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Abstract
Recently, there is an emerging interest in adversar-
ially training a classifier with a rejection option
(also known as a selective classifier) for boost-
ing adversarial robustness. While rejection can
incur a cost in many applications, existing studies
typically associate zero cost with rejecting per-
turbed inputs, which can result in the rejection
of numerous slightly-perturbed inputs that could
be correctly classified. In this work, we study
adversarially-robust classification with rejection
in the stratified rejection setting, where the rejec-
tion cost is modeled by rejection loss functions
monotonically non-increasing in the perturbation
magnitude. We theoretically analyze the strati-
fied rejection setting and propose a novel defense
method – Adversarial Training with Consistent
Prediction-based Rejection (CPR) – for building a
robust selective classifier. Experiments on image
datasets demonstrate that the proposed method
significantly outperforms existing methods under
strong adaptive attacks. For instance, on CIFAR-
10, CPR reduces the total robust loss (for different
rejection losses) by at least 7.3% under both seen
and unseen attacks.

1. Introduction
Building robust models against adversarial attacks is criti-
cal for designing secure and reliable machine learning sys-
tems (Biggio et al., 2013; Szegedy et al., 2014; Biggio &
Roli, 2018; Madry et al., 2018; Zhang et al., 2019). However,
the robust error of existing methods on complex datasets
is still not satisfactory (e.g., (Croce et al., 2020)). Also,
the robust models usually have poor generalization to threat
models that are not utilized during training (Stutz et al.,
2020; Laidlaw et al., 2021). Given these limitations, it is
important to design selective classifiers that know when to
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reject or abstain from predicting on adversarial examples.
This can be especially crucial when it comes to real-world,
safety-critical systems such as self-driving cars, where ab-
staining from prediction is often a much safer alternative
than making an incorrect decision. Along this line of adver-
sarial robustness with rejection, several recent studies (Laid-
law & Feizi, 2019; Stutz et al., 2020; Sheikholeslami et al.,
2021; Pang et al., 2022; Tramèr, 2022; Kato et al., 2020)
have extended the standard definition of robust error to the
setting where the classifier can also reject inputs, and they
consider rejecting any perturbed input to be a valid decision
that does not count towards the robust error.

A key limitation with these studies is that they associate
zero cost with the rejection decision on perturbed inputs 1,
whereas rejection can often have a high cost in many practi-
cal applications. For example, consider a selective classifier
for traffic signs in a self-driving system. If it rejects an input
(e.g., a perturbed “speed limit 60” sign), then the system
may not know how to react and thus need human interven-
tion (e.g., adjust the speed). In such cases, rejection has
the cost of service-denial and manual intervention (Markoff,
2016; Cunningham & Regan, 2015; Mozannar & Sontag,
2020). In contrast to the practical consideration, existing
studies on adversarial robustness with rejection typically
do not explicitly consider a cost for rejecting perturbed in-
puts. The learned models thus may not satisfy the need
of these applications. Indeed, the models from existing
methods may end up rejecting too many slightly-perturbed
inputs that could be correctly classified. As a concrete ex-
ample, on MNIST with ℓ∞-perturbation magnitude 0.4, the
method CCAT (Stutz et al., 2020) achieves very good per-
formance on the existing metrics such as 1.82% rejection
rate on clean test inputs and 75.50% robust accuracy with
detection (a metric introduced in (Tramèr, 2022); see Eq. 2).
However, for 99.30% of the test points, CCAT will reject
some small perturbations within magnitude as small as 0.02.
More results can be found in our experiments in Section 5.
In summary, while rejecting such small perturbations has
a cost, existing studies have not adequately measured the
quality of the selective classifiers, and the training methods
may not learn desired models for such applications.

To address this limitation, we revisit adversarially-robust

1Note that the rejection of clean inputs does incur a cost.
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classification with rejection by introducing rejection loss
functions to model the potential cost of rejection. This offers
a more flexible framework than the traditional adversarial
robustness studies that do not consider rejection (roughly
equivalent to associating with rejection the same loss as
mis-classification), and recent studies on adversarial robust-
ness with rejection (e.g. (Tramèr, 2022)) that associate zero
loss with rejecting any perturbed input. We focus on the
stratified rejection setting where the rejection loss functions
are monotonically non-increasing in the perturbation mag-
nitude. This is motivated by the consideration that small
input perturbations should not be rejected when correct clas-
sification is possible, and thus their rejection should incur a
large cost. However, large input perturbations can often be
harder to classify, and rejection may be the best option when
correct classification is not possible; so they should incur
a lower rejection cost compared to smaller perturbations.
Furthermore, we consider the challenging scenario where
the rejection loss function used for testing is unknown at
training time. That is, the learning method is not designed
for one specific rejection loss; the learned selective classi-
fier should work under a range of reasonable rejection loss
functions. Our goal is then to design such a method that can
learn a robust selective classifier with small loss due to both
mis-classification and rejection.

In summary, we make the following contributions:

• We propose to introduce rejection loss functions to model
the potential cost of rejection in applications, and study
the stratified rejection setting with monotonically non-
increasing rejection loss functions (Section 2).

• We provide a theoretical analysis of the stratified rejection
setting. We analyze the existence of a robust selective
classifier and discuss conditions when it can improve over
classifiers without rejection (Section 3).

• We propose a novel defense method CPR inspired by our
theoretical analysis. Our experiments demonstrate that
CPR significantly outperforms previous methods under
strong adaptive attacks (Sections 4 and 5). Its performance
is strong for different rejection losses, on both traditional
and our new metrics, and under seen and unseen attacks.
CPR can be combined with different kinds of adversarial
training methods (e.g., TRADES (Zhang et al., 2019)) to
enhance their robustness.

1.1. Related Work

Adversarial robustness of deep learning models has received
significant attention in recent years. Many defenses have
been proposed and most of them have been broken by strong
adaptive attacks (Athalye et al., 2018; Tramèr et al., 2020).
The most effective approach for improving adversarial ro-
bustness is adversarial training (Madry et al., 2018; Zhang
et al., 2019). However, adversarial training still does not

achieve very high robust accuracy on complex datasets. For
example, as reported in RobustBench (Croce et al., 2020),
even state-of-the-art adversarially trained models struggle
to exceed 67% robust test accuracy on CIFAR-10.

One approach to break this adversarial robustness bottleneck
is to allow the classifier to reject inputs, instead of trying
to correctly classify all of them. Standard (non-adversarial)
classification with a reject option (or selective classification)
has been extensively studied in the literature (Tax & Duin,
2008; Geifman & El-Yaniv, 2019; Charoenphakdee et al.,
2021; Cortes et al., 2016). Selective classification in the
transductive setting with provable guarantees has been stud-
ied by Goldwasser et al. (2020). Recently, there has been a
great interest in exploring adversarially robust classification
with a reject option (Laidlaw & Feizi, 2019; Stutz et al.,
2020; Kato et al., 2020; Yin et al., 2020; Sheikholeslami
et al., 2021; Tramèr, 2022; Pang et al., 2022; Balcan et al.,
2023). We next discuss some of these closely related works .

Stutz et al. (2020) proposed to adversarially train confidence-
calibrated models using label smoothing and confidence
thresholding so that they can generalize to unseen adversar-
ial attacks. Sheikholeslami et al. (2021) modified existing
certified-defense mechanisms to allow the classifier to either
robustly classify or detect adversarial attacks, and showed
that it can lead to better certified robustness, especially for
large perturbation sizes. Pang et al. (2022) observed that two
coupled metrics, the prediction confidence and the true con-
fidence (T-Con), can be combined to provably distinguish
correctly-classified inputs from mis-classified inputs. Based
on this, they propose to learn a rectified confidence (R-Con)
that models T-Con, which is then used to adversarially train
a selective classifier. Laidlaw & Feizi (2019) proposed a
method called Combined Abstention Robustness Learning
(CARL) for jointly learning a classifier and the region of
the input space on which it should abstain, and showed that
training with CARL can result in a more accurate and robust
classifier. In (Balcan et al., 2023), the authors introduced
a random feature subspace threat model and showed that
classifiers without the ability to abstain (reject) are provably
vulnerable to this adversary; but allowing the classifier to
abstain (e.g., via a thresholded nearest-neighbor algorithm)
can overcome such attacks.

An important aspect that has not been explored in prior
works is the cost or loss of rejecting perturbed inputs. This
is important for designing robust classifiers that do not reject
many slightly-perturbed inputs which could be correctly
classified. To the best of our knowledge, we are the first
to study adversarially-robust classification with rejection in
the stratified-rejection setting.
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2. Stratified Adversarial Robustness with
Rejection

Notations. Let X ⊆ Rd denote the space of inputs x
and Y := {1, · · · , k} denote the space of outputs y. Let
Y := Y ∪ {⊥} be the extended output space where ⊥
denotes the abstain or rejection option. Let ∆k denote
the set of output probabilities over Y (i.e., the simplex
in k-dimensions). Let d(x,x′) be a norm-induced dis-
tance on X (e.g., the ℓp-distance for some p ≥ 1), and
let N (x, r) := {x′ ∈ X : d(x′,x) ≤ r} denote the neigh-
borhood of x with distance r. Let ∧ and ∨ denote the min
and max operations respectively (reducing to AND and OR
operations when applied on boolean values). Let 1{c} de-
fine the binary indicator function which takes value 1 (0)
when the condition c is true (false).

Review. We first review the standard setting of adversarial
robustness without rejection and the setting with rejection
in a recent line of work. Given samples from a distribution
D over X × Y , the goal is to learn a classifier with a reject
option (a selective classifier), f : X → Y , that has a small
error. The standard robust error at adversarial budget ϵ > 0
is defined as (Madry et al., 2018):

Rϵ(f) := E
(x,y)∼D

[
max

x′∈N (x,ϵ)
1{f(x′) ̸= y}

]
, (1)

which does not allow rejection (i.e., rejection is an error). A
few recent studies (e.g. (Tramèr, 2022)) have proposed the
robust error with detection at adversarial budget ϵ as

Rrej
ϵ (f) := E

(x,y)∼D

[
1{f(x) ̸= y} (2)

∨ max
x′∈N (x,ϵ)

1
{
f(x′) ̸∈ {y,⊥}

}]
,

which allows the rejection of small (even infinitesimal) per-
turbations without incurring any error.

Rejection Loss Functions. The above studies are not well-
suited for the needs of certain applications where rejection
can have a cost. We would like to associate with the reject
decision a loss that is a function of the perturbation mag-
nitude. Intuitively, rejecting a clean input should incur the
maximum loss, and the loss of rejecting a perturbed input
should decrease (or at least not increase) as the perturbation
magnitude increases. Formally, let ℓrej(r) : [0,∞) → [0, 1]
be a function specifying the loss of rejecting a perturba-
tion x′ of a clean input x with perturbation magnitude
r = d(x,x′). We consider two concrete cases of such
losses. The step rejection loss is defined as

ℓrej(r) = 1{r ≤ α0ϵ} (3)

for some α0 ∈ [0, 1]. That is, rejecting a perturbed input of
magnitude smaller than α0ϵ has a loss 1 but rejecting larger

perturbations has no loss. The ramp rejection loss is defined
as follows for some t ≥ 0

ℓrej(r) =
(
1 − r

ϵ

)t

. (4)

For instance, for t = 1, the ramp rejection loss decreases
linearly with the perturbation magnitude.

Total Robust Loss. With the rejection loss modeling the po-
tential cost of rejection, the adversary can make the selective
classifier suffer a mis-classification loss when there exists
a perturbation x′ with f(x′) ̸∈ {y,⊥}, or suffer a rejection
loss ℓrej(d(x,x′)) when there exists a perturbation x′ that
is rejected (i.e., f(x′) = ⊥). Then our goal is to learn a
selective classifier that has a small total loss due to both
mis-classification and rejection induced by the adversary,
which is formalized as follows.
Definition 1. The total robust loss of a selective classifier f
at adversarial budget ϵ > 0 with respect to a given rejection
loss function ℓrej is:

Lϵ(f ; ℓ
rej) := E

(x,y)∼D

[
max

x′∈N (x,ϵ)

(
1
{
f(x′) ̸∈ {y,⊥}

}
∨ 1{f(x′) = ⊥} ℓrej(d(x,x′))

)]
.

Here ∨ denotes the maximum of the mis-classification loss
and the rejection loss. While this definition is compatible
with any rejection loss, we will focus on the monotonically
non-increasing ones. This definition also applies to clas-
sifiers without a rejection option, in which case the total
robust loss reduces to the standard robust error Rϵ(f).

