, Ph;θpsa|s‘, aq “

#

0, a “ a‹
h,

1, a ‰ a‹
h.

• The state sa is an absorbing state, i.e. Phpsa|sa, aq “ 1 for all a P A.

6For action a P t3, ¨ ¨ ¨ , A ´ 1u, a has the same effect as wait.
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Reward The reward function is known (and only depends on the observation): at the first H ´ 1 steps, no reward is given;
at step H , we set rHpgoodq “ 1, rHpbadq “ 0, rHps0q “ p1 ` εq{4, and rHpoq “ 0 for any other o P O.

Reference model We use M0 (or simply 0) to refer to the null model (reference model). The null model M0 has transition
and emission the same as any non-null model, except that the agent always arrives at sa by taking any action a ‰ wait
at s P Sleaf and h P rH ´ 1s (i.e., Ph;M0

psa|s, aq “ 1 for any s P Sleaf , a P Ac, h P rH ´ 1s). In this model, s‘ is not
reachable, and hence we do not need to specify the emission dynamics at s‘.

We present the PAC-learning sample complexity lower bound of the above POMDP model class M in the following
proposition, which we prove in Appendix E.2.

Proposition E.1. For given ε P p0, 0.1s, σ P p0, 1
2H s, n ě 1, K ě 1, H ě 4n, the model class M we construct above

satisfies the following properties:

1. |S| “ 2n ` 1, |O| “ 2n ` 2K ` 1, |A| “ A.

2. For each M P M (including the null model M0), M is single-step revealing with α1pMq´1 ď 1 ` 2
σ .

3. log |M| ď K log 2 ` H logA ` logpSAHq.

4. Suppose algorithm A interacts with the environment for T episodes and returns πout such that

PA
M

´

V ‹
M ´ VM pπoutq ă

ε

8

¯

ě
3

4

for any M P M. Then it must hold that

T ě
1

20000
min

"

|Sleaf |K
1{2AH

σ2ε2
,

|Sleaf |A
H{2H

ε2

*

,

where we recall that |Sleaf | “ 2n´1.

Proof of Theorem 4 In Proposition E.1, suitably choosing σ, n,K, and choosing a rescaled ε, we obtain Theorem 4.
More specifically, we can take n ě 1 to be the largest integer such that 2n ď min tS ´ 1, pO ´ 1q{2u, and take
K “

X

O´2n´1
2

\

ě O´1
4 , ε1 “ ε{8, and σ “ 2

α´1´1 ď 1
2H . Applying Proposition E.1 to the parameters pε1, σ, n,K,Hq

completes the proof of Theorem 4.

E.2. Proof of Proposition E.1

All propositions and lemmas stated in this section are proved in Appendix E.3-E.6.

Claim 1 follows directly by the counting the number of states, observations, and actions in construction of M. Claim 3
follows as we have |M| “ |tph‹, s‹, a‹,a‹qu| ˆ |t˘1uK | ` 1 ď HSA ˆ AH ˆ 2K . Taking logarithm yields the claim.

Claim 2 follows directly by the following proposition with proof in Appendix E.3.

Proposition E.2. For any M P M, M is single-step revealing with α1pMq´1 ď 2
σ ` 1.

We now prove Claim 4 (the sample complexity lower bound). We begin by using the following lemma to relate the PAC
learning problem to a testing problem, using the structure of M. Intuitively, the lemma states that a near-optimal policy of
any M ‰ 0 cannot “stay” at s0, whereas a near-optimal policy of model M “ 0 has to “stay” at s0. The proof of the lemma
is contained in Appendix E.4.

Lemma E.3 (Relating policy suboptimality to the probability of staying). For any M P M such that M ‰ 0 and any policy
π, it holds that

V ‹
M ´ VM pπq ě

ε

4
Pπ
M poH “ s0q. (18)

On the other hand, for the reference model 0 and any policy π, we have

V ‹
0 ´ V0pπq ě

ε

4
Pπ
0 poH ‰ s0q. (19)
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Notice that the probability Pπ
M poH “ s0q actually does not depend on the model M P M, i.e.

Pπ
M poH “ s0q “ Pπ

0 poH “ s0q.

This is because once the agent leaves s0, it will never come back (for any model M P M). In the following, we define
wpπq :“ Pπ

0 poH “ s0q. Note that πout is the output policy that depends on the observation histories τ1:T , and thus wpπoutq

is a deterministic function of the observation histories τ1:T .

By Lemma E.3 and our assumption that PA
M

`

V ‹
M ´ VM pπoutq ă ε

8

˘

ě 3
4 for any M P M, we have

PA
0

ˆ

1 ´ wpπoutq ă
1

2

˙

ě
3

4
, while PA

M

ˆ

wpπoutq ă
1

2

˙

ě
3

4
, @M ‰ 0.

Now we consider µ „ Unifpt˘1uKq to be the uniform prior over the parameter µ. For any fixed θ, we consider averaging
the above quantity over the non-null models M “ pθ, µq when µ „ Unifpt˘1uKq,

Eµ„unif

“

PA
θ,µ

‰

ˆ

wpπoutq ă
1

2

˙

“ Eµ„unif

„

PA
θ,µ

ˆ

wpπoutq ă
1

2

˙ȷ

ě
3

4
.

However, we also have

PA
0

ˆ

wpπoutq ă
1

2

˙

“ 1 ´ PA
0

ˆ

wpπoutq ě
1

2

˙

ď 1 ´ PA
0

ˆ

wpπoutq ą
1

2

˙

ď
1

4
.

Thus by the definition of TV distance we must have

DTV

`

PA
0 ,Eµ„unif

“

PA
θ,µ

‰˘

ě

ˇ

ˇ

ˇ

ˇ

PA
0

ˆ

wpπoutq ă
1

2

˙

´ Eµ„unif

“

PA
θ,µ

‰

ˆ

wpπoutq ă
1

2

˙
ˇ

ˇ

ˇ

ˇ

ě
1

2
. (20)

As the core of the proof, we now use (20) to derive our lower bound on T . Recall that PA
M is the law of pτ p1q, τ p2q, ¨ ¨ ¨ , τ pTqq

induced by letting A interact with the model M . For any event E Ď pO ˆ AqH , we denote the visitation count of E as

NpEq :“
T
ÿ

t“1

1pτ ptq P Eq.

Since NpEq is a function of τ p1:T q, we can talk about its expectation under the distribution PA
M for any M P M. We present

the following lemma on the lower bound of the expected visitation count of some good events, whose proofs are contained
in Appendix E.5.

Lemma E.4. Fix a θ “ ph‹, s‹, a‹,a‹q. We consider events

Eθ
rev,h :“

␣

oh‹ “ s‹, ah‹:h “ pa‹,a‹
h‹`1:hq

(

, @h P th‹ ` 1, . . . ,H ´ 2u,

Eθ
correct :“ toh‹ “ s‹, ah‹:H´1 “ pa‹,a‹qu.

Then for any algorithm A with δ :“ DTV

´

PA
0 ,Eµ„unif

”

PA
θ,µ

ı¯

ą 0, we have

either
H´2
ÿ

h“h‹

EA
0

“

NpEθ
rev,hq

‰

ě
δ3

?
K

54ε2σ2
´

Hδ

6
, or EA

0

“

NpEθ
correctq

‰

ě
δ3

54ε2
´

δ

6
.

Applying Lemma E.4 for any parameter tuple θ “ ph‹, s‹, a‹,a‹q with δ “ 1
2 , we obtain

either
H´2
ÿ

h“h‹

EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

q

rev,h

¯ı

ě

?
K

1000ε2σ2
, or EA

0

”

N
´

E
ph‹,s‹,a‹,a‹

q
correct

¯ı

ě
1

1000ε2
, (21)

by our choice that ε P p0, 0.1s and σ P p0, 1
2H s.
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Fix a tuple ph‹, s‹, a‹q with s‹ P Sleaf , a
‹ P Ac, h

‹ P rn ` 1, H
2 s. By (21), we know that for all a P AH´h‹

´1, it holds that

H´2
ÿ

h“h‹

EA
0

”

N
´

E
ph‹,s‹,a‹,aq

rev,h

¯ı

` AH´h‹
´1 ¨ EA

0

”

N
´

E
ph‹,s‹,a‹,aq
correct

¯ı

ě
1

1000
min

# ?
K

ε2σ2
,
AH{2´1

ε2

+

“: ω. (22)

Notice that by definition,
ÿ

aPAH´h‹´1

EA
0

”

N
´

E
ph‹,s‹,a‹,aq
correct

¯ı

“
ÿ

aPAH´h‹´1

EA
0 rNpoh‹ “ s‹, ah‹:H´1 “ pa‹,aqqs

“EA
0

«

ÿ

aPAH´h‹´1

Npoh‹ “ s‹, ah‹:H´1 “ pa‹,aqq

ff

“EA
0 rNpoh‹ “ s‹, ah‹ “ a‹qs,

and similarly for each h P rh‹, H ´ 2s, it holds
ÿ

aPAH´h‹´1

EA
0

”

N
´

E
ph‹,s‹,a‹,aq

rev,h

¯ı

“
ÿ

aPAH´h‹´1

EA
0 rNpoh‹ “ s‹, ah‹:h “ pa‹,ah‹`1:hqqs

“
ÿ

ah‹`1:hPAh´h‹

EA
0 rNpoh‹ “ s‹, ah‹:h “ pa‹,ah‹`1:hqqs ¨

ÿ

ah`1:H´1PAH´h´1

1

“EA
0 rNpoh‹ “ s‹, ah‹ “ a‹qs ¨ AH´h´1.

Therefore, summing the bound (22) over all a P AH´h‹
´1, we get

AH´h‹
´1ω “

ÿ

aPAH´h‹´1

ω ď
ÿ

aPAH´h‹´1

«

H´2
ÿ

h“h‹

EA
0

”

N
´

E
ph‹,s‹,a‹,aq

rev,h

¯ı

` AH´h‹
´1 ¨ EA

0

”

N
´

E
ph‹,s‹,a‹,aq
correct

¯ı

ff

“

˜

H´2
ÿ

h“h‹

AH´h´1 ` AH´h‹
´1

¸

EA
0 rNpoh‹ “ s‹, ah‹ “ a‹qs

ď3AH´h‹
´1EA

0 rNpoh‹ “ s‹, ah‹ “ a‹qs,

where the last inequality is due to
řH´2

h“h‹ AH´h´1 “ AH´h
´A

A´1 ď 2AH´h´1 for A ě 3.

Therefore, we have shown that EA
0 rNpoh‹ “ s‹, ah‹ “ a‹qs ě ω

3 for each s‹ P Sleaf , a
‹ P Ac, h

‹ P rn ` 1, H
2 s. Taking

summation over all such ph‹, s‹, a‹q, we derive that

|Sleaf | |Ac|

ˆZ

H

2

^

´ n

˙

¨
ω

3
ď

ÿ

s‹PSleaf

ÿ

a‹PAc

tH{2u´1
ÿ

h‹“n`1

EA
0 rNpoh‹ “ s‹, ah‹ “ a‹qs ď T,

where the second inequality is because events toh‹ “ s‹, ah‹ “ a‹u are disjoint. Plugging in |Ac| “ A ´ 1, H ě 4n and
the definition of ω in (22) completes the proof of Proposition E.1.

E.3. Proof of Proposition E.2

We first consider the case M “ Mθ,µ. At the step h ă H , the emission matrix Oh;µ can be written as (up to some
permutation of rows and columns)

Oh;µ “

»

–

12K`σrµ
2K

12K

2K 02KˆStree

0Streeˆ1 0Streeˆ1 IStreeˆStree

02ˆ1 02ˆ1 02ˆStree

fi

fl P ROˆS ,

where rµ “ rµ;´µs P t´1, 1u
2K , and 1 “ 12K is the column vector in R2K with all entries being one. A simple calculation

shows that
„

1 ` σrµ

2K
,
1

2K

ȷ:J

“

„

1

σ
rµ,1 ´

1

σ
rµ

ȷ

,
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whose 1-norm is bounded by 2
σ ` 1. Hence

›

›

›
O:

h;µ

›

›

›

1
ď 2

σ ` 1.

Similarly, for h “ H , OH has the form (up to some permutation of rows and columns)

OH “

»

—

—

–

3
4

1
4 01ˆStree

1
4

3
4 01ˆStree

0Streeˆ1 0Streeˆ1 IStreeˆStree

02Kˆ1 02Kˆ1 02KˆStree

fi

ffi

ffi

fl

P ROˆS .

Notice that
„

3
4

1
4

1
4

3
4

ȷ´1

“

„

3
2 ´ 1

2
´ 1

2
3
2

ȷ

, and hence
›

›

›
O:

H

›

›

›

1
ď 2.

Finally, by Definition 1 and noting that Mh,1 “ Oh and taking the generalized left inverse M`
h,1 “ O:

h to be the pseudo-
inverse for all h P rHs, this gives pα1pMqq´1 ď max

␣

1
σ ` 2, 2

(

“ 2
σ ` 1.

We next consider the case M “ 0. In this case, s‘ is not reachable, and hence for each step h, we can consider the
generalized left inverse of Oh given by

O`
h :“ r1pOhpo|sq ą 0qsps,oq P RSˆO,

with the convention that 1pOhpo|s‘q ą 0q “ 0 for all o P O as Ohp¨|s‘q is not defined. Then it is direct to verify
O`

hOhes “ es for all state s ‰ s‘ (because the supports supppOhp¨|sqq are disjoint by our construction). It is clear that
›

›O`
h

›

›

1Ñ1
ď 1, and hence pα1pMqq´1 ď 1, which completes the proof.

E.4. Proof of Lemma E.3

By definition, for any model M P M and policy π,

VM pπq “ Eπ
M rrHpoHqs “

1 ` ε

4
Pπ
M poH “ s0q ` Pπ

M poH “ goodq

“
1 ` ε

4
Pπ
M poH “ s0q `

3

4
Pπ
M psH “ s‘q `

1

4
Pπ
M psH “ saq,

where we have used the following equality due to our construction:

Pπ
M poH “ goodq “PM poH “ good|sH “ s‘q ¨ Pπ

M psH “ s‘q ` PM poH “ good|sH “ saq ¨ Pπ
M psH “ saq

“
3

4
Pπ
M psH “ s‘q `

1

4
Pπ
M psH “ saq.

We next prove the result for the case M “ 0 and M ‰ 0 separately.

Case 1: M “ 0. In this case, s‘ is not reachable, and hence we have V ‹
0 “ maxπ V0pπq “ max

␣

1`ε
4 , 1

4

(

“ 1`ε
4 , which is

attained by staying at s0. Thus, for any policy π,

V ‹
0 ´ V0pπq “

1 ` ε

4
´

1 ` ε

4
Pπ
0 poH “ s0q ´

1

4
Pπ
0 psH “ saq

“
1 ` ε

4
Pπ
0 poH ‰ s0q ´

1

4
Pπ
0 psH “ saq

“
1

4
pPπ

0 poH ‰ s0q ´ Pπ
0 psH “ saqq `

ε

4
Pπ
0 poH ‰ s0q

ě
ε

4
Pπ
0 poH ‰ s0q.

Case 2: M “ pθ, µq for some θ “ ph‹, s‹, a‹,a‹q. In this case, s‘ is reachable only when oh‹ “ s‹ and ah‹ “ a‹, and

Pπ
M psH “ s‘q “ Pπ

M psH “ s‘|oh‹ “ s‹, ah‹ “ a‹qPπ
M poh‹ “ s‹, ah‹ “ a‹q ď εPπ

M poh‹ “ s‹, ah‹ “ a‹q ď ε,

where the equality can be attained when π is any deterministic policy that ensure oh‹ “ s‹, ah‹ “ a‹, ah‹`1:H´1 “ a‹.
Thus, in this case V ‹

M “ maxπ VM pπq “ max
␣

1`ε
4 , 3ε

4 ` 1´ε
4

(

“ 1`2ε
4 , and

V ‹
M ´ VM pπq “

1 ` 2ε

4
´

1 ` ε

4
Pπ
M poH “ s0q ´

3

4
Pπ
M psH “ s‘q ´

1

4
Pπ
M psH “ saq
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“
ε

4
Pπ
M poH “ s0q `

1 ` 2ε

4
Pπ
M poH ‰ s0q ´

3

4
Pπ
M psH “ s‘q ´

1

4
Pπ
M psH “ saq

ě
ε

4
Pπ
M poH “ s0q `

ε

2
Pπ
M poH ‰ s0q ´

1

2
Pπ
M psH “ s‘q

ě
ε

4
Pπ
M poH “ s0q,

where the first inequality is because Pπ
M psH “ s‘q ` Pπ

M psH “ saq ď Pπ
M poH ‰ s0q by the inclusion of events.

E.5. Proof of Lemma E.4

We first prove the following version of Lemma E.4 with an additional condition that the visitation counts are almost surely
bounded under PA

0 , and then prove Lemma E.4 by reducing to this case using a truncation argument.

Lemma E.5. Suppose that algorithm A (with possibly random stopping time T) satisfies
ř

h NpEθ
rev,hq ď No and

NpEθ
correctq ď Nr almost surely under PA

0 , for some fixed No, Nr. Then

either No ě
δ2

?
K

4ε2σ2
, or Nr ě

δ2

4ε2
,

where δ “ DTV

´

PA
0 ,Eµ„unif

”

PA
θ,µ

ı¯

.

Proof of Lemma E.5. By Lemma D.1, we have

1 ` χ2pEµ„unif

“

PA
θ,µ

‰

} PA
0 q “ Eµ,µ1„unifEτp1q,¨¨¨ ,τpTq„PA

0

«

T
ź

t“1

Pθ,µpτ ptqqPθ,µ1 pτ ptqq

P0pτ ptqq2

ff

.

To upper bound the above quantity, we invoke the following lemma, which serves a key step for bounding the above
“χ2-inner product” (Canonne, 2022, Section 3.1) between Pθ,µ{P0 and Pθ,µ1 {P0 (proof in Appendix E.6).

