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Abstract

We introduce the problem of active causal struc-
ture learning with advice. In the typical well-
studied setting, the learning algorithm is given the
essential graph for the observational distribution
and is asked to recover the underlying causal di-
rected acyclic graph (DAG) G* while minimizing
the number of interventions made. In our setting,
we are additionally given side information about
G* as advice, e.g. a DAG G purported to be G*.
We ask whether the learning algorithm can bene-
fit from the advice when it is close to being cor-
rect, while still having worst-case guarantees even
when the advice is arbitrarily bad. Our work is in
the same space as the growing body of research
on algorithms with predictions. When the advice
is a DAG G, we design an adaptive search algo-
rithm to recover G* whose intervention cost is at
most O(max{1,log}) times the cost for verify-
ing G*; here, v is a distance measure between G
and G* that is upper bounded by the number of
variables n, and is exactly O when G = G*. Our
approximation factor matches the state-of-the-art
for the advice-less setting.

1. Introduction

A causal directed acyclic graph on a set V' of n variables is
a Bayesian network in which the edges model direct causal
effects. A causal DAG can be used to infer not only the
observational distribution of V' but also the result of any
intervention on any subset of variables V' C V. In this
work, we restrict ourselves to the causally sufficient setting
where there are no latent confounders, no selection bias, and
no missingness in data.

The goal of causal structure learning is to recover the un-
derlying DAG from data. This is an important problem
with applications in multiple fields including philosophy,
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medicine, biology, genetics, and econometrics (Reichen-
bach, 1956; Hoover, 1990; King et al., 2004; Woodward,
2005; Rubin & Waterman, 2006; Eberhardt & Scheines,
2007; Sverchkov & Craven, 2017; Rotmensch et al., 2017;
Pingault et al., 2018). Unfortunately, in general, it is known
that observational data can only recover the causal DAG up
to an equivalence class (Pearl, 2009; Spirtes et al., 2000).
Hence, if one wants to avoid making parametric assump-
tions about the causal mechanisms, the only recourse is
to obtain experimental data from interventions (Eberhardt
et al., 2005; 2006; Eberhardt, 2010).

Such considerations motivate the problem of interventional
design where the task is to find a set of interventions of
optimal cost which is sufficient to recover the causal DAG.
There has been a series of recent works studying this prob-
lem (He & Geng, 2008; Hu et al., 2014; Shanmugam et al.,
2015; Kocaoglu et al., 2017; Lindgren et al., 2018; Gree-
newald et al., 2019; Squires et al., 2020; Choo et al., 2022;
Choo & Shiragur, 2023) under various assumptions. In par-
ticular, assuming causal sufficiency, (Choo et al., 2022) gave
an adaptive algorithm that actively generates a sequence of
interventions of bounded size, so that the total number of
interventions is at most O(logn) times the optimal.

Typically though, in most applications of causal structure
learning, there are domain experts and practitioners who
can provide additional “advice” about the causal relations.
Indeed, there has been a long line of work studying how
to incorporate expert advice into the causal graph discov-
ery process; e.g. see (Meek, 1995a; Scheines et al., 1998;
De Campos & Ji, 2011; Flores et al., 2011; Li & Beek, 2018;
Andrews et al., 2020; Fang & He, 2020). In this work, we
study in a principled way how using purported expert advice
can lead to improved algorithms for interventional design.

Before discussing our specific contributions, let us ground
the above discussion with a concrete problem of practical
importance. In modern virtualized infrastructure, it is in-
creasingly common for applications to be modularized into
a large number of interdependent microservices. These
microservices communicate with each other in ways that de-
pend on the application code and on the triggering userflow.
Crucially, the communication graph between microservices
is often unknown to the platform provider as the applica-
tion code may be private and belong to different entities.
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However, knowing the graph is useful for various critical
platform-level tasks, such as fault localization (Zhou et al.,
2019), active probing (Tan et al., 2019), testing (Jha et al.,
2019), and taint analysis (Clause et al., 2007). Recently,
(Wang et al., 2023) and (Ikram et al., 2022) suggested view-
ing the microservices communication graph as a sparse
causal DAG. In patrticular, (Wang et al., 2023) show that
arbitrary interventions can be implemented as fault injec-
tions in a staging environment, so that a causal structure
learning algorithm can be deployed to generate a sequence

our approximation factor is never worse than the factor
for the advice-less setting in (Choo et al., 2022). Our
search algorithm also runs in polynomial time.

« Veri cation Cost Approximation . For a given upper
boundk 1, a verifying intervention set for a DAG
G is a set of interventions of size at mdsthat, to-
gether with knowledge of the Markov equivalence class
of G , determines the orientations of all edgein
The minimum size of a verifying intervention set for

G , denoted (G ), is clearly a lower bound for the
number of interventions required to lea®n (regard-
less of the advice grapB). One of our key technical
results is a structural result aboyt We prove that
for any two DAGsG andG°within the same Markov
equivalence class, we always hav¢G) 2 1(G9
and that this is tight in the worst case. Beyond an im-
proved structural understanding of minimum verifying
intervention sets, which we believe is of independent
interest, this enables us to “blindly trust” the informa-
tion provided by imperfect advice to some extent.

of interventions suf cient to learn the underlying commu-
nication graph. In such a setting, it is natural to assume
that the platform provider already has an approximate guess
about the graph, e.g. the graph discovered in a previous run
of the algorithm or the graph suggested by public metadata
tagging microservice code. The research program we put
forth is to design causal structure learning algorithms that
can take advantage of such potentially imperfect advice

1.1. Our contributions

In this work, we studyadaptive intervention desigfor
recoveringnon-parametriccausal graphwith expert advice
Speci cally, our contributions are as follows.

Similar to prior works (e.g. (Squires et al., 2020; Choo
et al., 2022; Choo & Shiragur, 2023)), we assume causal
suf ciency and faithfulness while using ideal interventions.

« Problem Formulation. Our work connects the causal Under these assumptions, running standard causal discovery
structure learning problem with the burgeoning re-algorithms (e.g. PC (Spirtes et al., 2000), GES (Chickering,
search area aflgorithms with predictionsr learning-  2002)) will always successfully recover the correct essential
augmented algorithm@litzenmacher & Vassilvitskii, graph from data. We also assume that the given expert
2022) where the goal is to design algorithms that by-advice is consistent with observational essential graph. See
pass worst-case behavior by taking advantage of (posgippendix A for a discussion about our assumptions.
bly erroneous) advice or predictions about the problem
instance. Most work in this area has been restricted td..2. Paper organization

online algorithms, data structure design, or OIOtlmlzaIn Section 2, we intersperse preliminary notions with related

tion, as described later in Section 2.5. However, ag work. Our main results are resentedyln Section 3 with the

we motivated above, expert advice is highly relevanthl h-level technical ideas aFr)1d intuition given in Section 4

for causal discovery, and to the best of our knowlegesg tion 5 id irical I'g " See th g

ours is the rst attempt to formally address the issue of ection > provicdes some empirical validation. See the ap

imperfectadvice in this context. pendwes for full proofs, source code, and experimental
details.