The Curve of Robust Error. The definition of the total
robust loss however depends on the specific instantiation of
ℓrej, which may vary for different applications. In practice,
we would like to have a single evaluation of f which can be
combined with different definitions of ℓrej to compute the
total robust loss. Towards this end, we propose the notion of
the curve of robust error (or accuracy), which generalizes
the existing metrics. More importantly, Lemma 1 shows
that the curve can be used to compute the total robust loss
for different rejection losses (proof given in Appendix B.2).
Definition 2. The curve of robust error of a selective clas-
sifier f at adversarial budget ϵ ≥ 0 is {Rrej

ϵ (f, α) : α ∈
[0, 1]}, where

Rrej
ϵ (f, α) := E

(x,y)∼D

[
max

x′∈N (x, αϵ)
1{f(x′) ̸= y} (5)

∨ max
x′′∈N (x,ϵ)

1
{
f(x′′) ̸∈ {y,⊥}

}]
.

The curve of robust accuracy or simply the robustness curve
of f at adversarial budget ϵ is defined as

{Arej
ϵ (f, α) := 1−Rrej

ϵ (f, α) : α ∈ [0, 1]}. (6)
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We name Rrej
ϵ (f, α) the robust error with rejection at α,

and Arej
ϵ (f, α) the robustness with rejection at α. The in-

tuition behind Rrej
ϵ (f, α) for a fixed α is clear. For small

perturbations within N (x, αϵ), both an incorrect prediction
and rejection are considered an error. For larger perturba-
tions outside N (x, αϵ), rejection is not considered to be
an error (i.e., the classifier can either classify correctly or
reject larger perturbations). Moreover, Rrej

ϵ (f, α) actually
includes several existing metrics as special cases:

• When α = 1, the metric reduces to the standard robust
error at budget ϵ in Eq. (1), i.e., Rrej

ϵ (f, 1) = Rϵ(f).

• When α = 0, it reduces to the robust error with detec-
tion at budget ϵ in Eq. (2), i.e., Rrej

ϵ (f, 0) = Rrej
ϵ (f).

Here rejection incurs an error only for clean inputs.

• For any classifier f without rejection and any α ∈
[0, 1], it reduces to the standard robust error at budget
ϵ defined in Eq. (1), i.e., Rrej

ϵ (f, α) = Rϵ(f).

Lemma 1. Let s(α) := Rrej
ϵ (f, α). Suppose the rejection

loss ℓrej : [0,∞) 7→ [0, 1] is monotonically non-increasing,
differentiable almost everywhere, and ℓrej(0) = 1 and
ℓrej(ϵ) = 0. Then the total robust loss simplifies to
Lϵ(f ; ℓ

rej) = −
∫ 1

0
s(α) dℓrej(αϵ).

Given this nice connection between the total robust loss and
the curve of robust error, we advocate for evaluating a se-
lective classifier f using the curve {Rrej

ϵ (f, α) : α ∈ [0, 1]}.
Without knowing the concrete definition of the rejection
loss ℓrej, this curve can give a holographic evaluation of the
model. Even when f is trained with a specific rejection loss
ℓrej in mind, the curve is helpful in providing a more com-
plete evaluation w.r.t. any other definition of the rejection
loss at deployment time.

3. Theoretical Analysis
Our goal is to learn a robust selective classifier, even when
the training does not know the precise specification of the
rejection loss for testing. Some fundamental questions arise:

Q1. Whether and under what conditions does there exist a
selective classifier with a small total robust loss? Many
applications could have a cost for certain rejections,
e.g., rejecting very small perturbations is undesirable.
To design algorithms for such applications, we would
like to first investigate the existence of a solution with
a small total robust loss.

Q2. Can allowing rejection lead to a smaller total robust
loss? The question is essentially about the benefit of
selective classification over traditional adversarial ro-
bustness (without rejection) that tries to correctly clas-
sify all perturbations, typically by adversarial training
or its variants.

Figure 1. Proposed construction of a selective classifier fδ from
the base classifier f∗ for Theorem 1. Input x1 is close to the
boundary of f∗ and is rejected, while input x2 is accepted.

The following theorem helps address these questions: by
allowing rejection, there exists a selective classifier with a
small total robust loss under proper conditions.

Theorem 1. Consider binary classification. Let f∗(x) be
any classifier without a rejection option. For any δ ∈ [0, 1]
and ϵ ≥ 0, there is a selective classifier fδ whose robust
error curve is bounded by:

Rrej
ϵ (fδ, α) ≤ Rϵ′(f

∗), ∀α ∈ [0, 1] (7)

where ϵ′ = max{(α+δ)ϵ, (1−δ)ϵ}. Moreover, the bound is
tight: for any α ∈ [0, 1], there exist simple data distributions
and f∗ such that any f must have Rrej

ϵ (f, α) ≥ Rϵ′(f
∗).

Proof Sketch: For any r ≥ 0, let N (f∗, r) denote the
region within distance r to the decision boundary of f∗:
N (f∗, r) := {x ∈ X : ∃x′ ∈ N (x, r), f∗(x′) ̸= f∗(x)}.
Consider a parameter δ ∈ [0, 1] and construct fδ as follows:

fδ(x) :=

{
⊥ if x ∈ N (f∗, δϵ),

f∗(x) otherwise.
(8)

This is illustrated in Fig. 1. We will show that any clean
data (x, y) contributing error in Rrej

ϵ (fδ, α) must contribute
error in Rϵ′(f

∗), so Rrej
ϵ (fδ, α) ≤ Rϵ′(f

∗). Intuitively, fδ
and f∗ differ on the region N (f∗, δϵ). If fδ gets a loss on a
(possibly perturbed) input x′ ∈ N (f∗, δϵ), then the original
input x is close to x′ and thus close to the boundary of f∗.
Therefore, x can be perturbed to cross the boundary and
contribute error in Rϵ′(f

∗). The complete proof is given in
Appendix B.3.

Condition for Successful Selective Classification. The
theorem shows that when the data allows a small robust
error at budget ϵ′ = max{(α + δ)ϵ, (1 − δ)ϵ}, there is a
selective classifier fδ with a small robust error with rejection
Rrej

ϵ (fδ, α), which is bounded by the small robust error
Rϵ′(f

∗). This shows a trade-off between the performance
for small and large α. For α < 1 − δ, we have ϵ′ < ϵ
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and Rrej
ϵ (fδ, α) ≤ Rϵ′(f

∗) ≤ Rϵ(f
∗). Note that Rϵ(f

∗) =

Rrej
ϵ (f∗, α), so Rrej

ϵ (fδ, α) ≤ Rrej
ϵ (f∗, α), i.e., fδ can be

better than f∗ for such an α. However, for α ≥ 1− δ, the
theorem does not guarantee Rrej

ϵ (fδ, α) ≤ Rϵ(f
∗), i.e., fδ

may be worse than f∗ for such an α. This trade-off is
necessary in the worst case since the bound is tight, and is
also observed in our experiments in Section 5. It is favorable
towards a lower total robust loss when the rejection loss is
monotonically non-increasing, as discussed in detail below.

Benefit of Selective Classification. The trade-off discussed
above shows that by allowing rejection, the selective clas-
sifier fδ can potentially have a smaller total robust loss
than the classifier f∗ without rejection. When α < 1 − δ,
Rrej

ϵ (fδ, α) ≤ Rϵ′(f
∗) ≤ Rϵ(f

∗) = Rrej
ϵ (f∗, α).

There can be a big improvement: when a large fraction
of correctly-classified clean inputs have distances in (ϵ′, ϵ)
to the boundary of f∗, we have Rϵ′(f

∗) ≪ Rϵ(f
∗) and thus

Rrej
ϵ (fδ, α) ≪ Rrej

ϵ (f∗, α). This can lead to a significant
improvement in the total robust loss. When α ≥ 1 − δ,
Rrej

ϵ (f, α) may be worse than Rrej
ϵ (f∗, α), but that only

leads to milder rejection loss when ℓrej is monotonically
decreasing. Then overall, the total robust loss can be im-
proved, while the decreased amount would depend on the
concrete data distribution and rejection loss.

Theorem 3 in Appendix B.4 provides a rigorous and fine-
grained analysis of the robustness curve and the total robust
loss of fδ. In general, the total robust losses of fδ and f∗

only differ on points with distances larger than (1 − δ)ϵ
from the boundary of f∗. For such points, fδ can correctly
classify all their small perturbations of magnitude at most
ϵ0 := (1− 2δ)ϵ, and reject or correctly classify their larger
perturbations. Intuitively, it correctly classifies small pertur-
bations and rejects or correctly classifies large perturbations.
Then fδ only gets rejection loss for large magnitudes, and
thus potentially gets smaller total robust losses than f∗ for
monotonically non-increasing rejection losses.

For a concrete example, suppose f∗ has 0 standard error
on the data distribution and each data point has distance
at least 3ϵ

4 to the decision boundary of f∗. Then when
δ = 1

4 , for any data point, fδ can correctly classify all the
small perturbations with magnitude bounded by ϵ

2 , and can
reject or correctly classify the larger perturbations. Then
Rrej

ϵ (fδ, α) = 0 for α ≤ 1
2 . For any step rejection loss with

parameter α0 ≤ 1
2 , the total robust loss of fδ is 0, i.e., this

fixed fδ can work well for a wide range of step rejection
losses. In contrast, the total robust loss of f∗ is as large
as Rϵ(f

∗), which is the probability mass of points within
ϵ distance to the boundary of f∗. If there is a large mass
of points with distance in [ 3ϵ4 , ϵ], then fδ has a significant
advantage over f∗.

4. Proposed Defense
We propose a defense method called adversarial training
with consistent prediction-based rejection (CPR), following
our theoretical analysis. CPR aims to learn the fδ in our
analysis, where PGD is used to check the condition for
rejection efficiently at test time. Our defense is quite general
in that it can take any base classifier f∗ to construct the
selective classifier fδ . Finally, to evaluate the robustness of
the defense, we also discuss the design of adaptive attacks.

4.1. Consistent Prediction-Based Rejection

The CPR defense is essentially the selective classifier fδ
in Eq. (8) in Theorem 1: given a base classifier and an
input x, we define a selective classifier that rejects the input
whenever the predictions in a small neighborhood of x are
not consistent; otherwise it returns the class prediction of x.
Equivalently, it rejects inputs within a small distance to the
decision boundary of the given base classifier.

To formalize the details, we introduce some notations. Con-
sider a base classifier without rejection (i.e., f∗) realized by
a network with parameters θ, whose predicted class proba-
bilities are h(x ;θ)=[h1(x ;θ), · · · , hk(x ;θ)]∈∆k. The
class prediction is ŷ(x) := argmaxy∈Y hy(x ;θ), and the
cross-entropy loss is ℓCE(x, y) = − log hy(x ;θ). CPR
aims to learn a selective classifier (corresponding to fδ):

gϵ̃(x ;θ) =

h(x ;θ) if max
x̃∈N (x,ϵ̃)

1{ŷ(x̃) ̸= ŷ(x)} = 0

⊥ otherwise,

where ϵ̃ > 0 is a hyper-parameter we call the consis-
tency radius. To check the consistent-prediction condition
efficiently, we use the projected gradient descent (PGD)
method (Madry et al., 2018) to find the worst-case perturbed
input x̃. The selective classifier is then redefined as:

gϵ̃(x ;θ) =

{
h(x ;θ) if ŷ(x̃) = ŷ(x)

⊥ otherwise,
(9)

where x̃ = argmax
x̃∈N (x,ϵ̃)

ℓCE(x̃, ŷ(x)). (10)

Then ŷ(x) is the predicted class when the input is accepted.
The details of our CPR defense are given in Algorithm 1.
Note that the PGD method in the algorithm is deterministic.
Thus, the mapping T (x) = xm is deterministic and we can
summarize the defense as: if ŷ(T (x)) ̸= ŷ(x), then reject
x ; otherwise accept x and output the predicted class ŷ(x).

The robust base model for our defense h can be trained
using methods such as standard adversarial training
(AT) (Madry et al., 2018), TRADES (Zhang et al., 2019),
and MART (Wang et al., 2020) (we will focus on the first
two methods). An advantage of the proposed defense is that
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Algorithm 1 CONSISTENT PREDICTION-BASED REJECTION

Input: A base model h, a test input x (potentially with adversarial
perturbations), the consistency radius ϵ̃ > 0, the number of
PGD steps m ≥ 1, and the PGD step size η > 0.

1: Class prediction: y = ŷ(x) = argmaxy′∈Y hy′(x ;θ)
2: Initialize the adversarial input: x0 = x
3: for i = 1, 2, . . . ,m do
4: x̂i = xi−1 + η sign

(
∇xi−1ℓCE(xi−1, y)

)
5: xi = Proj

(
x̂i,N (x, ϵ̃)

)
{Project x̂i to N (x, ϵ̃)}

6: end for
7: Define T (x) := xm

Output: If argmaxy′∈Y hy′(T (x) ;θ) ̸= y, reject x ; otherwise,
accept x and output the predicted class y.

it is agnostic of the rejection loss function used for evalua-
tion, and therefore can generalize to multiple choices of the
rejection loss function (see Section 5). We note that prior
works such as Laidlaw & Feizi (2019) and Tramèr (2022)
have also proposed the idea of using the consistency check
for rejecting inputs to a classifier (equivalent to rejecting
inputs based on their distance to the decision boundary).
However, we are the first to systematically implement and
evaluate such a defense, and propose strong adaptive attacks
for evaluating it.