Lemma E.6 (Bound on the χ2-inner product). Under the conditions of Lemma E.5 (for a fixed θ), it holds that for any
µ, µ1 P t´1, 1u

K ,

EA
0

«

T
ź

t“1

Pθ,µpτ ptqqPθ,µ1 pτ ptqq

P0pτ ptqq2

ff

ď exp

ˆ

No ¨
Cσ2ε2

K

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ `
4

3
Cε2Nr

˙

. (23)

where C :“ p1 ` σq2H ď e as σ ď 1
2H .

Now we assume that Lemma E.6 holds and continue the proof of Lemma E.5. Taking expectation of (23) over µ, µ1 „

Unifpt´1,`1u
K

q, we obtain

1 ` χ2pEµ„unif

“

PA
θ,µ

‰

} PA
0 q “Eµ,µ1„unifEτp1q,¨¨¨ ,τpTq„PA

0

«

T
ź

t“1

Pθ,µpτ ptqqPθ,µ1 pτ ptqq

P0pτ ptqq2

ff

ďEµ,µ1„unif

„

exp

ˆ

No ¨
Cσ2ε2

K

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ `
4

3
Cε2Nr

˙ȷ

.

Notice that µi, µ
1
i are i.i.d. Unifpt˘1uq, and hence µ1µ

1
1, ¨ ¨ ¨ , µKµ1

K are i.i.d. Unifpt˘1uq. Then by Hoeffding’s lemma, it

holds that Eµ,µ1„unif

”

exp
´

x
řK

i“1 µiµ
1
i

¯ı

ď exp
`

Kx2{2
˘

for all x P R, and thus by Lemma A.3, we have

Eµ,µ1„unif

„

exp

ˆ

CNoσ
2ε2

K

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ

˙ȷ

ď exp

˜

max

#

C2σ4ε4N
2

o

K
,
4

3

Cσ2ε2No
?
K

+¸

.

Therefore, combining the above inequalities with Lemma A.5, we obtain

2δ2 “ 2DTV

`

Eµ„unif

“

PA
θ,µ

‰

,PA
0

˘2
ď log

`

1 ` χ2pEµ„unif

“

PA
θ,µ

‰

} PA
0 q
˘

ď max

#

4

3

NoCσ2ε2
?
K

,
N

2

oC
2σ4ε4

K

+

`
4

3
Cε2Nr.
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Then, we either have Nr ě 3δ2

4Cε2 , or it holds

max

#

4

3

NoCσ2ε2
?
K

,
N

2

oC
2σ4ε4

K

+

ě δ2,

which implies that NoCσ2ε2?
K

ě min
␣

4
3 ,

3
4δ

2
(

“ 3
4δ

2 (as δ ď 1). Using the fact that C ď e completes the proof of
Lemma E.5.

Proof of Lemma E.4. We perform a truncation type argument to reduce Lemma E.4 to Lemma E.5. Let us take No “
Q

6δ´1EA
0

”

řH´2
h“h‹ NpEθ

rev,hq

ıU

and Nr “
P

6δ´1EA
0 NpEθ

correctq
T

. By Markov’s inequality, we have

PA
0

˜

H´2
ÿ

h“h‹

NpEθ
rev,hq ě No

¸

ď
δ

6
, PA

0

`

NpEθ
correctq ě Nr

˘

ď
δ

6
.

Therefore, we can consider the following exit criterion exit for the algorithm A:

exitpτ p1:T 1
qq “ TRUE iff

T 1
ÿ

t“1

H´2
ÿ

h“h‹

I
´

τ ptq P Eθ
rev,h

¯

ě No or
T 1
ÿ

t“1

I
´

τ ptq P Eθ
correct

¯

ě Nr.

The criterion exit induces a stopping time Texit, and we have

PA
0 pDt ă T, exitpτ p1:tqq “ TRUEq ď PA

0

˜

H´2
ÿ

h“h‹

NpEθ
rev,hq ě No or NpEθ

correctq ě Nr

¸

ď
δ

6
`

δ

6
ď

δ

3
.

Therefore, we can consider the early stopped algorithm Apexitq with exit criterion exit (cf. Appendix D), and by Lemma D.2
we have

DTV

´

PApexitq
0 ,Eµ„unif

”

PApexitq
θ,µ

ı¯

ě DTV

`

PA
0 ,Eµ„unif

“

PA
θ,µ

‰˘

´ PA
0 pDt ă T, exitpτ p1:tqq “ TRUEq ě

2δ

3
.

Notice that by our definition of exit and stopping time Texit, in the execution of Apexitq, we also have

Texit´1
ÿ

t“1

H´2
ÿ

h“h‹

1

´

τ ptq P Eθ
rev,h

¯

ă No,
Texit´1
ÿ

t“1

1

´

τ ptq P Eθ
correct

¯

ă Nr.

Therefore, algorithm Apexitq ensures that

H´2
ÿ

h“h‹

NpEθ
rev,hq “

Texit
ÿ

t“1

H´2
ÿ

h“h‹

1

´

τ ptq P Eθ
rev,h

¯

ď No ` H ´ 1, NpEθ
correctq “

Texit
ÿ

t“1

1

´

τ ptq P Eθ
correct

¯

ď Nr.

Applying Lemma E.5 to the algorithm Apexitq (and δ1 “ 2
3δ), we can obtain

either
δ2

?
K

9ε2σ2
ď No ` H ´ 1 ď 6δ´1EA

0

«

H´2
ÿ

h“h‹

NpEθ
rev,hq

ff

` H, or
δ2

9ε2
ď Nr ď 6δ´1EA

0

“

NpEθ
correctq

‰

` 1,

and rearranging gives the desired result.

E.6. Proof of Lemma E.6

Throughout the proof, the parameters θ, µ, µ1 are fixed.

By our discussions in Appendix D, using (16), we have

Eτp1q,¨¨¨ ,τpTq„PA
0

«

T
ź

t“1

PM pτ ptqqPM 1 pτ ptqq

P0pτ ptqq2
¨ exp

˜

´

T
ÿ

t“1

H
ÿ

h“1

log Ipτ
ptq
h´1q

¸ff

“ 1, (24)
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where for any partial trajectory τl up to step l P rHs, Ipτlq is defined as

Ipτlq :“ E0

„

Pθ,µpol`1|τlqPθ,µ1 pol`1|τlq

P0pol`1|τlq2

ˇ

ˇ

ˇ

ˇ

τl

ȷ

.

Notice that the model Pθ,µ and P0 are different only at the transition from sh‹ “ s‹, ah‹ “ a‹ to s‘ and the transition
dynamic at state s‘. Therefore, for any (reachable) trajectory τl “ po1, a1, ¨ ¨ ¨ , ol, alq, Pθ,µpol`1 “ ¨|τlq ‰ P0pol`1 “ ¨|τlq
only if oh‹ “ s‹, ah‹ “ a‹. In other words, Ipτlq “ 1 if τl R toh‹ “ s‹, ah‹ “ a‹u.

We next compute Ipτlq for τl P toh‹ “ s‹, ah‹ “ a‹u. By our construction, we have

Pθ,µpol`1 “ o|τlq “ Pθ,µpol`1 “ o|sl`1 “ s‘q ¨ Pθ,µpsl`1 “ s‘|τlq

` Pθ,µpol`1 “ o|sl`1 “ saq ¨ Pθ,µpsl`1 “ sa|τlq

“ pOl;µpo|s‘q ´ Olpo|saqq ¨ Pθ,µpsl`1 “ s‘|τlq ` Olpo|saq.

(25)

Notice that if τl R Erev,l, then sl`1 must be sa, and hence Pθ,µpol`1 “ ¨|τlq “ Ohp¨|saq “ P0pol`1 “ ¨|τlq which implies
that Ipτlq “ 1.

We next consider the case τl P Erev,l, i.e. ah‹`1:l “ a‹
h‹`1:l:

Pθ,µpsl`1 “ s‘|τlq “ Pθ,µpsl`1 “ s‘|oh‹ “ s‹, ah‹ “ a‹, oh‹`1:l, ah‹`1:lq

“
Pθ,µpoh‹`1:l, sl`1 “ s‘|oh‹ “ s‹, ah‹ “ a‹, ah‹`1:lq

Pθ,µpoh‹`1:l|oh‹ “ s‹, ah‹ “ a‹, ah‹`1:lq

“
ε ¨ Pθ,µpoh‹`1:l|sh‹`1 “ s‘, ah‹`1:lq

ε ¨ Pθ,µpoh‹`1:l|sh‹`1 “ s‘, ah‹`1:lq ` p1 ´ εq ¨ Pθ,µpoh‹`1:l|sh‹`1 “ sa, ah‹`1:lq

“
ε

ε ` p1 ´ εq ¨
Pθ,µpoh‹`1:l|sh‹`1“sa,ah‹`1:lq

Pθ,µpoh‹`1:l|sh‹`1“s‘,ah‹`1:lq

,

where the third equality is because Pθ,µpsh‹`1 “ s‘|oh‹ “ s‹, ah‹ “ a‹q “ ε. Notice that

βτl :“
Pθ,µpoh‹`1:l|sh‹`1 “ s‘, ah‹`1:lq

Pθ,µpoh‹`1:l|sh‹`1 “ sa, ah‹`1:lq
“

l
ź

h“h‹`1

Oh;µpoh|s‘q

Ohpoh|saq
ď p1 ` σql´h‹

,

where the inequality holds by our construction of O, as long as τl is reachable (i.e. oh‹`1:l P Ol´h‹

). Thus, for

cτl :“ Pθ,µpsl`1 “ s‘|τlq “
βτl

εβτl ` 1 ´ ε
,

we have cτl ď p1 ` σqH “
?
C. Notice that by (25) and the equation above we have

when l ă H ´ 1, Pθ,µpol`1 “ o`
i |τlq “

1 ` cτlεσµi

2K
, Pθ,µpol`1 “ o´

i |τlq “
1 ´ cτlεσµi

2K
@i P rKs,

when l “ H ´ 1, Pθ,µpoH “ good|τH´1q “
1 ` 2cτH´1

ε

4
, Pθ,µpoH “ bad|τH´1q “

3 ´ 2cτH´1
ε

4
.

On the other hand, when l ă H ´ 1, Pθ,µpol`1 “ ¨|τlq “ Unifp
␣

o`
1 , o

´
1 , ¨ ¨ ¨ , o`

K , o´
K

(

q. Hence,

Ipτlq “E0

„

Pθ,µpol`1|τlqPθ,µ1 pol`1|τlq

P0pol`1|τlq2

ˇ

ˇ

ˇ

ˇ

τl

ȷ

“
1

2K

ÿ

oPOo

Pθ,µpol`1 “ o|τlqPθ,µ1 pol`1 “ o|τlq

P0pol`1 “ o|τlq2

“
1

2K

K
ÿ

i“1

p1 ` cτlεσµiqp1 ` cτlεσµ
1
iq ` p1 ´ cτlεσµiqp1 ´ cτlεσµ

1
iq
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“1 `
c2τlε

2σ2

K

K
ÿ

i“1

µiµ
1
i ď 1 `

Cε2σ2

K

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ .

Similarly, when l “ H ´ 1, we can compute

IpτH´1q “ E0

„

Pθ,µpoH |τH´1qPθ,µ1 poH |τH´1q

P0poH |τH´1q2

ˇ

ˇ

ˇ

ˇ

τH´1

ȷ

“ 1 `
4

3
c2τH´1

ε2 ď 1 `
4

3
Cε2.

Therefore, combining all these facts above, we can conclude that
$

’

’

&

’

’

%

Ipτlq “ 1, l ď h‹,

Ipτlq ď 1 ` 1

´

τl P Eθ
rev,l

¯

¨ Cε2σ2

K |xµ, µ1y| , h‹ ă l ă H ´ 1,

IpτH´1q ď 1 ` 1
`

τH´1 P Eθ
correct

˘

¨ 4
3Cε2, l “ H ´ 1,

where we use the fact that Eθ
correct “ Eθ

rev,H´1 by definition. Hence, using the fact logp1 ` xq ď x, we have

T
ÿ

t“1

H´1
ÿ

l“0

log Ipτ
ptq
l q “

T
ÿ

t“1

H´1
ÿ

l“h‹`1

log Ipτ
ptq
l q

ď

T
ÿ

t“1

H´2
ÿ

l“h‹`1

1

´

τ
ptq
l P Eθ

rev,l

¯

¨
Cε2σ2

K

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ ` 1

´

τ
ptq
H´1 P Eθ

correct

¯

¨
4

3
Cε2

“

H´2
ÿ

l“h‹`1

N
`

Eθ
rev,l

˘

¨
Cε2σ2

K

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ ` N
`

Eθ
correct

˘

¨
4

3
Cε2

ď No ¨
Cε2σ2

K

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ ` Nr ¨
4

3
Cε2.

Plugging the above inequality into (24) completes the proof of Lemma E.6.

F. Proof of Theorem 6
We first construct a family of hard instances in Appendix F.1. We state the regret lower bound of this family of hard instances
in Proposition F.1. Theorem 6 then follows from Proposition F.1 as a direct corollary. Proposition F.1 also implies a part of
the PAC lower bound stated in Theorem 5.

F.1. Construction of hard instances and proof of Theorem 6

We consider the following family of m-step revealing POMDPs M that admits a tuple of hyperparameters pε, σ, n,m,K,Hq.
All POMDPs in M share the state space S , action space A, observation space O, and horizon length H , defined as following.

• The state space S “ Stree

Ů

ts‘, sa, e‘, ea, terminalu, where Stree is a binary tree with level n (so that |Stree| “

2n ´ 1). Let s0 be the root of Stree, and Sleaf be the set of leaves of Stree, with |Sleaf | “ 2n´1.

• The observation space O “ Stree

Ů
␣

o`
1 , o

´
1 , ¨ ¨ ¨ , o`

K , o´
K

(
Ů

tlock, good, bad, terminalu. 7

• The action space A “ t0, 1, ¨ ¨ ¨ , A ´ 1u.

We further define Arev “ t0, 1, ¨ ¨ ¨ , A1 ´ 1u,Atr “ tA1, ¨ ¨ ¨ , A ´ 1u, with A1 “ 1 ` tA{6u.

Model parameters Each non-null POMDP model M “ Mθ,µ P MztM0u is specified by two parameters pθ, µq. Here
µ P t´1,`1u

K , and θ “ ph‹, s‹, a‹, a‹
rev,a

‹q, where

• s‹ P Sleaf , a‹ P Ac :“ t1, ¨ ¨ ¨ , A ´ 1u, a‹
rev P Arev.

7Similarly to Appendix E, here we slightly abuse notation to reuse Stree to denote both a set of states and a corresponding set of
observations, in the sense that each state s P Stree Ă S corresponds to a unique observation os P Stree Ă O, which we also denote as s
when it is clear from the context.
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• h‹ P H :“ th “ n ` lm : h ă H, l P Zě0u.

• a‹ “ pa‹
h‹`1, . . . ,a

‹
H´1q P AH´h‹

´1 is an action sequence indexed by h‹ ` 1, ¨ ¨ ¨ , H ´ 1, such that when h P H,
we have a‹

h P Atr. We use Acode,h‹ to denote the set of all such a‹.

Our construction ensures that, only at steps h P H and states sh P ts‘, sau, the agent can take actions in Arev and transits
to te‘, eau.

For any POMDP Mθ,µ, its system dynamics Pθ,µ :“ PMθ,µ
is defined as follows.

Emission dynamics At state s P Stree Y tterminalu, the agent always receives (the unique observation corresponding to)
s itself as the observation.

• At state e‘, the emission dynamic is given by

Oµpo`
i |e‘q “

1 ` σµi

2K
, Oµpo´

i |e‘q “
1 ´ σµi

2K
, @i P rKs,

where we omit the subscript h because the emission distribution does not depend on h.

• At state ea, the observation is uniformly drawn from Oo :“
␣

o`
1 , o

´
1 , ¨ ¨ ¨ , o`

K , o´
K

(

, i.e. Op¨|eaq “ UnifpOoq.

• At states s P ts‘, sau and steps h P rH ´1s, the agent always receives lock as the observation; At step H , the emission
dynamics at ts‘, sau is given by

OHpgood|s‘q “
3

4
, OHpbad|s‘q “

1

4
,

OHpgood|saq “
1

4
, OHpbad|saq “

3

4
.

Transition dynamics In each episode, the agent always starts at state s0.

• At any node s P StreezSleaf , there are three types of available actions: wait “ 0, left “ 1 and right “ 2, such that the
agent can take wait to stay at s, left to transit to the left child of s and right to transit to the right child of s.

• At any s P Sleaf , the agent can take action wait “ 0 to stay at s (i.e. Pps|s,waitq “ 1); otherwise, for s P Sleaf ,
h P rH ´ 1s, a ‰ wait,

Ph;θps‘|s, aq “ ε ¨ 1ph “ h‹, s “ s‹, a “ a‹q,

Ph;θpsa|s, aq “ 1 ´ ε ¨ 1ph “ h‹, s “ s‹, a “ a‹q.

where we use subscript θ to emphasize the dependence on θ. In words, at step h‹, at any leaf node taking any action, the
agent will transit to one of ts‘, sau; only by taking a‹ at s‹, the agent can transit to state s‘ with a small probability
ε; in any other case the agent will transit to state sa with probability one.

• The state s P te‘, eau always transits to terminal, regardless of the action taken.

• The terminal state is an absorbing state.

• At state sa:

– For steps h P H and a P Arev, we set Ph;θpea|sa, aq “ 1, i.e. taking a P Arev always transits to ea.
– For steps h R H or a P Atr, we set Ph;θpsa|sa, aq “ 1, i.e. taking such action always stays at sa.

• At state s‘, we only need to specify the transition dynamics for steps h ě h‹ ` 1:

– For steps h P Hąh‹ “ H X th ą h‹u and a P Arev, we set

Ph;θpe‘|s‘, aq “ 1pa “ a‹
revq, Ph;θpea|s‘, aq “ 1pa ‰ a‹

revq.

In words, at steps h P Hąh‹ and states sh P ts‘, sau (corresponding to oh “ lock), the agent can take actions
ah P Arev to transit to te‘, eau; but only by taking ah “ a‹

rev “correctly” at s‘ the agent can transit to e‘; in any
other case the agent will transit to state ea with probability one. Note that H “ th “ n ` lm : h ă H, l P Zě0u,
so we only allow the agent to take the reveal action a‹

rev every m steps, which ensures that our construction is
pm ` 1q-step revealing.