» Adaptive Search Algorithm. We consider the setting
where the advice is a DAG purported to be the ori-
entations of all the edges in the graph. We de ne a
distance measure which is always boundechpthe

2. Preliminaries and Related Work

Basic notions about graphs and causal models are de ned in
number of variables, and equals O wi@r G . For  Appendix B. To beverybrief, if G = (V; E) is a graph on
any integek 1, we propose an adaptive algorithmto jVj = n nodes/vertices wheié¢(G), E(G), andA(G)
generate a sequence of interventions of size at knost E (G) denote nodes, edges, and arc&akspectively, we
that recovers the true DAG , such that the total num- writeu v to denote thattwo nodesv 2 V are connected
ber of interventions i©(log (G;G ) logk) times inG,andwriteu! voru vwhen specifying a certain
the optimal number of interventions of sike Thus, direction. Theskeletonskel(G) refers to the underlying

—Y ) graph where all edges are made undirected-siructurein

Note however that the system in (Wang et al., 2023) is ”OtG refers to a collection of three distinct vertiogs/; w 2 V

causally suf cient due to confounding user behawor and (lkram _
et al., 2022) does not actively perform interventions. So, the such thau ! v wandu 6 w. LetG = (V;E) be

algorlthm proposed in this work cannot be used directly for thefully unoriented. For vertices;v 2 V, subset of vertices
microservices graph learning problem. VO V andinteger 0, we de nedist g(u;V) asthe
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shortest path length betwearandv, andN§ (V9 = fv 2 graph properties (Hauser &BImann, 2012; 2014): Ev-
V :mingavodist ¢(u;v) rg V asthe setofvertices eryl -essential graph is a chain graphith chordaf chain
that arer -hops away fronv %in G. A directed acyclic graph  components. This includes the casé of ;. Orientations
(DAG) is a fully oriented graph without directed cycles. For in one chain component do not affect orientations in other
any DAGG, we denote its Markov equivalence class (MEC) components. In other words, to fully orient any essential
by [G] and essential graph B(G). DAGs in the same graphE(G ), it is necessary and suf cient to orient every
MEC have the same skeleton and the essential graph isaain component iE(G ).

partially directed graph such that an art v is directed

if u! vineveryDAG in MEC [G], and an edge Vv

is undirected if there exists two DAG3; ; G, 2 [G] such
thatu ! vin Ggandv ! uin G,. Itis known that
two graphs are Markov equivalent if and only if they have
the same skeleton and v-structures (Verma & Pearl, 199
Andersson et al., 1997) and the essential giaffh) can

be computed fron@ by orienting v-structures iskel(G)
and applying Meek rules (see Appendix D). In a D&Gan
edgeu! visacovered edgd Pa(u) = Pa(v) nfug. We
useC(G) E(G) to denote the set of covered edges=of

For any intervention selt 2V, we writeR(G;1) =

A(E (G)) E to mean the set of oriented arcs in the
essential graph of a DAG. For cleaner notation, we write
R(G; 1) for single intervention$ = flgforsomel V,

\nd R(G; V) for single atomic interventions = ff vgg

or somev 2 V. For any interventional sét 2V, de-

ne G' = G[E nR(G;!)] as thefully directedsubgraph
DAG induced by theinoriented arcsn g (G), whereG

is the graph obtained after removing all the oriented arcs in
the observational essential graph due to v-structures. See
Figure 1 for an example. In the notation Bf ; ), the
following result justi es studying veri cation and adap-
tive search via ideal interventions only on DAGs with-

AninterventionS  V is an experiment where all variables out v-structures, i.e. moral DAGs (De nition 2.4): since
s 2 S is forcefully set to some value, independent of theR(G;1) = R(G' ;1) L R(G;;), any oriented arcs in the

underlying causal structure. An interventionaimicif ~ Observational graph can be removsefore performing any
jSj = 1 andbounded sizéf jSj k for somek 1 interventionsas the optimality of the solution is unaffectéd.

observational data is a special case where ;. The  Theorem 2.3((Choo & Shiragur, 2023))For any DAG
effect of interventions is formally captured by Pearl's do-g = (v: E) and intervention seta;B 2V,

calculus (Pearl, 2009). We call ahy 2V aintervention

set an intervention set is a set of interventions where each .

; . X . R(G;A[B)

intervention corresponds to a subset of variablesid&al

interventiononS  V in G induces an interventional graph = R(G";B) LR(G®;A) L(R(G;A)\ R(G;B))
Gs where all incoming arcs to vertices2 S are removed

(Eberhardt et al., 2005). It is known that intervening®n De nition 2.4 (Moral DAG). A DAG G is called amoral
allows us to infer the edge orientation of any edge cusby DAGIf it has no v-structures. S&(G) = skel(G).

andV nS (Eberhardt, 2007; Hyttinen et al., 2013; Hu et al.,

2014; Shanmugam et al., 2015; Kocaoglu et al., 2017).  2.2. Verifying sets

2.1. Ideal interventions

We now give a de nition and result for graph separators. A verifying setl fora DAGG 2 [G ] is an intervention
De nition 2.1 ( -separator and-clique separator, De ni- Set that fully orients5 from E(G ), possibly with repeated
tion 19 from (Choo et al., 2022)LetA; B; C be a partition ~ applications of Meek rules (see Appendix D), E¢(G ) =

of the verticesv of a graphG = (V;E). We say thaC G . Furthermore, il is a verifying set foiG , then so is

isan -separatorif no edge joins a vertex iA withaver- | [ S forany additional interventios V. While there
tex in B andjAj; jBj jVj. We callC isan -clique ~may be multiple verifying sets in general, we are often
Separatorif itis an -Separatorand a C"que_ interested in nd|ng one with a minimum size.

Theorem 2.2 ((Gilbert et al., 1984), instantiated for un- De nition 2.5 (Minimum size verifying set) An interven-
weighted graphs)LetG = (V; E) be a chordal graph with  tion setl 2V is called a verifying set for a DAG
jVi 2 andp vertices in its largest cliqgue. There exists if § (G ) = G . | is aminimum size verifying sét
a 1=2-clique-separatolC involving at mosp  1vertices. Eo(G )6 G foranyjl 9 < jlj .

