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Abstract
In this paper, we study the role of feedback in
online learning with switching costs. It has been
shown that the minimax regret is Θ̃(T 2/3) under
bandit feedback and improves to Θ̃(

√
T ) under

full-information feedback, where T is the length
of the time horizon. However, it remains largely
unknown how the amount and type of feedback
generally impact regret. To this end, we first con-
sider the setting of bandit learning with extra ob-
servations; that is, in addition to the typical bandit
feedback, the learner can freely make a total of
Bex extra observations. We fully characterize the
minimax regret in this setting, which exhibits an
interesting phase-transition phenomenon: when
Bex = O(T 2/3), the regret remains Θ̃(T 2/3), but
when Bex = Ω(T 2/3), it becomes Θ̃(T/

√
Bex),

which improves as the budget Bex increases. To
design algorithms that can achieve the minimax
regret, it is instructive to consider a more general
setting where the learner has a budget of B total
observations. We fully characterize the minimax
regret in this setting as well and show that it is
Θ̃(T/

√
B), which scales smoothly with the total

budget B. Furthermore, we propose a generic
algorithmic framework, which enables us to de-
sign different learning algorithms that can achieve
matching upper bounds for both settings based on
the amount and type of feedback. One interesting
finding is that while bandit feedback can still guar-
antee optimal regret when the budget is relatively
limited, it no longer suffices to achieve optimal
regret when the budget is relatively large.

1. Introduction
Online learning over a finite set of actions is a classical prob-
lem in machine learning research. It can be formulated as a
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T -round repeated game between a learner and an adversary:
at each round, the learner chooses one of the K actions
and suffers the loss of this chosen action, where the loss
is determined by the adversary. At the end of each round,
the learner receives some feedback and uses it to update
her policy at the next round. The goal of the learner is to
minimize the regret, defined as the difference between her
cumulative loss and that of the best fixed action in hindsight.

In terms of the type of feedback, two important settings
have been extensively studied in the literature: bandit and
full information. At each round, if the learner observes
only the loss of the chosen action, then it is called bandit
feedback, and the game is called adversarial multi-armed
bandits (MAB) or non-stochastic bandits with adversarial
losses (Auer et al., 2002b). On the other hand, if the losses
of all K actions are revealed to the learner, then it is called
full-information feedback, and the game becomes prediction
with expert advice (Cesa-Bianchi & Lugosi, 2006).

The regret in these two settings has been well understood.
Specifically, the minimax regret is Θ(

√
TK)1 under bandit

feedback (Auer et al., 2002b; Audibert & Bubeck, 2009) and
is Θ(

√
T lnK) under full information (Cesa-Bianchi & Lu-

gosi, 2006, Theorems 2.2 and 3.7) (Hazan, 2016) (Orabona,
2019, Section 6.8). These results imply that learning un-
der bandit feedback is slightly harder than under full in-
formation, in the sense that the dependency on K is worse
(Θ(

√
K) vs. Θ(

√
lnK)). However, the scaling with respect

to T remains the same (i.e., Θ(
√
T )).

In the above standard settings, the learner is allowed to arbi-
trarily switch actions at two consecutive rounds. However,
in many real-world decision-making problems, switching
actions may incur a cost (e.g., due to system reconfigura-
tion and resource reallocation) (Zhang et al., 2005; Kaplan,
2011). Motivated by this practical consideration, a new
setting called online learning with switching costs has also
been extensively studied (Arora et al., 2012; Cesa-Bianchi
et al., 2013). In this setting, the learner needs to pay an
additional unit loss whenever she switches actions.

Interestingly, it has been shown that in this new setting,
learning under bandit feedback is significantly harder than

1We use standard big O notations (e.g., O, Ω, and Θ); those
with tilde (e.g., Õ, Ω̃, and Θ̃) hide poly-logarithmic factors.
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under full information. Under full-information feedback,
even with switching costs, the minimax regret remains
Θ(

√
T lnK), which can be achieved by several algorithms

such as Shrinking Dartboard (SD) (Geulen et al., 2010)
and Follow-the-Perturbed-Leader (FTPL) (Devroye et al.,
2013). On the other hand, Dekel et al. (2013) shows a
(worse) lower bound of Ω̃(K1/3T 2/3) for the bandit setting,
which can be matched (up to poly-logarithmic factors) by
the batched EXP3 algorithm (Arora et al., 2012). These
results reveal that introducing switching costs makes bandit
problems strictly harder than expert problems due to the
worse dependency on T (i.e., Θ̃(T 2/3) vs. Θ̃(

√
T )).

Our Contributions. While these two special cases have
been well studied, it remains largely unknown how feedback
impacts regret in general. To close this important gap, we
aim to fundamentally understand the role of feedback (in
terms of both amount and type) in online learning with
switching costs. Our main contributions are as follows.

(i) We first consider the setting of bandit learning with
extra observations, where in addition to the typical ban-
dit feedback, the learner can freely make a total of Bex

extra observations in an arbitrary form (Section 3). We
present a tight characterization of the minimax regret, which
exhibits an interesting phase-transition phenomenon (see
Fig. 1(a)). Specifically, when Bex = O(T 2/3), the regret
remains Θ̃(T 2/3), but when Bex = Ω(T 2/3), it becomes
Θ̃(T/

√
Bex), which improves as the budget Bex increases.

(ii) To understand this phenomenon and design algorithms
that can achieve the minimax regret, it is instructive to con-
sider a more general setting where the learner has a budget
of B total observations (Section 4). We fully characterize
the minimax regret in this setting as well and show that it
is Θ̃(T/

√
B), which scales smoothly with the total budget

B (see Fig. 1(b)). Furthermore, we propose a generic al-
gorithmic framework, which enables us to design different
learning algorithms that can achieve matching upper bounds
for both settings based on the amount and type of feedback.

(iii) Our findings highlight the crucial impact of feedback
type (bandit vs. others) in the second setting (see Table 1).
In particular, while both bandit and other types of feedback
can achieve optimal regret when the budget is relatively
limited, pure bandit feedback is no longer sufficient to guar-
antee optimal regret when the budget is relatively large.
However, in the standard setting without switching costs,
all three types of feedback we consider can achieve optimal
regret in the full range of B. This reveals that the impact of
feedback type is (partly) due to switching costs.

2. Problem Setup
In this section, we introduce basic notations and present
the problem setup. For any positive integer n, let [n] :=

(a) Bandit feedback plus Bex extra observations

(b) B total observations

Figure 1. An illustration of the minimax regret vs. observation
budget in log-log plots: (a) the learner receives bandit feedback
plus no more than Bex extra observations (Theorem 1); (b) the
learner can make no more than B total observations (Theorem 2).

Table 1. The minimax regret under different types of feedback in
the setting of online learning under a total observation budget
B: with (w/) vs. without (w/o) switching costs (SC). A formal
description of “Flexible” feedback can be found in Section 4.2.

Feedback Type Minimax Regret
w/ SC w/o SC

Full-information

Θ̃(T
√

K/B)
Flexible
Bandit

(B = O(K1/3T 2/3))
Bandit

(B = Ω(K1/3T 2/3))
Θ̃(K1/3T 2/3)

{1, . . . , n}, and let ℓ1:n be the loss sequence ℓ1, . . . , ℓn.
We use I{E} to denote the indicator function of event E :
I{E} = 1 if event E happens, and I{E} = 0 otherwise.

The learning problem can be viewed as a repeated game
between a learner and an adversary. Assume that there are
K > 1 actions the learner can choose. Let T ≥ K be the
length of the time horizon, which is fixed at the beginning
of the game and is known to the learner. At each round
t ∈ [T ], the adversary assigns a loss in [0, 1] to each action
in [K]; the learner samples an action Xt from a probability
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distribution wt (also determined by the learner) over the
action set [K]. After taking action Xt, the learner suffers
a loss of the chosen action, i.e., ℓt[Xt]. By the end of each
round, the learner observes the loss of some actions (specific
types of such feedback will be discussed later) and updates
probability distribution wt+1 that will be used at the next
round. Each time when the learner takes an action different
from that at the previous round, one unit of switching cost
is incurred. The regret under a learning algorithm π over
a loss sequence ℓ1:T , denoted by Rπ

T (ℓ1:T ), is defined as
the difference between the cumulative loss (including the
switching costs incurred) under algorithm π and that of the
optimal (best fixed) action in hindsight:

Rπ
T (ℓ1:T ) :=

T∑
t=1

(
ℓt[Xt]+I{Xt ̸=Xt−1}

)
− min

k∈[K]

T∑
t=1

ℓt[k]. (1)

For a randomized algorithm, we consider the expected re-
gret (or simply regret), denoted by E [Rπ

T (ℓ1:T )], where the
expectation is taken over the randomness of the algorithm.
Without loss of generality, let I{X1 ̸=X0} = 0, i.e., the first
action does not incur any switching cost. The adversary is
assumed to be oblivious, in the sense that the whole loss
sequence is determined by the adversary before the game
begins. In this paper, for any given algorithm π, we are in-
terested in the worst-case (expected) regret over all possible
loss sequences (i.e., instance-independent), denoted by Rπ

T :

Rπ
T := sup

ℓ1:T∈[0,1]KT

E [Rπ
T (ℓ1:T )] . (2)

Let Π be the set of all feasible learning algorithms following
the specified learning protocol. We define the minimax (or
optimal) regret, denoted by R∗

T (Π), as the minimum worst-
case regret under all feasible learning algorithms in Π:

R∗
T (Π) := inf

π∈Π
Rπ

T . (3)

For notational ease, we may drop Π in R∗
T (Π) and simply

use R∗
T whenever there is no ambiguity.

To understand the role of feedback in online learning with
switching costs, we will consider two different settings with
an observation budget: (i) in addition to the typical bandit
feedback, the learner can freely make a total of Bex extra
observations (Section 3); (ii) the learner can freely make B
total observations (Section 4). Due to space limitations, in
Appendix A we provide motivating examples for the settings
with an observation budget we consider.

3. Bandit Learning with Switching Costs
under Extra Observation Budget

Observing the gap in the optimal regret bound under bandit
and full-information feedback (Θ̃(T 2/3) vs. Θ̃(

√
T )), it

is natural to ask: How much can one improve upon the

Θ̃(T 2/3) regret if the learner is allowed to make some extra
observations in addition to the typical bandit feedback?

Motivated by this question, we consider the setting of bandit
learning with switching costs under an extra observation
budget. We consider the learning protocol specified in Sec-
tion 2, and in addition to the typical bandit feedback, the
learner is allowed to freely use at most Bex extra obser-
vations of the loss of other action(s) throughout the game,
where Bex is an integer in [0, (K − 1)T ]. At the two end-
points of 0 and (K − 1)T , this new setting recovers the
bandit and full-information cases, respectively. In this sec-
tion, by slightly abusing the notation, we also use Π to
denote the set of all learning algorithms using typical bandit
feedback plus Bex extra observations, and we are interested
in the minimax regret R∗

T for Bex ∈ [0, (K − 1)T ].