– For steps h R H or a P Atr, we set

Ph;θps‘|s‘, aq “ 1pa “ a‹
hq, Ph;θpsa|s‘, aq “ 1pa ‰ a‹

hq.
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Reward The reward function is known (and only depends on the observation): at the first H ´ 1 steps, no reward is given;
at step H , we set rHpgoodq “ 1, rHpbadq “ 0, rHps0q “ p1 ` εq{4, and rHpoq “ 0 for any other o P O.

Reference model We use M0 (or simply 0) to refer to the null model (reference model). The null model M0 has transition
and emission the same as any non-null model, except that the agent always arrives at sa by taking any action a ‰ wait
at s P Sleaf and h P rH ´ 1s (i.e., Ph;M0psa|s, aq “ 1 for any s P Sleaf , a P Ac, h P rH ´ 1s). In this model, s‘ is not
reachable (and so does e‘), and hence we do not need to specify the transition and emission dynamics at s‘, e‘.

We present the expected regret lower bound and PAC-learning sample complexity lower bound of the above POMDP model
class M in the following proposition, which we prove in Appendix F.2.

Proposition F.1. For given ε P p0, 0.1s, σ P p0, 1s, m,n ě 1, K ě 2, H ě 8n ` m ` 1, the above model class M satisfies
the following properties.

1. |S| “ 2n ` 4, |O| “ 2n ` 2K ` 3, |A| “ A.

2. For each M P M, M is pm ` 1q-step revealing with αm`1pMq´1 ď 1 ` 2
σ .

3. log |M| ď K log 2 ` H logA ` logpSAHq.

4. Suppose algorithm A interacts with the environment for T episodes, then

max
MPM

EA
M rRegrets ě

1

120000
min

"

|Sleaf |K
1{2Am`1H

mσ2ε2
,

|Sleaf |A
H{2H

mε
, εT

*

,

where we recall that |Sleaf | “ 2n´1.

5. Suppose algorithm A interacts with the environment for T episodes and returns πout such that

PA
M

´

V ‹
M ´ VM pπoutq ă

ε

8

¯

ě
3

4
.

for any M P M, then it must hold that

T ě
1

60000
min

"

|Sleaf |K
1{2Am`1H

σ2ε2
,

|Sleaf |A
H{2H

ε2

*

.

Proof of Theorem 6 We only need to suitably choose parameters when applying Proposition F.1. More specifically, given
pS,O,A,H, α,mq, we can let m1 “ m´1, and take n ě 1 to be the largest integer such that 2n ď min tS ´ 4, pO ´ 5q{2u,
and take K “

X

O´2n´3
2

\

ě O´5
4 , ε1 “ ε{8, and σ “ 2

α´1´1 ď 1. For any fixed ε P p0, 0.1s, applying Proposition F.1 to the
parameters pε, σ, n,m1,K,Hq, we obtain a model class Mε such that for any algorithm A,

max
MPMε

EA
M rRegrets ě c0 min

"

SO1{2AmH

mα2ε2
,
SAH{2H

mε
, εT

*

,

where c0 is a universal constant. We can then take the ε P p0, 0.1s that maximizes the RHS of the above inequality, and
applying Lemma A.1 completes the proof of Theorem 6.

Remark F.2. The requirement S ď O in Theorem 6 (and Theorem 5) can actually be relaxed to S ď Om. The reason why
we require S ď O in the current construction is that we directly embed Stree directly into the observation space O, i.e. for
each state s P Stree it emits the corresponding os P O. However, when Om ě |Stree| " O, we can alternatively take an
embedding Stree Ñ Om, i.e. for each state s P Stree such that s ÞÑ po

p1q
s , ¨ ¨ ¨ , o

pmq
s q, it emits oph mod mq

s P O at step h.

F.2. Proof of Proposition F.1

All propositions and lemmas stated in this section are proved in Appendix F.3-F.7.

Claim 1 follows directly by counting the number of states, observations, and actions in models in M. Claim 3 follows as we
have |M| “ |tph‹, s‹, a‹, a‹

rev,a
‹qu| ˆ

ˇ

ˇ

ˇ
t˘1u

K
ˇ

ˇ

ˇ
` 1 ď HSAH ˆ 2K . Taking logarithm yields the claim.

Claim 2 follows from this lemma, which is proved in Appendix F.3.
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Lemma F.3. For each M P M, it holds that αm`1pMq´1 ď 2
σ ` 1.

We now prove Claim 4 & 5. Similar to the proof of Proposition E.1, we begin by relating the learning problem to a
testing problem. Recall that PA

M is the law of pτ p1q, τ p2q, ¨ ¨ ¨ , τ pTqq induced by algorithm A and model M . For any event
E Ď pO ˆ AqH , we denote the visitation count of E as

NpEq :“
T
ÿ

t“1

1pτ ptq P Eq.

Since NpEq is a function of τ p1:T q, we can talk about its expectation under the distribution PA
M for any M P M. We first

relate the expected regret to the expected visitation count of some “bad” events, giving the following lemma whose proof is
contained in Appendix F.4.

Lemma F.4 (Relating regret to visitation counts). For any M P M such that M ‰ 0, it holds that

EA
M rRegrets ě

ε

4
EA
M rNpoH “ s0qs. (26)

On the other hand, for the reference model 0, we have

EA
0 rRegrets ě

ε

4
EA
0 rNpoH ‰ s0qs `

1

4
EA
0 rNpErevqs. (27)

where we define Erev :“ tτ : for some h P H, oh “ lock, ah P Arevu.

On the other hand, for any policy π, we have

V ‹
M ´ VM pπq ě

ε

4
Pπ
M poH “ s0q @M ‰ 0, and V ‹

0 ´ V0pπq ě
ε

4
Pπ
0 poH ‰ s0q. (28)

Therefore, we can relate the regret (or sub-optimality of the output policy) to the TV distance (under µ „ Unifpt´1,`1u
K

q

the prior distribution of parameter µ), by an argument similar to the one in Appendix E.2, giving the following lemma whose
proof is contained in Appendix F.5.

Lemma F.5. Suppose that either statement below holds for the algorithm A:

(a) For any model M P M, EA
M rRegrets ď Tε{32.

(b) For any model M P M, the algorithm A outputs a policy πout such that PA
M

`

V ‹
M ´ VM pπoutq ă ε

8

˘

ě 3
4 .

Then we have

DTV

`

PA
0 ,Eµ„unif

“

PA
θ,µ

‰˘

ě
1

2
, @θ. (29)

By our assumptions in Claim 4 (or 5), in the following we only need to consider the case that (29) holds for all θ. We
will use (29) to derive lower bounds of EA

0 rNpoH ‰ s0qs and EA
0 rNpErevqs, giving the following lemma whose proof is

contained in Appendix F.6.

Lemma F.6. Fix a θ “ ph‹, s‹, a‹, a‹
rev,a

‹q. We consider events

Eθ
rev :“

␣

oh‹ “ s‹, ah‹:h “ pa‹,a‹
h‹`1:h´1, a

‹
revq for some h P Hąh‹

(

,

Eθ
correct :“ toh‹ “ s‹, ah‹:H´1 “ pa‹,a‹qu.

Then for any algorithm A with δ :“ DTV

´

PA
0 ,Eµ„unif

”

PA
θ,µ

ı¯

ą 0, we have

either EA
0

“

NpEθ
revq

‰

ě
δ3

?
K

18ε2σ2
´

δ

6
, or EA

0

“

NpEθ
correctq

‰

ě
δ3

18ε2
´

δ

6
.

Applying Lemma F.6 for any parameter tuple θ “ ph‹, s‹, a‹, a‹
rev,a

‹q with δ “ 1
2 , we obtain

either EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

rev,a
‹

q
rev

¯ı

ě

?
K

300ε2σ2
, or EA

0

”

N
´

E
ph‹,s‹,a‹,a‹

rev,a
‹

q

correct

¯ı

ě
1

300ε2
, (30)
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as we choose ε P p0, 0.1s.

Fix a tuple ph‹, s‹, a‹q such that h‹ P H and h‹ ď n ` m tH{10mu, s‹ P Sleaf , a‹ P Ac. By (30), we know that for all
a‹ P Acode,h‹ , a‹

rev P Arev, θ “ ph‹, s‹, a‹, a‹
rev,a

‹q, real constant r ě 0, it holds that

|Arev|Am´1 ¨ EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

rev,a
‹

q
rev

¯ı

` r |Acode,h‹ | ¨ EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

rev,a
‹

q

correct

¯ı

ě
1

300
min

#

|Arev|Am´1
?
K

ε2σ2
,
r |Acode,h‹ |

ε2

+

ě
1

300
min

#

|Arev|Am´1
?
K

ε2σ2
,
rAH{2´1

ε2

+

“: ωr,

where the last inequality follows from a direct calculation (see Lemma F.7). Notice that
ÿ

a‹
revPArev,a‹PAcode,h‹

EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

rev,a
‹

q
rev

¯ı

“
ÿ

a‹
revPArev,a‹PAcode,h‹

EA
0

“

N
`

oh‹ “ s‹, ah‹:h “ pa‹,a‹
h‹`1:h´1, a

‹
revq for some h P Hąh‹

˘‰

ď
ÿ

a‹
revPArev,a‹PAcode,h‹

EA
0

“

N
`

oh‹ “ s‹, ah‹:h‹`m´1 “ pa‹,a‹
h‹`1:h‹`m´1q, ah “ a‹

rev for some h P Hąh‹

˘‰

“
ÿ

a‹
revPArev,aPAm´1

EA
0 rNpoh‹ “ s‹, ah‹:h‹`m´1 “ pa‹,aq, ah “ a‹

rev for some h P Hąh‹ qs ¨
ÿ

a‹
PAcode,h‹

a‹ begins with a

1

“
ÿ

a‹
revPArev,aPAm´1

EA
0 rNpoh‹ “ s‹, ah‹:h‹`m´1 “ pa‹,aq, ah “ a‹

rev for some h P Hąh‹ qs ¨
|Acode,h‹ |

Am´1

“
|Acode,h‹ |

Am´1
¨ EA

0 rNpoh‹ “ s‹, ah‹ “ a‹, ah P Arev for some h P Hąh‹ qs,

where the second line is due to the inclusion of events, the fourth line follows from our definition of Acode,h‹ , and the last
line is because the events toh‹ “ s‹, ah‹:h‹`m´1 “ pa‹,aq, ah “ a‹

rev for some h P Hąh‹ u are disjoint and their union is
simply toh‹ “ s‹, ah‹ “ a‹, ah P Arev for some h P Hąh‹ u. Similarly we have

ÿ

a‹
revPArev,a‹PAcode,h‹

EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

rev,a
‹

q

correct

¯ı

“
ÿ

a‹
revPArev,a‹PAcode,h‹

EA
0 rNpoh‹ “ s‹, ah‹:H´1 “ pa‹,a‹qqs

“ |Arev| ¨
ÿ

a‹PAcode,h‹

EA
0 rNpoh‹ “ s‹, ah‹:H´1 “ pa‹,a‹qqs

“ |Arev| ¨ EA
0 rNpoh‹ “ s‹, ah‹ “ a‹, ah‹`1:H´1 P Acode,h‹ qs.

Combining all these facts, we obtain

ωr ď
1

|Arev| |Acode,h‹ |

ÿ

a‹
revPArev,

a‹
PAcode,h‹

´

|Arev|Am´1EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

rev,a
‹

q
rev

¯ı

` r |Acode,h‹ |EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

rev,a
‹

q

correct

¯ı¯

ď EA
0 rNpoh‹ “ s‹, ah‹ “ a‹, ah P Arev for some h P Hąh‹ qs ` rEA

0 rNpoh‹ “ s‹, ah‹ “ a‹qs

Notice that the above inequality holds for any given s‹ P Sleaf , a
‹ P Ac, h

‹ P H such that h‹ ď n ` m tH{10mu, and any
r ě 0. Therefore, we can take summation over all s‹ P Sleaf , a

‹ P Ac, h
‹ “ n ` lm P H with 0 ď l ď tH{10mu, and

obtain

|Sleaf | |Ac| ptH{10mu ` 1q ¨ min

#

|Arev|Am´1
?
K

300ε2σ2
,
rAH{2´1

300ε2

+

“
ÿ

s‹PSleaf

ÿ

a‹PAc

ÿ

h‹
“n`lm:

0ďlďtH{10mu

ωr

ď
ÿ

s‹PSleaf

ÿ

a‹PAc

ÿ

h‹
“n`lm:

0ďlďtH{10mu

EA
0 rNpoh‹ “ s‹, ah‹ “ a‹, ah P Arev for some h P Hąh‹ qs ` rEA

0 rNpoh‹ “ s‹, ah‹ “ a‹qs
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ď EA
0 rNpErevqs ` rEA

0 rNpoH ‰ s0qs,

where the last inequality is because
ğ

s‹PSleaf ,a‹PAc,h‹PH
toh‹ “ s‹, ah‹ “ a‹, ah P Arev for some h P Hąh‹ u Ď tfor some h P H, oh “ lock, ah P Arevu “ Erev,

and
Ů

s‹PSleaf ,a‹PAc,h‹PH toh‹ “ s‹, ah‹ “ a‹u Ď toH ‰ s0u. Plugging in our choice |Ac| “ A ´ 1 ě 2
3A, |Arev| “

1 ` tA{6u ě A{6 and tH{10mu ` 1 ě H{10m, we conclude the proof of the following claim:

Claim: as long as (29) holds, we have

EA
0 rNpErevqs ` rEA

0 rNpoH ‰ s0qs ě
|Sleaf |H

30000m
¨ min

#

Am`1
?
K

ε2σ2
,
rAH{2

ε2

+

, @r ě 0. (31)

To deduce Claim 4 from the above fact, we notice that either (1) EA
M rRegrets ą Tε{32 for some M P M, or (2)

EA
M rRegrets ď Tε{32 for any M P M, and then by Lemma F.5, (29) holds, and hence we have

EA
0 rRegrets ě

1

4
EA
0 rNpErevqs `

ε

4
EA
0 rNpoH ‰ s0qs ě

|Sleaf |H

120000m
¨ min

#

Am`1
?
K

ε2σ2
,
AH{2

ε

+

by setting r “ ε in (31). Combining these two cases, we complete the proof of Claim 4 in Proposition F.1.

Similarly, suppose that the condition in Claim 5 holds, which implies (29) (by Lemma F.5). Then we can set r “ 1 in (31)
to obtain

2T ě EA
0 rNpErevqs ` EA

0 rNpoH ‰ s0qs ě
|Sleaf |H

30000m
¨ min

#

Am`1
?
K

ε2σ2
,
AH{2

ε2

+

,

and hence complete the proof of Claim 4. This completes the proof of Appendix F.2.

Lemma F.7. As long as |Arev| “ A1 ď 1 ` tA{6u, we have |Acode,h‹ | ě AH{2´1 for h‹ P H such that h‹ ď n `

m tH{10mu.

Proof. We denote H0 “ tpH ´ nq{mu, and assume that h‹ “ n ` ml. Recall that

Acode,h‹ :“
!

a‹ “ pa‹
h‹`1, . . . ,a

‹
H´1q P AH´h‹

´1 : a‹
h P Atr,@h P Hąh‹

)

.

Hence, noticing that |Hąh‹ | “ H0 ´ l, |A| “ A, |Atr| “ A ´ A1, we have

|Acode,h‹ | “ AH´h‹
´1´pH0´lq ˆ pA ´ A1qH0´l.

Thus, we only need to prove that

H ´ h‹ ´ 1 ´ pH0 ´ lq `
logpA ´ A1q

logA
pH0 ´ lq ě

H

2
´ 1. (32)

Notice that as long as A1 ď 1 ` tA{6u, it holds that logpA´A1q

logA ě
log 2
log 3 “: w. Using this fact and rearranging, we can see

(32) holds if

l ď

H
2 ´ n ´ p1 ´ wqH0

m ´ 1 ` w
“: l0.

Now, using our assumption that H ě 10n, we have

l0 ě

H
2 ´ n ´ p1 ´ wqpH ´ nq

mw
“

pw ´ 0.5qH ´ wn

mw
ě

pw ´ 0.5qH ´ 0.1wH

mw
ě

H

10m
,

where the last inequality uses w ą 5
8 . Therefore, as long as l ď tH{10mu (i.e. h‹ ď n ` m tH{10mu), we have l ď l0,

which implies (32) and hence completes the proof.
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F.3. Proof of Lemma F.3

The idea here is similar to the proof of Proposition E.2, but as our construction is more involved, the direct description of
Mh,m`1 can be very complicated (even though actually only a few of its entries are non-zero). Therefore, in order to upper
bound Mh,m`1, we invoke the following lemmas, which will make our discussion cleaner.

Lemma F.8. For m ě 1, h P rH ´ ms, a P Am, we consider

Mh,a :“ rPpoh:h`m “ o|sh “ s, ah:h`m´1 “ aqsoPOm`1,sPS P ROm`1
ˆS .

Then it holds that

min
M`

h,m`1

›

›

›
M`

h,m`1

›

›

›

˚Ñ1
ď min

M`
h,a

›

›

›
M`

h,a

›

›

›

1Ñ1
,

where minM`
h,a

is taken over all M`
h,a such that M`

h,aMh,aTh´1 “ Th´1 (cf. Definition 1).

Proof of Lemma F.8. Notice that given a a P Am, M`
h,a such that M`

h,aMh,aTh´1 “ Th´1, we can construct a generalized
left inverse of Mh,m as follows:

M`
h,m “

»

—

—

–

...
1pa1 “ aqM`

h,a
...

fi

ffi

ffi

fl

a1PAm

,

and clearly
›

›

›
M`

h,m

›

›

›

˚Ñ1
ď

›

›

›
M`

h,a

›

›

›

1Ñ1
.

In the following, for any matrix M , we write

γpMq :“ min
M`:M`M“I

›

›M`
›

›

1Ñ1
.