The cliqueC can be computed i@ (JEj) time. —
g P UED 2A partially directed graph is ahain graphif it does not

For ideal interventions, ah-essential grap (G) of G contain any partially directed cycles where all directed arcs point
' in the same direction along the cycle.

is the essential graph representing the Markov equivalence 35 chordal graph is a graph where every cycle of length at least

class of graphs whose interventional graphs for each ingpag an edge that is not part of the cycle but connects two vertices
tervention is Markov equivalent @Bs for any intervention  of the cycle; see (Blair & Peyton, 1993) for an introduction.
S 21 . There are several known properties adowtssential “The notatiorA [_B denotes disjoint union of sefs andB .
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For bounded size interventions, thenimum veri cation
number  (G) denotes the size of the minimum size verify-
ing set for any DAGG 2 [G ]; we write 1(G) for atomic
interventions. That is, any revealed arc directions when
performing interventions oB(G ) respectss. (Choo et al.,
2022) tells us that it is necessary and suf cient to inter-
vene on a minimum vertex cover of the covered edg&3)
in order to verify a DAGG, and that 1(G) is ef ciently
computable givei® sinceC(G) induces a forest.

0} (m

Figure 1. () Ground truth DAGG ; (Il) Observational essential
graphE(G )whereC! E D isav-structure and Meek rules
orientarcD ! FandE! F; () G GIE nR(G;;)]

Theorem 2.6((Choo et al., 2022)) Fix an essential graph

E(G ) andG 2 [G ]. An atomic intervention sétis a min-
imal sized verifying set fa& if and only ifl is a minimum
vertex cover of covered edg€fG) of G. A minimal sized

where oriented arcs iB(G ) are removed fronG ; (IV) MPDAG
G 2 [G ]incorporating the following partial order advi¢8; =
fBg;S; = fA;Dg;Ss = fC;E;F g), which can be converted

atomic verifying set can be computed in polynomial timel© required arc® ! A andB ! D. Observe thah ! Cis

since the edge-induced subgraph@(i®) is a forest.

For any DAGG, we useV(G) 2V to denote the set
of all atomicverifying sets forG. That is, eactatomic
intervention set in/(G) is a minimum vertex cover di(G).

2.3. Adaptive search using ideal interventions

oriented by Meek R1vi8 | A C, the arcA D is still
unoriented, the arB ! A disagrees witls , and there are two
possible DAGs consistent with the resulting MPDAG.

For an example of relevant nodes, see Figure 1: For the
subsetv®= fA;C;D;E;F gin (ll), only fA;C;Dg are
relevant since incident edgesEoandF are all oriented.

Adaptive search algorithms have been studied in earnest (HEheorem 2.9 ((Choo & Shiragur, 2023)) Fix an un-

& Geng, 2008; Hauser & Bhlmann, 2014; Shanmugam

known underlying DAG5 . Given an interventional es-

etal., 2015; Squires et al., 2020; Choo et al., 2022; Choo &ential graphE (G ), node-induced subgrapH with
Shiragur, 2023) as they can use signi cantly less intervenrelevant nodes (I ;V(H)) and intervention set bound

tions than non-adaptive counterpatts.

Most recently, (Choo et al., 2022) gave an ef cient algo-

rithm for computing adaptive interventions with provable
approximation guarantees on general graphs.

Theorem 2.7((Choo et al., 2022)) Fix an unknown un-
derlying DAGG . Given an essential grapB(G ) and
intervention set bounkl 1, there is a deterministic poly-
nomial time algorithm that computes an interventionlset
adaptively such thaf, (G ) = G , andjlj has size
1.0(log(n) 1(G )) whenk =1

2.0(log(n) log(k) k(G )) whenk > 1.

k 1, there is a deterministic polynomial time algorithm
that computes an intervention detadaptively such that
Ep o(G )[V(H)]= G [V(H)], andjl 9 has size
1.0(log(j (1;V(H))j)) 1(G)) whenk =1

2.0(log(j (I;V(H))j) log(k) «k(G )) whenk > 1.

Note thatk = 1 refers to the setting of atomic interventions
and we alwayshave j (I;V(H))j n.
2.4. Expert advice in causal graph discovery

There are three main types of information that a domain ex-
pert may provide (e.g. see the references given in Section 1):

Meanwhile, in the context of local causal graph discovery

where one is interested in only learningabsebf causal
relationships, th&ubsetSearch algorithm of (Choo &

() Required parental arc¥X ! Y

Shiragur, 2023) incurs a multiplicative overhead that scales (Il) Forbidden parental arc 6! Y

logarithmically with the number of relevant nodes when

orienting edges within a node-induced subgraph.

De nition 2.8 (Relevant nodes)Fix a DAGG =(V;E)
and arbitrary subse¢® V. For any intervention set
| 2V and resulting interventional essential gr&piiG ),
we de ne therelevant nodes(l ;V%  V9as the set of

(1) Partial order or tiered knowledge: A partition of the
n variablesintal t
variables inS; cannot come afteg; , foralli<j .

In the context of orienting unorientetl Y edges in an

nodes withinV° that is adjacent to some unoriented arcessential graph, it suf ces to consider only information of

within the node-induced subgragh(G )[V 9.
5If the essential grapE(G ) is a path ofn nodes, then non-

adaptive algorithms neefl n) atomic interventions to recov&
while O(log n) atomic interventions suf ces for adaptive search.

4

type (1): X 6! Y impliesY ! X, and a partial order can
be converted to a collection of required parental arcs.

®For every edg&X Y with X 2 S; andY 2 S;, enforce
the required parentalab¢ ! Y ifandonlyifi<j .
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Maximally oriented partially directed acyclic graphs and a more general framework of online primal-dual algo-
(MPDAGS), a re nement of essential graphs under addirithms (Bamas et al., 2020b).
tional causal information, are often used to model suct]n the above line of work, the extent to which the predic-

expert advice and there has been a recent growing interesF s are helpful in the design of the corresponding on-

understanding them better (Perkovic et al., 2017; Perkovi ine alorithms. is quanti ed by the following tWo brop-
2020; Guo & Perkovic, 2021). MPDAGS are obtained by _ - 9 1S qual y: owing two prop
erties. The algorithm is called (i)-consistentf it is -

orienting additional arc directions in the essential graph du%ompetitiveNith no prediction error and (ii) -robustif it is

to bagkground knowledge, and then applying Meek rules. -competitivewith any prediction error. In the language of
See Figure 1 for an example. ; : . - .
learning augmented algorithms or algorithms with predic-
tions, our causal graph discovery algorithm is 1-consistent
2.5. Other related work andO(log n)-robust when competing against the veri ca-

Causal Structure Learning  Algorithms for causal struc- tion number 1(G ), the minimum number of interventions
ture learning can be grouped into three broad categoriegecessary needed to reco@r. Note that even with arbi-
constraint-based, score-based, and Bayesian. Previot/@rily bad advice, our algorithm uses asymptotically the
works on the rst two approaches are described in Ap-same number of interventions incurred by the best-known
pendix C. In Bayesian methods, a prior distribution is asadvice-free adaptive search algorithm (Choo et al., 2022).
sumed on the space of all structures, and the posterior is

updated as more data come in. Heckerman (1995) was org Results

of the rstworks on learning from interventional data in this

context, which spurred a series of papers (e.g. Heckerma@ur exposition here focuses on interpreting and contextu-
et al. (1995); Cooper & Yoo (1999); Friedman & Koller alizing our main results while deferring technicalities to
(2000); Heckerman et al. (2006)). Research on active expeBection 4. We rst focus on the setting where the advice is
imental design for causal structure learning with Bayesiar@ fully oriented DAGE 2 [G ] within the Markov equiv-
updates was initiated by Tong & Koller (2000; 2001) andalence clas§G ] of the true underlying causal grajh ,
Murphy (2001). Masegosa & Moral (2013) considered aand explain in Appendix E how to handle the case of partial
combination of Bayesian and constraint-based approacheafvice. Full proofs are provided in the appendix.