3.1. Minimax Regret

We first present our main result of the minimax regret R∗
T

in this setting, which is formally stated in Theorem 1.
Theorem 1. In the setting of bandit learning with switching
costs under an extra observation budget Bex ∈ [0, (K −
1)T ], the minimax regret is given by

R∗
T =

{
Θ̃(K1/3T 2/3), Bex = O(K1/3T 2/3),

Θ̃(T
√

K/Bex), Bex = Ω(K1/3T 2/3).

Remark 1. Interestingly, this minimax regret exhibits a
phase-transition phenomenon (see, also, Fig. 1(a)): when
the amount of extra observations is relatively small (i.e.,
Bex = O(K1/3T 2/3)), they are insufficient for improving
the regret, which remains Θ̃(K1/3T 2/3); however, when
the amount is large enough (i.e., Bex = Ω(K1/3T 2/3)), the
regret decreases smoothly as the budget Bex increases.

3.2. Lower Bound

To establish Theorem 1, we will first show a fundamental
lower bound, which is formally stated in Proposition 1.
Proposition 1. For any learning algorithm π that can use
a total of Bex extra observations in addition to the typical
bandit feedback, there exists a loss sequence ℓ1:T (which
may depend on both π and Bex) such that

E [Rπ
T (ℓ1:T )]=

{
Ω̃(K1/3T 2/3), Bex = O(K1/3T 2/3),

Ω̃(T
√
K/Bex), Bex = Ω(K1/3T 2/3).

We provide detailed proof of the above lower bound in
Appendix B. Here, we present a proof sketch that mainly
focuses on the key steps of the lower bound analysis with
necessary explanations. The proof sketch reveals useful
insights that not only help explain the interesting phase-
transition phenomenon but also shed light on the design of
algorithms that can achieve this lower bound.
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Proof Sketch of Proposition 1. We first give an overview of
the construction of hard loss sequences in our setting and
the main ideas behind the construction.

Generally speaking, the difficulty of bandit problems lies
in the exploitation-exploration tradeoff. On the one hand,
the learner wants to pull empirically good actions in order
to enjoy a low instantaneous loss (i.e., exploitation); on the
other hand, she may also want to pull other actions and gain
useful information to distinguish the optimal (best fixed)
action and suboptimal actions (i.e., exploration).

In the presence of switching costs, Dekel et al. (2013) pro-
poses hard instances (i.e., loss sequences) based on a multi-
scale random walk such that useful information toward dis-
tinguishability (between the optimal action and suboptimal
actions) can only be obtained when the learner switches
actions, which, however, incurs switching costs. Using care-
fully constructed instances, they show that switching costs
increase the intrinsic difficulty of bandit learning and result
in a regret lower bound of Ω̃(K1/3T 2/3).

However, the hard instances in Dekel et al. (2013) work for
pure bandit feedback only. That is, if the learner can obtain
full-information feedback at any of the T rounds, she would
immediately identify the optimal action and suffer no regret
in the rest of the game. The reason is that the optimal action
has the (unique) lowest loss at all T rounds.

To make it still hard to learn even when the learner has some
extra feedback, we will borrow an idea from Shi et al. (2022)
to modify the original hard instance in Dekel et al. (2013):
at each round, an additional layer of action-dependent noise
is added to the loss of each action. As a result, the optimal
action no longer has the lowest loss at all rounds and there-
fore cannot be trivially identified even when the learner can
make extra observations.

In the rest of the proof sketch, we present three key steps of
the proof and provide high-level explanations.

Step 1: Establishing the relationship between two re-
grets. As in Dekel et al. (2013), each loss value in the
initial loss sequence we construct, denoted by ℓinit1:T , may not
be bounded in [0, 1]; through truncation, we construct the
actual loss sequence ℓ1:T by simply projecting each initial
loss value onto [0, 1]. For notational ease, we use Rinit

T and
RT to denote the regret over loss sequences ℓinit1:T and ℓ1:T ,
respectively. Recall that the goal is to obtain a lower bound
on E [RT ], which, however, is hard to analyze directly due
to the truncation. Instead, we show that it suffices to obtain a
lower bound on E

[
Rinit

T

]
(i.e., the regret under untruncated

loss sequence), due to the following relationship:

E [RT ] ≥ E
[
Rinit

T

]
− ϵT

6
, (4)

where ϵ > 0 is the gap between the instantaneous losses of

the optimal action and a suboptimal action. The value of ϵ
will be determined later.

Step 2: Obtaining a lower bound on E
[
Rinit

T

]
. Let S be

the expected total number of action switches. Through care-
ful information-theoretic analysis, we obtain the following
(informal) lower bound on E

[
Rinit

T

]
in terms of the number

of switches S and extra observation budget Bex:

E
[
Rinit

T

]
≥ ϵT

2︸︷︷︸
A.1

−C
ϵ2T√
K

(
√
S+
√

Bex)︸ ︷︷ ︸
A.2

+ S︸︷︷︸
A.3

, (5)

where C is a positive term that contains some constants and
poly-logarithmic terms of T .

We now explain each term in Eq. (5). Term A.1 reflects that
without any useful information toward distinguishability, the
learner may be stuck with a suboptimal action throughout
the game, thus suffering Θ(ϵT ) regret. Term A.2 roughly
represents the amount of useful information for gaining
distinguishability and thus reducing the regret: better dis-
tinguishability leads to a larger A.2 and thus a lower regret.
Term A.3 is simply the switching costs incurred.

Step 3: Choosing a proper value of ϵ. Note that the lower
bound in Eq. (5) is a quadratic function of

√
S. By finding

the minimizer of this quadratic function, denoted by S∗, we
can further obtain the following lower bound:

E
[
Rinit

T

]
≥ ϵT

2︸︷︷︸
B.1

− C2

4
· ϵ

4T 2

K︸ ︷︷ ︸
B.2

−C
ϵ2T

√
Bex√
K︸ ︷︷ ︸

B.3

. (6)

It now remains to choose a proper value of ϵ based on Bex.
By considering two different cases (Bex = Ω(K1/3T 2/3)
and Bex = O(K1/3T 2/3)) and choosing ϵ accordingly, we
show that one of B.2 and B.3 dominates the other. Then,
we can obtain the desired lower bound by combining these
two cases. This completes the proof sketch.

Remark 2. While we use the same instance construction
method in Shi et al. (2022), the problem they study is very
different from ours. In particular, their learning protocol
and the definition of switching costs are different, and they
do not consider an observation budget as we do. We present
a detailed discussion about the key difference in Section 5.

3.3. Insights from Lower Bound Analysis

Next, we give some useful observations and important in-
sights that can be obtained from the above proof sketch, in
particular, from Eq. (5), which provides a unified view of
the lower bound in online learning with bandit feedback and
flexible extra observations within a budget.

As a warm-up, we begin with the standard bandit case (i.e.,
Bex = 0), which has been extensively studied (Dekel et al.,
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2013). Recall that under the current instance construction,
bandit feedback provides useful information only when the
learner switches actions. From Eq. (5), one can observe
that there is a tradeoff between exploration and switching
costs: on the one hand, in order to better explore and enjoy
a lower regret, the learner has to switch frequently (i.e., a
larger S) so as to gain more information (i.e., a larger A.2);
on the other hand, however, since the learner has to pay
one unit of switching cost for each switch (contributing to
A.3), she should not switch too often. To strike the balance
between the two, the best the learner can do is to switch
S∗ := Θ(K1/3T 2/3) times; otherwise, the regret can only
be worse because S∗ is the minimizer of the lower bound in
Eq. (5). Finally, choosing ϵ to be Θ̃(K1/3T−1/3) in Eq. (6)
yields the Ω̃(K1/3T 2/3) bound for the bandit case.

Remark 3. The above discussion indicates that with
switching costs, the worst-case hard instance restrains the
learner from obtaining distinguishability from more than
Θ(K1/3T 2/3) rounds (i.e., rounds associated with action
switches) rather than T rounds as in the standard bandit
learning setting (without switching costs). This is also the
key reason why the minimax regret is worse in bandit learn-
ing with switching costs.
Next, we consider the first case: Bex = O(K1/3T 2/3). In
this case, one might hope to obtain a smaller regret (com-
pared to the bandit case) with the help of additional feedback.
However, we will show that unfortunately, the gain from
those additional observations is negligible for improving
the regret order-wise, and hence, the previous Ω̃(K1/3T 2/3)
bound remains. To see this, let ϵ take the same value as
in the bandit case (i.e., ϵ = Θ̃(K1/3T−1/3)) in Eq. (6);
although B.3 now becomes positive instead of zero (as in
the bandit case), it is still dominated by B.2, which results
in the same Ω̃(K1/3T 2/3) bound as in the bandit case.

We now turn to the second case: Bex = Ω(K1/3T 2/3). In
contrast to the previous case, due to a relatively large budget,
the distinguishability provided by those extra observations
(which do not contribute to switching costs) is no longer
negligible. This leads to a smaller regret. In particular, by
choosing ϵ = Θ̃(

√
K/Bex), we have B.3 dominate B.2

and obtain the desired lower bound. In other words, one can
reduce the regret through free exploration enabled by such
extra observations without incurring switching costs.

3.4. Fundamental Questions about Algorithm Design

The above insights we gain from the lower bound analysis
can also shed light on the algorithm design. In fact, these
motivate us to ask several fundamental questions, not only
about how to achieve optimal regret but also about the role
of feedback in online learning with switching costs, in terms
of both the amount and type of feedback.

On the one hand, it is straightforward to achieve a matching

upper bound when Bex = O(K1/3T 2/3). Specifically, one
can simply ignore all the extra observations and use ban-
dit feedback only, e.g., batched EXP3 (Arora et al., 2012),
which enjoys a Θ̃(K1/3T 2/3) regret. Although the bounds
match, only Θ(T 2/3) of the bandit feedback from the T
rounds contribute to distinguishability due to the tradeoff
introduced by switching costs (see Remark 3). Given this ob-
servation, it is natural to ask: (Q1) Can one still achieve the
same regret of Θ̃(K1/3T 2/3) while using bandit feedback
from Θ(K1/3T 2/3) rounds only? Moreover, how would re-
gret scale with the amount of available feedback if the (ban-
dit) feedback is even more limited (e.g., O(K1/3T 2/3))?

On the other hand, it remains largely unknown how to match
the Ω̃(T

√
K/Bex) bound when Bex = Ω(K1/3T 2/3).

Note that in the derivation of the lower bound, we opti-
mistically view that all Bex extra observations contribute to
useful information toward distinguishability (see term A.2
in Eq. (5)). To achieve this, however, one needs to answer an
important question: (Q2) How to carefully design a learning
algorithm that can properly use these extra observations
to indeed gain sufficient useful information toward distin-
guishability and match the lower bound? Moreover, since
Bex now dominates S∗ (order-wise), can one still match
the lower bound of Ω̃(T

√
K/Bex) using Bex extra obser-

vations only (i.e., not using any bandit feedback)?