Lemma F.9. Fix a step h and a set of states Sh. Suppose that Sh contains all s P S such that Dps1, aq P S ˆ A,
Th´1ps|s1, aq ą 0. Further, suppose that Sh can be partitioned as Sh “

Ůn
i“1 Si

h, such that for each i ‰ j, s P Si
h, s1 P Sj

h,

supppMh,ap¨|sqq
č

supppMh,ap¨|s1qq “ H,

i.e. the observations emitted from different Si
h are different.8 Then it holds that

min
M`

h,a

›

›

›
M`

h,a

›

›

›

1Ñ1
ď max

␣

γ
`

Mh,apS1
hq
˘

, ¨ ¨ ¨ , γpMh,apSn
h qq

(

,

where

Mh,apS 1q :“ rPpoh:h`m “ o|sh “ s, ah:h`m´1 “ aqsoPOm`1,sPS1 P ROm`1
ˆS1

, for S 1 Ă Sh.

Proof of Lemma F.9. We first note that minM`
h,a

›

›

›
M`

h,a

›

›

›

1Ñ1
ď γpMh,apShqq, because the matrix Mh,apShq directly gives

a generalized left inverse of Mh,a (because Sh contains all s P S such that Dps1, aq P S ˆ A, Th´1ps|s1, aq ą 0).

Next, as each Si
h has the disjoint set of possible observation, the matrix Mh,apShq can be written as (up to permutation of

rows and columns, and any empty entry is zero)

Mh,apShq “

»

—

—

—

—

—

–

Mh,apS1
hq

Mh,apS2
hq

. . .
Mh,apSn

h q

fi

ffi

ffi

ffi

ffi

ffi

fl

.

8In particular, this condition is fulfilled if for each i ‰ j, s P Si
h, s1

P Sj
h, we have supppOhp¨|sqq

Ş

supppOhp¨|s1
qq “ H.
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Therefore, suppose that for each i we have a left inverse Mh,apSi
hq` of Mh,apSi

hq, then we can form a left inverse of
Mh,apShq as

Mh,apShq` “

»

—

—

—

—

—

–

Mh,apS1
hq`

Mh,apS2
hq`

. . .
Mh,apSn

h q`

fi

ffi

ffi

ffi

ffi

ffi

fl

,

and hence we derive that γpMh,apShqq ď max
␣

γ
`

Mh,apS1
hq
˘

, ¨ ¨ ¨ , γpMh,apSn
h qq

(

.

An important observation is that, for matrix M P Rmˆ1, we have γpMq ď 1
}M}1

. Thus, when the sum of entries of M
equals 1, then γpMq ď 1. With the lemmas above, we now provide the proof of Lemma F.3.

Proof of Lemma F.3. We first show that the null model 0 is 1-step 1-revealing. In this model, the state s‘ and e‘ are not
reachable, and hence for each step h, we consider the set S 1 “ Stree

Ů

tsa, ea, terminalu. For different states s, s1 P S 1, the
support of Ohp¨|sq and Ohp¨|s1q are disjoint by our construction, and hence applying Lemma F.9 gives

min
O`

h

›

›O`
h

›

›

1Ñ1
ď max

sPS1
γpOhpsqq ď 1.

Applying Proposition 2 completes the proof for null model 0.

We next consider the non-null model M “ Mθ,µ P MztM0u. By our construction, for h ď h‹, state s‘ and e‘

are not reachable, and hence by the same argument as in the null model, we obtain that minM`
h,m`1

›

›

›
M`

h,m`1

›

›

›

˚Ñ1
ď

minO`
h

›

›O`
h

›

›

1Ñ1
ď 1.

Hence, we only need to bound the quantity minM`
h,m`1

›

›

›
M`

h,m`1

›

›

›

˚Ñ1
for a fixed step h ą h‹. In this case, there

exists a l P H such that h ď l ď h ` m ´ 1, and we write r “ l ´ h ` 1. By Lemma C.1, we only need to bound
minM`

h,r`1

›

›

›
M`

h,r`1

›

›

›

˚Ñ1
. Consider the action sequence a “ pa‹

h:l´1, a
‹
revq P Ar, and we partition S as

S “
ğ

sPStree

tsu \ ts‘, sau \ te‘, eau \ tterminalu.

It is direct to verify that, in Mθ,µ, for states s, s1 come from different subsets in the above partition, the support of Mh,ap¨|sq

and Mh,ap¨|s1q are disjoint. Then, we can apply Lemma F.8 and Lemma F.9, and obtain

min
M`

h,r`1

›

›

›
M`

h,r`1

›

›

›

˚Ñ1
ď min

M`
h,a

›

›

›
M`

h,a

›

›

›

1Ñ1
ď max t1, γpMh,apts‘, sauqq, γpMh,apte‘, eauqqu.

Therefore, in the following we only need to consider left inverses of the matrix Mh,apts‘, sauq and Mh,apte‘, eauq.

(1) The matrix Mh,apts‘, sauq. By our construction, taking a at sh “ s‘ will lead to oh:l “ lock and ol`1 „ Oµp¨|e‘q;
taking a at sh “ sa will lead to oh:l “ lock and ol`1 „ Oµp¨|eaq. Hence, Mh,apts‘, sauq can be written as (up to
permutation of rows)

Mh,apts‘, sauq “

„

12K`σrµ
2K

12K

2K
0 0

ȷ

P ROr`1
ˆ2,

where rµ “ rµ;´µs P t´1, 1u
2K , 1 “ 12K is the vector in R2K with all entries being one. Similar to Proposition E.2, we

can directly verify that γpMh,apts‘, sauqq ď 2
σ ` 1.

(2) The matrix Mh,apte‘, eauq. By our construction, at sh “ e‘, we have oh „ Oµp¨|e‘q and oh`1:l`1 “ terminal;
at sh “ ea, we have oh „ Oµp¨|eaq and oh`1:l`1 “ terminal. Thus, Mh,apte‘, eauq can also be written as (up to
permutation of rows)

Mh,apte‘, eauq “

„

12K`σrµ
2K

12K

2K
0 0

ȷ

P ROr`1
ˆ2,
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and hence we also have γpMh,apte‘, eauqq ď 1
σ ` 2.

Combining the two cases above gives

min
M`

h,m`1

›

›

›
M`

h,m`1

›

›

›

˚Ñ1
ď min

M`
h,r`1

›

›

›
M`

h,r`1

›

›

›

˚Ñ1
ď min

M`
h,a

›

›

›
M`

h,a

›

›

›

1Ñ1
ď

2

σ
` 1,

and hence completes the proof of Lemma F.3.

Remark F.10. From the proof above, it is not easy to see the POMDP M “ Mθ,µ is not m-step revealing for any parameters
pθ, µq. Actually, for θ “ ph‹, s‹, a‹, a‹

rev,a
‹q, we can show that the matrix Mh‹`1,m does not admit a generalized left

inverse. This is because for any a P Am´1, we have

Pθ,µpoh‹`1:h‹`m “ ¨|sh‹`1 “ s‘, ah‹`1:h‹`m´1 “ aq “ Pθ,µpoh‹`1:h‹`m “ ¨|sh‹`1 “ sa, ah‹`1:h‹`m´1 “ aq,

because both of the distributions are supported on the dummy observation lockbm. However, it is clear that es‘
, esa

P

colspanpTh‹ q, and hence if Mh‹`1,m admits a generalized left inverse M`
h‹`1,m, then es‘

“ M`
h‹`1,mMh‹`1,mes‘

“

M`
h‹`1,mMh‹`1,mesa

“ esa
, a contradiction! Therefore, we can conclude that Mh‹`1,m does not admit a generalized left

inverse, and hence M is not m-step revealing.

F.4. Proof of Lemma F.4

In the following, we prove (26) and (27). This proof is very similar to the proof of Lemma E.3. The proof of (28) is very
similar and hence omitted for succinctness.

Notice that by the definition of Regret and our construction of reward function, we have

EA
M rRegrets “ T ¨ V ‹

M ´ EA
M

«

T
ÿ

t“1

rHpo
ptq
H q

ff

“ T ¨ V ‹
M ´ EA

M

„

1 ` ε

4
¨ NpoH “ s0q ` NpoH “ goodq

ȷ

“

ˆ

V ‹
M ´

1 ` ε

4

˙

EA
M rNpoH “ s0qs ` V ‹

MEA
M rNpoH ‰ s0qs ´ EA

M rNpoH “ goodqs

and

EA
M rNpoH “ goodqs “ EA

M

«

T
ÿ

t“1

EM

”

1po
ptq
H “ goodq

ˇ

ˇ

ˇ
τ

ptq
H´1

ı

ff

“ EA
M

«

T
ÿ

t“1

ÿ

τH´1

PM poH “ good|τH´1q ¨ 1pτ
ptq
H´1 “ τH´1q

ff

“
ÿ

τH´1

EA
M rNpτH´1qs ¨ PM poH “ good|τH´1q.

We prove the result for the M ‰ 0 and the case M “ 0 separately.

Case 1: M “ pθ, µq ‰ 0. In this case, we have

PM poH “ good|τH´1q “
3

4
PM psH “ s‘|τH´1q `

1

4
PM psH “ sa|τH´1q ď

1

4
`

1

2
PM psH “ s‘|τH´1q ď

1

4
`

1

2
ε,

because PM psH “ s‘|τH´1q ď ε by our construction. Thus, we have shown that

EA
M rNpoH “ goodqs ď

ˆ

1

4
`

1

2
ε

˙

EA
M rNpoH ‰ s0qs.

Notice that by this way we can also show that V ‹
M “ 1`2ε

4 . Therefore, combining the equations above, we conclude that

EA
M rRegrets ě

ε

4
EA
M rNpoH “ s0qs.
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Case 2: M “ 0. In this case, s‘ is not reachable, and hence we have

P0poH “ good|τH´1q “
1

4
P0psH “ sa|τH´1q ď

1

4
.

Also notice that, for any trajectory τ P Erev, we have P0poH “ good|τH´1q “ 0. Thus, we have shown that

EA
0 rNpoH “ goodqs ď

1

4
EA
0 rNptoH ‰ s0u ´ Erevqs “

1

4
EA
0 rNpoH ‰ s0qs ´

1

4
EA
0 rNpErevqs.

By this way we can also show that V ‹
0 “ 1`ε

4 . Therefore, we can conclude that

EA
0 rRegrets “

1 ` ε

4
EA
0 rNpoH ‰ s0qs ´ EA

0 rNpoH “ goodqs

ě
ε

4
EA
0 rNpoH ‰ s0qs `

1

4
EA
0 rNpErevqs.

This completes the proof of Lemma F.4.

F.5. Proof of Lemma F.5

We first consider case (a), i.e. suppose that EA
M rRegrets ď Tε{32 for all M P M. By Markov’s inequality and (26) and

(27), it holds that

PA
0 pNpoH ‰ s0q ě T {2q ď

1

4
,

PA
M pNpoH “ s0q ě T {2q ď

1

4
, @M ‰ 0.

In particular, for any fixed θ, we consider the prior distribution of M “ pθ, µq with µ „ Unifpt´1, 1u
K

q, then

Eµ„unif

“

PA
θ,µ

‰

pNpoH “ s0q ě T {2q ď
1

4
.

However, we also have

PA
0 pNpoH “ s0q ě T {2q “ PA

0 pNpoH ‰ s0q ď T {2q “ 1 ´ PA
0 pNpoH ‰ s0q ą T {2q ě

3

4
,

and then by the definition of TV distance it holds

DTV

`

PA
0 ,Eµ„unif

“

PA
θ,µ

‰˘

ě
1

2
.

The proof of case (b) follows from an argument which is the same as the proof of (20), and hence omitted.

F.6. Proof of Lemma F.6

We first prove the following version of Lemma F.6 with an additional condition that the visitation counts are almost surely
bounded under PA

0 , and then prove Lemma F.6 by reducing to this case using a truncation argument.

To upper bound the above quantity, we invoke the following lemma, which serves a key step for bounding the above
“χ2-inner product” (Canonne, 2022, Section 3.1) between Pθ,µ{P0 and Pθ,µ1 {P0 (proof in Appendix F.7).

Lemma F.11 (Bound on the χ2-inner product). Suppose that algorithm A (with possibly random stopping time T) satisfies
NpEθ

revq ď No and NpEθ
correctq ď Nr almost surely, for some fixed No, Nr. Then

either No ě
3

4

δ2
?
K

ε2σ2
, or Nr ě

3

4

δ2

ε2
,

where δ “ DTV

´

PA
0 ,Eµ„unif

”

PA
θ,µ

ı¯

.
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Proof of Lemma F.11. By Lemma D.1, it holds that

1 ` χ2pEµ„unif

“

PA
θ,µ

‰

} PA
0 q “ Eµ,µ1„unifEτp1q,¨¨¨ ,τpTq„PA

0

«

T
ź

t“1

Pθ,µpτ ptqqPθ,µ1 pτ ptqq

P0pτ ptqq2

ff

.

In the following lemma (proof in Appendix F.7), we bound the LHS of the equality above.

Lemma F.12. Under the conditions of Lemma F.11, it holds that for any µ, µ1 P t´1, 1u
K ,

EA
0

«

T
ź

t“1

Pθ,µpτ ptqqPθ,µ1 pτ ptqq

P0pτ ptqq2

ff

ď exp

ˆ

No ¨
σ2ε2

K

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ `
4

3
ε2Nr

˙

. (33)

With Lemma F.12, we can take expectation of (33) over µ, µ1 „ Unifpt´1,`1u
K

q, and then

1 ` χ2pEµ„unif

“

PA
θ,µ

‰

} PA
0 q “Eµ,µ1„unifEτp1q,¨¨¨ ,τpTq„PA

0

«

T
ź

t“1

Pθ,µpτ ptqqPθ,µ1 pτ ptqq

P0pτ ptqq2

ff

ďEµ,µ1„unif

„

exp

ˆ

No ¨
σ2ε2

K

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ `
4

3
ε2Nr

˙ȷ

.

Notice that µi, µ
1
i are i.i.d. Unifpt˘1uq, and hence µ1µ

1
1, ¨ ¨ ¨ , µKµ1

K are i.i.d. Unifpt˘1uq. Then by Hoeffding’s lemma, it

holds that Eµ,µ1„unif

”

exp
´

x
řK

i“1 µiµ
1
i

¯ı

ď exp
`

Kx2{2
˘

for all x P R, and thus by Lemma A.3, we have

Eµ,µ1„unif

„

exp

ˆ

Noσ
2ε2

K

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ

˙ȷ

ď exp

˜

max

#

σ4ε4N
2

o

K
,
4

3

σ2ε2No
?
K

+¸

.

Therefore, combining the above inequalities with Lemma A.5, we obtain

2δ2 “ 2DTV

`

Eµ„unif

“

PA
θ,µ

‰

,PA
0

˘2
ď log

`

1 ` χ2pEµ„unif

“

PA
θ,µ

‰

} PA
0 q
˘

ď max

#

4

3

Noσ
2ε2

?
K

,
N

2

oσ
4ε4

K

+

`
4

3
ε2Nr.

Then, we either have Nr ě 3δ2

4ε2 , or it holds

max

#

4

3

Noσ
2ε2

?
K

,
N

2

oσ
4ε4

K

+

ě δ2,

which implies that Noσ
2ε2?
K

ě min
␣

4
3 ,

3
4δ

2
(

“ 3
4δ

2 (as δ ď 1). The proof of Lemma F.11 is completed by rearranging.

Proof of Lemma F.6. We perform a truncation type argument to reduce Lemma F.6 to Lemma F.11, which is similar to the
proof of Lemma E.4.

Let us take No “
P

6δ´1EA
0

“

NpEθ
revq

‰T

and Nr “
P

6δ´1EA
0

“

NpEθ
correctq

‰T

. By Markov’s inequality, we have

PA
0

`

NpEθ
revq ě No

˘

ď
δ

6
, PA

0

`

NpEθ
correctq ě Nr

˘

ď
δ

6
.

Therefore, we can consider the following exit criterion exit for the algorithm A:

exitpτ p1:T 1
qq “ TRUE iff

T 1
ÿ

t“1

I
´

τ ptq P Eθ
rev

¯

ě No or
T 1
ÿ

t“1

I
´

τ ptq P Eθ
correct

¯

ě Nr.

The criterion exit induces a stopping time Texit, and we have

PA
0 pDt ă T, exitpτ p1:tqq “ TRUEq ď PA

0

`

NpEθ
revq ě No or NpEθ

correctq ě Nr

˘

ď
δ

6
`

δ

6
ď

δ

3
.
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Therefore, we can consider the early stopped algorithm Apexitq with exit criterion exit (cf. Appendix D), and by Lemma D.2
we have

DTV

´

PApexitq
0 ,Eµ„unif

”

PApexitq
θ,µ

ı¯

ě DTV

`

PA
0 ,Eµ„unif

“

PA
θ,µ

‰˘

´ PA
0 pDt ă T, exitpτ p1:tqq “ TRUEq ě

2δ

3
.

Notice that by our definition of exit and stopping time Texit, in the execution of Apexitq, we also have

Texit´1
ÿ

t“1

1

´

τ ptq P Eθ
rev

¯

ă No,
Texit´1
ÿ

t“1

1

´

τ ptq P Eθ
correct

¯

ă Nr.

Therefore, algorithm Apexitq ensures that

NpEθ
rev,hq “

Texit
ÿ

t“1

1

´

τ ptq P Eθ
rev

¯

ď No, NpEθ
correctq “

Texit
ÿ

t“1

1

´

τ ptq P Eθ
correct

¯

ď Nr.

Applying Lemma F.11 to the algorithm Apexitq (and δ1 “ 2
3δ), we can obtain

either
δ2

?
K

3ε2σ2
ď No ď 6δ´1EA

0

“

NpEθ
revq

‰

` 1, or
δ2

3ε2
ď Nr ď 6δ´1EA

0

“

NpEθ
correctq

‰

` 1,

and rearranging gives the desired result of Lemma F.6.

F.7. Proof of Lemma F.12

Throughout the proof, the parameters θ, µ, µ1 are fixed.

By our discussion in Appendix D, using (16), we have

Eτp1q,¨¨¨ ,τpTq„PA
0

«

T
ź

t“1

PM pτ ptqqPM 1 pτ ptqq

P0pτ ptqq2
¨ exp

˜

´

T
ÿ

t“1

H
ÿ

h“1

log Ipτ
ptq
h´1q

¸ff

“ 1, (34)

where we have defined Ipτlq for any partial trajectory τl up to step l P rHs as

Ipτlq :“ E0

„

Pθ,µpol`1|τlqPθ,µ1 pol`1|τlq

P0pol`1|τlq2

ˇ

ˇ

ˇ

ˇ

τl

ȷ

.