Cho et al. (2016) and Agrawal et al. (2019) have used active

learning and Bayesian updates to help recover biologica.1. Structural property of veri cation numbers

networks. While possibly imperfect expert advice may be\Ne

used to guide the prior in the Bayesian approach, the works begin by stating a structural result about veri cation
g P Y PP ' numbers of DAGs within the same Markov equivalence

mentioned above do not provide rigorous guarantees abo% ass (MEC) that motivates the de nition of a metric be-

the number of interventions performed or about optimality,tween DAGS in the same MEC our algorithmic guarantees
and so they are not directly comparable to our results her%Theorem 3.5) are based upon

Theorem 3.1. For any DAGG with MEC[G ], we have
Algorithms with predictions Learning-augmented algo- thatmaxgzic | 1(G) 2 mingze | 1(G).
rithms have received signi cant attention since the seminal
work of Lykouris & Vassilvitskii (2021), where they investi- Theorem 3.1 is the rst known result relating the minimum
gated the online caching problem with predictions. Basednd maximum veri cation numbers of DAGs given a xed
on that model, Purohit et al. (2018) proposed algorithms foMEC. The next result tells us that the ratio of two is tight.

the ski-rental problem as well as non-clairvoyant scheduIing1._(_}r.m.na 3.2(Tightness of Theorem 3.1)There exist DAGS
Subsequently, Gollapudi & Panigrahi (2019), Wang et aIGl andG, from the same MEC with, (G1) =2  1(Gy).
(2020), and Angelopoulos et al. (2020) improved the initial

results for the ski-rental problem. Several works, includ-Theorem 3.1 tells us that we can blindly intervene on any
ing (Rohatgi, 2020; Antoniadis et al., 2020a; Wei, 2020)minimum verifying se® 2 V(@) of any given advice DAG
improved the initial results regarding the caching problemeg \\hije incurring only at most a constant factor of 2 more

Scheduling problems with machine-learned advice have .o entions than the minimum veri cation numbe(G )
been extensively studied in the literature (Lattanzi et al.of the unknown ground truth DAG .

2020; Bamas et al., 2020a; Antoniadis et al., 2022). There

are also results for augmenting classical data structures wi : L .
o : . .2. Adapt h with fect DA

predictions (e.g. indexing (Kraska et al., 2018) and BIoomtE daptive search with imperfec G advice

Iters (Mitzenmacher, 2018)), online selection and match-Recall the de nition ofr-hop from Section 2. To de ne

ing problems (Antoniadis et al., 2020b{ibing et al., 2021), the quality of the advice DAG, we rst de ne the notion

online TSP (Bernardini et al., 2022; Gouleakis et al., 2023)pf min-hop-coveragaevhich measures how “far” a given

5
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verifying set of@& is from the set of covered edges®f.

De nition 3.3 (Min-hop-coverage) Fix a DAG G with
MEC [G ] and consider any DAGE 2 [G ]. For any
minimum verifying set¢ 2 V (&), we de ne themin-
hop-coveragd(G ;) 2 0;1;2;:::;ngas the minimum
number of hops such thabthendpoints of covered edges

. ¢
(G ) of G belong mNshk(eCI;(E(G) » (#).

Using min-hop-coverage, we now de ne a quality measure
(G ;@) for DAG G 2 [G ] as an advice for DAG .

De nition 3.4 (Quality measure)Fix a DAGG with MEC  Figure 2. Consider the moral DAGS and& 2 [G ] on

[G ]and consider any DA 2 [G ]. We de ne (G ;&) n +5 nodes, where dashed arcs represent the covered edges in
as follows: each DAG. A minimum sized verifying s& = fa;e;zg 2

V(G) of & is given by the boxed vertices on the right. As
(G ;€)= max 9;N:k(e?(|z;fe) ) (9) Ngec )(®) = fa;b;c;d;e;z;22; zsgincludes both endpoints
¥2v (6) of all covered edges d& , we see thah(G ;%) = 1. Inter-
vening on® = fa;e;zgin G orientsthearch! a ¢
By de nition, (G ;G ) =0 andmaxgzc ] (G ;G) c e! dyandzz! 2z ! 2z respectively which then trig-
n. Inwords, (G ;@) only counts the relevant nodes within 9™ Meek R1 0 onlem.!” Ib viae ! c , tr)anfd to.r?rlent
the min-hop-coverage neighborhood after intervening orf4 : ? V'ae(')f ,Cb_' e A .”23 (abe al ewl Voga'
heworstpossible verifying sef of €. We de ne via fions of R1), sof & b; €;2;2;;2:g will not be relevant nodes
Eh tsetb hal C tevaluat in Eg (G ). Meanwhile, the edge  d remains unoriented in
e worst set because any search algorigamnotevaluate G) so (§:-NL €)= if ¢ dai = 2. One can check
h(G ;¥®), sinceG is unknown, and can only consider an Be (G )50 (ViNsies (V) = Jfeidg = 2.

. . that (G ;&) =2 while n could be arbitrarily large. On the other
arbitrary ¥ 2 V(6). See Figure 2 for an example. hand, observe that is notsymmetric: in the hypothetical situation

Our main result is that it is possible to design an algorithmvhere we us& as an advice fo€, the min-hop-coverage has
that leverages an advice DAG 2 [G ] and performs inter- [© extend along the cham  ::: 2z, to reachfz;2;9, so
ventions to fully recover an unknown underlying DA, ~ N(G :V ) nand (6/G ) n sincethe entire chain remains
whose performance depends on the advice qualiy ;€).  Unorented withrespectto any 2V (G ).