To address these fundamental questions, it turns out that
it would be more instructive to consider a general setting
where the learner has a budget for total observations (see
Section 4) rather than extra observations. We will show that
the results obtained for this general setting will naturally
answer the aforementioned questions. In particular, we show
that there exist learning algorithms that can match the lower
bound (up to poly-logarithmic factors), hence concluding
the minimax regret stated in Theorem 1.

4. Online Learning with Switching Costs
under Total Observation Budget

In this section, we consider a more general setting of on-
line learning with switching costs under a total observation
budget. Specifically, at each round, the learner can freely
choose to observe the loss of up to K actions (which may
not necessarily include the action played), as long as the
total number of observations over T rounds does not exceed
the budget B, which is an integer in [K,KT ]. Without loss
of generality, we assume B ≥ K. We aim to understand
the role of feedback in this general setting by studying the
following fundamental question: (Q3) How does the mini-
max regret scale with the amount of available feedback in
general? What is the impact of different types of feedback
(bandit, full-information, etc.)?

To proceed, we need some additional notations for this sec-
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tion. Let Ot ⊆ [K] be the observation set, i.e., the set of
actions whose loss the learner chooses to observe at round
t ∈ [T ], and let Nob be the total number of observations,
i.e., Nob :=

∑T
t=1 |Ot|. Naturally, we have Nob ≤ B ≤

KT . For example, bandit feedback is a special case with
Ot = {Xt},∀t ∈ [T ] and Nob = B = T ; full-information
feedback is another special case with Ot = [K],∀t ∈ [T ]
and Nob = B = KT . By slightly abusing the notation in
this section, we also use R∗

T to denote the minimax regret
over the set of all learning algorithms that satisfy the learn-
ing protocol specified in Section 2 and do not exceed the
total observation budget B.

4.1. Minimax Regret

We first present the main result of this section and fully
characterize the minimax regret for this general setting.
Theorem 2. In the setting of online learning with switching
costs under a total observation budget B ∈ [K,KT ], the
minimax regret is given by R∗

T = Θ̃(T
√
K/B).

Remark 4. This result answers the first part of question (Q3):
the minimax regret has a universal Θ(1/

√
B) scaling across

the full range of total budget B (see Fig. 1 (b)), compared
to the phase transition in Section 3 (see Fig. 1 (a)).

To establish this result, we need to obtain both a lower bound
and a matching upper bound. For the lower bound, it turns
out that it suffices to use an existing lower bound, which
was originally derived for standard online learning without
switching costs. We restate this lower bound in Lemma 1.
Lemma 1. (Seldin et al., 2014, Theorem 2) In the setting
of online learning (without switching costs) under a total
observation budget B ∈ [K,KT ], the minimax regret is
lower bounded by R∗

T = Ω(T
√
K/B).

Naturally, this serves as a valid lower bound for the setting
with switching costs we consider. In fact, we will show that
this lower bound is tight (up to poly-logarithmic factors),
which in turn offers the following important message.
Remark 5. If the learner can freely make observations over
T rounds within the budget, introducing switching costs
does not increase the intrinsic difficulty of the online learn-
ing problem in terms of the minimax regret.

Now, it only remains to show that there exist algorithms that
can achieve a matching upper bound (up to poly-logarithmic
factors), which will be the main focus of the next subsection.

4.2. Learning Algorithms and Upper Bounds

In this subsection, we show that there indeed exist algo-
rithms that can achieve the lower bound in Lemma 1, which
further implies the tight bound in Theorem 2. Instead of
focusing on one particular algorithm, we first propose a
generic algorithmic framework, which not only enables us

to design various optimal learning algorithms in a unified
way but also facilitates a fundamental understanding of the
problem by distilling its key components.

Our generic framework builds upon the classic Online Mir-
ror Descent (OMD) framework with negative entropy reg-
ularizer (also called the Hedge algorithm) (Littlestone &
Warmuth, 1989) and incorporates the following three key
components to tackle both switching costs and observation
budget in a synergistic manner.

Batching Technique. The batching technique was origi-
nally proposed for addressing adaptive adversaries (Arora
et al., 2012), but naturally provides low switching guar-
antees. We divide T rounds into batches and judiciously
distribute the available observations across batches. That is,
instead of consuming observations at every round as in stan-
dard online learning (which could even be infeasible when
observation budget B is relatively small), we use observa-
tions only at a single round randomly sampled from each
batch. One key step to obtain the desired regret guarantee
is to feed the (unbiased estimate of) batch-average loss to
the learning algorithm at the end of each batch. While this
technique is borrowed from Shi et al. (2022), the problem
setup we consider is very different (see Section 5).

Shrinking Dartboard (SD). SD is a calibrated technique for
controlling the number of action switches in online learning
under a lazy version of Hedge. That is, with a carefully
crafted probability distribution, the action tends to remain
unchanged across two consecutive rounds (Geulen et al.,
2010) while preserving the same marginal distribution as in
Hedge. In our algorithmic framework, we generalize this
idea to the batching case with general feedback: the same
action can be played across two consecutive batches (instead
of across rounds), and it is no longer required to use only
full-information feedback as in Geulen et al. (2010).

Feedback Type. Recall that the learner is allowed to freely
request feedback within the total budget. Hence, our last
component lies in the feedback type. That is, the learner has
the flexibility to choose the observation set Oub

(not limited
to bandit or full-information feedback only). In order to
achieve a matching upper bound, however, the choice of the
observation set (i.e., the type of feedback) is crucial in some
cases. We will elaborate on this in Section 4.3.

Putting these three components together, we arrive at our
unified algorithmic framework, which is presented in Al-
gorithm 1. Given the input T , K, and B of the problem,
we need to determine the following input of the algorithm:
the number of batches N , batch size τ , learning rate η, and
indicator ISD (Line 1), along with the initialization of some
variables (Line 2). Throughout the game, we maintain a
positive weight Wb[k] for each action k ∈ [K] in each batch
b ∈ [N ]. Both the weights and the action for each batch may
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Algorithm 1 Batched Online Mirror Descent with (Op-
tional) Shrinking Dartboard

1: Input: length of time horizon T , number of actions
K, and observation budget B; determine the following
based on T , K, and B: number of batches N , batch
size τ = T/N , learning rate η, and SD indicator ISD

2: Initialization: action weight W1[k] = 1 and action
sampling distribution w1[k] = 1/K,∀k ∈ [K]; Ot =
∅,∀t ∈ [T ]; choose A1 ∈ [K] uniformly at random

3: for batch b = 1 : N do
4: Play action Ab throughout the current batch b, i.e.,

Xt = Ab,∀t = (b− 1)τ + 1, . . . , bτ
5: Sample a round index ub uniformly at random from

integers in [(b− 1)τ + 1, bτ ]
6: Choose an observation set Oub

⊆ [K] (to be speci-
fied later) and observe the loss of each action in Oub

at round ub: {ℓub
[i] : i ∈ Oub

}
7: Construct unbiased estimate ℓ̂b (to be specified later)

of the batch-average loss
∑bτ

t=(b−1)τ+1 ℓt/τ
8: Run OMD update: update the weight of each action:

Wb+1[k] = Wb[k] · exp(−η · ℓ̂b[k]) and the sampling
probability: wb+1[k] =

Wb+1[k]∑K
i=1 Wb+1[i]

,∀k ∈ [K]

9: With probability ISD · exp(−η · ℓ̂b), keep action
Ab+1 = Ab; otherwise, sample action Ab+1 ∼ wb+1

10: end for

be updated only between two consecutive batches. Hence, in
each batch b, we keep playing the chosen action Ab until the
end of the batch (Line 4); we sample a round ub uniformly
at random from the current batch (Line 5) and choose an
observation set Oub

in a certain way (to be specified later)
such that the loss of each action in Oub

will be observed
at round ub (Line 6). We then construct an unbiased esti-
mate (Line 7), denoted by ℓ̂b = (ℓ̂b[1], . . . , ℓ̂b[K]), of the
batch-average loss

∑bτ
t=(b−1)τ+1 ℓt/τ (which depends on

the choice of Oub
and will be specified later) and then update

the weight and sampling probability of each action accord-
ingly: Wb+1[k] = Wb[k] · exp(−η · ℓ̂b[k]) and wb+1[k] :=

Wb+1[k]/
∑K

i=1 Wb+1[i] (Line 8). Finally, we determine
action Ab+1 for the next batch (Line 9). Specifically, if the
SD indicator ISD = 0, probability ISD · exp(−η · ℓ̂b) is
always zero, and hence, action Ab+1 is sampled using fresh
randomness with probability proportional to action weights
as normally done in Hedge: sample Ab+1 following distribu-
tion wb+1 = (wb+1[1], . . . , wb+1[K]). If the SD indicator
ISD = 1, with probability exp(−η · ℓ̂b), we keep the current
action for the next batch (i.e., Ab+1 = Ab); otherwise, we
sample a new action Ab+1 following distribution wb+1.

With Algorithm 1 in hand, we are ready to introduce several
specific instantiations and study their regret guarantees. In
particular, for each instantiation we will specify the choice

of the following parameters: number of batches N , batch
size τ , learning rate η, SD indicator ISD, and observation
set Oub

. In the following, we first demonstrate one simple
instantiation that uses full-information feedback only. Then,
we show how to generalize this instantiation using more
flexible feedback (i.e., not limited to full information only)
while achieving the same performance guarantee.

Instantiation via Full-information Feedback. In this
instantiation of Algorithm 1, we receive full-information
feedback at a randomly selected round ub in each batch b

(i.e., Oub
= [K] and ℓ̂b = ℓub

) and SD is turned on (i.e.,
ISD = 1). At a high level, this can be viewed as a batched
generalization of the original SD algorithm (Geulen et al.,
2010) with N = B/K batches (since we have K observa-
tions in each batch), and hence, the corresponding batch size
is τ = T/N = KT/B. For ease of exposition, we assume
that N and τ are integers. Specifically, we have N = B/K,

τ = KT/B, η =
√

2 lnK
3B , ISD = 1, Oub

= [K], and

ℓ̂b = ℓub
. We use πfull to denote this instantiation and

present its regret upper bound in Proposition 2. The proof
is provided in Appendix C.

Proposition 2. The worst-case regret under algorithm πfull

is upper bounded by Rπfull

T = O(T
√
K lnK/B).

Remark 6. This result immediately implies an upper bound
of the minimax regret: R∗

T = O(T
√

K lnK/B), which,
along with the lower bound in Lemma 1, further implies the
tight bound in Theorem 2. Note that there is an additional√
lnK factor in the upper bound. This shares the same

pattern as in the setting even without switching costs (see
Seldin et al. (2014, Theorem 1)), where the achieved upper
bound also has an additional

√
lnK factor.