Notice that the model Pθ,µ and P0 are different only at the transition from sh‹ “ s‹, ah‹ “ a‹ to s‘ and the dynamic at the
component ts‘, e‘u. Therefore, for any (reachable) trajectory τl “ po1, a1, ¨ ¨ ¨ , ol, alq, we can consider the implication of
Pθ,µpol`1 “ ¨|τlq ‰ P0pol`1 “ ¨|τlq:
1. Clearly, oh‹ “ s‹, ah‹ “ a‹ (i.e. l ě h‹ ` 1 and taking action a1:h‹´1 from s0 will result in s‹ at step h‹).
2. Either ah‹`1:l “ pa‹

h‹`1:l´1, a
‹
revq for some l P Hąh‹ , or l “ H ´ 1 and ah‹`1:H´1 “ a‹.

Hence, for l P Hąh‹ , we define

Eθ
rev,l :“

␣

oh‹ “ s‹, ah‹:l “ pa‹,a‹
h‹`1:l´1, a

‹
revq

(

.

Also recall that we define Eθ
correct :“ toh‹ “ s‹, ah‹:H´1 “ pa‹,a‹qu. Then if Pθ,µp¨|τlq ‰ P0p¨|τlq, then either l P

Hąh‹ , τl P Eθ
rev,l, or l “ H ´ 1, τH´1 P Eθ

correct. In other words, for any τl (that is reachable under P0), we have Ipτlq “ 1
except for these two cases, and it remains to compute Ipτlq for these two cases.

Case 1: l P Hąh‹ , τl P Eθ
rev,l. In this case, we have

Pθ,µpol`1 “ o|τlq “ Pθ,µpol`1 “ o|sl`1 “ e‘qPθ,µpsl`1 “ e‘|τlq ` Pθ,µpol`1 “ o|sl`1 “ eaqPθ,µpsl`1 “ ea|τlq

“ pOµpo|e‘q ´ Opo|eaqq ¨ Pθ,µpsl`1 “ e‘|τlq ` Opo|eaq,

where the second equality is because conditional on τl, we have sl`1 P te‘, eau. Now, we have

Pθ,µpsl`1 “ e‘|τlq “ Pθ,µpsl`1 “ e‘|oh‹ “ s‹, ah‹:l “ pa‹,a‹
h‹`1:l´1, a

‹
revqq
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“ Pθ,µpsh‹`1 “ s‘|oh‹ “ s‹, ah‹ “ a‹q “ ε.

Hence, by the definition of Oµp¨|e‘q and Op¨|eaq, we can conclude that

Pθ,µpol`1 “ o`
i |τlq “

1 ` εσµi

2K
, Pθ,µpol`1 “ o´

i |τlq “
1 ´ εσµi

2K
, @i P rKs.

On the other hand, clearly P0pol`1 “ ¨|τlq “ Unifpto`
1 , o

´
1 , ¨ ¨ ¨ , o`

K , o´
Kuq. Hence, it holds that

Ipτlq “E0

„

Pθ,µpol`1|τlqPθ,µ1 pol`1|τlq

P0pol`1|τlq2

ˇ

ˇ

ˇ

ˇ

τl

ȷ

“
1

2K

ÿ

oPOo

Pθ,µpol`1 “ o|τlqPθ,µ1 pol`1 “ o|τlq

P0pol`1 “ o|τlq2

“
1

2K

K
ÿ

i“1

p1 ` εσµiqp1 ` εσµ1
iq ` p1 ´ εσµiqp1 ´ εσµ1

iq

“1 `
ε2σ2

K

K
ÿ

i“1

µiµ
1
i “ 1 `

ε2σ2

K

@

µ, µ1
D

.

Case 2: l “ H ´ 1.τH´1 P Eθ
correct. In this case, the distribution PpoH “ ¨|τH´1q is supported on tgood, badu. Similar to

case 1, we have

Pθ,µpoH “ ¨|τlq “ Pθ,µpoH “ ¨|sH “ s‘qPθ,µpsH “ s‘|τH´1q ` Pθ,µpoH “ ¨|sH “ saqPθ,µpsH “ sa|τH´1q

“ pOHp¨|s‘q ´ OHp¨|saqq ¨ Pθ,µpsH “ s‘|τH´1q ` OHp¨|saq,

where the second equality is because conditional on τH´1 P Eθ
correct, we have sH P ts‘, sau. Now, we have

Pθ,µpsH “ s‘|τH´1q “ Pθ,µpsH “ s‘|oh‹ “ s‹, ah‹:H´1 “ pa‹,a‹qq “ Pθ,µpsh‹`1 “ s‘|oh‹ “ s‹, ah‹ “ a‹q “ ε.

Hence, by the definition of OHp¨|s‘q and OHp¨|saq, we have

Pθ,µpoH “ o|τH´1q “

#

1`2ε
4 , o “ good,

3´2ε
4 , o “ bad.

On the other hand, clearly P0poH “ good|τH´1q “ 1
4 ,P0poH “ bad|τH´1q “ 3

4 . Therefore, in this case, we have

IpτH´1q “ E0

„

Pθ,µpoH |τH´1qPθ,µ1 poH |τH´1q

P0poH |τH´1q2

ˇ

ˇ

ˇ

ˇ

τH´1

ȷ

“
1

4
ˆ

ˆ

p1 ` 2εq{4

1{4

˙2

`
3

4
ˆ

ˆ

p3 ´ 2εq{4

3{4

˙2

“ 1 `
4

3
ε2.

Combining the two cases above, we obtain

Ipτlq “

$

’

&

’

%

1 ` ε2σ2

K xµ, µ1y , l P Hąh‹ , τl P Eθ
rev,l,

1 ` 4
3ε

2, l “ H ´ 1, τH´1 P Eθ
correct,

1, otherwise.

Hence, for each t P rTs,

H´1
ÿ

l“0

log Ipτ
ptq
l q “

H´1
ÿ

l“0

1

´

l P Hąh‹ , τ
ptq
l P Eθ

rev,l

¯

¨ log

ˆ

1 `
ε2σ2

K

@

µ, µ1
D

˙

` 1

´

τ
ptq
H´1 P Eθ

correct

¯

¨ log

ˆ

1 `
4

3
ε2
˙

ď
ÿ

lPHąh‹

1

´

τ
ptq
l P Eθ

rev,l

¯

¨
ε2σ2

K

@

µ, µ1
D

` 1

´

τ
ptq
H´1 P Eθ

correct

¯

¨
4

3
ε2

“ 1

´

τ
ptq
H P Eθ

rev

¯

¨
ε2σ2

K

@

µ, µ1
D

` 1

´

τ
ptq
H P Eθ

correct

¯

¨
4

3
ε2,
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where the last equality is because Eθ
rev “

Ů

l:lPHąh‹
Eθ

rev,l. Taking summation over t P rTs, we obtain

T
ÿ

t“1

H´1
ÿ

l“0

log Ipτ
ptq
l q ď

T
ÿ

t“1

1

´

τ
ptq
H P Eθ

correct

¯

¨
4

3
ε2 ` 1

´

τ
ptq
H P Eθ

rev

¯

¨
ε2σ2

K

@

µ, µ1
D

“ NpEθ
correctq ¨

4

3
ε2 ` NpEθ

revq ¨
ε2σ2

K

@

µ, µ1
D

ď Nr ¨
4

3
ε2 ` No ¨

ε2σ2

K

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ .

Plugging the above inequality into (34) completes the proof of Lemma F.12.

F.8. Regret calculation for hard instance in Section 5

For the hard instance presented in Section 5, we notice that any algorithm either incurs a ΩpεT q regret, or must have
successfully identified ph‹, s‹, a‹q within T episodes of play, which requires either at least ΩpSAH ˆ

?
O{pσ2ε2qq episodes

of taking revealing actions, each being Θp1q-suboptimal, or at least ΩpSAH ˆAΘpHq{ε2q episodes of trying out all possible
action sequences, each being Θpεq-suboptimal. This yields a regret lower bound

Ω
´

SAH ˆ min
! ?

O
σ2ε2 ,

AΘpHq

ε2 ¨ ε
)¯

^ ΩpεT q.

Optimizing over ε ą 0, we obtain a ΩpT 2{3q-type regret lower bound (for T ! AOpHq) similar as (though slightly worse
rate than) Theorem 6.

G. Proof of Theorem 5
We first construct a family of hard instances in Appendix G.1. We then state the PAC lower bound of this family of hard
instances in Proposition G.1. Theorem 5 then follows from combining Proposition G.1 with Proposition F.1.

G.1. Construction of hard instances and proof of Theorem 5

We consider the following family of m-step revealing POMDPs M that admits a tuple of hyperparameters
pε, σ, n,m,K,L,Hq. All POMDPs in M share the state space S, action space A, observation space O, and horizon
length H , defined as following.

• The state space S “ Stree

ŮL
j“1

!

sj‘, s
j
a, e

j
‘, e

j
a, terminalj

)

, where Stree is a binary tree with level n (so that |Stree| “

2n ´ 1). Let s0 be the root of Stree, and Sleaf be the set of leaves of Stree, with |Sleaf | “ 2n´1.

• The observation space O “ Stree

Ů
␣

o`
1 , o

´
1 , ¨ ¨ ¨ , o`

K , o´
K

(
Ů

tlock, good, badu
ŮL

j“1

␣

lockj , terminalj
(

.

• The action space A “ t0, 1, ¨ ¨ ¨ , A ´ 1u.

We further define reveal “ 0 P A,Ac “ t1, ¨ ¨ ¨ , A ´ 1u.

Model parameters Each non-null POMDP model M “ Mθ,µ P MztM0u is specified by parameters pθ, µq, where
µ P t´1,`1u

LˆK , and θ “ ph‹, s‹, a‹,a‹q, where

• s‹ P Sleaf , a‹ P Ac :“ t1, ¨ ¨ ¨ , A ´ 1u.

• h‹ P H :“ th “ n ` lm : l P Zě0, h ă Hu.

• a‹ “ pa‹
h‹`1, . . . ,a

‹
H´1q P AH´h‹

´1 is an action sequence indexed by h‹ ` 1, ¨ ¨ ¨ , H ´ 1, such that when h P H,
we have a‹

h ‰ reveal. We use Acode,h‹ to denote the set of all such a‹.

Our construction will ensure that, only at steps h P H and states sh P ts‘, sau, the agent can observe lockj and take action
reveal to transit to

!

ej‘, e
j
a

)

.

For any POMDP Mθ,µ, its system dynamics Pθ,µ :“ PMθ,µ
is defined as follows.
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Emission dynamics At state s P Stree Y tterminalu, the agent always receives (the unique observation corresponding to)
s itself as the observation.

• At state ej‘, the emission dynamics is given by

Oµpo`
i |ej‘q “

1 ` σµj,i

2K
, Oµpo´

i |ej‘q “
1 ´ σµj,i

2K
, @i P rKs,

where we omit the subscript h because the emission distribution does not depend on h.

• At state eja, the observation is uniformly drawn from Oo :“
␣

o`
1 , o

´
1 , ¨ ¨ ¨ , o`

K , o´
K

(

, i.e. Op¨|ejaq “ UnifpOoq.

• At states s P tsj‘, s
j
au:

– For steps h P H, the agent always receives lockj as the observation.

– For steps h ď H ´ 1 that does not belong to H, the agent always receives lock as the observation.

– At step H , the emission dynamics at tsj‘, s
j
au is given by

OHpgood|sj‘q “
3

4
, OHpbad|sj‘q “

1

4
,

OHpgood|sjaq “
1

4
, OHpbad|sjaq “

3

4
.

Transition dynamics In each episode, the agent always starts at s0.

• At any node s P StreezSleaf , there are three types of available actions: wait “ 0, left “ 1 and right “ 2, such that the
agent can take wait to stay at s, left to transit to the left child of s and right to transit to the right child of s.

• At any s P Sleaf , the agent can take action wait “ 0 to stay at s (i.e. Pps|s,waitq “ 1); otherwise, for s P Sleaf ,
h P rH ´ 1s, a ‰ wait,

Ph;θpsj‘|s, aq “
ε

L
¨ 1ph “ h‹, s “ s‹, a “ a‹q,

Ph;θpsja|s, aq “
1

L
´

ε

L
¨ 1ph “ h‹, s “ s‹, a “ a‹q.

• The states s P tej‘, e
j
au always transit to terminalj , regardless of the action taken.

• The states terminal1, ¨ ¨ ¨ , terminalL are absorbing states.

• At states s P tsj‘, s
j
au:

– For the step h P H, we set

Ph;θpej‘|sj‘, revealq “ 1, Ph;θpeja|sja, revealq “ 1.

In words, at steps h P H and states s P tsj‘, s
j
au (corresponding to o “ lockj), the agent can take action reveal to

transit to tej‘, e
j
au, respectively. Note that H “ th “ n ` lm : h ă H, l P Zě0u, so we only allow the agent to

take the reveal action reveal every m steps, which ensures that our construction is pm ` 1q-step revealing.

– For h R H or a ‰ reveal, we set

Ph;θpsj‘|sj‘, aq “ 1pa “ a‹
hq, Ph;θpsja|sj‘, aq “ 1pa ‰ a‹

hq,

Ph;θpsja|sja, aq “ 1.

Reward The reward function is known (and only depends on the observation): at the first H ´ 1 steps, no reward is given;
at step H , we set rHpgoodq “ 1, rHpbadq “ 0, rHps0q “ p1 ` εq{4, and rHpoq “ 0 for any other o P O.
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Reference model We use M0 (or simply 0) to refer to the null model (reference model). The null model M0 has transition
and emission the same as any non-null model, except that the agent always arrives at sja (with j „ UnifprLsq) by taking
any action a ‰ wait at s P Sleaf and h P rH ´ 1s (i.e., Ph;M0

psja|s, aq “ 1
L for any s P Sleaf , a P Ac, h P rH ´ 1s). In this

model, states in ts1‘, e
1
‘, ¨ ¨ ¨ , sL‘, e

L
‘u are all not reachable, and hence we do not need to specify the transition and emission

dynamics at these states.

We summarize the results of the hard instances we construct in the following proposition, which we prove in Appendix G.2.

Proposition G.1. For given ε P p0, 0.1s, σ P p0, 1s, m,n ě 1, K,L ě 1, H ě 8n ` m ` 1, the above model class M
satisfies the following properties.

1. |S| “ 2n ` 5L, |O| “ 2n ` 2K ` 2L ` 3, |A| “ A.

2. For each M P M, M is pm ` 1q-step revealing with αm`1pMq´1 ď 1 ` 2
σ .

3. log |M| ď LK log 2 ` H logA ` logpSAHq.

4. Suppose algorithm A interacts with the environment for T episodes and returns πout such that

PA
M

´

V ‹
M ´ VM pπoutq ă

ε

8

¯

ě
3

4
.

for any M P M. Then it must hold that

T ě
1

10000m
min

#

|Sleaf |
?
LKAmH

σ2ε2
,

|Sleaf |A
H{2H

ε2

+

.

Proof of Theorem 5 We have to suitably choose parameters when applying Proposition G.1. More specifically, given
pS,O,A,H, α,mq, we can let m1 “ m ´ 1, and take n ě 1 to be the largest integer such that 2n ď S{4, and take
L “ tpS ´ 2nq{5u, K “

X

O´2n´2L´3
2

\

Á O (because O ě S ě 10), ε1 “ ε{8, and σ “ 2
α´1´1 ď 1. Applying

Proposition G.1 to the parameters pε, σ, n,m1,K, L,Hq, we obtain a model class M of m-step α-revealing POMDPs,
such that if there exists an algorithm A that interacts with the environment for T episodes and returns a πout such that
V ‹
M ´ VM pπoutq ă ε with probability at least 3{4 for all M P M, then

T ě
c0
m

min

"

S3{2O1{2Am´1H

α2ε2
,
SAH{2H

ε2

*

,

where c0 is a universal constant.

Furthermore, we can apply Proposition F.1 (claim 5) instead, and similarly obtain a model class M1 of m-step α-revealing
POMDPs, such that if there exists an algorithm A that interacts with the environment for T episodes and returns a πout such
that V ‹

M ´ VM pπoutq ă ε with probability at least 3{4 for all M P M1, then

T ě
c1
0

m
min

"

SO1{2AmH

α2ε2
,
SAH{2H

ε2

*

,

where c1
0 is a universal constant.

Combining these two cases completes the proof of Theorem 5.

G.2. Proof of Proposition G.1

All propositions and lemmas stated in this section are proved in Appendix G.3-G.4.

Claim 1 follows directly by counting the number of states, observations, and actions in models in M. Claim 3 follows as we
have |M| “ |tph‹, s‹, a‹,a‹qu| ˆ

ˇ

ˇ

ˇ
t˘1u

LˆK
ˇ

ˇ

ˇ
` 1 ď HSAH ˆ 2LK . Taking logarithm yields the claim.

Claim 2 follows from this lemma, which is proved in Appendix G.3.

Lemma G.2. For each M P M, it holds that αm`1pMq´1 ď 2
σ ` 1.
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By our construction, we can relate the sub-optimality of the output policy to the TV distance between models (under the prior
distribution of parameter µ „ Unifpt´1,`1u

LˆK
q), by an argument similar to the one in Appendix E.2. We summarize

the results in the following lemma, whose proof is omitted for succinctness.

Lemma G.3 (Relating learning to testing). In holds that

V ‹
M ´ VM pπq ě

ε

4
Pπ
M poH “ s0q @M ‰ 0, and V ‹

0 ´ V0pπq ě
ε

4
Pπ
0 poH ‰ s0q.

Therefore, suppose that the algorithm A outputs a policy πout such that PA
M

`

V ‹
M ´ VM pπoutq ă ε

8

˘

ě 3
4 for any model

M P M, then we have

DTV

`

PA
0 ,Eµ„unif

“

PA
θ,µ

‰˘

ě
1

2
, @θ. (35)

In the following, we use (35) to derive lower bounds of the expected visitation count of some good events, and then deduce
a lower bound of T , giving the following lemma whose proof is contained in Appendix G.4.