Our search algorithm only know&G ) andG 2 [G ] but

knows neither (G ;) nor (G ). designed an algorithm that invok8sibsetSearch as a

Theorem 3.5. Fix an essential graptE(G ) with an un-  black-box subroutine. Thus, the bounded size guarantees of

known underlying ground truth DAG . Given an advice SubsetSearch given by Theorem 2.9 carries over to our

graph® 2 [G ] and intervention set bourkd 1, there ex-  setting with a slight modi cation of the analysis.

ists a deterministic polynomial time algorithm (Algorithm 1)

that computes an intervention detadaptively such that ;

E (G )= G ,andjlj has size 4. Techniques

1.0(maxf1;log (G ;€)g 1(G))whenk=1 Here, we discuss the high-level technical ideas and intuition

2.0(maxf1;log (G ;®)g logk (G )) whenk> 1.  behind how we obtain our adaptive search algorithm with
imperfect DAG advice. See the appendix for full proofs; in

Consider rst the setting ok = 1. Observe that when the particular, see Appendix F for an overview of Theorem 3.1.

advice is perfect (i.e6 = G ), we useO( (G )) interven-

tions, i.e. a constant multiplicative factor of the minimum For brevity, we write to mean (G ;&) and drop the

number of interventions necessary. Meanwhile, even witipubscripskelE(G )) of r-hop neighborhoods in this sec-
tion. We also focus our discussion to the atomic interven-

low quality advice, we still us®(logn (G )) interven- . ) . :
tions, asymptotically matching the best known guarantee%ons' Our adaptive search a_lgorlthm (Algorithm 1) uses
ubsetSearch as a subroutine.

for adaptive search without advice. To the best of our knowl-
edge, Theorem 3.5 is the rst known result that principally We begin by observing th&8ubsetSearch (E(G );A)
employs imperfect expert advice with provable guaranteefully orientsE(G ) into G if the covered edges @ lie
in the context of causal graph discovery via interventions. within the node-induced subgraph inducedsy

Consider now the setting of bounded size interventiond.emma 4.1. Fix a DAGG = (V;E) and letv® V
wherek > 1. The reason why we can obtain such a result isbe any subset of vertices. Suppdse  V is the set
precisely because of our algorithmic design: we deliberatelpf nodes intervened bSubsetSearch (E(G ); V9. If

6
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G Vo | e (va)
Motivated by Lemma 4.1, we design Algorithm 1 to repeat- @ @
edly invokeSubsetSearch on node-induced subgraphs
N' (), starting from ararbitrary verifying set® 2 V (€) @(_ _@ i @ : @ ': () ’ @ :
and forincreasingvalues ofr. ' ’
Fori 2 N[f Og, letus denote(i) 2 N[f Ogas the value @ ¥ = fvig @
of r in thei-th invocation ofSubsetSearch , where we
insist thatr (0) = 0 andr(j) >r(j 1) foranyj 2 N.
Nolte 'thatr =0 SI.mpIy lm'plles that we lnt'ervene Qn the Figure 3. Consider the ground truth DAG with unique mini-
verifying set?, which only incursO( 1(G )) interventions  1,m verifying sef v.g and an advice DAG 2 [G ]with chosen
due to Theorem 3.1_. Then, we can a_lppeal _to Lemma 4.1 %inimum verifying se® = fvig. So,h(G ;%) = 1 and ideally
conclude thag(G ) is completely oriented int@ inthe  \ye want to argue that our algorithm uses a constant number of inter-

t-th invocation ifr (t)  h(G ;¥). ventions. Without tweak 2 amiy = 2, an algorithm that increases

. . L . . _hop radius until the number of relevant nodes is squarecdwilin-
While the high-level subroutine invocation idea seems simy ) o subsetSearch  untilr = 3 because (¢:NY)=1 <n?2

ple, one needs to invokgubsetSearch  atsuitably cho- 4 (8:N2)=2 <n2. However, (¢:N% = n 1andwe
sen intervalsn order to achieve our theoretical guarantees;an, only conclude that the algorithm uggog n) interventions
we promise in Theorem 3.5. We now explain how to do so inpy invoking SubsetSearch  on a subgraph on 1 nodes.
three successive attempts while explaining the algorithmic

decisions behind each modi cation introduced.

QG ) E(G [VY),thenE (G )= G .

ventions suf ce, matching the advice-free bound of Theo-
As a reminder, welo notknow G and thusdo notknow  rem 2.7. However, this approach and analysis dmesake
h(G ;®) for any verifying se® 2 V(6€) of € 2 [G ]. into account the quality o and isinsuf cient to relaten;

with the advice measure.
NAIVE ATTEMPT: INVOKE FORT =0;1;2;3;:::

The most straightforward attempt would be to invoke T WEAK 2 ALSO INVOKE ONE ROUND BEFORE

SubsetSearch  repeatedly each time we increas&y  syppose the nal invocation @ubsetSearch is onr (t)-
1 until the graph is fully oriented — in the worst case,phop neighborhood while incurrin@(logn;  1(G )) in-

t = h(G ;¥). However, this may cause us to iNCUr toryentions. This means theG ) lies within N () (@)
way too many interventions. Suppose there mreele- | i e D(§). That is, N'C D(§) (
vant nodes in the-th invocation. Using Theorem 2.9, one . o

g NP 9)(g)  NT(D(§). While this tells us that, 1

can only arggie that the overall number intgventions in

curred isO( i, logn; (G )). Hpwever, logn; | (B;NTC D(8)j < j (8;NC ¥)(®)j =, what
could be signi cantly larger thafog( , n;) in general, We wantis to conclude that; 2 O( ). Unfortunately,
e.g.log2+:::+log2 = (n=2) log2 logn. Infact, €ven when = r(t 1)+1, it could be the case that
if G was a path om verticesv; ! vo ! :::1 vyand ] (8;N"C®@)j j N"O(®)j as the number of rel-
6 2 [G | misleadsuswitly; v» :::  vn,thenthis evant nodes could blow up within a single hop (see Fig-
approach incurg n) interventions in total. ure 3). To control this potential blow up in the analysis,
we can introduce the following technical x: whenever
TWEAK 1: ONLY INVOKE PERIODICALLY we want to invokeSubsetSearch onr(i), rstinvoke

SubsetSearch onr(i) 1 and terminate earlier if the

Since Theorem 2.9 provides us a logarithmic factor ingraph is already fully oriented intG .

the analysis, we could instead consider only invoking

SubsgtSearch after the number of nodes in the ;ub— PUTTING TOGETHER

graphincreases by a polynomial factoFor example, if

we invokedSubsetSearch  with n; previously, then we Algorithm 1 presents our full algorithm where the inequality
will wait until the number of relevant nodes surpassgs (i N g ) () n? corresponds to the rst tweak
before invokingSubsetSearch again, where we de ne  while the termsC; andC? correspond to the second tweak.
no 2 for simplicity. Sincelogn;  2logn; ;, we can
see via an inductive argument that the number of interve
tions used in the nal invocation will dominate the total
number of interventions useg so far; 2logn; 1
logne 1 +2logny o i it:ol logn;. Sincen; n ‘e.g. see hittps://en.wikipedia.org/wiki/
for anyi, we can already prove th&(logn (G )) inter-  Learning_augmented_algorithm#Binary_search