Remark 7. For the previous setting considered in Section 3,
the above result also implies an upper bound of the mini-
max regret: Õ(T

√
K/Bex), when Bex = Ω(K1/3T 2/3),

by simply ignoring all bandit feedback (i.e., B = Bex).
On the other hand, as discussed in Section 3.4, when
Bex = O(K1/3T 2/3), one can simply ignore extra obser-
vations and use pure bandit feedback only (e.g., batched
EXP3 (Arora et al., 2012)) to achieve a Õ(K1/3T 2/3) re-
gret. Combining these results, along with the lower bound in
Proposition 1, implies the tight bound in Theorem 1. More-
over, this also answers question (Q2) raised in Section 3.

The result of our first instantiation shows that the optimal
regret can indeed be achieved (up to a

√
lnK factor) when

full-information feedback is employed. However, we can
also show that the use of full-information feedback is not
essential. In fact, it suffices to have an observation set
chosen uniformly at random from all subsets of [K] with the
same cardinality, which leads to a more flexible instantiation
of Algorithm 1 presented below.

Instantiation via Flexible Feedback. In this instantiation,
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instead of having |Oub
| = K as under full-information

feedback, we allow |Oub
| = M ≤ K. The key to this

flexibility is a careful construction of an unbiased estimate
of the batch-average loss (i.e., ℓ̂b). Specifically, let M be
any integer that satisfies M ∈ [K] if B < T and M ∈
[⌈B/T ⌉,K] if B ≥ T .2 Then, we have N = B/M , τ =

T/N = MT/B, η = M
√

2 lnK
3KB , ISD = 1, Oub

is chosen

uniformly at random from {U ∈ 2[K] : |U | = M}, and
ℓ̂b[k] = I{k ∈ Oub

} · ℓub
[k]

M/K for all k ∈ [K]. We use πflex to
denote this instantiation and present its regret upper bound
in Proposition 3. The proof is provided in Appendix D.
Proposition 3. The worst-case regret under algorithm πflex

is upper bounded by Rπflex

T = O(T
√

K lnK/B).

An astute reader may already notice that in the above flexi-
ble instantiation, while the number of observations can be
one (i.e., |Oub

| = 1), it is not the same as standard bandit
feedback. This is because here, Oub

needs to be chosen uni-
formly at random rather than simply being the action played
in that batch (i.e., Oub

= {Ab}) as in the standard bandit
setting (with a batch size of one). Motivated by this subtle
difference, we will devote the next subsection to studying
the impact of feedback type.

4.3. Impact of Feedback Type

In this subsection, we study the impact of feedback type
by presenting another instantiation of Algorithm 1 via pure
bandit feedback only. In this case, we naturally have B ≤ T .

Instantiation via Bandit Feedback. This instantiation is
a generalized version of batched EXP3 (Arora et al., 2012)
with flexible batch size. Specifically, we have N = B, τ =

T/B, η =
√

2 lnK
BK , ISD = 0, Oub

= {Ab}, and ℓ̂b[k] =

I{k ∈ Oub
} · ℓub

[k]

wb[k]
for all k ∈ [K]. We use πb to denote

this instantiation. When B = O(K1/3T 2/3), we obtain a
regret upper bound for πb and state it in Proposition 4. The
proof is provided in Appendix E.
Proposition 4. When B = O(K1/3T 2/3), the worst-case
regret under algorithm πb is upper bounded by Rπb

T =

O(T
√
K lnK/B).

Remark 8. This result is encouraging, in the sense that when
B = O(K1/3T 2/3), even using pure bandit feedback can
achieve the optimal minimax regret of Θ̃(T

√
K/B). This

result also answers question (Q1) raised in Section 3. First,
it captures the regret scaling with respect to the amount
of bandit feedback (i.e., still Θ(1/

√
B)) when B is rela-

tively small. Second, it implies that to achieve a regret
of Θ̃(K1/3T 2/3), it suffices to use bandit feedback from
only B = Θ(K1/3T 2/3) rounds rather than all T rounds
as in the classic algorithms (Arora et al., 2012). The same

2To fully use the budget, M cannot be too small when B ≥ T .

minimax regret at these two endpoints (B = Θ(K1/3T 2/3)
and B = T ) further implies that if only bandit feedback
is allowed, the minimax regret is also Θ̃(K1/3T 2/3) when
B = Ω(K1/3T 2/3) (i.e., in-between the two endpoints). In
this case, bandit feedback is no longer sufficient to achieve
the optimal minimax regret of Θ̃(T

√
K/B), although full-

information and flexible feedback can still achieve this op-
timal minimax regret (see Propositions 2 and 3). Clearly,
this shows the crucial impact of different types of feedback
(when the total budget B is large), which answers the sec-
ond part of question (Q3). On the other hand, however, a
straightforward result (Proposition 5 in Appendix F), along
with Propositions 2 and 3 and Lemma 1, shows that in the
standard setting without switching costs, all three types of
feedback can achieve optimal regret in the full range of B.
This reveals that the impact of feedback type is partly due to
switching costs. We also summarize these results in Table 1.

Remark 9. Under bandit feedback, adopting a different reg-
ularizer called Tsallis entropy (Audibert & Bubeck, 2009)
to the OMD framework could further remove the

√
lnK

factor in the upper bound from Proposition 4 and exactly
match the lower bound (order-wise) presented in Lemma 1.

5. Related Work
In this section, we present detailed discussions on several
lines of research that are most relevant to ours. We omit the
discussion on bandit and expert problems with switching
costs as we have discussed this line of work in Section 1.

Online Learning with Total Observation Budget. In
this line of research, the focus is on regret minimization
when feedback is not always available and hence “limited”
within a total budget. For example, in the so-called “la-
bel efficient (bandit) game” (Cesa-Bianchi et al., 2004;
Audibert & Bubeck, 2010), the learner can ask for full-
information/bandit feedback from no more than m ∈ [1, T ]
round(s). It is shown that the tight optimal regrets are
Θ(T

√
lnK/m) and Θ(T

√
K/m) under full-information

and bandit feedback, respectively. Seldin et al. (2014)
also considers a total observation budget in online learn-
ing, where the learner can freely request feedback, as long
as the total amount of observed losses does not exceed the
given total budget B. They establish a tight characterization
of the minimax regret in their setting (i.e., Θ̃(T

√
K/B)).

However, they do not consider switching costs, nor the case
when the total observation budget is smaller than T in their
algorithm design. Interestingly, we show that introducing
switching costs does not increase the intrinsic difficulty of
online learning in the sense that the minimax regret remains
Θ̃(T

√
K/B), but the feedback type becomes crucial.

Bandits with Additional Observations. Yun et al. (2018)
considers the bandit setting with additional observations,
where the learner can freely make n ∈ [0,K − 1] obser-
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vations at each round in addition to the bandit feedback.
Hence, this can be viewed as a special case of online learn-
ing with a total observation budget (Seldin et al., 2014).
That is, a total of (n+1)T observations are used in a partic-
ular way (i.e., bandit plus extra observations). They present
a tight characterization of the scaling of the minimax regret
with respect to K, T , and n. Similar to Seldin et al. (2014),
however, switching costs are not considered.

Online Learning with Switching Costs and Feedback
Graphs. Arora et al. (2019) considers online learning with
switching costs and feedback graphs, where given a feed-
back graph G, the learner observes the loss associated with
the neighboring action(s) of the chosen action (including
itself). However, the feedback graph is given and hence the
additional feedback is not of the learner’s choice. Arora
et al. (2019) shows that in this setting, the minimax regret
is Θ̃(γ(G)1/3T 2/3), where γ(G) is the domination number
of the feedback graph G. Hence, the dependency on T re-
mains the same as in the standard bandit setting without
additional observations (i.e., Θ̃(T 2/3)). On the contrary, in
the setting we consider, the learner can freely decide the
loss of which actions to observe, which leads to different
(and more interesting) regret bounds.

Online Learning with Limited Switches. Altschuler & Tal-
war (2018) considers online learning with limited switches.
In contrast to the settings with switching costs, here the
learner does not pay additional losses for switching actions;
instead, the total number of switches allowed is capped at S.
Compared to our setting, a key difference is that switching
is a constraint rather than a penalty added to the loss/cost
function. They show that in the bandit setting, the mini-
max regret is Θ̃(T

√
K/S), i.e., the regret improves as the

switching budget increases; in the expert setting, however,
there is a phase-transition phenomenon: while the minimax
regret is Θ̃(T lnK/S) when S = O(

√
T lnK), it remains

Θ̃(
√
T lnK) when S = Ω(

√
T lnK).

Online Learning against Adaptive Adversaries. Online
learning with switching costs can also be viewed as a spe-
cial case of learning against adaptive adversaries, where
the losses at round t are adapted to actions taken at both
rounds t and t− 1 (in contrast to the oblivious adversaries
we consider). Such adversaries have a bounded memory
(of size one), in the sense that they could adapt only up to
the most recent action, instead of any history in the earlier
rounds (Cesa-Bianchi et al., 2013). Adopting the multi-
scale random walk argument in Dekel et al. (2013), it has
been shown that against adaptive adversaries with a mem-
ory of size one, the minimax policy regret is Θ̃(T 2/3) under
both bandit feedback (Cesa-Bianchi et al., 2013) and full-
information feedback (Feng & Loh, 2018). This is funda-
mentally different from the special case with switching costs,
where the minimax regret is different under bandit feedback

and full-information feedback (Θ̃(T 2/3) vs. Θ̃(
√
T )).

Stochastic Bandits and the Best of Both Worlds. Note
that the above discussions have been focused on the adver-
sarial setting. There is another body of work focused on
the stochastic setting (see, e.g., Auer et al. (2002a); Auer
(2003); Simchi-Levi & Xu (2019)), where the loss/reward
follows some fixed distribution rather than being generated
arbitrarily by an adversary. Hence, it is very different from
the adversarial setting we consider. An interesting line of
work has been focused on designing algorithms that can
perform well in both adversarial and stochastic settings,
thus achieving the best of both worlds (see, e.g., Bubeck &
Slivkins (2012); Zimmert et al. (2019)).

Other Related Work. In Shi et al. (2022), a novel bandit
setting with switching costs and additional feedback has
been considered. Specifically, the learner maintains an “ac-
tion buffer” for each round, which is a subset of actions with
fixed cardinality m ∈ [K], and the learner can only take
an action from this buffer set. Their switching cost can be
roughly viewed as how much change is made to this buffer
set throughout the game – replacing an action in the buffer
set incurs a constant cost. While the learner can observe the
losses of all the actions in this buffer set for free, the learner
can also choose to receive full-information feedback (i.e.,
observing the losses of all actions rather than just actions in
the buffer set) by paying another (larger) constant cost. Al-
though we draw inspiration from their work for deriving the
lower bound and designing algorithms, both their problem
setup and regret definition are very different from ours, and
more importantly, they do not consider observation budget.