Lemma G.4. Fix a θ “ ph‹, s‹, a‹,a‹q. We consider events

Eθ
reach :“

␣

oh‹ “ s‹, ah‹:h‹`m´1 “ pa‹,a‹
h‹`1:h‹`m´1q

(

,

Eθ
correct :“ toh‹ “ s‹, ah‹:H´1 “ pa‹,a‹qu.

Then for any algorithm A with δ :“ DTV

´

PA
0 ,Eµ„unif

”

PA
θ,µ

ı¯

ą 0, we have

either EA
0

“

NpEθ
reachq

‰

ě
δ3

?
LK

18ε2σ2
´

δ

6
, or EA

0

“

NpEθ
correctq

‰

ě
δ3

18ε2
´

δ

6
.

Applying Lemma G.4 for any parameter tuple θ “ ph‹, s‹, a‹,a‹q with δ “ 1
2 , we obtain

either EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

q

reach

¯ı

ě

?
LK

300ε2σ2
, or EA

0

”

N
´

E
ph‹,s‹,a‹,a‹

q
correct

¯ı

ě
1

300ε2
, (36)

by our choice that ε P p0, 0.1s.

Fix a tuple ph‹, s‹, a‹q such that h‹ P H and h‹ ď n ` m tH{10mu, s‹ P Sleaf , a‹ P Ac. By (36), we know that for all
a‹ P Acode,h‹ , it holds that

Am´1 ¨ EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

q

reach

¯ı

` |Acode,h‹ | ¨ EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

q
correct

¯ı

ě
1

300
min

#

Am´1
?
LK

ε2σ2
,

|Acode,h‹ |

ε2

+

ě
1

300
min

#

Am´1
?
LK

ε2σ2
,
AH{2´1

ε2

+

“: ω,
(37)

where the last inequality uses the fact that |Acode,h‹ | ě AH{2´1 for h‹ ď n ` m tH{10mu, which follows from a direct
calculation (Lemma F.7). Notice that by our definition of Ereach,

ÿ

a‹PAH´h‹´1

EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

q

reach

¯ı

“
ÿ

a‹PAcode,h‹

EA
0

“

N
`

oh‹ “ s‹, ah‹:h‹`m´1 “ pa‹,a‹
h‹`1:h‹`m´1q

˘‰

“
ÿ

aPAm´1

EA
0 rNpoh‹ “ s‹, ah‹:h‹`m´1 “ pa‹,aqqs ¨

ÿ

a‹
PAcode,h‹

a‹ begins with a

1

“
ÿ

aPAm´1

EA
0 rNpoh‹ “ s‹, ah‹:h‹`m´1 “ pa‹,aqqs ¨

|Acode,h‹ |

Am´1

“EA
0 rNpoh‹ “ s‹, ah‹ “ a‹qs ¨

|Acode,h‹ |

Am´1
.
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Similarly, by our definition of Ecorrect, we have
ÿ

a‹PAcode,h‹

EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

q
correct

¯ı

“
ÿ

a‹PAcode,h‹

EA
0 rNpoh‹ “ s‹, ah‹:H´1 “ pa‹,a‹qqs

“ EA
0 rNpoh‹ “ s‹, ah‹ “ a‹, ah‹`1:H´1 P Acode,h‹ qs ď EA

0 rNpoh‹ “ s‹, ah‹ “ a‹qs.

Therefore, taking average of (37) over all a P Acode,h‹ and using the equations above, we get

ω ď
1

|Acode,h‹ |

ÿ

aPAcode,h‹

”

Am´1 ¨ EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

q

reach

¯ı

` |Acode,h‹ | ¨ EA
0

”

N
´

E
ph‹,s‹,a‹,a‹

q
correct

¯ıı

ď2 EA
0 rNpoh‹ “ s‹, ah‹ “ a‹qs.

Now, we have shown that EA
0 rNpoh‹ “ s‹, ah‹ “ a‹qs ě ω

2 for each s‹ P Sleaf , a
‹ P Ac, h‹ P H such that h‹ ď

n ` m tH{10mu. Taking summation over all such ph‹, s‹, a‹q, we derive that

|Sleaf | |Ac| ptH{10mu ` 1q

600
min

#

Am´1
?
LK

ε2σ2
,
AH{2´1

ε2

+

ď
ÿ

s‹PSleaf

ÿ

a‹PAc

ÿ

h‹
“n`lm:

0ďlďtH{10mu

EA
0 rNpoh‹ “ s‹, ah‹ “ a‹qs ď T,

where the second inequality is because events ptoh‹ “ s‹, ah‹ “ a‹uqh‹,s‹,a‹ are disjoint. Plugging in |Ac| “ A´ 1 ě 2
3A,

tH{10mu ` 1 ě H{10m completes the proof of Proposition G.1.

G.3. Proof of Lemma G.2

The proof is very similar to the proof of Lemma F.3, with only slight modification.

Case 1: We first show that the null model 0 is 1-step 1-revealing. In this model, the states in
␣

s1‘, e
1
‘, ¨ ¨ ¨ , sL‘, e

L
‘

(

are all

not reachable, and hence for each step h, we consider the set S 1 “ Stree \
ŮL

j“1

!

sja, e
j
a, terminalj

)

. For different states

s, s1 P S 1, the support of Ohp¨|sq and Ohp¨|s1q are disjoint by our construction, and hence applying Lemma F.9 gives

min
O`

h

›

›O`
h

›

›

1Ñ1
ď max

sPS1
γpOhpsqq ď 1.

Applying Proposition 2 completes the proof for null model 0.

Case 2: We next consider the model M “ Mθ,µ P M. By our construction, for h ď h‹, the states in
␣

s1‘, e
1
‘, ¨ ¨ ¨ , sL‘, e

L
‘

(

are all not reachable, and hence by the same argument as in the null model, we obtain

min
M`

h,m`1

›

›

›
M`

h,m`1

›

›

›

˚Ñ1
ď min

O`
h

›

›O`
h

›

›

1Ñ1
ď 1.

Hence, we only need to bound the quantity minM`
h,m`1

›

›

›
M`

h,m`1

›

›

›

˚Ñ1
for a fixed step h ą h‹. In this case, there

exists a l P H such that h ď l ď h ` m ´ 1, and we write r “ l ´ h ` 1. By Lemma C.1, we only need to bound
minM`

h,r`1

›

›

›
M`

h,r`1

›

›

›

˚Ñ1
. Consider the action sequence a “ pa‹

h:l´1, revealq P Ar, and we partition S as

S “
ğ

sPStree

tsu \

L
ğ

j“1

tsj‘, s
j
au \ tej‘, e

j
au \

␣

terminalj
(

.

It is direct to verify that, in Mθ,µ, for states s, s1 come from different subsets in the above partition, the support of Mh,ap¨|sq

and Mh,ap¨|s1q are disjoint. Then, we can apply Lemma F.8 and Lemma F.9, and obtain

min
M`

h,r`1

›

›

›
M`

h,r`1

›

›

›

˚Ñ1
ď min

M`
h,a

›

›

›
M`

h,a

›

›

›

1Ñ1
ď max

j

!

1, γ
´

Mh,aptsj‘, s
j
auq

¯

, γ
´

Mh,aptej‘, e
j
auq

¯)

.
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Therefore, in the following we only need to consider left inverses of the matrix Mh,aptsj‘, s
j
auq and Mh,aptej‘, e

j
auq for

each j P rLs.

(1) The matrix Mh,aptsj‘, s
j
auq. By our construction, taking a at sh “ sj‘ will lead to oh:l´1 “ lock, ol “ lockj

and ol`1 „ Oµp¨|ej‘q; taking a at sh “ sja will lead to oh:l´1 “ lock, ol “ lockj and ol`1 „ Oµp¨|ejaq. Hence,
Mh,aptsj‘, s

j
auq can be written as (up to permutation of rows)

Mh,aptsj‘, s
j
auq “

„

12K`σrµj

2K
12K

2K
0 0

ȷ

P ROr`1
ˆ2,

where rµj “ rµj ;´µjs P t´1, 1u
2K , 1 “ 12K is the vector in R2K with all entry being one. Similar to Proposition E.2, we

can directly verify that γpMh,apts‘, sauqq ď 2
σ ` 1.

(2) The matrix Mh,aptej‘, e
j
auq. By our construction, at sh “ ej‘, we have oh „ Oµp¨|ej‘q and oh`1:l`1 “ terminalj ; at

sh “ ea, we have oh „ Oµp¨|ejaq and oh`1:l`1 “ terminalj . Thus, Mh,aptsj‘, s
j
auq can also be written as

Mh,aptej‘, e
j
auq “

„

12K`σrµj

2K
12K

2K
0 0

ȷ

P ROr`1
ˆ2,

and hence we also have γ
´

Mh,aptej‘, e
j
auq

¯

ď 2
σ ` 1.

Combining the two cases above gives

min
M`

h,m`1

›

›

›
M`

h,m`1

›

›

›

˚Ñ1
ď min

M`
h,r`1

›

›

›
M`

h,r`1

›

›

›

˚Ñ1
ď min

M`
h,a

›

›

›
M`

h,a

›

›

›

1Ñ1
ď

2

σ
` 1,

and hence completes the proof of Lemma G.2.

G.4. Proof of Lemma G.4

Similar to the proof of Lemma F.6, we only need to show the following lemma, and the proof of Lemma G.4 follows by a
reduction argument (see Appendix F.6).

Lemma G.5. Suppose that algorithm A (with possibly random stopping time T) satisfies NpEθ
reachq ď No and NpEθ

correctq ď

Nr almost surely, for some fixed No, Nr. Then

either No ě
3

4

δ2
?
LK

ε2σ2
, or Nr ě

3

4

δ2

ε2
,

where δ “ DTV

´

PA
0 ,Eµ„unif

”

PA
θ,µ

ı¯

.

Proof. Fix a θ “ ph‹, s‹, a‹,a‹q. Recall that we define Eθ
reach :“

␣

oh‹ “ s‹, ah‹:h‹`m´1 “ pa‹,a‹
h‹`1:h‹`m´1q

(

, and
we further define

Eθ
rev :“

␣

oh‹ “ s‹, ah‹:h “ pa‹,a‹
h‹`1:h´1, revealq for some h P Hąh‹

(

.

For any model M P Mθ :“
␣

Mθ,µ : µ P t´1,`1u
LˆK(

Y t0u, we consider the following “augmented” system dynamics
PM :
1. For each episode, after the interaction τH „ PM is finished, the environment generated an extra observation oH`1 “ oaug.
2. If τH R Eθ

reach or τH P Eθ
rev, then oaug “ dummy.

3. If τH P Eθ
reach ´ Eθ

rev, then in τH “ po1, a1, ¨ ¨ ¨ , oH , aHq we have oh‹`m “ lockj for some j P rLs, and then the
environment generates oaug as

M “ Mθ,µ : Pθ,µpoaug “ o`
i |τHq “

1 ` εσµj,i

2K
, Pθ,µpoaug “ o`

i |τHq “
1 ´ εσµj,i

2K
, @i P rKs,

and for M “ 0, P0poaug “ ¨|τHq “ Unifp
␣

o`
1 , o

´
1 , ¨ ¨ ¨ , o`

K , o´
K

(

q.
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Clearly, for each M P Mθ, PM is still a sequential decision process. Under such construction, each policy π induces a
distribution of τ “ pτH , oaugq „ Pπ

M , and the algorithm A induce a distribution of τ p1q, ¨ ¨ ¨ , τ pTq „ PA

0 . By data-processing
inequality, we have

DTV

`

PA
0 ,Eµ„unif

“

PA
θ,µ

‰˘

ď DTV

´

PA

0 ,Eµ„unif

”

PA

θ,µ

ı¯

.

Hence, by Lemma D.1, we only need to bound

1 ` χ2pEµ„unif

”

PA

θ,µ

ı

} PA

0 q “ Eµ,µ1„unifEτp1q,¨¨¨ ,τpTq„PA
0

«

T
ź

t“1

Pθ,µpτ ptqqPθ,µ1 pτ ptqq

P0pτ ptqq2

ff

.

To upper bound the above quantity, we invoke the following lemma (proof in Appendix G.5).

Lemma G.6 (Bound on the χ2-inner product). Under the conditions of Lemma G.5 (for a fixed θ), it holds that for any
µ, µ1 P t´1, 1u

K ,

EA

0

«

T
ź

t“1

Pθ,µpτ ptqqPθ,µ1 pτ ptqq

P0pτ ptqq2

ff

ď exp

ˆ

No ¨
σ2ε2

LK

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ `
4

3
ε2Nr

˙

. (38)

Given Lemma G.6, the desired result follows from a standard argument (see e.g. the proof of Lemma F.11).

G.5. Proof of Lemma G.6

We first show the following lemma, which is a single-episode version of Lemma G.6.

Lemma G.7. For any policy π and parameter θ, µ, µ1, it holds that

Eτ„Pπ
0

„

Pθ,µpτqPθ,µ1 pτq

P0pτq2
exp

ˆ

´1pτ P Eθ
reachq ¨

ε2σ2

LK

@

µ, µ1
D

´ 1pτ P Eθ
correctq ¨

4

3
ε2
˙ȷ

ď 1. (39)

Proof of Lemma G.7. In the following, all expectation and conditional expectation is taken with respect to τ “ pτH , oaugq „

Pπ

0 .

Similar to the proof of Lemma F.12 (in Appendix F.7), the core of our analysis is still computing the quantity Ipτlq, defined
as

Ipτlq :“ Eol`1„P0pτlq

„

Pθ,µpol`1|τlqPθ,µ1 pol`1|τlq

P0pol`1|τlq2

ȷ

“

$

’

’

’

’

’

&

’

’

’

’

’

%

E
„

Pθ,µpol`1|τlqPθ,µ1 pol`1|τlq

P0pol`1|τlq2

ˇ

ˇ

ˇ

ˇ

τl

ȷ

, l ă H,

Eoaug„P0pτHq

„

Pθ,µpoaug|τHqPθ,µ1 poaug|τHq

P0poaug|τHq2

ȷ

, l “ H.

(40)

Basically, by Lemma A.2, we have

1 “ Eτ„Pπ
0

«

Pθ,µpτ |τh‹`mqPθ,µ1 pτ |τh‹`mq

P0pτ |τh‹`mq2
¨ exp

˜

´

H
ÿ

l“h‹`m

log Ipτlq

¸ˇ

ˇ

ˇ

ˇ

ˇ

τh‹`m

ff

. (41)

In the following, we first compute Ipτlq for each (reachable) τl.

An important observation is that, for a trajectory τl “ po1, a1, ¨ ¨ ¨ , ol, alq with l ă H , if Pθ,µpol`1 “ ¨|τlq ‰ P0pol`1 “

¨|τlq, then
1. Clearly, oh‹ “ s‹, ah‹ “ a‹ (i.e. l ě h‹ ` 1 and taking action a1:h‹´1 from s0 will result in s‹ at step h‹).
2. Either ah‹`1:l “ pa‹

h‹`1:l´1, revealq for some l P Hąh‹ , or l “ H ´ 1 and ah‹`1:H´1 “ a‹.

Therefore, for each l P Hąh‹ we define

Eθ
rev,l :“

␣

oh‹ “ s‹, ah‹:l “ pa‹,a‹
h‹`1:l´1, revealq

(

.
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Then, if Pθ,µp¨|τlq ‰ P0p¨|τlq, either (case 1) l P Hąh‹ , τH´1 P Eθ
rev,l, or (case 2) l “ H ´ 1, τl P Eθ

correct, or (case 3)
l “ H, τH P Eθ

reach ´ Eθ
rev.

In the following, we compute Ipτlq for these three cases separately. We consider the events Lj :“
␣

oh‹`m “ lockj
(

pj P

rLsq to simplify our discussion.

Case 1: l P Hąh‹ , τl P Eθ
rev,l. In this case, there exists a j P rLs such that oh‹`m “ lockj , i.e. τl P Lj . In other words,

observing τl implies that sh1 P tsj‘, s
j
au for h ă h1 ď l, and sl`1 P tej‘, e

j
au (because al “ reveal). Therefore,

Pθ,µpol`1 “ o|τlq “ Pθ,µpol`1 “ o|sl`1 “ ej‘qPθ,µpsl`1 “ ej‘|τlq ` Pθ,µpol`1 “ o|sl`1 “ ejaqPθ,µpsl`1 “ eja|τlq

“

´

Oµpo|ej‘q ´ Opo|ejaq

¯

¨ Pθ,µpsl`1 “ ej‘|τlq ` Opo|ejaq,

Notice that by our construction,

Pθ,µpsl`1 “ ej‘|τlq “ Pθ,µpsl “ sj‘|τl´1, olq

“ Pθ,µpsl “ sj‘|oh‹ “ s‹, ah‹:l´1 “ pa‹,a‹
h‹`1:l´1q,Ljq

“ Pθ,µpsh‹`1 “ sj‘|oh‹ “ s‹, ah‹:l´1 “ pa‹,a‹
h‹`1:l´1q,Ljq

“ Pθ,µpsh‹`1 “ sj‘|oh‹ “ s‹, ah‹:l´1 “ a‹, sh‹`1 P tsj‘, s
j
auq

“ ε,

where the first equality is because sl`1 “ ej‘ if and only if sl “ sj‘, al “ reveal, the second inequality is because there are
only lock and lockj in oh‹`1:l are the third equality is because sl “ sj‘ if and only if sh‹`1 “ sj‘, ah‹`1:l´1 “ a‹

h‹`1:l´1.
Combining the above equations with our definition of Oµp¨|ej‘q and Op¨|ejaq gives

Pθ,µpol`1 “ o`
i |τlq “

1 ` εσµj,i

2K
, Pθ,µpol`1 “ o´

i |τlq “
1 ´ εσµj,i

2K
, @i P rKs.