Ap Appendix H, we explain why our algorithm (Algorithm 1)
Is simply the classic “binary search with predictiénihen
the given essential graf{(G ) is an undirected path. So,
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another way to view our result isgeneralizatiorthat works ~ Theorem 4.2 enables us to easily relatéG) with (G)

on essential graphs of arbitrary moral DAGs. while Lemma 4.3 provides an ef cient labelling scheme to
partition a set oh nodes into a se% = fS;;S;;:::g of
Algorithm 1 Adaptive search algorithm with advice. bounded size sets, eaghinvolving at mostk nodes. By
1: Input: Essential grapE(G ), advice DAGE 2 [G ],  invoking Lemma 4.3 witr? n%k wheren®is related to
intervention sizé& 2 N 1(G), we see thaiSj |- logk. As ¢(G)  1(G)=k,
2: Output: An intervention set such that each interven- this is precisely why the bounded intervention guarantees
tion involves at mosk nodes and (G )= G . in Theorem 2.7, Theorem 2.9 and Theorem 3.5 have an
3: Let us writeSSto meanSubsetSearch . additional multiplicativdogk factor.
4: Let'®¥ 2 V(6) be any atomic verifying set d@&.
5:ifk =1 then 5. Empirical validation
6: Denelgy= ¥ as an atomic intervention set.
7: else While our main contributions are theoretical, we also per-
8: Dene k®= minfk;j®j=2g, a = dj¢j=k% 2, formed some experiments to empirically validate that our
and” = dog, jCje. Compute labelling scheme on algorithm is practical, outperforms the advice-free baseline
@ with (j®j; k; a) via Lemma 4.3 and de néo =  When the advice quality is good, and still being at most a
f Sy Oxa[ly2(a, WhereSy, € is the subset of constant factor worse when the advice is poor.
vertices whosa™ letter in the label isy. Motivated by Theorem 2.3, we experimented on synthetic
9: end if moral DAGs from Wieldbst et al. (2021b): For each undi-
10: Intervene orl ¢ and initializer  0,i 0,ng 2. rected chordal graph, we use the uniform sampling algo-
11: while § , (G ) still has undirected edge® rithm of Wiendbst et al. (2021b) to uniformly sample 1000
12 if (s Ngeyees 1 (%) n2 then moral DAGsG;;:::; 81000 and randomly choose one of
13: Incremeni i +1 andrecord (i) r. them asG . Then, we givef (E(G ); &i)di2 1000 @S input
14: Updaten; (15 Ndeieee 5 (9) to Algorithm 1.
15: Ci  SYE, (G); Nsrkel% EG )) (%);k) Figure 4 shows one of the experimental plots; more detailed
16 if &, , c (G ) still has undirected edgélen experimental setup and results are given in Appendix |. On
17: CO SS(E, [ c (G )iNfgee y(9)ik)  the X-axis, we plot (G ;¥) = V;N;fe?(éfg ,(8)
18: Updatel; | 1[ Gi[ CL which is alower boundand proxy for (G ;®). On the
19: else Y-axis, we aggregate advice DAGs based on their quality
20: Updateli | i 1[ Ci. measure and also show (in dashed lines) the empirical distri-
21 end if bution of quality measures of all DAGs within the Markov
22.  endif equivalence class.
23:  Incrementr r+1. .
24 end while As expected from our theoretical analyses, we see that the
25: return | ; number of interventions by our advice search starts from

1(G ), is lower than advice-free search of (Choo et al.,
2022) when (G ;¥) is low, and gradually increases as
the advice quality degrades. Nonetheless, the number of
] interventions used is always theoretically bounded below
Theorem 4.2(Theorem 12 of (Choo et al., 2022)Fix an O( (G :®) 1(G));wedonotplot (G :®) 1(G)
essential grapte(G ) andG 2 [G ]. If 1(G) = *, then  gince plotting it yields a “squashed” graph as the empirical

k(G) d peand there exists a polynomial time algo. 10 ¢qynts are signi cantly smaller. In this speci ¢ graph in-
compute a bounded size intervention kedf sizejl] stance, Figure 4 suggests that our advice search outperforms
dge+1. its advice-free counterpart when given an advice DBG
Lemma 4.3(Lemma 1 of (Shanmugam et al., 2015))et  that is better than 40%of all possible DAGs consistent
(n;k;a) be parameters where  n=2. There exists a with the observational essential grafG ).
polynomial time labeling scheme that produces distinct —— ) _ )
length labels for all elements iim] using letters from the We do not know if there is an ef cient way to compute
integer alphabef Og [ [a] where® = dog, ne. Further, in tiéfoi/fr);”e;(')dses?;lgen?iﬁ'i‘r’rfu(go\f:r'ikf’;{nzxggt”se”“a' time) enumera-
every digit (or position), any integer letter is used at most '
dn=ae times. This labelling scheme is a separating system:
for anyi;j 2 [n], there exists some digit2 ['] where the
labels ofi andj differ.

For bounded size interventions, we rely on the following
known results.
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whether one can design and analyze a better algorithm than
a trivial maxg,, . For example, maybe one could pick
G =argmin g, Maxyzic ; (H; G)? The motivation is

as follows: If[G ]is adiscinR? and is the Euclidean dis-
tance, ther® should be the point withii that is closest to

the center of the disc. Note that we can only optimize with
respect tanaxy » ;¢ | because we do not actually kndsv .

It remains to be seen if such an object can be ef ciently com-
puted and whether it gives a better bound theaxe,, -

Incorporating expert con dence The notion of “con -
dence level” and “correctness” of an advice are orthogonal
issues — an expert can be con dently wrong. In this work,
we focused on the case where the expert is fully con dent
but may be providing imperfect advice. It is an interesting
problem to investigate how to principally handle both issues
Figure 4. Experimental plot for one of the synthetic grapghs,  Simultaneously; for example, what if the advice is not a
with respect tdl000 j [G ]j 1:4 10° uniformly sampled DAG & 2 [G ]in the essential graph but a distribution over
advice DAGsG from the MEC[G ]. The solid lines indicate all DAGs in[G ]? Bayesian ideas may apply here.
the number of atomic interventions used while the dotted lines
indicate the empirical cumulative probability density®f The  petter analysis? Empirically, we see that the log factor is
true cur_n_ulatlve probability density Iles_ within the s_haded area Wltha rather loose upper bound both for blind search and advice
probability atleast 0.99 (see Appendix | for details). searchCan there be a tighter analysigZhoo et al., 2022)
tells us that(log n 1(G )) is unavoidable whek(G )
6. Conclusion and discussion is a path om vertices with 1(G ) = 1 but this is a special
class of graphs. What if;(G ) > 1? Can we give tighter
bounds in other graph parameters? Furthermore, in some
reliminary testing, we observed that implementing tweak
or ignoring it yield similar empirical performance and we

In this work, we gave the rst result that utilizes imperfect
advice in the context of causal discovery. We do so in
way that the performance (i.e. the number of intervention
In our gage) does not dggrgde signi cantly even when. th onder if there is a tighter analysis without tweak 2 that has
advice is inaccurate, which is consistent with the objecuvess. .