6. Conclusion
Our work is motivated by a well-known gap in the minimax
regret under bandit feedback and full-information feedback
in online learning with switching costs. We attempted to
fundamentally understand the role of feedback by studying
two cases of observation budget: (i) bandit feedback plus
an extra observation budget and (ii) a total observation bud-
get. Our findings reveal that both the amount and type of
feedback play crucial roles when there are switching costs.

One interesting future direction is to consider stronger high-
probability regret guarantees (Neu, 2015). Another direction
is to achieve the best of both worlds guarantees for regrets
with switching costs (Rouyer et al., 2021; Amir et al., 2022).
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Algorithm 2 Loss Sequence Generation Method (Shi et al., 2022)
1: Input: suboptimality gap ϵ and noise variance σ2

2: Initialization: choose the identity of optimal action k∗ uniformly at random from [K]; initialize Gaussian process
G(t) = 0,∀t ≥ 0; define functions δ(t) := max{i ≥ 0 : 2i divides t} and ρ(t) := t− 2δ(t),∀t ≥ 0

3: for time t = 1 : T do
4: G(t) = G(ρ(t)) + ξ(t), where each ξ(t) is an i.i.d. sample from N (0, σ2)
5: ℓinitt [k] = G(t)− ϵ · I{k=k∗} + γk(t),∀k ∈ [K], where γk(t) is an i.i.d. sample from Gaussian distribution N (0, σ2)
6: ℓt[k] = argminz∈[0,1] |z − ℓinitt [k]|,∀k ∈ [K]
7: end for

A. Motivating Examples for Online Learning with Switching Costs and Observation Budget
Consider a retail company that uses online learning to improve its website user interface (UI) design in order to attract
more users. In this case, actions correspond to different UI designs. First, switching costs should be taken into account as
frequently changing the website interface may become annoying to users. To evaluate other actions (different UI designs),
the company can run an A/B test and display different interfaces to separate and relatively small groups of users so that the
feedback of other actions is also available (in addition to the one displayed to the main and large population). However, each
different website needs additional resources to be deployed and maintained, and hence, one may want to impose a total
observation budget.

Another example would be Machine Learning as a Service (MLaaS). Consider a company that uses large ML models
for jobs like prediction, chatbots, etc. They may train several different models and dynamically choose the best one via
online learning. Changing the deployed ML model is not free: the new model needs to be loaded (which could be costly,
especially nowadays when the number of parameters is quite large), and other components in the pipeline may also need to
be adjusted accordingly. As a result, it is natural that redeploying or updating model components would incur a cost. While
the performance of the deployed model is easily accessible, the company can also run these jobs using other models that are
not deployed in the production system, to receive additional feedback. However, running these jobs consumes additional
resources (e.g., computing and energy), which is not free either. Therefore, one may want to impose a budget on the number
of additional observations (i.e., evaluations).

B. Proof of Proposition 1
Proof of Proposition 1. Our proof is built on Yao’s minimax principle (Yao, 1977). That is, we will establish a lower bound
on the expected regret for any deterministic algorithm over a class of randomly generated loss sequences, which further
implies the same lower bound for any randomized algorithm over some loss sequence in this class.

To begin with, we would like to give some high-level ideas about the proof. Note that while the loss sequence generation
method we adopt will be the same as Algorithm 1 in Shi et al. (2022), we need a different analysis to establish the lower
bound due to a different setting we consider. Specifically, in the original loss sequence construction based on multi-scale
random walk (Dekel et al., 2013), the optimal action k∗ has the lowest loss at all T rounds. With bandit feedback, useful
information toward distinguishability (between the optimal action and suboptimal actions) is gained only when the learner
switches between actions. With full-information feedback, however, the learner can immediately identify the optimal action
even at one round only. Therefore, to construct a hard instance (i.e., loss sequence) for the setting where the learner is
equipped with additional observations beyond the bandit feedback, Shi et al. (2022) introduced an action-dependent noise in
addition to the original loss (which is called the hidden loss). Now, the learner’s information comes from two parts. On
the one hand, the learner still gains distinguishability from switches (which is related to hidden losses). On the other hand,
conditioning on hidden losses, the extra observations also provide additional information. Combining two parts together, we
obtain a lower bound related to both the number of switches and the number of extra observations. For convenience, we
restate this loss sequence generation method in Algorithm 2. Specifically, we first generate the sequence {G(t)}t according
to the random walk design (Line 4). Next, we determine the loss before truncation, i.e., ℓinit

t [k] (Line 5). We first add an
action-dependent noise γk(t) (which is an i.i.d. Gaussian random variable) to G(t) for each action k ∈ [K]. And then, for
the optimal action k∗ only, we will further subtract ϵ (which is determined in the very beginning as an input to the algorithm)
from the value obtained after adding γk(t). Finally, we truncate each ℓinit

t [k] onto range [0, 1] and obtain ℓt[k] (Line 6).

Next, we give some additional notations needed for this proof. For any k ∈ [K], let Pk denote the conditional probability
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measure given the special (i.e., optimal) action k∗ = k, i.e., Pk(·) := P(·|k∗ = k). As a special case, when k∗ = 0,
P0 denotes the conditional probability measure where all the actions are identical and there is no special action. Let
Ek[·] := E[·|k∗ = k] denote the conditional expectation under measure Pk, and let E[·] := 1

K

∑K
k=1 Ek[·]. Let ℓob1:T

denote the observed loss sequence throughout the game. For two probability distributions P and Q on the same space, let
DKL(P∥Q) := Ex∼P [log (dP(x)/dQ(x))] denote the Kullback-Leibler (KL) divergence (i.e., relative entropy) between P
and Q, and let DTV(P∥Q) := sup{P(A)−Q(A) : A measurable} denote the total variation distance between P and Q.

Let Sk
t := I{Xρ(t)=k,Xt ̸=k} + I{Xρ(t) ̸=k,Xt=k} be the indicator of whether it is switched from or to action k between rounds

ρ(t) and t, let S̄k :=
∑T

t=1 S
k
t be the total number of action switches from or to action k, let S̄ be the total number of action

switches, i.e., S̄ :=
∑T

t=1 I{Xt ̸=Xt−1} =
∑K

k=1 S̄
k/2, and let N t

ex be the number of extra observations made at round t

in addition to the bandit feedback. Then, we naturally have N t
ex ∈ [0,K − 1] and

∑T
t=1 N

t
ex ≤ Bex since the learning

algorithm makes no more than Bex extra observations in total. Let RT be the regret of the deterministic learning algorithm
interacting with the loss sequence ℓ1:T , and let Rinit

T be the (hypothetical) regret on the same action sequence with respect to
loss sequence ℓinit

1:T .

In the following proof, we need Lemmas A.1 and A.4 of Shi et al. (2022) and Lemma 2 of Dekel et al. (2013). We restate
these three results as Lemmas 2, 3, and 4, respectively.

Lemma 2. (Shi et al., 2022, Lemma A.1 (restated)) The KL divergence between P0

(
ℓob1:T

)
and Pk

(
ℓob1:T

)
can be upper

bounded as follows:

DKL

(
P0

(
ℓob1:T

)
∥Pk

(
ℓob1:T

))
≤

T∑
t=1

P0

(
N t

ex = 0, Sk
t = 1

)
· ϵ2

2σ2
+

K−1∑
j=1

P0

(
N t

ex = j, Sk
t = 0, Xt ̸= k

)
· ϵ2

2σ2

+

K−1∑
j=1

P0

(
N t

ex = j, Sk
t = 0, Xt = k

)
· jϵ

2

2σ2
+

K−1∑
j=1

P0

(
N t

ex = j, Sk
t = 1, Xt ̸= k

)
· 2ϵ

2

2σ2

+

K−1∑
j=1

P0

(
N t

ex = j, Sk
t = 1, Xt = k

)
· (j + 1)ϵ2

2σ2

 .

Lemma 2 is obtained by considering five disjoint cases (which corresponds to the five terms on the Right-Hand-Side (RHS)
in terms of different values of N t

ex, Sk
t , and Xt. This lemma reveals the relationship between the KL divergence and the

number of switches and the number of extra observations and will be used for deriving Eq. (7).

Lemma 3. (Shi et al., 2022, Lemma A.4 (restated)) Consider the instance construction in Algorithm 2. Suppose that we
have ϵ ≤ 1/6 and σ = 1/(9 log2 T ). Then, the difference between E [RT ] and E

[
Rinit

T

]
can be bounded as follows:

E
[
Rinit

T

]
− E [RT ] ≤

ϵT

6
.

Although the multi-scale random walk serves as a powerful and convenient tool to help us obtain the desired lower bound,
an issue is that the losses could lie out of the range [0, 1], which does not satisfy our problem setup. That is, based on the
random walk, we can derive a lower bound on E

[
Rinit

T

]
, with respect to a possibly unbounded loss sequence ℓinit

1:T . However,
our goal is to obtain a lower bound with respect to the bounded losses. To get around this issue, Lemma 3 presents a useful
result: if ϵ and σ satisfy certain conditions, then the difference between E

[
Rinit

T

]
and E [RT ] will not be too large, which is

sufficient to give us the desired result.

Lemma 4. (Dekel et al., 2013, Lemma 2 (restated)) Under the instance construction in Algorithm 2, the following is
satisfied:

T∑
t=1

P0

(
Sk
t = 1

)
= E

[
T∑

t=1

Sk
t

]
≤ (⌊log2 T ⌋+ 1) · E0

[
S̄k
]
.

Furthermore, it can be bounded by 2 log2 T · E0

[
S̄k
]

for a sufficiently large T .
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Remark 10. Lemma 4 holds regardless of whether the action-dependent is added or not. Therefore, it is true under the
instance constructions from both Dekel et al. (2013) and Shi et al. (2022).

Lemma 4 relies on careful design of the random walk. We refer interested readers to (Dekel et al., 2013, Section 3) for
technical details. In the following proof, we will first bound the KL divergence in part by E[

∑T
t=1 S

k
t ]. This term is different

from the switching costs we consider, as Sk
t roughly denotes the switch between rounds ρ(t) and t, rather than between two

consecutive rounds. To handle this difference, Lemma 4 builds a connection between the two and will be used for deriving
Eq. (7).