On the other hand, clearly P0pol`1 “ ¨|τlq “ Unifpto`
1 , o

´
1 , ¨ ¨ ¨ , o`

K , o´
Kuq. Hence, it holds that

Ipτlq “
1

2K

ÿ

oPOo

Pθ,µpol`1 “ o|τlqPθ,µ1 pol`1 “ o|τlq

P0pol`1 “ o|τlq2
“ 1 `

ε2σ2

K

K
ÿ

i“1

µj,iµ
1
j,i, for any τl P Eθ

rev,l X Lj . (42)

Case 2: l “ H´1, τH´1 P Eθ
correct. In this case, by a calculation exactly the same as the proof of Lemma F.12 (Appendix F.7,

case 2), we can obtain

IpτH´1q “ 1 `
4

3
ε2, for any τH´1 P Eθ

correct. (43)

Case 3: l “ H, τH P Eθ
reach ´Eθ

rev. Suppose that for some j P rLs, τH P
`

Eθ
reach ´ Eθ

rev

˘

XLj , then by our construction of
P, we have

IpτHq “ 1 `
ε2σ2

K

K
ÿ

i“1

µj,iµ
1
j,i, for any τH P

`

Eθ
reach ´ Eθ

rev

˘

X Lj . (44)

Combining (42) (43) (44) together, we have shown that for any τH that begins with τh‹`m P Eθ
reach X Lj ,

H
ÿ

l“h‹`m

log Ipτlq “
ÿ

lPHąh‹

1
`

τl P Eθ
rev,l

˘

¨ log

˜

1 `
ε2σ2

K

K
ÿ

i“1

µj,iµ
1
j,i

¸

` 1
`

τH´1 P Eθ
correct

˘

¨ log

ˆ

1 `
4

3
ε2
˙

` 1
`

τH P Eθ
reach ´ Eθ

rev

˘

¨ log

˜

1 `
ε2σ2

K

K
ÿ

i“1

µj,iµ
1
j,i

¸
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“ 1
`

τH P Eθ
rev

˘

¨ log

˜

1 `
ε2σ2

K

K
ÿ

i“1

µj,iµ
1
j,i

¸

` 1
`

τH P Eθ
correct

˘

¨ log

ˆ

1 `
4

3
ε2
˙

` 1
`

τH P Eθ
reach ´ Eθ

rev

˘

¨ log

˜

1 `
ε2σ2

K

K
ÿ

i“1

µj,iµ
1
j,i

¸

“ 1
`

τH P Eθ
reach

˘

¨ log

˜

1 `
ε2σ2

K

K
ÿ

i“1

µj,iµ
1
j,i

¸

` 1
`

τH P Eθ
correct

˘

¨ log

ˆ

1 `
4

3
ε2
˙

,

where the second equality is because Eθ
rev “

Ů

l E
θ
rev,l. We also have

řH
l“h‹`m log Ipτlq “ 0 for τh‹`m R Eθ

reach. Plugging
the value of

řH
l“h‹`m log Ipτlq into (41) and using the fact that Pθ,µpτh‹`mq “ P0pτh‹`mq by our construction, we have

Eτ„Pπ
0

«

Pθ,µpτqPθ,µ1 pτq

P0pτq2
¨

ˆ

1 ` 1pτH P Eθ
correctq ¨

4

3
ε2
˙´1

ˇ

ˇ

ˇ

ˇ

ˇ

τh‹`m

ff

“

#

1 ` ε2σ2

K

řK
i“1 µj,iµ

1
j,i, for τh‹`m P Eθ

reach X Lj ,

1, if τh‹`m R Eθ
reach.

Notice that in Pπ
0 , conditional on τh‹`m´1 P Eθ

reach, oh‹`m is uniformly distributed over
!

lock1, ¨ ¨ ¨ , lockL
)

, and hence

E

«

Pθ,µpτqPθ,µ1 pτq

P0pτq2
¨

ˆ

1 ` 1pτH P Eθ
correctq ¨

4

3
ε2
˙´1

ˇ

ˇ

ˇ

ˇ

ˇ

τh‹`m´1

ff

“ E

«

E

«

Pθ,µpτqPθ,µ1 pτq

P0pτq2
¨

ˆ

1 ` 1pτH P Eθ
correctq ¨

4

3
ε2
˙´1

ˇ

ˇ

ˇ

ˇ

ˇ

τh‹`m

ff
ˇ

ˇ

ˇ

ˇ

ˇ

τh‹`m´1

ff

“
1

L

L
ÿ

j“1

˜

1 `
ε2σ2

K

K
ÿ

i“1

µj,iµ
1
j,i

¸

“ 1 `
ε2σ2

LK

@

µ, µ1
D

.

On the other hand, for τh‹`m´1 R Eθ
reach,

Eτ„Pπ
0

«

Pθ,µpτqPθ,µ1 pτq

P0pτq2
¨

ˆ

1 ` 1pτ P Eθ
correctq ¨

4

3
ε2
˙´1

ˇ

ˇ

ˇ

ˇ

ˇ

τh‹`m´1

ff

“ 1.

Hence, taking expectation over τh‹`m´1 gives

Eτ„Pπ
0

«

Pθ,µpτqPθ,µ1 pτq

P0pτq2
¨

ˆ

1 ` 1pτ P Eθ
correctq ¨

4

3
ε2
˙´1

¨

ˆ

1 ` 1pτ P Eθ
reachq ¨

ε2σ2

LK

@

µ, µ1
D

˙´1
ff

“ 1.

Using the fact p1 ` xq´1 ě expp´xq completes the proof.

With Lemma G.7 proven, we continue to prove Lemma G.6. Applying Lemma G.7 to algorithm A, we obtain that for each
t P rTs,

E

«

Pθ,µpτ ptqqPθ,µ1 pτ ptqq

P0pτ ptqq2
¨ exp

ˆ

´1pτ ptq P Eθ
reachq ¨

ε2σ2

LK

@

µ, µ1
D

´ 1pτ ptq P Eθ
correctq ¨

4

3
ε2
˙

ˇ

ˇ

ˇ

ˇ

ˇ

τ p1:t´1q

ff

ď 1,

where the expectation is taken over τ ptq „ PA

0 conditional on τ p1:t´1q. Therefore, by the martingale property, it holds that

E
τp1q,¨¨¨ ,τpTq„PA

0

«

T
ź

t“1

Pθ,µpτ ptqqPθ,µ1 pτ ptqq

P0pτ ptqq2
¨ exp

ˆ

´1pτ ptq P Eθ
reachq ¨

ε2σ2

LK

@

µ, µ1
D

´ 1pτ ptq P Eθ
correctq ¨

4

3
ε2
˙

ff

ď 1.

50



Lower Bounds for Learning in Revealing POMDPs

Notice that NpEθ
reachq “

řT
t“1 1pτ ptq P Eθ

reachq and NpEθ
correctq “

řT
t“1 1pτ ptq P Eθ

correctq, and hence

1 ě E
τp1q,¨¨¨ ,τpTq„PA

0

«

T
ź

t“1

Pθ,µpτ ptqqPθ,µ1 pτ ptqq

P0pτ ptqq2
ˆ exp

ˆ

´NpEθ
reachq ¨

ε2σ2

LK

@

µ, µ1
D

´ NpEθ
correctq ¨

4

3
ε2
˙

ff

ě E
τp1q,¨¨¨ ,τpTq„PA

0

«

T
ź

t“1

Pθ,µpτ ptqqPθ,µ1 pτ ptqq

P0pτ ptqq2
ˆ exp

ˆ

´No ¨
ε2σ2

LK

ˇ

ˇ

@

µ, µ1
D
ˇ

ˇ ´ Nr ¨
4

3
ε2
˙

ff

.

Multiplying both sides by exp
´

No ¨ σ2ε2

LK |xµ, µ1y| ` 4
3ε

2Nr

¯

completes the proof of Lemma G.6.

H. Regret for single-step revealing POMDPs
In this section, we establish Theorem 8 on a broader class of sequential decision problems termed as strongly B-stable PSRs,
and then deduce the guarantee for single-step revealing POMDPs as a special case. The proof is largely parallel to the
analysis of PAC learning for B-stable PSRs (Chen et al., 2022a), and we follow the notations there: in the following we use
θ to refer to the PSR model, and Θ to refer to the class of PSR models.

H.1. Strongly B-stable PSRs

We recall the definition of PSRs and B-stability in Appendix B. To establish
?
T -regret upper bound for learning PSRs, we

introduce the following structural condition.
Definition H.1 (Strong B-stability). A PSR is strongly B-stable with parameter ΛB ě 1 (henceforth also ΛB-strongly-stable)
if it admits a B-representation such that for all step h P rHs, policy π, x P RUh ,

ÿ

τh:H

πpτh:Hq ˆ |BH:hpτh:Hqx| ď ΛB

ÿ

thPUh

πpthq ˆ |xpthq| . (45)

For notational simplicity, from now on we assume that for each step h, Uh “ pO ˆ Aqmh´1 ˆ O for some mh P Zě1, and
we define Ωh :“ pO ˆ Aqmh´1; our results also hold for any general Uh using slightly more involved notation.
Proposition H.2 (Error decomposition for strongly B-stable PSRs). Suppose that two PSR models θ, θ̄ admit
ttBθ

hpoh, ahquh,oh,ah
,qθ

0u and ttBθ̄
hpoh, ahquh,oh,ah

,qθ̄
0u as B-representation respectively. Define

E θ̄
θ,hpπ, τh´1q :“

1

2
max

π1PΠhpπq

ÿ

τh:H

π1pτh:H |τh´1q ˆ

ˇ

ˇ

ˇ
Bθ

H:h`1pτh`1:Hq

´

Bθ
hpoh, ahq ´ Bθ̄

hpoh, ahq

¯

qθ̄pτh´1q

ˇ

ˇ

ˇ
,

E θ̄
θ,0pπq :“

1

2
max

π1PΠ0pπq

ÿ

τ1:H

π1pτ1:Hq ˆ

ˇ

ˇ

ˇ
Bθ

H:1pτ1:Hq

´

qθ
0 ´ qθ̄

0

¯
ˇ

ˇ

ˇ
,

where we define

Πhpπq :“
␣

π1 : π1|OˆAˆΩh`1
“ π|OˆAˆΩh`1

(

, Π0pπq :“
␣

π1 : π1|Ω1
“ π|Ω1

(

,

i.e. Πhpπq is the set of all policy π1 such that for all poh, ah, ωh`1q P O ˆ A ˆ Ωh`1, π1poh, ah, ωh`1|τh´1q “

πpoh, ah, ωh`1|τh´1q.

Then the following claims hold.

1. (Performance decomposition) It holds that

DTV

`

Pπ
θ ,Pπ

θ̄

˘

ď E θ̄
θ,0pπq `

H
ÿ

h“1

Eπ
θ̄

”

E θ̄
θ,hpπ, τh´1q

ı

,

where for h P rHs, the expectation Eπ
θ̄

is taking over τh´1 under model θ̄ and policy π.

2. (Bounding errors by Hellinger distance) Suppose that θ is ΛB-strong-stable and ttBθ
hpoh, ahquh,oh,ah

,qθ
0u satisfies the

stability condition (45). For any step h, policy π, it holds that

Eπ
θ̄

”

E θ̄
θ,hpπ, τh´1q2

ı

ď 2Λ2
BD

2
H

`

Pπ
θ ,Pπ

θ̄

˘

.

and pE θ̄
θ,0pπqq2 ď Λ2

BD
2
H

`

Pπ
θ ,Pπ

θ̄

˘

.
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Algorithm 1 OPTIMISTIC MAXIMUM LIKELIHOOD ESTIMATION (OMLE) (LIU ET AL., 2022A; CHEN ET AL., 2022A)
1: Input: Model class Θ, parameter β ą 0.
2: Initialize: Θ1 “ Θ, D “ tu.
3: for iteration k “ 1, . . . , T do
4: Set pθk, πkq “ argmaxθPΘk,π Vθpπq.
5: Execute πk to collect a trajectory τk, and add pπk, τkq into D.
6: Update confidence set

Θk`1 “

"

pθ P Θ :
ř

pπ,τqPD logPπ
pθ
pτq ě maxθPΘ

ř

pπ,τqPD logPπ
θ pτq ´ β

*

.

7: end for

H.2. Algorithms and guarantees

In this section, we state the
?
T -regret guarantee of the algorithm OMLE (Algorithm 1, (Liu et al., 2022a; Chen et al.,

2022a)). Its proof is in presented Appendix H.4, which is adapted from the analysis of the (explorative) OMLE algorithm in
Chen et al. (2022a). We also remark that the regret upper bound of OMLE in Theorem 8 can also be shown directly for
single-step revealing POMDP, by strengthening the analysis in Liu et al. (2022a) using the ideas of Chen et al. (2022a).

Theorem H.3. Suppose every θ P Θ is ΛB-strongly stable (Definition H.1), and the true model θ‹ P Θ with rank dPSR ď d.
Then, choosing β “ C logpNΘp1{T qq{δq for some absolute constant C ą 0, with probability at least 1 ´ δ, Algorithm 1
achieves

T
ÿ

t“1

V ‹ ´ Vθ‹ pπtq ď O
ˆ

b

Λ2
BOAUT dH2ιβT

˙

(46)

where UT :“ maxh |Ωh|, ι :“ log p1 ` TdOAUT ΛBRBq with RB :“ 1 ` maxh,o,a }Bhpo, aq}1.

Using analysis entirely parallel to Chen et al. (2022a, Appendix G), we can show that E2D-TA (Chen et al., 2022b) and
MOPS (Chen et al., 2022a, Algorithm 4) both achieve the same regret guarantees as Theorem 8.

Theorem H.4. Suppose Θ is a PSR class with the same core test sets tUhuhPrHs, and each θ P Θ admits a B-representation
that is ΛB-strongly-stable (cf. Definition H.1), and has PSR rank dPSR ď d. Then for the coefficients dec and psc introduced
in Chen et al. (2022b), it holds that

decγpΘq ď O
ˆ

Λ2
BOAUT dH

2

γ

˙

, pscγpΘq ď O
ˆ

Λ2
BOAUT dH

2

γ

˙

.

Therefore, we can apply Chen et al. (2022b, Theorem D.1) (for MOPS) and Chen et al. (2022b, Theorem C.7) (for E2D-TA)
to show that, with suitably chosen parameters, MOPS and E2D-TA both achieve a regret of

Regret ď O
ˆ

b

Λ2
BOAUT dH2 logpNΘp1{T qq{δqT

˙

, (47)

with probability at least 1 ´ δ.

Proof of Theorem 8. To apply Theorem H.3, we first notice that Proposition C.2 readily implies that any single-step α-
revealing is strongly B-stable PSR, with ΛB ď α´1 and core test sets Uh “ O for all h. Therefore, applying Theorem H.3
shows that with a model class M of single-step α-revealing POMDPs, OMLE achieves a regret of

Regret ď rO
´

a

α´2SOAH2 logNMp1{T q ¨ T
¯

,

as UT “ 1, d ď S,ΛB ď α´1, RB ď α´1 and ι “ rOp1q. Similarly, E2D-TA and MOPS also achieve the same regret
upper bound. Noticing that logNMp1{T q “ rO

`

HpS2A ` SOq
˘

(Chen et al., 2022a) completes the proof.
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H.3. Proof of Proposition H.2

Claim 1 follows from the proof of Chen et al. (2022a, Lemma D.1) directly. In the following, we show claim 2.

Fix a step h P rHs. An important observation is that, by the strong ΛB-stability of θ (Definition H.1), for any π1 P Πhpπq,
we have @x P RUh

ÿ

τh:H

π1pτh:H |τh´1q ˆ
ˇ

ˇBθ
H:hpτh:Hqx

ˇ

ˇ ď ΛB

ÿ

thPUh

π1pth|τh´1q ˆ |xpthq| “ ΛB

ÿ

thPUh

πpth|τh´1q ˆ |xpthq| , (48)

and similarly, for @x P RUh`1 ,
ÿ

τh`1:H

π1pτh`1:H |τhq ˆ
ˇ

ˇBθ
H:h`1pτh`1:Hqx

ˇ

ˇ ď ΛB

ÿ

th`1PUh`1

πpth`1|τhq ˆ |xpth`1q| . (49)

Therefore, using use the following formula:
´

Bθ
hpoh, ahq ´ Bθ̄

hpoh, ahq

¯

qθ̄pτh´1q

“ Bθ
hpoh, ahq

´

qθ̄pτh´1q ´ qθpτh´1q

¯

`

´

Bθ
hpoh, ahqqθpτh´1q ´ Bθ̄

hpoh, ahqqθ̄pτh´1q

¯

,

we have

2E θ̄
θ,hpπ, τh´1q “ max

π1PΠhpπq

ÿ

τh:H

π1pτh:H |τh´1q ˆ

ˇ

ˇ

ˇ
Bθ

H:h`1pτh`1:Hq

´

Bθ
hpoh, ahq ´ Bθ̄

hpoh, ahq

¯

qθ̄pτh´1q

ˇ

ˇ

ˇ

ď max
π1PΠhpπq

ÿ

τh:H

π1pτh:H |τh´1q ˆ

ˇ

ˇ

ˇ
Bθ

H:hpτh:Hq

´

qθpτh´1q ´ qθ̄pτh´1q

¯
ˇ

ˇ

ˇ

` max
π1PΠhpπq

ÿ

τh:H

π1pτh:H |τh´1q ˆ

ˇ

ˇ

ˇ
Bθ

H:h`1pτh`1:Hq

´

Bθ
hpoh, ahqqθpτh´1q ´ Bθ̄

hpoh, ahqqθ̄pτh´1q

¯
ˇ

ˇ

ˇ

ďΛB

ÿ

thPUh

πpth|τh´1q ˆ

ˇ

ˇ

ˇ
eJ
th

´

qθpτh´1q ´ qθ̄pτh´1q

¯
ˇ

ˇ

ˇ

` ΛB

ÿ

oh,ah

ÿ

th`1PUh`1

πpoh, ah, th`1|τh´1q ˆ

ˇ

ˇ

ˇ
eJ
th`1

´

Bθ
hpoh, ahqqθpτh´1q ´ Bθ̄

hpoh, ahqqθ̄pτh´1q

¯
ˇ

ˇ

ˇ
,

where the last inequality uses (48) and (49). Notice that qθpτh´1q “ rPθpth|τh´1qsthPUh
, and hence

ÿ

thPUh

πpth|τh´1q ˆ

ˇ

ˇ

ˇ
eJ
th

´

qθpτh´1q ´ qθ̄pτh´1q

¯
ˇ

ˇ

ˇ

“
ÿ

thPUh

πpth|τh´1q ˆ |Pθpth|τh´1q ´ Pθ̄pth|τh´1q|

ď DTV

`

Pπ
θ pτh:H “ ¨|τh´1q,Pπ

θ̄ pτh:H “ ¨|τh´1q
˘

.