) . . imilar guarantees.
of learning-augmented algorithms. Speci cally, we show
a smooth bound that matches the number of interventions
needed for veri cation of the causal relationships in a graphACknowledgements
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A. Remark about assumptions

Undercausal suf ciencythere are no hidden confounders (i.e. unobserved common causes to the observed variables). While
causal suf ciency may not always hold, it is still a reasonable assumption to make in certain applications such as studying
gene regulatory networks (e.g. see (Wang et al., 2017)).

Faithfulnessassumes that independencies that occur in the data do not occur due to “cancellations” in the functional
relationships, but rather due to the causal graph structure. It is known (Meek, 1995b; Spirtes et al., 2000) that, under many
natural parameterizations and settings, the set of unfaithful parameters for any given causal DAG has zero Lebesgue measure
(i.e. faithfulness holds; see also Section 3.2 of (Zhang & Spirtes, 2002) for a discussion about faithfulness). However, one
should be aware that the faithfulness assumption may be violated in reality (Andersen, 2013; Uhler et al., 2013), especially
in the presence of sampling errors in the nite sample regime.

Ideal interventionsassume hard interventions (forcefully setting a variable value) and the ability to obtain as many
interventional samples as desired, ensuring that we always recover the directions of all edges cut by interventions. Without
this assumption, we may fail to correctly infer some arc directions and our algorithms will only succeed with some success
probability.

Our assumption that the given expert advice is consistent with observational essential graph is purely for simplicity and can
be removed by deciding which part of the given advice to discard so that the remaining advice is consistent. However, we
feel that deciding which part of the inconsistent advice to discard will unnecessarily complicate our algorithmic contributions
without providing any useful insights, and thus we made such an assumption.

B. Additional Preliminaries

n using standard asymptotic notatio@$ ), ( ), and ( ). The indicator functior yredicateiS 1 if the predicate is true and
0 otherwise. Throughout, we u§&: to denote the (unknown) ground truth DAG, its Markov equivalence cla$& blyand
the corresponding essential graphE(G ). We write A LB andA n B to represent the disjoint union and set difference of
two setsA andB respectively.

B.1. Graph basics
We consider partially oriented graphs without parallel edges.

LetG = (V;E) be a graph ofVj = n nodes/vertices wheM(G), E(G), andA(G) E(G) denote nodes, edges, and
arcs ofG respectively. The grapB is said to be fully oriented iA(G) = E(G), fully unoriented ifA(G) = ;, and
partially oriented otherwise. For any subs&t V andE® E, we useG[V Y andG[E Y to denote the node-induced and
edge-induced subgraphs respectively. We write v to denote that two nodesv 2 V are connected ifs, and write

u! voru vwhen specifying a certain direction. Thkeletorskel(G) refers to the underlying graph where all edges
are made undirected. ¥structurein G refers to a collection of three distinct vertiogs/;w 2 V suchthau! v w

andu 6 w. A directed cycle refers to a sequencekof 3vertices wherer; ! v, ! il v ! vy, Anacyclic
completion / consistent extensioha partially oriented graph refers to an assignment of edge directions to the unoriented
edge<E (G) n A(G) such that the resulting fully oriented graph has no directed cycles.

Supposes = (V;E) is fully unoriented. For vertices;v 2 V, subset of vertice¥® V and integer 0, de ne
dist (u;V) as the shortest path length betweeandv, dist ¢ (V%v) = min ,ayodist g(u;v), andNg (VY = fv 2

V :dist g(v;V9) rg V asthe set of vertices that arénops away fronV °, i.e.r-hop neighbors o¥°. We omit the
subscriptG when it is clear from context.

Supposes = (V;E) is fully oriented. For any vertex 2 V, we write Pa(v); Anc(v); Des(v) to denote the parents,
ancestors and descendanty aéspectively and we writBes[v] = Des(v) [f vgandAnc[v] = Anc(v) [f vgto include
v itself. We de neCh(v) Des(v) as the set oflirect childrenof v, that is, for anyw 2 Ch(v) there doesot exists

z 2 V nfv;wgsuchthat 2 Des(v)\ Anc(w). Note thatCh(v) f w2V :v! wg Des(v).
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B.2. Causal graph basics

A directed acyclic graph (DAG) is a fully oriented graph without directed cycles. By representing random variables by
nodes, DAGs are commonly used as graphical caLéaI models (Pearl, 2009), where the joint probability dectsitizes
according to the Markov property:(vy;:::;Vy) = {1:1 f (vi j pa(v)), wherepa(v) denotes the values taken f'g
parents. One can associate a (not necessarily uniglid)permutation / topological ordering : V ! [n] to any (partially
directed) DAG such that oriented ar@s v) satisfy (u) < (v) and unoriented ardwu; vg can be oriented as! v

without forming directed cycles wher(u) < (v).

For any DAGG, we denote its Markov equivalence class (MEC)®Yand essential graph 5(G). DAGs in the same

MEC have the same skeleton and the essential graph is a partially directed graph such thatlanwisdirected ifu ! v

in everyDAG in MEC [G], and an edge v is undirected if there exists two DAG3;; G, 2 [G] such thau ! vin

Gy andv! uin G,. Itis known that two graphs are Markov equivalent if and only if they have the same skeleton and
v-structures (Verma & Pearl, 1990; Andersson et al., 1997). In fact, the essentiaEff@phan be computed froi@ by
orienting v-structures in the skeletskel(G) and applying Meek rules (see Appendix D). An edge v is acovered edge
(Chickering, 1995) ifPa(u) = Pa(v) nfug. We useC(G) E(G) to denote the set of covered edge<=ofThe following

is a well-known result relating covered edges and MECs.

Lemma B.1((Chickering, 1995)) If G andG°belong in the same MEC if and only if there exists a sequence of covered
edge reversals to transform between them.

C. Additional Related Works on Causal Structure Learning

Constraint-based algorithms, such as ours, use information about conditional independence relations to identify the
underlying structure. From purely observational data, the PC (Spirtes et al., 2000), FCI (Spirtes et al., 2000) and RFCI
algorithms (Colombo et al., 2012) have been shown to consistently recover the essential graph, assuming causal suf ciency,
faithfulness, and i.i.d. samples. The problem of recovering the DAG using constraints from interventional data was rst
studied by Eberhardt et al. (2006; 2005); Eberhardt (2007). Many recent works (Hu et al., 2014; Shanmugam et al., 2015;
Kocaoglu et al., 2017; Lindgren et al., 2018; Greenewald et al., 2019; Squires et al., 2020; Choo et al., 2022; Choo &
Shiragur, 2023) have followed up on these themes.