With the above three restated lemmas, we are now ready to derive an upper bound on the KL divergence between P0

(
ℓob1:T

)
and Pk

(
ℓob1:T

)
. In particular, for any k ∈ [K], we have

DKL

(
P0

(
ℓob1:T

)
∥Pk

(
ℓob1:T

))
(a)
≤

T∑
t=1

P0

(
N t

ex = 0, Sk
t = 1

)
· ϵ2

2σ2
+

K−1∑
j=1

P0

(
N t

ex = j, Sk
t = 0, Xt ̸= k

)
· ϵ2

2σ2

+

K−1∑
j=1

P0

(
N t

ex = j, Sk
t = 0, Xt = k

)
· jϵ

2

2σ2
+

K−1∑
j=1

P0

(
N t

ex = j, Sk
t = 1, Xt ̸= k

)
· 2ϵ

2

2σ2

+

K−1∑
j=1

P0

(
N t

ex = j, Sk
t = 1, Xt = k

)
· (j + 1)ϵ2

2σ2


(b)
≤

T∑
t=1

P0

(
N t

ex = 0, Sk
t = 1

)
· ϵ2

2σ2
+

K−1∑
j=1

jϵ2

σ2
·
(
P0

(
N t

ex = j, Sk
t = 0, Xt ̸= k

)
+ P0

(
N t

ex = j, Sk
t = 0, Xt = k

)
+P0

(
N t

ex = j, Sk
t = 1, Xt ̸= k

)
+ P0

(
N t

ex = j, Sk
t = 1, Xt = k

))]
(c)
≤

T∑
t=1

P0

(
Sk
t = 1

)
· ϵ2

2σ2
+

K−1∑
j=1

P0

(
N t

ex = j
)
· jϵ

2

σ2


(d)
≤ 2 log2 T · ϵ2

2σ2
·
(
E0

[
S̄k
]
+ 2Bex

)
, (7)

where (a) is from Lemma 2, (b) is obtained by enlarging the last four terms using the fact that 2 ≤ j + 1 ≤ 2j,∀j ≥ 1, (c) is
obtained by applying the monotonicity property of probability to the first term and merging the last four disjoint events, and
(d) is from Lemma 4 and the fact that

∑T
t=1

∑K−1
j=1 P0(N

t
ex = j) · j =

∑T
t=1 E0 [N

t
ex] ≤ Bex. Note that Eq. (7) indicates

that the KL divergence (which can be viewed as the information obtained by the learner) is related to both the number of
switches and the amount of extra feedback. With the upper bound on the KL divergence in Eq. (7), we can also bound the
total variation. Specifically, we have

1

K

K∑
k=1

DTV

(
P0

(
ℓob1:T

)
∥Pk

(
ℓob1:T

))
(a)
≤ 1

K

K∑
k=1

√
ln 2

2

√
DKL

(
P0

(
ℓob1:T

)
∥Pk

(
ℓob1:T

))
(b)
≤
√

ln 2

2

√
2 log2 T · ϵ2

2σ2
· 1

K

K∑
k=1

√
E0

[
S̄k
]
+ 2Bex

(c)
≤
√

ln 2

2

√
2 log2 T · ϵ2

2σ2
·

√√√√ 1

K

K∑
k=1

(
E0

[
S̄k
]
+ 2Bex

)
(d)
=

ϵ

σ

√
ln 2 · log2 T

K

√
E0

[
S̄
]
+Bex, (8)
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where (a) is from Pinsker’s inequality, (b) is from Eq. (7), (c) is from Jensen’s inequality, and (d) is from
∑K

k=1 E0

[
S̄k
]
=

2E0

[
S̄
]
.

With all the above results, we are ready to derive a lower bound on E
[
Rinit

T

]
after showing two intermediate steps. Let

Nk be the number of times action k ∈ [K] is played up to round T (which is a random variable). We first assume that the
deterministic learning algorithm makes at most ϵT switches on any loss sequence, which will be used for deriving Eq. (9)
below, and we will later relax this assumption. Under this assumption, we have

E0

[
S̄
]
− E

[
S̄
] (a)
=

1

K

K∑
k=1

(
E0

[
S̄
]
− Ek

[
S̄
])

(b)
=

1

K

K∑
k=1

T∑
z=1

(
P0(S̄ ≥ z)− Pk(S̄ ≥ z)

)
(c)
=

1

K

K∑
k=1

ϵT∑
z=1

(
P0(S̄ ≥ z)− Pk(S̄ ≥ z)

)
(d)
≤ ϵT

K

K∑
k=1

DTV

(
P0

(
ℓob1:T

)
∥Pk

(
ℓob1:T

))
, (9)

where (a) is from the definition that E[·] := 1
K

∑K
k=1 Ek[·], (b) is from rewriting the expectations, (c) is from the assumption

of no more than ϵT switches, and (d) is from the definition of the total variation. Also, we have

K∑
k=1

Ek[Nk]− T
(a)
=

K∑
k=1

(Ek[Nk]− E0[Nk])

(b)
=

K∑
k=1

T∑
z=1

(Pk(Nk ≥ z)− P0(Nk ≥ z))

(c)
≤ T

K∑
k=1

DTV

(
P0

(
ℓob1:T

)
∥Pk

(
ℓob1:T

))
, (10)

where (a) is from
∑K

k=1 E0[Nk] = T , (b) is from rewriting the expectations, and (c) is from the definition of the total
variation.

We now lower bound the expected value of Rinit
T as follows:

E
[
Rinit

T

] (a)
=

1

K

K∑
k=1

E
[
ϵ(T −Nk) + S̄|k∗ = k

]
= ϵT − ϵ

K

K∑
k=1

Ek [Nk] + E
[
S̄
]

(b)
≥ ϵT − ϵT

K
− 2ϵT

K

K∑
k=1

DTV

(
P0

(
ℓob1:T

)
∥Pk

(
ℓob1:T

))
+ E0[S̄]

(c)
≥ ϵT

2
−

2
√
ln 2 · ϵ2T

√
log2 T

σ
√
K

√
E0

[
S̄
]
+Bex + E0

[
S̄
]

(d)
≥ ϵT

2
−

2
√
ln 2 · ϵ2T

√
log2 T

σ
√
K

(√
E0

[
S̄
]
+
√
Bex

)
+ E0

[
S̄
]

(e)
≥ ϵT

2
− ln 2 · ϵ4T 2 log2 T

Kσ2
−

2
√
ln 2 · ϵ2T

√
log2 T

σ
√
K

√
Bex, (11)

where (a) is from the regret definition (i.e., Eq. (1)), (b) is from Eqs. (9) and (10), (c) is from Eq. (8), (d) is from an elementary
inequality:

√
x+

√
y ≥

√
x+ y,∀x, y ≥ 0, and (e) is obtained by minimizing the quadratic function of

√
E0[S̄].
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Now, we turn to lower bound E [RT ]. By Lemma 3, if it holds that ϵ ≤ 1/6 and σ = 1/(9 log2 T ), then we have
E
[
Rinit

T

]
− E [RT ] ≤ ϵT/6. We first assume ϵ ≤ 1/6 and later show that the selected ϵ satisfies this condition. Then, we

have

E [RT ] ≥ E
[
Rinit

T

]
− ϵT/6

≥ ϵT

3
− 81 ln 2 · ϵ4T 2(log2 T )

3

K
− 18

√
ln 2 · ϵ2T (log2 T )3/2√

K

√
Bex, (12)

where the last step is from Eq. (11) and choosing σ = 1/(9 log2 T ).

We now consider two cases for Bex:
√
Bex ≤ c1K

1/6T 1/3 and
√
Bex > c1K

1/6T 1/3, for some c1 > 0.

In the first case of
√
Bex ≤ c1K

1/6T 1/3, we have

E [RT ]
(a)
≥ ϵT

3
− 81 ln 2 · ϵ4T 2(log2 T )

3

K
− 18

√
ln 2 · c1ϵ2T (log2 T )3/2√

K
·K1/6T 1/3

(b)
=

c2K
1/3T 2/3

3(log2 T )
3/2

− 81 ln 2 · c42K1/3T 2/3

(log2 T )
3

− 18
√
ln 2 · c1c22K1/3T 2/3

(log2 T )
3/2

(c)
≥
(c2
3

− 81 ln 2 · c42 − 18
√
ln 2 · c1c22

) K1/3T 2/3

18(log2 T )
3

= Ω̃(K1/3T 2/3), (13)

where (a) is from
√
Bex ≤ c1K

1/6T 1/3, (b) is obtained by choosing ϵ = c2
K1/3

T 1/3(log2 T )3/2
(where c2 > 0 satisfies

1
3 − 81 ln 2 · c32 − 18

√
ln 2 · c1c2 > 0), and (c) is simply due to (log2 T )

3 ≥ (log2 T )
3/2 for a sufficiently large T . Since

K ≤ T , we have ϵ ≤ 1/6 when T is sufficiently large.

In the second case of
√
Bex > c1K

1/6T 1/3, we have

E [RT ]
(a)
≥ ϵT

3
− 81 ln 2 · ϵ4T 2(log2 T )

3

K
·

√
Bex

c1K1/6T 1/3
− 18

√
ln 2 · ϵ2T (log2 T )3/2√

K

√
Bex

=
ϵT

3
− 81 ln 2 · ϵ4T 5/3(log2 T )

3

c1K7/6

√
Bex −

18
√
ln 2 · ϵ2T (log2 T )3/2√

K

√
Bex

(b)
=

c3T
√
K

3(log2 T )
3/2 ·

√
Bex

− 81 ln 2 · c43K5/6T 5/3

c1(log2 T )
3 · (Bex)3/2

− 18
√
ln 2 · c23

√
KT

(log2 T )
3/2 ·

√
Bex

(c)
≥ c3T

√
K

3(log2 T )
3/2 ·

√
Bex

− 81 ln 2 · c43
√
KT

c31(log2 T )
3 ·

√
Bex

− 18
√
ln 2 · c23

√
KT

(log2 T )
3/2 ·

√
Bex

≥
(
c3
3

− 81 ln 2 · c43
c31

− 18
√
ln 2 · c23

) √
KT

(log2 T )
3 ·

√
Bex

= Ω̃
(
T
√
K/Bex

)
, (14)

where (a) is due to
√
Bex

c1K1/6T 1/3 > 1, (b) is obtained by choosing ϵ = c3
√
K

(log2 T )3/2
√
Bex

(where c3 > 0 satisfies 1/3− 81 ln 2 ·

c33/c
3
1 − 18

√
ln 2 · c3 > 0), and (c) again is due to

√
Bex

c1K1/6T 1/3 > 1 (applied to the second term). Since K ≤ T , we have

ϵ = c3
√
K

(log2 T )3/2
√
Bex

≤ c3K
1/3

c1T 1/3(log2 T )3/2
≤ 1/6 when T is sufficiently large.

Now, we want to relax the assumption that the deterministic learning algorithm makes no more than ϵT switches. Similar to
the proof of Theorem 2 in Dekel et al. (2013), we consider the following: If the learning algorithm makes more than ϵT
switches, then we halt the algorithm at the point when there are exactly ϵT switches and repeat its action after the last switch
throughout the rest of the game. We use Rhalt

T to denote the regret of this halted algorithm over the same loss sequence as in
RT .