4.2. Adaptive Attacks

In this section, we design principled adaptive attacks to
evaluate the proposed defense. By Definition 2 and Proposi-
tion 1, in order to compute the robustness curve, we need to
design both inner and outer attacks and then combine them
to get the final attack. We design multiple inner and outer at-
tacks sketched below and ensemble them to get the strongest
final attack. More details can be found in Appendix E

Inner Attack. For a given α ∈ [0, 1] on the robust-
ness curve, the goal of the inner attack is to find an input
x′ ∈ N (x, αϵ) that is rejected. For CPR, this translates
to finding x′ ∈ N (x, αϵ) such that the base model has
different predictions on x′ and T (x′).

Our first attack is Low-Confidence Inner Attack (LCIA),
which finds x′ by minimizing the confidence of the base
model within N (x, αϵ). Recall that the mapping T (x′)
attempts to minimize the base model’s probability on the
predicted class ŷ(x′). So, if the base model has low con-
fidence on x′, then it will very likely have even lower
probability for ŷ(x′) on T (x′), and thus have different
predictions on T (x′) and x′. The attack objective in this
case is x′ = argmaxz∈N (x,αϵ) − log hmax(z ;θ), where
hmax(z ;θ) = maxy∈Y hy(z ;θ) is the prediction confi-
dence. We use the temperature-scaled log-sum-exponential
approximation to the max function in order to make it dif-
ferentiable. We also consider a variant of LCIA, named
Consistent-Low-Confidence Inner Attack (CLCIA), that
minimizes the confidence of the base model on both x′ and

T (x′) (details in Appendix E).

The third attack is Prediction-Disagreement Inner Attack
(PDIA), an adaptive multi-target attack based on the BPDA
method (Athalye et al., 2018). We use BPDA since T (x)
does not have a closed-form expression and is not differ-
entiable. This attack considers all possible target classes
and attempts to find x′ such that the base model has high
probability for the target class at x′ and a low probability
for the target class at T (x′) (thereby encouraging rejection).
The attack objective is: for each target class j = 1, . . . , k,

x′
j = argmax

z∈N (x,αϵ)

[
log hj(z ;θ) − log hj(T (z) ;θ)

]
.

Then we select the strongest adversarial example x′ from
the multiple target classes as follows:

x′ = x′
j⋆ where (11)

j⋆ = argmax
j∈[k]

[
log hj(x

′
j ;θ) − log hj(T (x

′
j) ;θ)

]
.

Outer Attack. Given a clean input (x, y), the goal of the
outer attack is to find x′′ ∈ N (x, ϵ) such that the base model
has a consistent incorrect prediction with high confidence on
both x′′ and T (x′′) (ensuring that x′′ is accepted and mis-
classified). We propose the Consistent High-Confidence
Misclassification Outer Attack (CHCMOA), an adaptive
multi-target attack based on BPDA. The attack objective is:
for each target class j ∈ [k] \ {y},

x′′
j = argmax

z∈N (x,ϵ)

[
log hj(z ;θ) + log hj(T (z) ;θ)

]
.

Then we select the strongest adversarial example x′′ via:

x′′ = x′′
j⋆ where (12)

j⋆ = argmax
j∈[k]\{y}

[
log hj(x

′′
j ;θ) + log hj(T (x

′′
j ) ;θ)

]
.

We also consider the High-Confidence Misclassification
Outer Attack (HCMOA), which solves for an adversarial
input x′′ such that the base model has incorrect prediction
with high confidence on x′′ (details in Appendix E).

Final Attack. To get the strongest evaluation, our final
attack is an ensemble of all attacks, including those designed
above and some existing ones. We apply each attack in the
ensemble with different hyper-parameters on each clean test
input. If any of the attacks achieves the attack goal on an
input, then the attack is considered to be successful on it.

5. Experiments
In this section, we perform experiments to evaluate the pro-
posed method CPR and compare it with competitive baseline
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methods. The code for our work can be found at https://
github.com/jfc43/stratified-adv-rej. Our
main findings are summarized as follows: 1) CPR outper-
forms the baselines significantly in terms of the total robust
loss with respect to different rejection losses, under both
seen attacks and unseen attacks; 2) CPR usually has sig-
nificantly higher robustness with rejection compared to the
baselines for small to moderate α under both seen attacks
and unseen attacks; 3) CPR also has strong performance
under the traditional metrics such as robust accuracy with
detection (1−Rrej

ϵ (f, 0)).

5.1. Experimental Setup

We briefly describe the experimental setup here. The de-
tailed setup can be found in Appendix D.

Datasets. We use the MNIST (LeCun, 1998), SVHN (Net-
zer et al., 2011), and CIFAR-10 (Krizhevsky et al., 2009)
datasets. Each dataset has a test set containing 10,000 im-
ages. Following (Stutz et al., 2020), we compute the accu-
racy of the models on the first 9,000 images of the test set
and compute the robustness of the models on the first 1,000
images of the test set. We use the last 1,000 images of the
test set as a held-out validation set for selecting the hyper-
parameters of the methods (e.g., the rejection threshold).

Baselines. We consider the following baselines: (1)
AT + CR: adversarial training (AT) (Madry et al., 2018)
with Confidence-based Rejection; (2) TRADES + CR:
TRADES (Zhang et al., 2019) with Confidence-based Re-
jection; (3) CCAT (Stutz et al., 2020); (4) RCD (Sheik-
holeslami et al., 2021); (5) ATRR (Pang et al., 2022).

CPR Setup. CPR requires a base model. We consider
robust base models trained using the well-known stan-
dard adversarial training (AT) (Madry et al., 2018) and
TRADES (Zhang et al., 2019). Our experimental results
show that CPR can boost the robustness of these models.

CPR has three hyper-parameters: the consistency radius ϵ̃,
the number of PGD steps m, and the PGD step size η. The
ϵ̃ value controls the rejection rate of the selective classifier.
We choose it such that CPR does not reject more than a small
fraction of the correctly-classified clean inputs (however,
it can reject a majority of the mis-classified inputs that are
likely to be close to the decision boundary of the base model;
rejecting such inputs is reasonable). The rejection rate of
the selective classifier gϵ̃ on correctly-classified clean inputs
from a distribution D is given by E(x,y)∼D

[
1{gϵ̃(x ;θ) =

⊥} | ŷ(x) = y
]
, which can be estimated using a labeled

validation dataset. We choose a large enough ϵ̃ > 0 such
that this rejection rate is approximately prej , where prej is
a user-specified rejection rate. The number of PGD steps m
also affects the robustness. We use a validation set to select
suitable ϵ̃ and m (details in Appendix F.6). We do not tune

the PGD step size η and set it to a fixed value.

On MNIST, we set ϵ̃ = 0.1 (such that prej = 1%), m = 20,
and η = 0.01. On SVHN and CIFAR-10, we set ϵ̃ = 0.0055
(such that prej = 5%), m = 10, and η = 0.001.

Evaluation Metrics. We use the robustness curve at adver-
sarial budget ϵ (Eq. (6)) and the total robust loss to evaluate
all the methods. The curve is calculated for α values from
the set {0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 1} since
in practice, we are mainly interested in the robustness with
rejection for small values of α. We plot the robustness
curve, with α along the x-axis and the robustness with re-
jection along the y-axis. We also evaluate the total robust
loss Lϵ(f ; ℓ

rej) with respect to the ramp rejection loss (Eq.
(4)) for t ∈ {2, 4}, and the step rejection loss (Eq. (3))
for α0 ∈ {0, 0.05, 0.1}. This gives a single metric that
summarizes the robustness curve of the different methods.

Evaluation. We consider ℓ∞-norm bounded attacks and
generate adversarial examples to compute the robustness
with rejection metric via an ensemble of adversarial attacks.
The worst-case robustness is reported under the attack en-
semble. A detailed discussion of the unified approach for
designing strong adaptive attacks for CPR and all the base-
line methods is given in Appendix E. We consider both seen
attacks and unseen attacks. Suppose ϵ′ is the attack pertur-
bation budget for testing. For seen attacks, the perturbation
budget ϵ′ = ϵ (on MNIST, ϵ′ = 0.3, while on SVHN and
CIFAR-10, ϵ′ = 8

255 ). For unseen attacks, the perturbation
budget ϵ′ > ϵ (on MNIST, ϵ′ = 0.4, while on SVHN and
CIFAR-10, ϵ′ = 16

255 ). Finally, we use the same approach to
set the rejection threshold for all the baselines. Specifically,
on MNIST, we set the threshold such that only 1% of clean
correctly-classified validation inputs are rejected. On SVHN
and CIFAR-10, we set the threshold such that only 5% of
clean correctly-classified validation inputs are rejected.

5.2. Results

Evaluating the Total Robust Loss. Table 1 compares the
total robust loss of different methods for different rejection
loss functions under both seen attacks and unseen attacks.
The proposed method CPR outperforms the baselines signif-
icantly in almost all cases. The only exception is on MNIST
for the ramp rejection loss with t = 2 under seen attacks,
where CPR is worse than TRADES+CR and some baselines.
This is because small perturbations on MNIST are easy to
correctly classify and the ramp rejection loss penalizes re-
jecting large perturbations more, while CPR tends to reject
large perturbations. In all other cases, CPR performs signifi-
cantly better than the baselines. For instance, under unseen
attacks, CPR reduces the total robust loss (with respect to
different rejection losses) by at least 60.8%, 6.6% and 7.3%
on MNIST, SVHN and CIFAR-10, respectively. Under seen
attacks, CPR reduces the total robust loss by at least 18.0%
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Dataset Method
Total Robust Loss under Seen Attacks ↓ Total Robust Loss under Unseen Attacks ↓

Step Rej. Loss Ramp Rej. Loss Step Rej. Loss Ramp Rej. Loss
α0 = 0.0 α0 = 0.05 α0 = 0.1 t = 2 t = 4 α0 = 0.0 α0 = 0.05 α0 = 0.1 t = 2 t = 4

MNIST

AT+CR 0.084 0.085 0.085 0.097 0.087 1.000 1.000 1.000 1.000 1.000
TRADES+CR 0.060 0.061 0.061 0.075 0.065 1.000 1.000 1.000 1.000 1.000
CCAT 0.168 0.926 1.000 0.945 0.894 0.245 0.994 1.000 0.955 0.914
RCD 0.135 0.135 0.135 0.135 0.135 1.000 1.000 1.000 1.000 1.000
ATRR 0.088 0.088 0.089 0.107 0.095 1.000 1.000 1.000 1.000 1.000
AT+CPR (Ours) 0.039 0.039 0.040 0.133 0.059 0.096 0.097 0.098 0.187 0.116
TRADES+CPR (Ours) 0.042 0.042 0.042 0.130 0.058 0.133 0.133 0.133 0.208 0.145

SVHN

AT+CR 0.539 0.539 0.539 0.542 0.540 0.882 0.882 0.882 0.882 0.882
TRADES+CR 0.471 0.472 0.472 0.475 0.473 0.874 0.874 0.874 0.874 0.874
CCAT 0.547 1.000 1.000 0.977 0.956 0.945 1.000 1.000 0.999 0.998
RCD 0.662 0.662 0.662 0.662 0.662 0.903 0.903 0.903 0.903 0.903
ATRR 0.552 0.552 0.552 0.566 0.556 0.885 0.885 0.885 0.891 0.887
AT+CPR (Ours) 0.442 0.442 0.442 0.454 0.444 0.853 0.853 0.853 0.856 0.854
TRADES+CPR (Ours) 0.380 0.380 0.380 0.390 0.381 0.813 0.813 0.813 0.816 0.814

CIFAR-
10

AT+CR 0.500 0.501 0.501 0.507 0.503 0.895 0.895 0.895 0.895 0.895
TRADES+CR 0.500 0.500 0.500 0.503 0.501 0.849 0.849 0.849 0.849 0.849
CCAT 0.723 1.000 1.000 0.984 0.969 0.912 1.000 1.000 0.998 0.997
RCD 0.533 0.533 0.533 0.533 0.533 0.905 0.905 0.905 0.905 0.905
ATRR 0.512 0.513 0.513 0.518 0.515 0.887 0.887 0.887 0.887 0.887
AT+CPR (Ours) 0.433 0.433 0.433 0.443 0.435 0.829 0.829 0.829 0.836 0.830
TRADES+CPR (Ours) 0.429 0.429 0.429 0.438 0.430 0.781 0.781 0.781 0.787 0.782

Table 1. The total robust loss for different rejection loss functions under both seen and unseen attacks. The best result is boldfaced.
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Figure 2. The robustness curves of all methods on CIFAR-10 for both seen and unseen attacks. More results are in Appendix F.2

and 12.8% on SVHN and CIFAR-10, respectively.