Also, by the definition of B-representation (cf. Definition B.3), we have
“

Bθ
hpo, aqqθpτh´1q

‰

pth`1q “ Pθpth`1|τh´1, o, aq ˆ Pθpo|τh´1q “ Pθpo, a, th`1|τh´1q,

and therefore
ÿ

oh,ah

ÿ

th`1PUh`1

πpoh, ah, th`1|τh´1q ˆ

ˇ

ˇ

ˇ
eJ
th`1

´

Bθ
hpoh, ahqqθpτh´1q ´ Bθ̄

hpoh, ahqqθ̄pτh´1q

¯ˇ

ˇ

ˇ

“
ÿ

oh,ah

ÿ

th`1PUh`1

πpoh, ah, th`1|τh´1q ˆ |Pθpoh, ah, th`1|τh´1q ´ Pθ̄poh, ah, th`1|τh´1q|

“
ÿ

oh,ah

ÿ

th`1PUh`1

ˇ

ˇPπ
θ poh, ah, th`1|τh´1q ´ Pπ

θ̄ poh, ah, th`1|τh´1q
ˇ

ˇ

ď DTV

`

Pπ
θ pτh:H “ ¨|τh´1q,Pπ

θ̄ pτh:H “ ¨|τh´1q
˘

.
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Combining the inequalities above, we have already shown that

E θ̄
θ,hpπ, τh´1q ď ΛBDTV

`

Pπ
θ pτh:H “ ¨|τh´1q,Pπ

θ̄ pτh:H “ ¨|τh´1q
˘

for any step h P rHs. Therefore, we can use that fact that DTV ď DH and apply Lemma A.6 to obtain

Eπ
θ̄

”

E θ̄
θ,hpπ, τh´1q2

ı

ďΛ2
BEπ

θ̄

”

DTV

`

Pπ
θ pτh:H “ ¨|τh´1q,Pπ

θ̄ pτh:H “ ¨|τh´1q
˘2
ı

ďΛ2
BEπ

θ̄

“

D2
H

`

Pπ
θ pτh:H “ ¨|τh´1q,Pπ

θ̄ pτh:H “ ¨|τh´1q
˘‰

ď 2Λ2
BD

2
H

`

Pπ
θ ,Pπ

θ̄

˘

.

A similar argument can also show that pE θ̄
θ,0pπqq2 ď Λ2

BDTV

`

Pπ
θ ,Pπ

θ̄

˘2
ď Λ2

BD
2
H

`

Pπ
θ ,Pπ

θ̄

˘

.

H.4. Proof of Theorem H.3

The proof of Theorem H.3 uses the following fast rate guarantee for the OMLE algorithm, which is standard (e.g. Van de
Geer (2000); Agarwal et al. (2020), and a simple proof can be found in (Chen et al., 2022a, Appendix E)).

Proposition H.5 (Guarantee of MLE). Suppose that we choose β ě 2 logNΘp1{T q ` 2 logp1{δq ` 2 in Algorithm 1. Then
with probability at least 1 ´ δ, the following holds:

(a) For all k P rKs, θ‹ P Θk;

(b) For all k P rKs and any θ P Θk, it holds that

k´1
ÿ

t“1

D2
H

´

Pπt

θ ,Pπt

θ‹

¯

ď 2β.

We next prove Theorem H.3. We adopt the definitions of E θ̄
θ,hpπ, τh´1q as in Proposition H.2 and abbreviate E‹

k,h “ Eθ‹

θk,h.
We also condition on the success of the event in Proposition H.5.

Step 1. By Proposition H.5, it holds that θ‹ P Θ. Therefore, Vθkpπkq ě V‹, and by Proposition H.2, we have

k
ÿ

t“1

`

V‹ ´ Vθ‹ pπtq
˘

ď

k
ÿ

t“1

`

Vθtpπtq ´ Vθ‹ pπtq
˘

ď

k
ÿ

t“1

DTV

´

Pπt

θt ,Pπt

θ‹

¯

ď

k
ÿ

t“1

1 ^

˜

E‹
t,0pπtq `

H
ÿ

h“1

Eπt

“

E‹
t,hpπt, τh´1q

‰

¸

ď

k
ÿ

t“1

˜

1 ^ E‹
t,0pπtq `

H
ÿ

h“1

1 ^ Eπt

“

E‹
t,hpπt, τh´1q

‰

¸

,

(50)

where the expectation Eπt is taken over τh´1 „ Pπt

θ‹ . On the other hand, by Proposition H.2, we have

Eπt

“

E‹
k,hpπt, τh´1q2

‰

ď 2Λ2
BD

2
H

´

Pπt

θk ,Pπt

θ‹

¯

, E‹
k,0pπtq2 ď Λ2

BD
2
H

´

Pπt

θk ,Pπt

θ‹

¯

.

Furthermore, by Proposition H.5 we have
řk´1

t“1 D2
H

´

Pπt

θk ,Pπt

θ‹

¯

ď 2β. Therefore, combining the two equations above gives

ÿ

tăk

EπtrE‹
k,hpπt, τh´1q2s ď 4Λ2

Bβ, @k P rKs, 0 ď h ď H. (51)

Step 2. We would like to bridge the performance decomposition (50) and the squared B-errors bound (51) using the
generalized ℓ2-Eluder argument. We consider separately the case for h P rHs and h “ 0.

Case 1: h P rHs. We denote m “ mh`1 such that Uh`1 “ pO ˆ Aqm´1 ˆ O, Ωh`1 “ pO ˆ Aqm´1. By definition,

E‹
k,hpπt, τh´1q :“

1

2
max

π1PΠhpπtq

ÿ

τh:H

π1pτh:H |τh´1q ˆ
ˇ

ˇBk
H:h`1pτh`1:Hq

`

Bk
hpoh, ahq ´ B‹

hpoh, ahq
˘

q‹pτh´1q
ˇ

ˇ ,
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“
1

2
max
π1

ÿ

τh:H

π1pτh`m:H |τh`m´1q ˆ πtpτh:h`m´1|τh´1q ˆ
ˇ

ˇBk
H:h`1pτh`1:Hq

`

Bk
hpoh, ahq ´ B‹

hpoh, ahq
˘

q‹pτh´1q
ˇ

ˇ

“
1

2

ÿ

oh,ah

ÿ

ωh`1PΩh`1

πtpoh, ah, ωh`1|τh´1q
›

›Bk
H:h`m ¨ Bk

h`m´1:h`1pωh`1q
`

Bk
hpoh, ahq ´ B‹

hpoh, ahq
˘

q‹pτh´1q
›

›

Π
,

where in the last equality we adopt the notation introduced in (10).

To bridge between (50) and (51), we invoke the following generalized ℓ2-Eluder lemma, which can be obtained directly by
generalizing Chen et al. (2022a, Proposition C.1 & Corollary C.2) (which correspond to the special case of the following
result with N “ 1).

Lemma H.6 (Generalized ℓ2-Eluder argument). Suppose we have a sequence of functions tfk,l : Rn Ñ Rupk,lqPrKsˆrNs:

fk,lpxq :“ max
rPR

J
ÿ

j“1

|xx, yk,l,j,ry| ,

which is given by the family of vectors tyk,l,j,ru
pk,j,rqPrKsˆrJsˆR Ă Rn. Further assume that there exists L ą 0 such that

fk,lpxq ď L }x}1.

Consider further a sequence of vector pxt,l,iqpt,l,iqPrKsˆrNsˆI , satisfying the following condition

k´1
ÿ

t“1

Ei„qt

»

–

˜

N
ÿ

l“1

fk,lpxt,l,iq

¸2
fi

fl ď βk, @k P rKs,

and the subspace spanned by pxt,l,iq has dimension at most d. Then it holds that

k
ÿ

t“1

1 ^ Ei„qt

«

N
ÿ

l“1

ft,lpxt,l,iq

ff

ď

g

f

f

e4Nd
´

k `

k
ÿ

t“1

βt

¯

log
´

1 ` kdLmax
i

}xi}1

¯

, @k P rKs.

We have the following three preparation steps to apply Lemma H.6.

1. We define

xt,l,i :“ πtpolh, a
l
h, ω

l
h`1|τ ih´1q ˆ q‹pτ ih´1q P RUh ,

yk,l,j,π :“
1

2
πpτ jh`m:Hq ˆ

”

Bk
H:h`mpτ jh`1:HqBk

h`m´1:h`1pωl
h`1q

`

Bk
hpolh, a

l
hq ´ B‹

hpolh, a
l
hq
˘

ıJ

P RUh ,

where tτ ih´1ui is an ordering of all possible τh´1 P pO ˆ Aqh´1, tτ jh`m:H “ poh`m, ah`m, ¨ ¨ ¨ , oH , aHqunj“1 is an
ordering of all possible τh`m:H (and hence n “ pOAqH´h´m`1), tpolh, a

l
h, ω

l
h`1quNl“1 is an ordering of O ˆ A ˆ Ωh`1

(and hence N “ OA |Ωh`1| ď OAUT ), π is any policy that starts at step h. We then define

fk,lpxq “ max
π

ÿ

j

|xyk,l,j,π, xy| , x P RUh .

It follows from definition that

E‹
k,hpπt, τ ih´1q “

N
ÿ

l“1

πtpolh, a
l
h, ω

l
h`1|τ ih´1q ˆ fk,lpq

‹pτ ih´1qq “

N
ÿ

l“1

fk,lpxt,l,iq.

2. By the assumption that θ‹ has PSR rank less than or equal to d, we have dim spanpxt,l,iq ď d. Furthermore, we have
}xt,l,i}1 ď UA ď UT by definition.

3. It remains to verify that fk is Lipschitz with respect to 1-norm. Clearly,

fk,lpqq ď
1

2

„

›

›Bk
H:hq

›

›

Π
` max

o,a

›

›Bk
H:h`1B

‹
hpo, aqq

›

›

Π

ȷ
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ď
1

2

„

ΛB }q}1 ` ΛB max
o,a

}B‹
hpo, aqq}1

ȷ

ď
1

2
ΛBRB }q}1 .

Hence we can take L “ 1
2ΛBRB to ensure that fk,lpxq ď L }x}1.

Therefore, applying Lemma H.6 yields

k
ÿ

t“1

1 ^ Eπt

“

E‹
t,hpπt, τh´1q

‰

ď O
ˆ

b

Λ2
BNdιβk

˙

ď O
ˆ

b

Λ2
BOAUT dιβk

˙

. (52)

This completes case 1.

Case 2: h “ 0. This case follows similarly as

k
ÿ

t“1

1 ^ E‹
t,0pπtq ď O

ˆ

b

Λ2
BOAUT ιβk

˙

. (53)

Combining these two cases, we obtain

k
ÿ

t“1

`

V‹ ´ Vθ‹ pπtq
˘

piq
ď

k
ÿ

t“1

1 ^ E‹
t,0pπtq `

H
ÿ

h“1

k
ÿ

t“1

1 ^ Eπt

“

E‹
t,hpπt, τh´1q

‰

piiq
ď O

ˆ

b

Λ2
BOAUT ιβk

˙

` H ¨ O
ˆ

b

Λ2
BOAUT dιβk

˙

ď O
ˆ

b

H2Λ2
BNdιβk

˙

,

where (i) used (50); (ii) used the above two cases (53) and (52). This completes the proof of Theorem H.3

I. Additional discussions
I.1. Impossibility of a generic sample complexity in DEC + log covering number of value/policy class

A typical guarantee of DEC theory (Foster et al., 2021; Chen et al., 2022b) asserts that for any model class M and policy
class Π, the E2D algorithm achieves

ErRegrets ď Op1q ¨ min
γą0

´

T ¨ decHγ pMq ` γ log |M|

¯

. (54)

Foster et al. (2021) also showed that, letting copMq denote the convex hull of M (the set of all mixture models of M P M),
there is a variant of E2D that achieves

ErRegrets ď Op1q ¨ min
γą0

´

T ¨ decHγ pcopMqq ` γ log |Π|

¯

.

However, decHγ pcopMqq is typically intractable large—For example, when M is the class of all tabular MDPs, decHγ pcopMqq

scales exponentially in S,H (Foster et al., 2022). Therefore, it is natural to ask the following

Question: Is it possible to obtain a regret upper bound that replaces the term log |M| in (54) by log |Π| or
log |FM| (where FM is a certain class of value functions induced by M)?

The question above is of particular interest when the model class M itself is much larger than the value class (e.g. Q-function
class), for example when M is a class of linear MDPs (Jin et al., 2020b) with a known feature ϕps, aq but unknown µps1q.
Also, replacing log |M| in (54) by log |Π| could be a decent improvement for specific problem classes, such as tabular
MDPs in which case we can take Π to be the class of deterministic Markov policies with log |Π| “ rOpSHq, which is
smaller than log |M| “ rOplogNMq “ rO

`

S2AH
˘

by a factor of SA.

However, our lower bounds for revealing POMDPs—specifically our hard instance construction in Appendix F—
provides a (partially) negative answer to this question. For simplicity, consider the m “ 2 case, and assume
AH " polypS,O,A, α´1, T q) We have the following basic facts about our model class M.
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1. The structure of M ensures that any possibly optimal policy is a deterministic action sequence (that does not depend
on the history), and hence we can take Π “ tdeterminstic action sequencesu, with log Π “ rOpHq.

2. The general results in Chen et al. (2022a) shows that as long as M is a subclass of 2-step α-revealing POMDPs, it
holds that edecγpMq ď rOpSA2H2α´2{γq—where edec is a PAC-learning analogue of the dec—which implies that
decγpMq ď rOp

a

SA2H2α´2{γq (Chen et al., 2022b).

3. Proposition F.1 states that worst-case regret within family M for any algorithm is lower bounded by
Ω
`

pS
?
OA2Hα´2q1{3T 2{3

˘

.

Note that the regret lower bound involves a polypOq factor, which does not appear in the upper bound for the dec. This
leads to the following

Fact: Without further structural assumptions for the problem, a regret upper bound of the form

ErRegrets ď Op1q ¨ min
γą0

´

T ¨ decHγ pMq ` γ log |Π|

¯

(55)

is not achievable.

The above fact is because that if (55) were achievable, then combining with the aformentioned dec upper bound would result
in a regret upper bound that does not scale with polypOq, contradicting the lower bound.

Similarly, if we view each POMDP M P M as an MDP by viewing each history τh as a “mega-state”, then naturally the
Q-function of M is given by

Q‹
M pτhq “ Eπ‹

M

M

«

H
ÿ

h1“1

rh1

ˇ

ˇ

ˇ

ˇ

ˇ

τh

ff

, τh P pO ˆ Aqh, 0 ď h ď H,

where π‹
M is the optimal policy for M . For our family M, it is straightforward to check that logQM “ rOpHq, where

QM “ tQ‹
M : M P Mu. Therefore, the answer to the question above is also negative if we take the value class to be such a

Q-function class.

I.2. Algorithms for hard instances of Theorem 5

We propose a brute-force algorithm A to learn the class of hard instances provided in Appendix G (for proving Theorem 5),
which admits a PAC sample complexity rO

`

S3{2O1{2AmH{pα2ε2q
˘

. Algorithm A contains two stages:

1. Stage 1: For each h P H, s P Sleaf , a P Ac,a P Am´1, the algorithm spends N1 episodes on visiting oh “ s, taking
actions ah:h`m “ pa,a, revealq, and observing poh`m, oh`m`1q. The observed poh`m, oh`m`1q should then satisfy
the joint distribution

Pplockj , o`
i q “

1 ` σεµj,i

2KL
, Pplockj , o´

i q “
1 ´ σεµj,i

2KL
, @pj, iq P rLs ˆ rKs

if ph, s, a,aq “ ph‹, s‹, a‹,a‹
h‹`1:h‹`m´1q, and satisfy distribution Unifptlock1, ¨ ¨ ¨ , lockLu ˆOoq otherwise. Using

the standard uniformity testing algorithm (Canonne, 2020), we can distinguish between

H0 : ph, s, a,aq “ ph‹, s‹, a‹,a‹
h‹`1:h‹`m´1q,

H1 : ph, s, a,aq ‰ ph‹, s‹, a‹,a‹
h‹`1:h‹`m´1q

with high probability using N1 “ rO
`
?
KL{pσ2ε2q

˘

samples for every fixed ph, s, a,aq. The total sample size needed
in Stage 1 is thus |Sleaf |H |Ac|Am´1 ˆ rO

`
?
KL{pσ2ε2q

˘

.

2. Stage 2: Once Stage 1 is completed, the algorithm can correctly identify the parameter ph‹, s‹, a‹,a‹
h‹`1:h‹`m´1q (if

M ‰ 0) or find out M “ 0. In the latter case, the algorithm can directly terminate and output the optimal policy of
M “ 0. In the former case, the algorithm needs to continue to learn the password a‹

h‹`m:H´1:
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• For each h “ h‹ ` m,h‹ ` 2m, ¨ ¨ ¨ :
– For each a P Am, test whether a “ a‹

h:h`m´1 by spending N1 episodes on visiting oh‹ “ s‹, taking actions
ah‹:h`m “ pa,a‹

h‹`1:h´1,a, revealq, and observing poh`m, oh`m`1q.

– By the same reason as in Stage 1 and by our choice that N1 “ rO
`
?
KL{pσ2ε2q

˘

, we can learn a‹
h:h`m´1

with high probability, using the standard uniformity testing algorithm.

Once the algorithm learns the M “ ph‹, s‹, a‹,a‹q, it terminates and outputs the optimal policy of M . The total
sample size needed in Stage 2 is at most AmH ˆ rO

`
?
KL{pσ2ε2q

˘

many samples.

To summarize, the brute-force algorithm A we construct above can learn M with sample size

|Sleaf |H |Ac|Am´1 ˆ rO

˜?
KL

σ2ε2

¸

` AmH ˆ rO

˜?
KL

σ2ε2

¸

ď rO
ˆ

S3{2O1{2AmH

α2ε2

˙

,

where the bound is by our choice of σ,Sleaf ,Ac,K, L.
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