We consider two cases for the number of switches made by the original learning algorithm: S̄ ≤ ϵT and S̄ > ϵT .
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In the first case of S̄ ≤ ϵT , halting does not happen, and trivially, we have Rhalt
T = RT .

In the second case of S̄ > ϵT , the original learning algorithm makes more than ϵT switches. We use T ′ to denote the round
index at which the ϵT -th switch happens. Clearly, we have ϵT ≤ T ′. As a result, the halted algorithm keeps playing action
XT ′ from round T ′ + 1 to the end of the game. We now rewrite Rhalt

T and RT as follows:

RT =

T ′∑
t=1

(ℓt[Xt]− ℓt[k
∗]) + ϵT +

T∑
t=T ′+1

(ℓt[Xt]− ℓt[k
∗]) + (S̄ − ϵT ),

Rhalt
T =

T ′∑
t=1

(ℓt[Xt]− ℓt[k
∗]) + ϵT +

T∑
t=T ′+1

(ℓt[XT ′ ]− ℓt[k
∗]) .

By taking the difference between Rhalt
T and RT and then taking the expectation with respect to the randomness from loss

generation, we have

E
[
Rhalt

T −RT

]
= E

[
T∑

t=T ′+1

(ℓt[XT ′ ]− ℓt[Xt])

]
︸ ︷︷ ︸

≤ϵT

+E
[
ϵT − S̄

]︸ ︷︷ ︸
<0

≤ ϵT.

To see this, we first observe that at each round, the loss gap between actions is either ϵ or 0 in expectation (because the
Gaussian noise we add has zero mean). Therefore, the first term E

[∑T
t=T ′+1 (ℓt[XT ′ ]− ℓt[Xt])

]
can be bounded by ϵT

(i.e., the gap at each round multiplied by the time horizon). Since the original learning algorithm makes more than ϵT
switches, we have E [RT ] ≥ ϵT , which implies E

[
Rhalt

T

]
≤ 2E [RT ].

Combining the above two cases yields E
[
Rhalt

T

]
≤ 2E [RT ]. Since we already obtain a lower bound for E

[
Rhalt

T

]
(i.e.,

Eqs. (13) and (14)), the same lower bound also holds for E [RT ] (within a constant factor of 2).

Finally, we complete the proof by applying Yao’s principle.

We also give two remarks about technical details in the proof of Proposition 1.
Remark 11. To conclude that E

[
Rhalt

T

]
≤ 2E [RT ], Dekel et al. (2013) shows that Rhalt

T ≤ RT + ϵT ≤ 2RT , which is a
stronger result compared to what is needed in an expected sense. This stronger result relies on the fact that the loss gap
between actions is either ϵ or 0 at each round. However, this may not be true anymore after introducing an additional
action-dependent noise as in Shi et al. (2022). Despite this difference, one can still show E

[
Rhalt

T

]
≤ E [RT ]+ϵT ≤ 2E [RT ],

which is used to prove Proposition 1.
Remark 12. Some readers may ask: If the deterministic algorithm switches more than ϵT times, should not the switching
costs already imply the desired lower bound on the regret? Why is it necessary to show a reduction from switch-limited
algorithms to arbitrary algorithms? To see this, we note that the lower bound of Ω̃(T 2/3) is obtained after selecting ϵ to be
of order Θ̃(T−1/3), while such selection is based on the previous analysis, which is further based on the assumption that the
algorithm makes no more than ϵT switches. Therefore, the reduction from switch-limited algorithms to arbitrary algorithms
is necessary.

C. Proof of Proposition 2
Before proving Proposition 2, we first present two lemmas on the properties of SD. These are straightforward extensions of
Lemmas 1 and 2 in Geulen et al. (2010) to their batched versions. A key difference is that we consider batches instead of
rounds. While the proofs follow the same line of analysis, we provide the proofs below for completeness.

Lemma 5. For the instantiations πfull and πflex of algorithm 1, over any loss sequence, we have

P (Ab = k) = E[wb[k]], ∀k ∈ [K],∀b ∈ [N ].

Proof of Lemma 5. We first note that in these two instantiations of Algorithm 1, the feedback depends on the randomly
chosen ub only, and is thus independent of what actions are taken by the learner throughout the game. As a result, the whole
feedback sequence ℓ̂1:N can be fixed even before the learner’s actions are determined.
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In the following, we will show by induction that conditioning on any random feedback sequence ℓ̂1:N , it holds (almost
surely) that P

(
Ab = k|ℓ̂1:N

)
= wb[k],∀k ∈ [K],∀b ∈ [N ].

The base case of b = 1 is trivial due to the algorithm design (specifically, the uniform action weight initialization). In the
following, we move forward to the induction step, i.e., we show that for every b ≥ 2, if it holds that P

(
Ab−1 = k|ℓ̂1:N

)
=

wb−1[k], ∀k ∈ [K], then it also holds that P
(
Ab = k|ℓ̂1:N

)
= wb[k], ∀k ∈ [K], as follows:

P
(
Ab = k|ℓ̂1:N

)
(a)
= Wb[k]/Wb−1[k] · P

(
Ab−1 = k|ℓ̂1:N

)
+

K∑
i=1

(1−Wb[i]/Wb−1[i]) · wb[k] · P
(
Ab−1 = i|ℓ̂1:N

)
(b)
= Wb[k]/Wb−1[k] · wb−1[k] + wb[k] ·

K∑
i=1

(1−Wb[i]/Wb−1[i]) · wb−1[i]

=
Wb[k]

Wb−1[k]
· Wb−1[k]∑K

i=1 Wb−1[i]
+ wb[k] ·

K∑
i=1

(
Wb−1[i]−Wb[i]

Wb−1[i]

)
· Wb−1[i]∑K

j=1 Wb−1[j]

=
Wb[k]∑K

i=1 Wb−1[i]
+ wb[k] ·

∑K
i=1 Wb−1[i]−

∑K
i=1 Wb[i]∑K

i=1 Wb−1[i]

= wb[k] ·
∑K

i=1 Wb[i]∑K
i=1 Wb−1[i]

+ wb[k] ·

(
1−

∑K
i=1 Wb[i]∑K

i=1 Wb−1[i]

)
= wb[k],

where (a) is due to Line 9 in Algorithm 1 (specifically, there are two disjoint cases for action k to be played in batch b: (i)
action k was played in batch b − 1, and it does not change according to probability exp(−η · ℓ̂b[k]) = Wb[k]/Wb−1[k];
(ii) action k is selected based on fresh randomness (i.e., the previous action i does not stay unchanged with probability
(1−Wb[i]/Wb−1[i])), regardless of which action is played in batch b− 1), and (b) is from the inductive hypothesis that
P
(
Ab−1 = i|ℓ̂1:N

)
= wb[i],∀i ∈ [K].

Finally, taking the expectation on both sides of the above completes the proof.

Lemma 5 implies that SD does not change the marginal distribution of action selection. Hence, one still enjoys the same
regret guarantee as that of standard OMD (i.e., without SD).

Lemma 6. For the instantiations πfull and πflex of algorithm 1, over any loss sequence, the expected number of switches
satisfies the following:

E

[
T∑

t=1

I{Xt ̸= Xt−1}

]
≤

N∑
b=2

η · E
[
ℓ̂b−1[Ab−1]

]
.
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Proof of Lemma 6. Based on the definition of switching costs, we have

E

[
T∑

t=1

I{Xt ̸=Xt−1}

]
(a)
= E

[
N∑
b=2

I{Ab ̸=Ab−1}

]

=

N∑
b=2

E
[
E
[
I{Ab ̸=Ab−1}|ℓ̂1:b−1, Ab−1

]]
(b)
≤

N∑
b=2

E
[
1− exp(−η · ℓ̂b−1[Ab−1])

]
(c)
≤

N∑
b=2

η · E
[
ℓ̂b−1[Ab−1]

]
,

where (a) is because switching happens only between two consecutive batches, (b) is due to the action selection rule of
Algorithm 1 (Line 9), and (c) is from elementary inequality: 1− exp(−x) ≤ x, ∀x > 0.

Proof of Proposition 2. Our goal here is to establish an upper bound on the expected regret for algorithm Rπfull
T , which

consists of two parts (cf. Eqs. (2) and (1)): (i) standard regret in terms of loss and (ii) switching cost. We will establish
bounds on both respectively, hence obtaining the final result in the proposition.

To start with, let us establish an upper bound on the standard regret in terms of loss. To this end, we will build upon the
classic analysis of OMD (cf. (Orabona, 2019, Section 6.6)). That is, for any (random) sequence ℓ̂1:N ∈ [0,∞)K , learning
rate η > 0, and vector u such that its Yu-th coordinate is 1 and all the others are 0, it holds almost surely that

N∑
b=1

〈
wb − u, ℓ̂b

〉
≤ lnK

η
+

η

2

N∑
b=1

K∑
k=1

(ℓ̂b[k])
2 · wb[k],

where wb[k] =
Wb[k]∑K
i=1 Wb[i]

and Wb[k] = Wb−1[k] · exp(−η · ℓ̂b−1[k]),∀k ∈ [K], i.e., line 8 in Algorithm 1. Taking the
expectation on both sides yields that

E

[
N∑
b=1

〈
wb − u, ℓ̂b

〉]
≤ lnK

η
+

η

2

N∑
b=1

K∑
k=1

E
[
(ℓ̂b[k])

2 · wb[k]
]

=
lnK

η
+

η

2

N∑
b=1

K∑
k=1

E
[
wb[k] · E

[
(ℓ̂b[k])

2|ℓ̂1:b−1

]]
(a)
=

lnK

η
+

η

2

N∑
b=1

K∑
k=1

E
[
wb[k] · (ℓub

[k])
2
]

(b)
≤ lnK

η
+

ηB

2K
, (15)

where (a) follows from the algorithm design of πfull, i.e., ℓ̂b = ℓub
and ub is a randomly selected time slot within batch b,

and (b) comes from the boundedness of losses, the fact that
∑K

k=1 wb[k] = 1,∀b ∈ [N ], and noting that N = B/K.
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We can further rewrite the left-hand-side (LHS) of the above inequality as follows:

E

[
N∑
b=1

〈
wb − u, ℓ̂b

〉]
=

N∑
b=1

E
[
E
[〈

wb − u, ℓ̂b

〉
|ℓ̂1:b−1

]]
=

N∑
b=1

E
[〈

wb − u,E
[
ℓ̂b|ℓ̂1:b−1

]〉]
(a)
=

N∑
b=1

E

[〈
wb − u,

∑bτ
t=(b−1)τ+1 ℓt

τ

〉]

=
1

τ

N∑
b=1

bτ∑
t=(b−1)τ+1

E [ℓt[Ab]− ℓt[Yu]]

=
1

τ

T∑
t=1

E [ℓt[Xt]− ℓt[Yu]] , (16)

where (a) holds since for any k ∈ [K], we have E
[
ℓ̂b[k]|ℓ̂1:b−1

]
=
∑bτ

t=(b−1)τ+1 ℓt[k]/τ . This is true since under πfull, the

choice of ub for constructing ℓ̂b is a round index chosen uniformly at random from the current batch b.