Evaluating the Robustness Curve. Figure 2 compares the
robustness with rejection Arej

ϵ (f, α) of the different methods
as a function of α under both seen and unseen attacks on
CIFAR-10 (complete results on all the datasets can be found
in Appendix F.2). Our method CPR usually has significantly
higher robustness with rejection compared to the baselines
for small to moderate α. The robustness with rejection
of CPR only drops for large α values, which suffers less
rejection loss and thus leads to smaller total robust loss (as
predicted by our analysis). We also note that CCAT has
worse performance than other methods since our adaptive
attacks are stronger than the PGD-with-backtracking attack
used in CCAT paper (Stutz et al., 2020) (see Appendix F.7).

Ablation Study on Attacks. We performed an ablation

experiment to study the strength of each inner and outer
attack in the attack ensemble. The results in Table 2 show
that for the outer attack, CHCMOA is consistently the best
across all datasets. For the inner attack, LCIA is usually
the best, and CLCIA and PDIA are strong on MNIST. We
emphasize that we use an ensemble of all the attacks to get
the strongest final evaluation.

Ablation Study on Hyper-parameters. We performed
an ablation experiment to study the effect of the hyper-
parameters ϵ̃ and m used by CPR. The results in Ap-
pendix F.5 show that larger ϵ̃ (consistency radius) leads
to better robustness with rejection at α = 0. However,
it also leads to lower robustness with rejection when α is
large, which suggests that CPR rejects more perturbed in-
puts. Similarly, larger m (number of PGD steps) also leads
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Dataset Method
Robustness with Reject at α = 0 ↓ Robustness with Reject at α = 1 ↓

Outer Attack Inner Attack (with Ensemble Outer Attacks)
AutoAttack HCMOA CHCMOA LCIA CLCIA PDIA

MNIST AT+CPR 97.60 97.80 96.10 50.90 12.30 65.80
TRADES+CPR 98.10 98.40 95.80 7.60 5.10 0.40

SVHN AT+CPR 64.20 57.50 56.70 42.60 49.40 43.90
TRADES+CPR 71.10 63.40 62.90 51.00 56.10 54.30

CIFAR-10 AT+CPR 60.70 57.50 57.40 44.40 48.30 48.50
TRADES+CPR 61.50 57.40 57.20 45.90 51.10 53.10

Table 2. Ablation study on the outer and inner adaptive attacks for CPR. Refer to Appendix E for more details on these attacks and the
choice of metrics. All values are in percentage, and smaller values correspond to a stronger attack. Bold values show the strongest attacks.

to better robustness with rejection at α = 0, but can lead to
a lower robustness with rejection when α is large. We set
m = 10 in our main experiments, which is usually sufficient
for good performance, and larger values lead to minimal
improvements.

Evaluating Traditional Metrics. We also evaluate differ-
ent methods on the traditional metrics, including accuracy
with rejection, rejection rate on clean test inputs, an F1 score-
like metric (harmonic mean of accuracy-with-rejection and
1− rejection rate), and the robust accuracy with detection
defined in Tramèr (2022). The definitions of these metrics
and the results are included in Appendix F.1. These results
show that CPR has comparable performance to the baselines
on clean test inputs, and also significantly outperforms the
baselines w.r.t. robust accuracy with detection.

6. Conclusion and Discussion
This work studied adversarially-robust classification with re-
jection in the practical setting where rejection carries a loss
that is monotonically non-increasing with the perturbation
magnitude. We proposed the total robust loss as a gener-
alization of the robust error for selective classifiers where
rejection carries a loss, and the robustness curve as a tool
to study the total robust loss. We provided an analysis of
the setting and proposed a novel defense CPR for robustify-
ing any given base model, which significantly outperforms
previous methods under strong adaptive attacks.

Limitations & Future Work. In this work, we focused on
rejection losses that are a function of perturbation magnitude.
There could be other types of rejection losses, e.g., ℓrej(r,x)
that also depend on the input x. Our defense has an in-
creased computational cost at prediction (test) time since
it requires m PGD steps to find T (x) in Algo. 1, which re-
quires m forward and backward passes in addition to the two
forward passes required to get the predictions of x and T (x).
Designing defense methods that have lower computational
cost and better robustness than CPR, and tackling more
general rejection losses are interesting future problems.
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Supplementary Material
In Section A, we discuss some potential societal impacts of our work. In Section B, we provide detailed proofs for the
theorems and also present some additional theoretical results. In Section C, we discuss the calculation of the total robust
loss for specific instantiations of the rejection loss ℓrej. In Section D, we describe the detailed setup for the experiments. In
Section E, we discuss the unified approach for designing adaptive attacks for the proposed method CPR and all the baseline
methods. In Section F, we present some additional experimental results.

A. Societal Impacts
Our method can build robust models with small costs due to mis-classification and rejection facing adversarial input
perturbations, which can help build robust intelligent systems for applications. The proposed stratified rejection setting,
which takes into account the cost of rejection, may inspire the development of improved defense methods along this line,
which can have a positive impact in practice. We foresee no immediate negative societal impact.

B. Additional Theory and Proofs
B.1. Alternate Definition of Rrej

ϵ (f, α)

Proposition 1. For any ϵ ≥ 0 and α ∈ [0, 1], the metric Rrej
ϵ (f, α) can be equivalently defined as

Rrej
ϵ (f, α) = E

(x,y)∼D

[
max

x′∈N (x, αϵ)
1
{
f(x′) = ⊥

}
∨ max

x′′∈N (x,ϵ)
1
{
f(x′′) ̸∈ {y,⊥}

}]
. (13)

This definition allows us to interpret the metric Rrej
ϵ (f, α) as consisting of two types of errors: 1) errors due to rejecting

small perturbations within the αϵ-neighborhood and 2) mis-classification errors within the ϵ-neighborhood.

Proof. Consider the original definition of Rrej
ϵ (f, α) in Eq. (5)

Rrej
ϵ (f, α) = E

(x,y)∼D

[
max

x′∈N (x, αϵ)
1
{
f(x′) ̸= y

}
∨ max

x′′∈N (x,ϵ)
1
{
f(x′′) ̸∈ {y,⊥}

}]
. (14)

The error in the first term inside the expectation can be split into the error due to rejection and the error due to mis-
classification, i.e.,

1
{
f(x′) ̸= y

}
= 1

{
f(x′) = ⊥

}
∨ 1

{
f(x′) /∈ {y,⊥}

}
.

The maximum of this error over the αϵ-neighborhood can be expressed as

max
x′∈N (x, αϵ)

1
{
f(x′) ̸= y

}
= max

x′∈N (x, αϵ)
1
{
f(x′) = ⊥

}
∨ max

x′∈N (x, αϵ)
1
{
f(x′) /∈ {y,⊥}

}
,

which is easily verified for binary indicator functions. Substituting the above result into Eq. (14), we get

Rrej
ϵ (f, α) = E

(x,y)∼D

[
max

x′∈N (x, αϵ)
1
{
f(x′) = ⊥

}
∨ max

x′∈N (x, αϵ)
1
{
f(x′) /∈ {y,⊥}

}
∨ max

x′′∈N (x,ϵ)
1
{
f(x′′) ̸∈ {y,⊥}

}]
= E

(x,y)∼D

[
max

x′∈N (x, αϵ)
1
{
f(x′) = ⊥

}
∨ max

x′′∈N (x,ϵ)
1
{
f(x′′) ̸∈ {y,⊥}

}]
.

In the last step, we combined the second and third terms inside the expectation using the observation that

max
x′∈N (x, αϵ)

1
{
f(x′) /∈ {y,⊥}

}
∨ max

x′∈N (x,ϵ)
1
{
f(x′) /∈ {y,⊥}

}
= max

x′∈N (x,ϵ)
1
{
f(x′) /∈ {y,⊥}

}
.

This shows the equivalence of the two definitions of Rrej
ϵ (f, α).

The definition in Eq. (13) serves as motivation for the first adaptive attack to create adversarial examples x′ within the
neighborhood N (x, αϵ) that are rejected by the defense method.
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B.2. Proof of Lemma 1

We first prove a more general lemma in Lemma 2, from which integration by parts gives Lemma 1. Note that the step
rejection loss and ramp rejection loss satisfy the conditions in Lemma 1 which gives them a simpler expression to compute
the total robust loss.
Lemma 2. Let s(α) := Rrej

ϵ (f, α) and assume it is right-semicontinuous. For any monotonically non-increasing ℓrej :
[0,∞) → [0, 1], the total robust loss can be computed by:

Lϵ(f ; ℓ
rej) = Rrej

ϵ (f, 0) +
(
ℓrej(0) − 1

)
prej +

∫ 1

0

ℓrej(αϵ) ds(α), (15)

where the integral is the Riemann–Stieltjes integral, and

prej := Pr
[
f(x) = ⊥ ∧

(
∀x′ ∈ N (x, ϵ), f(x′) ∈ {y,⊥}

)]
is the probability that the clean input (x, y) is rejected and no perturbations of x within the ϵ-ball are misclassified.

Proof. Let W denote the event that there exists x′ ∈ N (x, ϵ) such that x′ is misclassified, i.e., f(x′) ̸∈ {y,⊥}. Let C
denote the event that the clean input x is rejected, i.e., f(x) = ⊥. Clearly, prej = Pr[C \ W] where \ is the set minus.
Finally, let R denote the event that there exists x′ ∈ N (x, ϵ) such that x′ is rejected.

We only consider W ∪ C ∪R, since otherwise (x, y) contributes a loss 0 to Lϵ(f ; ℓ
rej). The union can be partitioned into

three disjoint subsets.

• W : Such an (x, y) contributes a loss 1. Since Rrej
ϵ (f, 0) = Pr[W ∪ C], we have Pr[W] = Rrej

ϵ (f, 0)− Pr[C \W] =

Rrej
ϵ (f, 0)− prej. Then this subset contributes a loss Rrej

ϵ (f, 0)− prej.

• C \ W : Such a data point contributes a loss ℓrej(0), given the assumption that ℓrej is monotonically non-increasing.
Then this subset contributes a loss ℓrej(0)prej.

• R \ (W ∪ C) : That is, there exists no x′ ∈ N (x, ϵ) that is misclassified, the clean input x is accepted, but there exists
some x′ ∈ N (x, ϵ) that is rejected. Let L3 denote the loss contributed by this subset.

Now, it is sufficient to show that

L3 =

∫ 1

0

ℓrej(αϵ) ds(α).

For any positive integer t, let a0 = 0 ≤ a1 ≤ · · · ≤ at−1 ≤ at = 1 be an arbitrary sequence on [0, 1]. Let

Mi = sup{ℓrej(αϵ), ai−1 ≤ α ≤ ai},
mi = inf{ℓrej(αϵ), ai−1 ≤ α ≤ ai},

U(s, ℓrej) =

t∑
i=1

Mi (s(ai)− s(ai−1)),

L(s, ℓrej) =

t∑
i=1

mi (s(ai)− s(ai−1)).

Let Ri denote the event that there exists x′ such that ai−1ϵ < d(x′,x) ≤ aiϵ and x′ is rejected. Then R = ∪t
i=1Ri, and

s(ai) − s(ai−1) = Rrej
ϵ (f, ai) − Rrej

ϵ (f, ai−1)

= Pr
[
Ri \ (∪i−1

j=1Rj) \ (W ∪ C)
]
.

Since ℓrej is monotonically non-increasing, each data point in Ri \ (∪i−1
j=1Rj) \ (W ∪ C) should contribute a loss that is

within [mi,Mi]. Therefore,

L(s, ℓrej) ≤ L3 ≤ U(s, ℓrej)

for any sequence {ai}ti=0. When s(α) is right-semicontinous, the Riemann–Stieltjes integral exists, and L3 =∫ 1

0
ℓrej(αϵ) ds(α). This completes the proof.
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B.3. Proof of Theorem 1

Theorem 2 (Restatement of Theorem 1). Consider binary classification. Let f∗(x) be any classifier without a rejection
option. For any δ ∈ [0, 1] and ϵ ≥ 0, there exists a selective classifier fδ , whose robust error curve is bounded by:

Rrej
ϵ (fδ, α) ≤ Rϵ′(f

∗), ∀α ∈ [0, 1] (16)

where ϵ′ = max{(α+ δ)ϵ, (1− δ)ϵ}. Moreover, the bound is tight: for any α ∈ [0, 1], there exist simple data distributions
and f∗ such that any f must have Rrej

ϵ (f, α) ≥ Rϵ′(f
∗).