Now, replacing the LHS of Eq. (15) with Eq. (16), yields

T∑
t=1

E [ℓt[Xt]− ℓt[Yu]] ≤ τ ·
(
lnK

η
+

ηB

2K

)
=

KT lnK

ηB
+

ηT

2
, (17)

where the last step is due to τ = KT
B .

After obtaining the above upper bound on the standard regret (i.e., without switching costs), we now turn to bound the
switching costs under πfull. To this end, we directly leverage Lemma 6 along with the loss estimate ℓ̂b = ℓub

to obtain that

E

[
T∑

t=1

I{Xt ̸=Xt−1}

]
≤

N∑
b=2

η · E
[
ℓ̂b−1[Ab−1]

]
=

B/K∑
b=2

η · E
[
ℓ̂b−1[Ab−1]

]
≤ ηB

K
. (18)

Finally, combining Eqs. (17) and (18), we can bound the total regret as follows:

Rπfull

T ≤ KT lnK

ηB
+

ηT

2
+

ηB

K
(a)
≤ KT lnK

ηB
+

3ηT

2

(b)
= T

√
6K lnK

B
,

where (a) is from B ≤ KT , and (b) is obtained by choosing η =
√

2K lnK
3B . Hence, we have completed the proof of

Proposition 2.

D. Proof of Proposition 3
Proof of Proposition 3. The organization of this proof is the same as that of Proposition 2, and the only difference lies in
the loss estimate in this instantiation.

We first consider the case when B < T , i.e., M can be any integer from [K]. Recall that B is the total observation budget and
M is the number of observations made in each batch. Similarly, we have, for any (random) sequence ℓ̂1, . . . , ℓ̂N ∈ [0,∞)K ,
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learning rate η > 0, and vector u such that its Yu-th coordinate is 1 and all the others are 0, it holds almost surely that

N∑
b=1

〈
wb − u, ℓ̂b

〉
≤ lnK

η
+

η

2

N∑
b=1

K∑
k=1

(ℓ̂b[k])
2 · wb[k].

Taking the expectation on both sides yields that

E

[
N∑
b=1

〈
wb − u, ℓ̂b

〉]
≤ lnK

η
+

η

2

N∑
b=1

K∑
k=1

E
[
(ℓ̂b[k])

2 · wb[k]
]

=
lnK

η
+

η

2

N∑
b=1

K∑
k=1

E
[
E
[
(ℓ̂b[k])

2 · wb[k]

∣∣∣∣ℓ̂1:b−1

]]
(a)
=

lnK

η
+

η

2

N∑
b=1

K∑
k=1

E

[(
ℓub

[k]

M/K

)2

· wb[k] ·
M

K
+ 0 · (1− M

K
)

]
(b)
≤ lnK

η
+

ηKB

2M2
, (19)

where (a) follows from the algorithm design of πflex, i.e., the loss estimate ℓ̂b[k] = I{k ∈ Oub
} · ℓub

[k]

M/K and ub is a randomly

selected time slot within batch b, and (b) comes from the boundedness of losses, the fact that
∑K

k=1 wb[k] = 1,∀b ∈ [N ],
and noting that N = B/K.

We can further rewrite the LHS of the above inequality as follows:

E

[
N∑
b=1

〈
wb − u, ℓ̂b

〉]
=

N∑
b=1

E
[
E
[〈

wb − u, ℓ̂b

〉 ∣∣∣∣ℓ̂1:b−1

]]

=

N∑
b=1

E
[〈

wb − u,E
[
ℓ̂b

∣∣∣∣ℓ̂1:b−1

]〉]
(a)
=

N∑
b=1

E

[〈
wb − u,

∑bτ
t=(b−1)τ+1 ℓt

τ

〉]

=
1

τ

N∑
b=1

bτ∑
t=(b−1)τ+1

E [ℓt[Ab]− ℓt[Yu]]

=
1

τ

T∑
t=1

E [ℓt[Xt]− ℓt[Yu]] , (20)

where (a) holds since for any k ∈ [K], we have E
[
ℓ̂b[k]

∣∣∣∣ℓ̂1:b−1

]
= (1 − M

K ) · 0 + M
K ·

∑bτ
t=(b−1)τ+1

1
τ · ℓt[k]

M/K =∑bτ
t=(b−1)τ+1 ℓt[k]/τ . This is true since under πflex, the choices of both ub and Ot for constructing ℓ̂b are uniformly random

and independent with each other.

Now, replacing the LHS of Eqs. (19) with (20), yields

T∑
t=1

E [ℓt[Xt]− ℓt[Yu]] ≤ τ ·
(
lnK

η
+

ηKB

2M2

)
=

MT lnK

ηB
+

ηTK

2M
, (21)

where in the equality, we replace τ with MT
B .

After obtaining the above upper bound on the standard regret (i.e., without switching cost), we now turn to bound the
switching costs under πflex. To this end, we directly leverage Lemma 6 along with the loss estimate ℓ̂b[k] = I{k ∈
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Oub
} · ℓub

[k]

M/K to obtain that

E

[
T∑

t=1

I{Xt ̸=Xt−1}

]
≤

N∑
b=2

η · E
[
ℓ̂b−1[Ab−1]

]
=

B/M∑
b=2

η · E
[
ℓ̂b−1[Ab−1]

]
≤ η

B

M
· K
M

=
ηBK

M2
. (22)

Finally, combining Eqs. (21) and (22), we can bound the total regret as follows:

Rπflex

T ≤ MT lnK

ηB
+

ηTK

2M
+

ηBK

M2

(a)
≤ MT lnK

ηB
+

3ηKT

2M

(b)
= T

√
6K lnK

B
,

where (a) is from B < MT (recall that now we have B < T and M ≥ 1), and (b) is obtained by choosing η = M
√

2 lnK
3BK .

Hence, we have completed the proof of Proposition 3.

The proof for the case of B ≥ T is exactly the same, except for the (implicit) fact that we need batch size τ to be well-defined,
i.e., τ ≥ 1. That is why in this case M is less flexible: now M needs to be sufficiently large to fully exploit the total
budget.

E. Proof of Proposition 4
Proof of Proposition 4. The organization of this proof is the same as that of Proposition 2, and the main difference lies in
the commonly-used importance-weighted estimator for bandit feedback. In addition, we note that it is now sufficient to
directly bounding the switching costs by the number of batches.

We still start with the same fundamental conclusion in OMD analysis. Specifically, for any (random) sequence ℓ̂1, . . . , ℓ̂N ∈
[0,∞)K , learning rate η > 0, and vector u such that its Yu-th coordinate is 1 and all the others are 0, it holds almost surely
that

N∑
b=1

〈
wb − u, ℓ̂b

〉
≤ lnK

η
+

η

2

N∑
b=1

K∑
k=1

(ℓ̂b[k])
2wb[k].

Taking the expectation on both sides, we have

E

[
N∑
b=1

〈
wb − u, ℓ̂b

〉]
≤ lnK

η
+

η

2

N∑
b=1

E

[
K∑

k=1

(ℓ̂b[k])
2wb[k]

]

=
lnK

η
+

η

2

N∑
b=1

E

[
E

[
K∑

k=1

(ℓ̂b[k])
2wb[k]

∣∣∣∣ℓ̂1:b−1

]]

(a)
=

lnK

η
+

η

2

N∑
b=1

E

 K∑
k=1

wb[k] ·
1

τ
·

bτ∑
t=(b−1)τ+1

(ℓt[k])
2

(wb[k])2
· wb[k]


(b)
≤ lnK

η
+

η

2
NK

(c)
=

√
2NK lnK, (23)

where (a) follows from the algorithm design of πb, i.e., the loss estimate ℓ̂b[k] = I{k ∈ Oub
} · ℓub

[k]

wb[k]
for all k ∈ [K], (b)

follows from the assumption that all losses are bounded by one and the fact that
∑K

k=1 wb[k] = 1,∀b ∈ [N ], and (c) is

obtained by choosing η =
√

2 lnK
NK .
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We can further rewrite the LHS of the above inequality as follows:

E

[
N∑
b=1

〈
wb − u, ℓ̂b

〉]
=

N∑
b=1

E
[
E
[〈

wb − u, ℓ̂b

〉 ∣∣∣∣ℓ̂1:b−1

]]

=

N∑
b=1

E
[〈

wb − u,E
[
ℓ̂b

∣∣∣∣ℓ̂1:b−1

]〉]
(a)
=

N∑
b=1

E

[〈
wb − u,

∑bτ
t=(b−1)τ+1 ℓt

τ

〉]

=
1

τ

N∑
b=1

bτ∑
t=(b−1)τ+1

E [ℓt[Ab]− ℓt(Yu)]

=
1

τ

T∑
t=1

E [ℓt[Xt]− ℓt[Yu]] , (24)

where (a) holds since for any k ∈ [K], we have E
[
ℓ̂b[k]

∣∣∣∣ℓ̂1:b−1

]
= (1 − wb[k]) · 0 +

∑bτ
t=(b−1)τ+1

1
τ · wb[k] · ℓt[k]

wb[k]
=∑bτ

t=(b−1)τ+1 ℓt[k]/τ .

Now, replacing the LHS of Eq. (23) with Eq. (24), yields

T∑
t=1

E [ℓt[Xt]− ℓt[Yu]] ≤ τ
√
2NK lnK

=
T

B
·
√
2BK lnK

= O

(
T

√
K lnK

B

)
. (25)

When B = O(K1/3T 2/3), we have
∑T

t=1 I{Xt ̸=Xt−1} ≤ B ≤ O

(
T
√

K lnK
B

)
. Combining it with Eq. (25), we can

conclude that both the standard regret and switching costs are of order O

(
T
√

K lnK
B

)
, which gives us the desired

result.

F. An Auxiliary Technical Result
In this section, we show that in the standard setting without switching costs, only using bandit feedback (e.g., algorithm πb)
can also achieve optimal regret (i.e., matching the lower bound of Ω(T

√
K/B), up to poly-logarithmic factors) in the full

range of B ∈ [K,T ]. We state this result in Proposition 5.
Proposition 5. In the standard setting without switching costs, for any B ∈ [K,T ], the worst-case regret under algorithm
πb is upper bounded by Rπb

T = O(T
√
K lnK/B).

Proof of Proposition 5. The proof follows the same line of analysis as that in the proof of Proposition 4, except that we
only require B < T (instead of B = O(K1/3T 2/3)) and do not consider switching costs. Therefore, Eq. (25) implies the
following upper bound on the regret:

T∑
t=1

E [ℓt[Xt]− ℓt[Yu]] = O
(
T
√
K lnK/B

)
.

Note that Yu can be any fixed action, including the best fixed action. This completes the proof.
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