Proof. For any r > 0, let N (f∗, r) denote the region within distance r to the decision boundary of f∗:

N (f∗, r) := {x ∈ X : ∃x′ ∈ N (x, r) and f∗(x′) ̸= f∗(x)}.

Consider a parameter δ ∈ [0, 1] and construct a selective classifier fδ as follows:

fδ(x) :=

{
⊥ if x ∈ N (f∗, δϵ),

f∗(x) otherwise.
(17)

We will show that any sample (x, y) contributing error to Rrej
ϵ (fδ, α) must also contribute error to Rϵ′(f

∗), where ϵ′ =

max{(α+ δ)ϵ, (1− δ)ϵ}. This will prove that Rrej
ϵ (fδ, α) ≤ Rϵ′(f

∗).

Consider the following two cases:

• Consider the first type of error in Rrej
ϵ (fδ, α): maxx′∈N (x,αϵ) 1 [fδ(x

′) ̸= y] = 1. This implies that there exists
x′ ∈ N (x, αϵ) such that fδ(x′) ̸= y. So there are two subcases to consider:

(1) x′ ∈ N (f∗, δϵ): in this case x ∈ N (f∗, (δ + α)ϵ).

(2) f∗(x′) ̸= y: in this case either f∗(x) ̸= y, or f∗(x) = y ̸= f∗(x′) and thus x ∈ N (f∗, αϵ).

In summary, either f∗(x) ̸= y or x ∈ N (f∗, (α+ δ)ϵ).

• Next consider the second type of error in Rrej
ϵ (fδ, α): maxx′′∈N (x,ϵ) 1 [fδ(x

′′) ̸∈ {y,⊥}] = 1. This means there
exists an x′′ ∈ N (x, ϵ) such that fδ(x′′) ̸∈ {y,⊥}, i.e., x′′ ̸∈ N (f∗, δϵ) and f∗(x′′) ̸= y. This implies that all
z ∈ N (x′′, δϵ) should have f∗(z) = f∗(x′′) ̸= y. In particular, there exists z ∈ N (x′′, δϵ) with d(z,x) ≤ (1− δ)ϵ
and f∗(z) ̸= y. It can be verified that z = δx+ (1− δ)x′′, which is a point on the line joining x and x′′, satisfies the
above condition. In summary, either f∗(x) ̸= y, or f∗(x) = y ̸= f∗(z) and thus x ∈ N (f∗, (1− δ)ϵ).

Overall, a sample (x, y) contributing error to Rrej
ϵ (fδ, α) must satisfy either f∗(x) ̸= y or x ∈ N (f∗, ϵ′). Clearly, such a

sample also contributes an error to Rϵ′(f
∗). Therefore, we have

Rrej
ϵ (fδ, α) ≤ Rϵ′(f

∗),∀α ∈ [0, 1]. (18)

To show that the bound is tight, consider the following data distribution. Let x ∈ R and y ∈ {−1,+1}, α ∈ [0, 1], and let
β ∈ (0, 1

2 ) be some constant. Let the distribution be: (x, y) is (−4ϵ,−1) with probability 1−β
2 , (−αϵ

4 ,−1) with probability
β
2 , (αϵ4 ,+1) with probability β

2 , and (4ϵ,+1) with probability 1−β
2 . Let δ = 1−α

2 , f∗(x) := sign(x+ ϵ). It is clear that
Rϵ′(f

∗) = R(1+α)ϵ/2(f
∗) = β

2 . It is also clear that any f must have Rrej
ϵ (f, α) ≥ β

2 since the points −αϵ
4 and αϵ

4 have
distance only αϵ

2 but have different labels.

We note that the proof generalizes that of Theorem 5 in (Tramèr, 2022). In particular, our theorem includes the latter as a
special case (corresponding to α = 0 and δ = 1

2 ).
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B.4. Comparing the Robustness Curves and Total Robust Losses of fδ and f∗ in Theorem 1

Theorem 1 investigates the feasibility of a good selective classifier (w.r.t. the robustness curve and the total robust loss), by
constructing a classifier fδ. It is meaningful to perform a fine-grained analysis into when fδ has a better total robust loss
than the classifier f∗ without rejection.

For simplicity, we assume f∗ has a 0 standard error on the clean data distribution. The analysis for the case with a nonzero
standard error is similar.

Theorem 3. Consider binary classification. Let f∗(x) be any classifier without a rejection option that has 0 standard error
on the data distribution. Suppose the data density for data points with a distance of r to the decision boundary of f∗ is p(r).
Consider the selective classifier fδ defined in Theorem 1:

fδ(x) :=

{
⊥ if x ∈ N (f∗, δϵ),

f∗(x) otherwise.
(19)

Then for δ ∈ [0, 1
2 ], the total robust loss of fδ with respect to the rejection loss ℓrej can be computed by:

Lϵ(fδ; ℓ
rej) =

∫ (1−δ)ϵ

0

p(r)dr +

∫ (1+δ)ϵ

(1−δ)ϵ

ℓrej(r − δϵ) p(r)dr. (20)

Also, the curve of robust error of fδ can be computed by:

Rrej
ϵ (fδ, α) =

{∫ (1−δ)ϵ

0
p(r)dr if α ∈ [0, 1− 2δ],∫ (α+δ)ϵ

0
p(r)dr if α ∈ (1− 2δ, 1].

(21)

Proof. First consider the total robust loss. When 0 < r ≤ (1 − δ)ϵ, the data point will contribute a loss of 1 to the total
robust loss. When (1− δ)ϵ < r ≤ (1+ δ)ϵ, the data point will contribute a loss of ℓrej(r− δϵ) to the total robust loss. When
r > (1 + δ)ϵ, the data point will contribute 0 loss to the total robust loss. Thus, we have Eq. (20).

For the curve of robust error, the data points with 0 < r ≤ (1− δ)ϵ will always contribute a loss of 1. When α ∈ [0, 1− 2δ],
no data points with r ≥ (1− δ)ϵ can contribute a loss, either by small perturbations to get a rejection or mis-classification,
or by large perturbations to get a mis-classification. When α ∈ (1− 2δ, 1], data points with r ∈ [(1− δ)ϵ, (α+ δ)ϵ] will
contribute a loss of 1 by small perturbations to get a rejection. Thus, we have Eq. (21).

Now we are ready to compare fδ to f∗.

First consider the curve of robust error. It is easy to know that the curve of robust error of f∗ is Rrej
ϵ (f∗, α) =

∫ ϵ

0
p(r)dr for

α ∈ [0, 1]. When α ∈ [0, 1−δ], we have Rrej
ϵ (f∗, α) ≥ Rrej

ϵ (fδ, α); when α ∈ (1−δ, 1], we have Rrej
ϵ (f∗, α) ≤ Rrej

ϵ (fδ, α).
When α ∈ [0, 1− 2δ], if

∫ ϵ

(1−δ)ϵ
p(r)dr is large, then fδ will have much lower robust error with rejection than f∗, since

Rrej
ϵ (f∗, α) − Rrej

ϵ (fδ, α) =
∫ ϵ

(1−δ)ϵ
p(r)dr; when α ∈ (1 − 2δ, 1 − δ], if

∫ ϵ

(α+δ)ϵ
p(r)dr is large, then fδ will also have

much lower robust error with rejection than f∗, since Rrej
ϵ (f∗, α)−Rrej

ϵ (fδ, α) =
∫ ϵ

(α+δ)ϵ
p(r)dr.

Now consider the total robust loss. The total robust loss of f∗ is
∫ ϵ

0
p(r)dr, which is larger than that of fδ by

∫ ϵ

(1−δ)ϵ
p(r)dr−∫ (1+δ)ϵ

(1−δ)ϵ
ℓrej(r − δϵ) p(r)dr. More precisely, both f∗ and fδ will get mis-classification loss on some perturbations of points

with distance in the range [0, (1 − δ)ϵ] from the decision boundary of f∗. This is because there always exist some large
perturbations of these points crossing the boundary. On the other hand, f∗ simply gets mis-classification loss from
perturbations of the points with distance in the range [(1− δ)ϵ, ϵ]. While for all points with distance larger than (1− δ)ϵ, fδ
can correctly classify all their small perturbations of magnitude at most (1− 2δ)ϵ, and reject or correctly classify their larger
perturbations. So it only gets rejection loss for large magnitudes, which can then potentially lead to smaller total robust
losses than f∗ for monotonically non-increasing rejection losses.

Therefore, for some data distributions, there exists a fixed δ such that fδ can get small total robust losses with respect to
a wide range of reasonable rejection losses. For example, consider the step rejection losses ℓrej(r) = 1{r ≤ α0ϵ} with
parameter in the range α0 ∈ [0, ᾱ0] where ᾱ0 ∈ [0, 1]. If we set δ = 1−ᾱ0

2 , then 1 − 2δ = ᾱ0 and α ∈ [0, 1 − 2δ]. The
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total robust loss of fδ with respect to these rejection losses is
∫ (1+ᾱ0)

2 ϵ

0
p(r)dr. In contrast, the total robust loss of f∗ is∫ ϵ

0
p(r)dr, which can be significantly larger than that of fδ. The total robust loss of fδ is smaller than that of f∗ by the

amount
∫ ϵ

(1+ᾱ0)
2 ϵ

p(r)dr. If the probability mass of points with r ∈ [ (1+ᾱ0)
2 ϵ, ϵ] is large, then the improvement is significant.

C. Calculating the Total Robust Loss
In this section, we discuss the calculation of the total robust loss for specific instantiations of the rejection loss ℓrej. Given the
curve of robust error {s(α) := Rrej

ϵ (f, α) : α ∈ [0, 1]} and a specific choice of rejection loss ℓrej(r) that is monotonically
non-increasing, we can use Eq. (15) from Lemma 2 to calculate the total robust loss:

Lϵ(f ; ℓ
rej) = Rrej

ϵ (f, 0) + (ℓrej(0) − 1) prej +

∫ 1

0

ℓrej(αϵ) ds(α). (22)

As discussed in Corollary 1, let us additionally choose the rejection loss to be differentiable almost everywhere, and satisfy
the conditions ℓrej(0) = 1 and ℓrej(ϵ) = 0. This is satisfied e.g., by the ramp and step rejection losses defined in Eqs. (4) and
(3). Applying the product rule (or integration by parts), the integral term in the total robust loss can be expressed as∫ 1

0

ℓrej(αϵ) ds(α) = ℓrej(ϵ) s(1) − ℓrej(0) s(0) −
∫ 1

0

s(α) dℓrej(αϵ)

= − s(0) −
∫ 1

0

s(α) dℓrej(αϵ).

Substituting the above into Eq. (22), the total robust loss simplifies into

Lϵ(f ; ℓ
rej) = −

∫ 1

0

s(α) dℓrej(αϵ). (23)

From the above expression, we next calculate the total robust loss for the ramp and step rejection losses.

C.1. Ramp Rejection loss

Recall that the ramp rejection loss is defined as

ℓrej(r) =
(
1 − r

ϵ

)t

, r ∈ [0, ϵ]

for some t ≥ 1. We have ℓrej(αϵ) = (1− α)t and

dℓrej(αϵ) = −t (1 − α)t−1 dα.

Substituting the above into Eq. (23) gives the total robust loss

Lϵ(f ; ℓ
rej) = t

∫ 1

0

s(α) (1 − α)t−1 dα.

For the special case t = 1, this reduces to the area under the robust error curve
∫ 1

0
s(α) dα.

For the special case t = 2, this reduces to 2
∫ 1

0
s(α) (1− α) dα (and so on for larger t).

In our experiments, we calculate the total robust loss for t ∈ {1, 2, 3, 4}. Since we calculate the robust error curve only for a
finite set of α values, we approximate the above integrals using the trapezoidal rule. We use finely-spaced α values in [0, 1]
with a spacing of 0.01, and use linear interpolation to obtain intermediate (missing) values of the robust error curve.

C.2. Step Rejection loss

Recall that the step rejection loss is defined as

ℓrej(r) = 1{r ≤ α0ϵ}, r ∈ [0, ϵ]
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for some α0 ∈ [0, 1]. In this case, there are two ways to calculate the total robust loss, both leading to the same result.

Approach 1 For the step rejection loss, the derivative can be defined by appealing to the Dirac delta function δ(x).
Specifically, ℓrej(αϵ) = 1{α ≤ α0} and

dℓrej(αϵ) = − δ(α− α0) dα,

where the negative sign arises because the step loss drops from 1 to 0 at α = α0. Substituting the above into Eq. (23) gives
the total robust loss

Lϵ(f ; ℓ
rej) =

∫ 1

0

s(α) δ(α− α0) dα = s(α0) = Rrej
ϵ (f, α0).

Approach 2 We directly use the definition of the total robust loss in Eq. (22), which for the step rejection loss is

Lϵ(f ; ℓ
rej) = Rrej

ϵ (f, 0) +

∫ 1

0

1{α ≤ α0} ds(α)

= s(0) +

∫ α0

0

1 ds(α) = s(0) + s(α0) − s(0)

= s(α0) = Rrej
ϵ (f, α0).

For the step rejection loss, the total robust loss is equal to the value of the robust error curve at the point α = α0.

D. Experimental Setup
We ran all our experiments with PyTorch and NVDIA GeForce RTX 2080Ti GPUs. We ran all the experiments once with fixed
random seeds. The code for our work can be found at https://github.com/jfc43/stratified-adv-rej.

D.1. Datasets

MNIST. MNIST (LeCun, 1998) is a large dataset of handwritten digits with 10 classes. Each digit has 5,500 training
images and 1,000 test images. Each image is 28×28 grayscale. We normalize the range of pixel values to [0,1].

SVHN. SVHN (Netzer et al., 2011) is a real-world image dataset of 32×32 color images with 10 classes (one for each
digit). It is obtained from house numbers in Google Street View images. The training set has 73,257 images and the original
test set has 26,032 images. We use the first 10,000 images from the original test set as the test set for our experiments. We
normalize the range of pixel values to [0,1].

CIFAR-10. CIFAR-10 (Krizhevsky et al., 2009) is a dataset of 32×32 color images with ten classes, each consisting of
5,000 training images and 1,000 test images. The classes correspond to categories such as dogs, frogs, ships, trucks, etc. We
normalize the range of pixel values to [0,1].

D.2. Baseline Methods

We consider the following five baseline methods: (1) AT+CR: adversarial training (AT) (Madry et al., 2018) with Confidence-
based Rejection; (2)TRADES+CR: TRADES (Zhang et al., 2019) with Confidence-based Rejection; (3) CCAT: confidence-
calibrated adversarial training (Stutz et al., 2020); (4) RCD: robust classification with detection (Sheikholeslami et al., 2021);
(5) ATRR: adversarial training with rectified rejection (Pang et al., 2022). We provide their training details below.

AT+CR. We use the standard adversarial training (AT) proposed in (Madry et al., 2018) to train the base model. On MNIST,
we use LetNet network architecture (LeCun et al., 1989) and train the network for 100 epochs with a batch size of 128. We
use standard stochastic gradient descent (SGD) starting with a learning rate of 0.1. The learning rate is multiplied by 0.95
after each epoch. We use a momentum of 0.9 and do not use weight decay for SGD. We use the PGD attack to generate
adversarial training examples with ϵ = 0.3, a step size of 0.01, 40 steps and a random start. On SVHN, we use ResNet-20
network architecture (He et al., 2016) and train the network for 200 epochs with a batch size of 128. We use standard SGD
starting with a learning rate of 0.1. The learning rate is multiplied by 0.95 after each epoch. We use a momentum of 0.9 and
do not use weight decay for SGD. We use the PGD attack to generate adversarial training examples with ϵ = 8

255 , a step size
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of 2
255 , 10 steps and a random start. On CIFAR-10, we use ResNet-20 network architecture and train the network following

the suggestions in (Pang et al., 2021). Specifically, we train the network for 110 epochs with a batch size of 128 using SGD
with Nesterov momentum and learning rate schedule. We set momentum 0.9 and ℓ2 weight decay with a coefficient of
5× 10−4. The initial learning rate is 0.1 and it decreases by 0.1 at 100 and 105 epoch respectively. We augment the training
images using random crop and random horizontal flip. We use the PGD attack to generate adversarial training examples
with ϵ = 8

255 , a step size of 2
255 , 10 steps and a random start.

TRADES+CR. TRADES is an adversarial training method proposed in (Zhang et al., 2019). We follow their original setup
to train the models on MNIST and CIFAR-10. The setup for SVHN is the same as that for CIFAR-10.

CCAT. We follow the original training settings for CCAT in (Stutz et al., 2020) and train models on MNIST, SVHN and
CIFAR-10 using standard stochastic gradient descent (SGD). On all datasets, we set ρ = 10. On MNIST, we use LetNet
network architecture and train the network for 100 epochs with a batch size of 100 and a learning rate of 0.1. On SVHN, we
use ResNet-20 network architecture and train the network for 200 epochs with a batch size of 100 and a learning rate of 0.1.
On CIFAR-10, we use ResNet-20 network architecture and train the network for 200 epochs with a batch size of 100 and a
learning rate of 0.075. We augment the training images using random crop and random horizontal flip. On all datasets, we
use learning rate schedule and the learning rate is multiplied by 0.95 after each epoch. We use a momentum of 0.9 and do
not use weight decay for SGD. We use the PGD attack with backtracking to generate adversarial training examples: we use
a learning rate of 0.005, a momentum of 0.9, a learning rate factor of 1.5, 40 steps and a random start. We randomly switch
between random initialization and zero initialization. We train on 50% clean and 50% adversarial examples per batch.

RCD. We consider a training loss proposed in (Sheikholeslami et al., 2021) (see their Equation 14) to train a neural network
for (k+1)-class classification with the (k+1)-th class dedicated to the detection task. (Sheikholeslami et al., 2021) use interval
bound propagation (IBP) technique (Gowal et al., 2019) to bound the training loss and then train the network by minimizing
the tractable upper bound on the training loss (see their Equation 18) to achieve verified robustness. Since we don’t
consider verified robustness in our paper, we use the PGD attack to solve the inner maximization problems of the training
objective instead. For readers’ convenience, we describe their training objective here. Suppose the logits of the network is
h̃(x ;θ) = [h̃1(x ;θ), · · · , h̃k+1(x ;θ)] and the softmax output of the network is h(x ;θ) = [h1(x ;θ), · · · , hk+1(x ;θ)].
The softmax output of the network is obtained by applying the softmax function to the logits. Then the training objective is

min
θ

E
(x,y)∼D

[
max

x′ ∈N (x,ϵ)
− log[hy(x

′ ;θ)] + λ1 L
abstain
robust (x, y;θ) − λ2 log[hy(x ;θ)]

]
. (24)

where

Labstain
robust (x, y;θ) = max

x′ ∈N (x,ϵ)
min

{
− log(

eh̃y(x
′ ; θ)∑

i∈I\{k+1} e
h̃i(x′ ; θ)

),− log(
eh̃k+1(x

′ ; θ)∑
i∈I\{y} e

h̃i(x′ ; θ)
)

}
, (25)

and I = {1, 2, . . . , k + 1}. (Sheikholeslami et al., 2021) always set λ1 = 1 and to keep high clean accuracy, they set a
larger λ2 (e.g. they set λ2 = 2 on MNIST and set λ2 = 2.9 on CIFAR-10) since it is hard to get high clean accuracy when
using the IBP technique to train models. Since we don’t use the IBP technique, we simply set λ1 = 1 and λ2 = 1 (our
results show that setting λ2 = 1 leads to better results than that of setting λ2 ≥ 2). We train models on MNIST, SVHN, and
CIFAR-10 using standard stochastic gradient descent (SGD). We split each training batch into two sub-batches of equal
size, and use the first sub-batch for the last two loss terms in the training objective and use the second sub-batch for the first
loss term in the training objective. On MNIST, we use LetNet network architecture and train the network for 100 epochs
with a batch size of 128. We use standard SGD starting with a learning rate of 0.1. The learning rate is multiplied by 0.95
after each epoch. We use a momentum of 0.9 and do not use weight decay for SGD. We use the PGD attack to solve the
inner maximization problems with ϵ = 0.3, a step size of 0.01, 40 steps and a random start. On SVHN, we use ResNet-20
network architecture and train the network for 200 epochs with a batch size of 128. We use standard SGD starting with a
learning rate of 0.05. The learning rate is multiplied by 0.95 after each epoch. We use a momentum of 0.9 and do not use
weightf decay for SGD. We use the PGD attack to solve the inner maximization problems with ϵ = 8

255 , a step size of 2
255 ,

10 steps and a random start. On CIFAR-10, we use ResNet-20 network architecture and train the network for 110 epochs
with a batch size of 128 using SGD with Nesterov momentum and learning rate schedule. We set momentum 0.9 and ℓ2
weight decay with a coefficient of 5× 10−4. The initial learning rate is 0.1 and it decreases by 0.1 at 100 and 105 epoch
respectively. We augment the training images using random crop and random horizontal flip. We use the PGD attack to
solve the inner maximization problems with ϵ = 8

255 , a step size of 2
255 , 10 steps and a random start.
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ATRR. We follow the original training settings for ATRR in (Pang et al., 2022) and train models on MNIST, SVHN and
CIFAR-10 using standard stochastic gradient descent (SGD). On MNIST, we use LetNet network architecture and train the
network for 100 epochs with a batch size of 128. We use standard SGD starting with a learning rate of 0.1. The learning rate
is multiplied by 0.95 after each epoch. We use a momentum of 0.9 and do not use weight decay for SGD. We use the PGD
attack to generate adversarial training examples with ϵ = 0.3, a step size of 0.01, 40 steps and a random start. On SVHN,
we use ResNet-20 network architecture and train the network for 200 epochs with a batch size of 128. We use standard SGD
starting with a learning rate of 0.1. The learning rate is multiplied by 0.95 after each epoch. We use a momentum of 0.9 and
do not use weight decay for SGD. We use the PGD attack to generate adversarial training examples with ϵ = 8

255 , a step size
of 2

255 , 10 steps and a random start. On CIFAR-10, we use ResNet-20 network architecture and train the network for 110
epochs with a batch size of 128 using SGD with Nesterov momentum and learning rate schedule. We set momentum 0.9 and
ℓ2 weight decay with a coefficient of 5× 10−4. The initial learning rate is 0.1 and it decreases by 0.1 at 100 and 105 epoch
respectively. We augment the training images using random crop and random horizontal flip. We use the PGD attack to
generate adversarial training examples with ϵ = 8

255 , a step size of 2
255 , 10 steps and a random start.

E. Designing Adaptive Attacks

To compute the robust accuracy with rejection Arej
ϵ (f, α) for a given ϵ > 0 and α ∈ [0, 1], we need to generate two

adversarial examples x′ ∈ N (x, αϵ) and x′′ ∈ N (x, ϵ) for each clean input (x, y). We call the attack for generating
x′ ∈ N (x, αϵ) the inner attack, and the attack for generating x′′ ∈ N (x, ϵ) the outer attack.

For both the inner attack and outer attack, we use an ensemble of attacks and report the worst-case robustness. For the inner
attack, if any of the attacks in the inner-attack ensemble finds an adversarial example x′ ∈ N (x, αϵ) that is rejected by the
model, then we consider the inner attack to be successful on the clean input (x, y). For the outer attack, if any of the attacks
in the outer-attack ensemble finds an adversarial example x′′ ∈ N (x, ϵ) that is accepted and misclassified by the model,
then we consider the outer attack to be successful on the clean input (x, y).

In this section, we design adaptive attacks to generate x′ and x′′ for the different methods using the same underlying
principles to ensure fair comparison. The following ideas are applied to design the attack loss functions for all the methods.
Whenever the attack objective is to maximize a probability (or a probability-like) term p ∈ [0, 1], we use the loss function
log(p) ∈ (−∞, 0]. Similarly, the loss function − log(p) ∈ [0,∞) is used to minimize a probability (or a probability-like)
term p.

We first introduce the attack objectives for all the methods below, and then discuss how we solve the attack objectives.

E.1. Attack Objectives

In this section, we describe the attack objectives used to generate the adversarial examples x′ ∈ N (x, αϵ) (i.e., the inner
attack) and the adversarial examples x′′ ∈ N (x, ϵ) (i.e., the outer attack) from a clean input (x, y) for the different methods
compared. The goal of the adversary to generate x′ is to make the defense method reject x′. The goal of the adversary to
generate x′′ is to make the defense method accept and incorrectly classify x′′ into a class other than y. We next discuss the
inner and outer attack objectives for the different methods considered.

Confidence-based Rejection. The methods AT+CR, TRADES+CR and CCAT (Stutz et al., 2020) use the classifier’s
confidence (i.e., maximum softmax probability) as the score for rejection. Suppose the softmax output of the classi-
fier is h(x ;θ) = [h1(x ;θ), · · · , hk(x ;θ)], then the score for acceptance is the confidence given by hmax(x ;θ) =
maxj hj(x ;θ). We use the log-sum-exp approximation of the max function to define a smooth inner attack objective that
minimizes the confidence score hmax(x ;θ). We use the fact that

1

τ
log

( k∑
i=1

eτsi
)

≈ max
i∈[k]

si

where the approximation becomes better for larger values of the temperature constant τ > 0. We would like to approximate
the exact inner attack objective given by

x′ = argmax
z∈N (x,αϵ)

− log hmax(z ;θ). (26)

This attack aims to find an adversarial input x′ that minimizes the confidence, thus causing the input to be rejected by
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methods using confidence-based rejection. Let h̃(x ;θ) = [h̃1(x ;θ), · · · , h̃k(x ;θ)] denote the logits corresponding to the
classifier prediction, with h̃max(x ;θ) being the maximum logit. The attack objective (26) can be approximated as

x′ = argmax
z∈N (x,αϵ)

− log hmax(z ;θ)

= argmax
z∈N (x,αϵ)

−h̃max(z ;θ) + log
( k∑

i=1

eh̃i(z ; θ)
)

≈ argmax
z∈N (x,αϵ)

−1

τ
log

( k∑
i=1

eτh̃i(z ; θ)
)

+ log
( k∑

i=1

eh̃i(z ; θ)
)
. (27)

We name this attack with objective (27) Low Confidence Inner Attack (LCIA). In our experiments, we set τ = 100.

For the outer attack, we use the multi-targeted PGD approach. Specifically, for each target label j ̸= y, we generate an
adversarial example x′′

j ∈ N (x, ϵ) via the following objective:

x′′
j = argmax

z∈N (x,ϵ)

log hj(z ;θ). (28)

Then we select the strongest adversarial example x′′ via:

x′′ = x′′
j⋆ s.t. j⋆ = argmax

j∈[k]\{y}
log hj(x

′′
j ;θ). (29)

By solving this objective, the adversary attempts to find an adversarial example that is misclassified with high confidence.
The goal of the adversary is to make the selective classifier accept and incorrectly classify the adversarial input. We name
this attack with objective (28) High Confidence Misclassification Outer Attack (HCMOA). Note that this HCMOA attack is
stronger than the PGD attack with backtracking proposed in (Stutz et al., 2020) for evaluating the robustness of CCAT (see
Appendix F.7 for a comparison).

RCD. The RCD method (Sheikholeslami et al., 2021) trains a (k + 1)-way classifier such that class k + 1 is treated as the
rejection class. Suppose the softmax output of the classifier is h(x ;θ) = [h1(x ;θ), · · · , hk+1(x ;θ)]. For the inner attack,
we generate the adversarial example x′ ∈ N (x, αϵ) using the following objective:

x′ = argmax
z∈N (x,αϵ)

log hk+1(z ;θ). (30)

The goal of the adversary is to make the method reject the adversarial input by pushing the probability of class k + 1 close
to 1. We name this attack with objective (30) RCD Inner Attack (RCDIA).

For the outer attack, we use the multi-targeted PGD approach. Specifically, for each target label j /∈ {y, k+ 1}, we generate
the adversarial example x′′

j ∈ N (x, ϵ) via the following objective:

x′′
j = argmax

z∈N (x,ϵ)

log hj(z ;θ). (31)

Then we select the strongest adversarial example x′′ via:

x′′ = x′′
j⋆ s.t. j⋆ = argmax

j /∈{y,k+1}
log hj(x

′′
j ;θ). (32)

Here, the goal of the adversary is to make the selective classifier accept and incorrectly classify the adversarial input, and
this objective achieves this by increasing the probability of a class that is different from both the true class y and the rejection
class k + 1 to be close to 1. We name this attack with objective (31) RCD Outer Attack (RCDOA).

ATRR. The ATRR method (Pang et al., 2022) uses a rectified confidence score for rejection. Suppose the softmax
output of the classifier is h(x ;θ) = [h1(x ;θ), · · · , hk(x ;θ)] and the auxiliary function is A(x;ϕ) ∈ [0, 1]. The recti-
fied confidence is defined by Pang et al. (2022) as the product of the auxiliary function and the classifier’s confidence,
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i.e., A(x;ϕ)hmax(x ;θ). For the inner attack, we generate the adversarial example x′ ∈ N (x, αϵ) using the following
objective:

x′ = argmax
z∈N (x,αϵ)

− logA(z;ϕ) − log hmax(z ;θ)

≈ argmax
z∈N (x,αϵ)

− logA(z;ϕ) +
[
log

( k∑
i=1

eh̃i(z ; θ)
)
− 1

τ
log

( k∑
i=1

eτh̃i(z ; θ)
)]

. (33)

Here, we use the log-sum-exp approximation of the max function hmax(z ;θ) = maxj hj(z ;θ) and set τ = 100. The goal
is to minimize the rectified confidence by either minimizing the auxiliary function (first term) or the classifier’s confidence
by pushing its predictions to be close to uniform (second term). By minimizing the rectified confidence score, the adversary
attempts to make the ATRR method reject the perturbed input x′. We name this attack with objective (33) ATRR Inner
Attack (ATRRIA).

For the outer attack, we use the multi-targeted PGD approach. Specifically, for each target label j ̸= y, we generate the
adversarial example x′′

j ∈ N (x, ϵ) via the following objective:

x′′
j = argmax

z∈N (x,ϵ)

log
[
A(z;ϕ)hj(z ;θ)

]
. (34)

Then we select the strongest adversarial example x′′ via:

x′′ = x′′
j⋆ s.t. j⋆ = argmax

j∈[k]\{y}
log

[
A(x′′

j ;ϕ)hj(x
′′
j ;θ)

]
. (35)

The goal of the adversary is to make the selective classifier accept and incorrectly classify the adversarial input. The
objective achieves this by pushing the rectified confidence as well as the predicted probability of a class different from
y close to 1. This ensures that adversarial input is accepted as well as incorrectly classified. We name this attack with
objective (34) ATRR Outer Attack (ATRROA).

CPR (proposed defense). The goal of the inner attack for CPR is to find x′ ∈ N (x, αϵ) such that the base model has
different predictions on x′ and T (x′), thus ensuring rejection. We consider three adaptive inner attacks that can achieve
this goal. The first one is the Low-Confidence Inner Attack (LCIA) introduced in Section 4.2. This attack aims to find
x′ ∈ N (x, αϵ) where the base model has low confidence. Recall that the mapping T (x′) attempts to minimize the base
model’s probability on the predicted class ŷ(x′). So, if the base model has low confidence on x′, then it will very likely
have even lower probability for ŷ(x′) on T (x′), and thus have different predictions on T (x′) and x′.

The second inner attack is a variant of LCIA, named Consistent-Low-Confidence Inner Attack (CLCIA), which attempts to
find an adversarial example x′ by minimizing the confidence of the base model on both x′ and T (x′). The CLCIA attack
has the following objective:

x′ = argmax
z∈N (x,αϵ)

[
− log hmax(z ;θ) − log hmax(T (z) ;θ)

]
≈ argmax

z∈N (x,αϵ)

[
− 1

τ
log

( k∑
i=1

eτh̃i(z ; θ)
)

+ log
( k∑

i=1

eh̃i(z ; θ)
)

− 1

τ
log

( k∑
i=1

eτh̃i(T (z) ; θ)
)

+ log
( k∑

i=1

eh̃i(T (z) ; θ)
)]

. (36)

We have denoted the logits of the base classifier by h̃(x ;θ) = [h̃1(x ;θ), · · · , h̃k(x ;θ)], and we apply the log-sum-exp
approximation to the max function (as before) with τ = 100. We use the backward pass differentiable approximation
(BPDA) method (Athalye et al., 2018) to solve this objective since T (x) does not have a closed-form expression and is not
differentiable.

The third inner attack is a multi-targeted attack, also based on BPDA, which considers all possible target classes and attempts
to find an x′ such that the base model has high probability for the target class at x′ and a low probability for the target class
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at T (x′) (thereby encouraging rejection). The attack objective is: for each target class j = 1, . . . , k,

x′
j = argmax

z∈N (x,αϵ)

[
log hj(z ;θ) − log hj(T (z) ;θ)

]
. (37)

Then we select the strongest adversarial example x′ via:

x′ = x′
j⋆ s.t. j⋆ = argmax

j∈[k]

[
log hj(x

′
j ;θ) − log hj(T (x

′
j) ;θ)

]
. (38)

We name this third inner attack Prediction-Disagreement Inner Attack (PDIA).

Given a clean input (x, y), the goal of the outer attack is to find x′′ ∈ N (x, ϵ) such that the base model has consistent wrong
predictions on both x′′ and T (x′′). This ensures that x′′ is accepted and mis-classified. We consider two adaptive outer
attacks that can achieve this goal. As discussed in Section 4.2, the first outer attack is a multi-targeted attack based on BPDA
with the following objective: for each target class j ∈ [k] \ {y},

x′′
j = argmax

z∈N (x,ϵ)

[
log hj(z ;θ) + log hj(T (z) ;θ)

]
. (39)

Then we select the strongest adversarial example x′′ via:

x′′ = x′′
j⋆ s.t. j⋆ = argmax

j∈[k]\{y}

[
log hj(x

′′
j ;θ) + log hj(T (x

′′
j ) ;θ)

]
. (40)

We name this outer attack Consistent High Confidence Misclassification Outer Attack (CHCMOA).

The second outer attack is the High Confidence Misclassification Outer Attack (HCMOA) that was discussed earlier for the
methods based on confidence-based rejection. The attack objective is given in Eqns. (28) and (29). The intuition for this
attack is that if the base model has a high-confidence incorrect prediction on x′′, then it becomes hard for T to change the
incorrect prediction.

E.2. Solving the Attack Objectives

We use the PGD with momentum to solve the attack objectives, and use the PGD attack with multiple restarts for evaluating
the robustness. Following (Stutz et al., 2020), we initialize the perturbation δ uniformly over directions and norm as follows:

δ = u ϵ
δ′

∥δ′∥∞
, δ′ ∼ N (0, I), u ∼ U(0, 1) (41)

where δ′ is sampled from the standard Gaussian and u ∈ [0, 1] is sampled from the uniform distribution. We also include
zero initialization, i.e., δ = 0 as a candidate. We allocate one restart for zero initialization, and multiple restarts for the
random initializations. We finally select the perturbation corresponding to the best objective value obtained throughout the
optimization.

When solving the inner attack objectives, we use a momentum factor of 0.9, 200 iterations, and 5 random restarts. The base
learning rate (i.e., the attack step size) is varied over the set {0.1, 0.01, 0.005} for experiments on MNIST, and over the set
{0.01, 0.005, 0.001} for experiments on SVHN and CIFAR-10. We report the worst-case results: for each clean input x, if
the PGD method with a particular base learning rate can find an x′ that is rejected, then we will use this x′ as the generated
adversarial example and consider the inner attack to be successful.

When solving the outer attack objectives, we use a momentum factor of 0.9, 200 iterations, and 5 random restarts. The base
learning rate (i.e., the attack step size) is varied over the set {0.1, 0.01, 0.005} for experiments on MNIST, and over the set
{0.01, 0.005, 0.001} for experiments on SVHN and CIFAR-10. We report the worst-case results: for each clean input x, if
the PGD method with a particular base learning rate can find an x′′ that is accepted and misclassified, then we will use this
x′′ as the generated adversarial example and consider the outer attack to be successful.

BPDA approximation. Three of the adaptive attacks for CPR (namely CLCIA, PDIA, and CHCMOA) depend on T (x),
which does not have a closed-form expression and is not differentiable. Therefore, it is not possible to calculate the exact
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gradient for these attack objectives. We will use the BPDA approach (Athalye et al., 2018) to address this challenge,
specifically using the straight-through estimator for the gradient.

Recall that T (x) ≈ argmaxx̃∈N (x,ϵ̃) ℓCE(x̃, ŷ(x)), and it is computed using Algorithm 1. For any of these attack
objectives, let ℓ(T (x)) denote the terms dependent on T (·). For instance, ℓ(T (x)) = log hj(T (x) ;θ) for the CHCMOA
attack. Using the chain rule, we can express the gradient of ℓ as follows:

∇xℓ(T (x)) = JT (x)
t ∇uℓ(u)

∣∣
u=T (x)

(42)

where JT (x)
t is the transpose of the d× d Jacobian of T (x). For a small ϵ̃, we make the approximation that T (x) ≈ x

during the backward pass, which in turn makes JT (x) approximately equal to the identity matrix. This gives the following
gradient estimate of the BPDA method, which we apply to solve the attack objectives of CLCIA, PDIA, and CHCMOA:

∇xℓ(T (x)) = ∇uℓ(u)
∣∣
u=T (x)

(43)

During the forward pass, we perform an exact computation of T (x) (using Algorithm 1), but during the backward pass, we
approximate the gradient of the attack objectives using Eqn.(43). We note that these adaptive attacks are more expensive to
run because they require the computation of T (x) during each PGD step.

E.3. Attack Ensemble

As discussed earlier, for each defense method, we consider an ensemble of inner and outer attacks and report the worst-case
robustness with rejection under these attacks. We list the specific attacks in the ensemble for each defense method below:

Confidence-based Rejection. The inner-attack ensemble only the includes Low Confidence Inner Attack (LCIA). The
outer-attack ensemble includes the AutoAttack (Croce & Hein, 2020) and High Confidence Misclassification Outer Attack
(HCMOA).

RCD. The inner-attack ensemble only includes RCDIA. The outer-attack ensemble includes AutoAttack and RCDOA.

ATRR. The inner-attack ensemble only includes ATRRIA. The outer-attack ensemble includes AutoAttack and ATRROA.

CPR (proposed). The inner-attack ensemble includes LCIA, CLCIA, and PDIA. The outer-attack ensemble includes
AutoAttack, HCMOA and CHCMOA. By including a number of strong attacks in the ensemble, we have attempted to
perform a thorough evaluation of CPR.

E.4. Evaluating Adaptive Attacks for CPR

In Section 5.2, we perform an ablation study to compare the strength of the different adaptive inner and outer attacks for
CPR. These results are in Table 2, and here we discuss the choice of metrics for this evaluation. The outer attack only affects
Arej

ϵ (f, 0), while the inner attack affects Arej
ϵ (f, α) for α > 0. Therefore, for the outer attacks we only need to compare

Arej
ϵ (f, 0). For the inner attacks we compare Arej

ϵ (f, 1), while fixing the outer attack to be the strongest ensemble outer
attack. This corresponds to the right end of the robustness curve, and gives a clear idea of the strength of the inner attack.

F. Additional Experimental Results
F.1. Evaluating Traditional Metrics

We evaluate our method and the baselines on traditional metrics, including accuracy with rejection on clean test inputs,
rejection rate on clean test inputs and robust accuracy with detection defined in (Tramèr, 2022).

The accuracy with rejection on clean test inputs is defined as: Pr(x,y)∼D{f(x) = y | f(x) ̸= ⊥}.

The rejection rate on clean test inputs is defined as: Pr(x,y)∼D{f(x) = ⊥}.

The robust accuracy with detection is defined as:

Arej
ϵ (f) := 1−Rrej

ϵ (f) = 1 − E
(x,y)∼D

[
1{f(x) ̸= y} ∨ max

x′∈N (x,ϵ)
1
{
f(x′) ̸∈ {y,⊥}

}]
.
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In order to define a single metric that combines the accuracy with rejection and the rejection rate metrics on clean test inputs,
we propose to use an F1 score like metric that is based on their harmonic mean:

2 Pr(x,y)∼D{f(x) = y | f(x) ̸= ⊥} Pr(x,y)∼D{f(x) ̸= ⊥}
Pr(x,y)∼D{f(x) = y | f(x) ̸= ⊥} + Pr(x,y)∼D{f(x) ̸= ⊥}

The results for these metrics are given in Table 3. The results show that our method CPR has comparable performance to the
baselines on clean test inputs, and also significantly outperforms the baselines on the robust accuracy with detection.

Dataset Method Clean Test Inputs Under Seen Attacks Under Unseen Attacks
Acc. with Rej. ↑ Rej. Rate ↓ F1 Score ↑ Robust Acc. with Det. ↑ Robust Acc. with Det. ↑

MNIST

AT 98.81 0.00 99.40 84.70 0.00
AT+CR 99.55 1.79 98.87 91.60 0.00
TRADES 99.07 0.00 99.53 89.30 0.00
TRADES+CR 99.67 1.86 98.90 94.00 0.00
CCAT 99.90 1.82 99.03 83.20 75.50
RCD 99.02 0.00 99.51 86.50 0.00
ATRR 99.62 2.51 98.54 91.20 0.00
AT+CPR (Ours) 99.60 1.99 98.80 96.10 90.40
TRADES+CPR (Ours) 99.63 1.63 98.99 95.80 86.70

SVHN

AT 92.58 0.00 96.15 45.10 11.70
AT+CR 96.22 8.91 93.58 46.10 11.80
TRADES 92.19 0.00 95.94 52.00 12.30
TRADES+CR 95.47 9.06 93.15 52.90 12.60
CCAT 99.04 7.73 95.53 45.30 5.50
RCD 96.58 0.00 98.26 33.80 9.70
ATRR 96.14 8.98 93.51 44.80 11.50
AT+CPR (Ours) 95.86 7.34 94.23 55.80 14.70
TRADES+CPR (Ours) 94.96 6.56 94.20 62.00 18.70

CIFAR-10

AT 84.84 0.00 91.80 47.60 10.80
AT+CR 90.55 13.00 88.74 50.00 10.50
TRADES 82.12 0.00 90.18 48.70 15.20
TRADES+CR 86.57 9.59 88.45 50.00 15.10
CCAT 93.18 9.12 92.01 27.70 8.80
RCD 88.13 2.07 92.77 46.70 9.50
ATRR 89.36 12.09 88.63 48.80 11.30
AT+CPR (Ours) 89.05 9.57 89.74 56.70 17.10
TRADES+CPR (Ours) 86.30 9.57 88.32 57.10 21.90

Table 3. Evaluation of traditional metrics (percentages). Top-1 boldfaced.

F.2. Evaluating Robustness Curve

In Section 5.2, we discussed the results of evaluating the robustness curve on the CIFAR-10 dataset. We present the complete
results of evaluating the robustness curve on all the datasets under both seen attacks and unseen attacks in Figure 3. The
observations on MNIST and SVHN are similar to that of CIFAR-10, except that CCAT has much better robustness with
rejection at α = 0 than the other baselines on MNIST under unseen attacks.

F.3. Evaluating Total Robust Loss for More Rejection Loss Functions

In this section, we evaluate the total robust loss of the different methods for some additional rejection loss functions.
Specifically, we additionally consider the step rejection loss function with α0 ∈ {0.01, 0.15, 0.2} and the ramp rejection
loss function with t ∈ {1, 3}. These results are given in Table 4. Our findings are the same as those discussed in Section 5.2.

F.4. Comparing AT with Rejection and AT without Rejection

We compare Adversarial Training (AT) with Consistent Prediction-based Rejection (CPR) to AT without rejection. Both of
them use the same base model, which is trained by either standard Adversarial Training (AT) or TRADES. Since adversarial
training without rejection accepts every input, the robust accuracy with rejection Arej

ϵ (f, α) is a constant (across α), which is
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Figure 3. The robustness curve of our method CPR and the baselines.

equal to the standard adversarial robustness. We use AutoAttack (Croce & Hein, 2020) to evaluate the adversarial robustness
of adversarial training without rejection.

From the results in Figure 4, we observe that AT with CPR is usually better (has higher robustness with rejection) than AT
without rejection, especially under unseen attacks. Under seen attacks, AT without rejection is better than AT with CPR
for large α since AT with CPR may reject large perturbations, which is considered to be an error by the robustness with
rejection metric for large α. However, if we allow rejecting large perturbations, AT with CPR is always better than AT
without rejection, which suggests that including CPR can help improve the performance of adversarial training.

F.5. Ablation Study for CPR

We perform experiments to study the effect of the hyper-parameters ϵ̃ and m on the proposed method CPR. The results
are shown in Figure 5 and Figure 6. From the results, we can see that larger ϵ̃ leads to better robustness with rejection at
α = 0. However, it also leads to lower robustness with rejection when α is large, which means CPR rejects more perturbed
inputs. Lager ϵ̃ will also lead to a larger rejection rate on the clean inputs. Besides, larger m also leads to better robustness
with rejection at α = 0, but may lead to lower robustness with rejection when α is large. Note that larger m leads to more
computational cost. We don’t need to choose very large m since the results show that as we increase m, the robustness with
rejection at α = 0 improvement becomes minor.

F.6. Hyper-parameter Selection for CPR

The proposed method CPR has three hyper-parameters: the perturbation budget ϵ̃, the number of PGD steps m, and the PGD
step size η. We don’t tune η but just set it to be a fixed value. From Appendix F.5, we know that larger m will lead to better
robustness with rejection at α = 0. However, as we increase m, the improvement becomes minor. Thus, by considering the
computational cost, we select a reasonably large m based on the performance on the validation data. We also know that
larger ϵ̃ will lead to better robustness with rejection at α = 0, but will lead to a larger rejection rate on the clean test inputs.
In practice, we select a large enough ϵ̃ such that CPR achieves good robustness with rejection while having a reasonably low
rejection rate on the clean inputs. We observed that a wide range of m and ϵ̃ can lead to good results. Thus, it is easy to
select m and ϵ̃. In our experiments, we consider m in the set {10, 20, 30} on MNIST, and m in the set {5, 10, 15} on SVHN
and CIFAR-10. We consider ϵ̃ in the set {0.05, 0.1, 0.15, 0.2} on MNIST, and ϵ̃ in the set {0.004, 0.005, 0.0055, 0.006} on
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Dataset Method
Total Robust Loss under Seen Attacks ↓ Total Robust Loss under Unseen Attacks ↓

Step Rej. Loss Ramp Rej. Loss Step Rej. Loss Ramp Rej. Loss
α0 = 0.01 α0 = 0.15 α0 = 0.2 t = 1 t = 3 α0 = 0.01 α0 = 0.15 α0 = 0.2 t = 1 t = 3

MNIST

AT+CR 0.084 0.086 0.086 0.117 0.090 1.000 1.000 1.000 1.000 1.000
TRADES+CR 0.060 0.063 0.063 0.095 0.068 1.000 1.000 1.000 1.000 1.000
CCAT 0.172 1.000 1.000 0.972 0.919 0.252 1.000 1.000 0.977 0.934
RCD 0.135 0.135 0.135 0.135 0.135 1.000 1.000 1.000 1.000 1.000
ATRR 0.088 0.090 0.093 0.131 0.099 1.000 1.000 1.000 1.000 1.000
AT+CPR (Ours) 0.039 0.042 0.043 0.295 0.080 0.096 0.098 0.099 0.340 0.136
TRADES+CPR (Ours) 0.042 0.042 0.043 0.292 0.078 0.133 0.133 0.133 0.353 0.162

SVHN

AT+CR 0.539 0.540 0.540 0.545 0.541 0.882 0.882 0.882 0.882 0.882
TRADES+CR 0.472 0.472 0.472 0.480 0.473 0.874 0.874 0.874 0.874 0.874
CCAT 0.629 1.000 1.000 0.988 0.967 0.993 1.000 1.000 1.000 0.999
RCD 0.662 0.662 0.662 0.662 0.662 0.903 0.903 0.903 0.903 0.903
ATRR 0.552 0.553 0.553 0.587 0.559 0.885 0.885 0.886 0.901 0.888
AT+CPR (Ours) 0.442 0.442 0.442 0.479 0.447 0.853 0.853 0.853 0.863 0.854
TRADES+CPR (Ours) 0.380 0.380 0.380 0.409 0.384 0.813 0.813 0.813 0.823 0.814

CIFAR-
10

AT+CR 0.500 0.501 0.501 0.515 0.504 0.895 0.895 0.895 0.895 0.895
TRADES+CR 0.500 0.500 0.500 0.507 0.501 0.849 0.849 0.849 0.849 0.849
CCAT 0.729 1.000 1.000 0.992 0.976 0.985 1.000 1.000 0.999 0.998
RCD 0.533 0.533 0.533 0.533 0.533 0.905 0.905 0.905 0.905 0.905
ATRR 0.513 0.513 0.513 0.524 0.516 0.887 0.887 0.887 0.887 0.887
AT+CPR (Ours) 0.433 0.433 0.433 0.464 0.437 0.829 0.829 0.829 0.849 0.832
TRADES+CPR (Ours) 0.429 0.429 0.429 0.457 0.433 0.781 0.781 0.781 0.800 0.783

Table 4. The total robust losses for different rejection loss functions. The best result is boldfaced.

SVHN and CIFAR-10. We select the best m and ϵ̃ based on the performance on the validation data.

F.7. Attacking CCAT

In this section, we show that the High Confidence Misclassification Outer Attack (HCMOA) with attack step size enumeration
proposed in Appendix E is stronger than the PGD attack with backtracking proposed in (Stutz et al., 2020) for evaluating
robustness with detection of CCAT. We follow the setup in (Stutz et al., 2020) to train CCAT models and attack CCAT. For
the PGD attack with backtracking, we use a base learning rate of 0.001, momentum factor of 0.9, learning rate factor of 1.1,
1,000 iterations, and 10 random restarts.

Dataset Attack Robustness with Detection ↓
Seen Attacks Unseen Attacks

MNIST PGD with backtracking 88.50 85.30
HCMOA 83.20 75.50

SVHN PGD with backtracking 64.10 62.30
HCMOA 45.30 9.10

CIFAR-10 PGD with backtracking 43.70 38.20
HCMOA 27.70 8.80

Table 5. Attacking CCAT using different attacks. All numbers are percentages. Bold numbers are superior results.
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Figure 4. Results of comparing the robustness with rejection of AT with CPR and AT without CPR.
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Figure 5. Ablation study for the proposed method CPR where we vary the hyper-parameter ϵ̃ while fixing the hyper-parameter m.
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Figure 6. Ablation study for the proposed method CPR where we vary the hyper-parameter m while fixing the hyper-parameter ϵ̃.
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