Score-based methods maximize a particular score function over the space of graphs. For observational data, the GES
algorithm (Chickering, 2002) uses the BIC to iteratively add edges. Extending the GES, Hausiéir&aBn (2012)
proposed the GIES algorithm that uses passive interventional data to orient more edges. Hybrid methods, like Solus et al.
(2021) for observational and Wang et al. (2017) for interventional data, use elements of both approaches.

D. Meek rules

Meek rules are a set of 4 edge orientation rules that are sound and complete with respect to any given set of arcs that has a
consistent DAG extension (Meek, 1995a). Given any edge orientation information, one can always repeatedly apply Meek
rules till a unique xed point (where no further rules trigger) to maximize the number of oriented arcs.

De nition D.1 (The four Meek rules (Meek, 1995a), see Figure 5 for an illustration)

R1 Edgefa;bg 2 E(G) nA(G) is oriented as! bif 9c2 V suchthat! aandc6 b
R2 Edgefa;bg 2 E(G) nA(G) isoriented as! bif 9¢c2 V suchthag! c! b
R3 Edgefa;bg 2 E(G) nA(G) isorientedas! bif 9¢;d2 V suchthad a ¢ d! b c,andc6 d.

R4 Edgefa;bg 2 E(G) nA(G) isorientedas! bif 9¢;d2 V suchthad a ¢, d! c! bandb6 d.

There exists an algorithm (Algorithm 2 of (Wiébst et al., 2021a)) that runs@(d jE (G)j) time and computes the closure
under Meek rules, whemis the degeneracy of the graph skeléton

°A d-degenerate graph is an undirected graph in which every subgraph has a vertex of degree aNoteshat the degeneracy of a
graph is typically smaller than the maximum degree of the graph.
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Figure 5.An illustration of the four Meek rules

E. Imperfect partial advice via MPDAGs

In the previous sections, we discuss advice that occurs in the form of a®2GG ]. However, this may be too much to
ask for in certain situations. For example:

* The Markov equivalence class may be too large for an expert to traverse through and propose an advice DAG.

« The expert only has opinions about a subset of a very large causal graph involving millions of nodes / edges.

As discussed in Section 2.4, we can formulate such partial advice as MPDAGs. Given a MPDAG as expert advice, a natural
attempt would be to sample a DAG from it to use the full advice. Unfortunately, it is #P-complete even to count the
number of DAGs consistent with a given MPDAG in general (\Vidiest et al., 2021b) and we are unaware of any ef cient

way to sample uniformly at random from it. Instead, we propose to pick an arbitrary®A&advice within the given
MPDAG: pick any unoriented edge, orient arbitrarily, apply Meek rules, repeat until fully oriented. The following result
follows naturally by maximizing over all possible DAGs consistent with the given partial advice.

Theorem E.1. Fix an essential grapE(G ) with an unknown underlying ground truth DAG . Given a sefA of DAGs
consistent with the given partial advice and intervention set bdund1, there exists a deterministic polynomial time
algorithm that computes an intervention seadaptively such thaf (G ) = G , andjlj has size

1.O(maxf 1;logmaxe,, (G ;6)g 1(G))

2. O(maxf1;logmaxe,, (G ;6)g logk «(G))

whenk = 1 andk > 1 respectively.

F. Technical Overview for Theorem 3.1
As discussed in Section 2, it suf ces to prove Theorem 3.1 with respect to moral DAGs.

Our strategy for proving Theorem 3.1 is to consider two arbitrary D&ggsource) ands; (target) in the same equivalence
class and transform a verifying set 18t into a verifying set foiG; using Lemma B.1 (see Algorithm 2 for the explicit
algorithmt'®). Instead of proving Theorem 3.1 by analyzing the exact sequence of covered edges produced by Algbrithm 2
when transforming between the DAGs,i, = argminGz[G ] 1(G) andGpax = argmaxgz (g | 1(G), we will prove
something more general.

Observe that taking both endpoints of any maximal matching of covered edges is a valid verifying set that iswsiceost

the size of the minimum verifying set. This is because maximal matching is a 2-approximation to the minimum vertex
cover. Motivated by this observation, our proof for Theorem 3.1 uses the following transformation argument (Lemma F.3):
for two DAGs G and G° that differ only on the arc direction of a single covered esge y, we show that given a
conditional-root-greedy (CRG) maximal matchiAgn the covered edges &, we can obtain another CRG maximal
matchingof the same sizen the covered edges G, after reversinge y and transformings to G°

So, starting frontss, we compute a CRG maximal matching, then we apply the transformation argument above on the
sequence of covered edges given by Algorithm 2 until we get a CRG maximal matchtqgbthe same sizel'hus, we

can conclude that the minimum vertex cover size&oandG; differ by a factor of at most two. This argument holds for

any pair of DAGs(Gs; G¢) from the same MEC.

%Lemma 2 of (Chickering, 1995) guarantees that y is a covered edge of the curre®t whenever step 9 is executed.

"The correctness of Algorithm 2 is given in (Chickering, 1995) where the key idea is to show!that found in this manner is a
covered edge. This is proven in Lemma 2 of (Chickering, 1995).

12 special type of maximal matching (see De nition F.1).
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Algorithm 2 (Chickering, 1995): Transforms between two DAGs within the same MEC via covered edge reversals
1: Input: Two DAGSGs = (V; Es) andG; = (V; Ey)
2: Output: A sequenceeq of covered edge reversals that transfo@sto G;
3:seq ;
4: while G5 6 G; do
5:  Fix an arbitrary valid ordering for Gs.
6: LetA A(Gs) nA(Gy) be the set of differing arcs.
7
8
9

Lety —argmin, ;v .pa, (y)s; f (V).
Letx argmax, , pa, (yyf (2)0.
: Addx! ytoseq.
10: UpdateGs by replacingc ! ywithy ! x.
11: end while
12: return seq

We now de ne what is a conditional-root-greedy (CRG) maximal matching. As the set of covered@®)esf any DAG

G induces a forest (see Theorem 2.6), we de ne the CRG maximal matching using a particular greedy process on the tree
structure ofC(G). The CRG maximal matching is unique with respect to a xed valid ordering G and subse$. We

will later consider CRG maximal matchings with= A(Gs) \ A(Gy), where the arc s& remains unchanged throughout

the entire transformation process

De nition F.1 (Conditional-root-greedy (CRG) maximal matchin@iven a DAGG = ( V; E) with a valid ordering g
and a subset of edg& E, we de ne the conditional-root-greedy (CRG) maximal matchihg. ..s as theunique
maximal matching oi©(G) computed via Algorithm 3: greedily choose axcs y where thex has no incoming arcs by
minimizing s (y), conditioned orfavoring arcs outside d$.

Algorithm 3 Conditional-root-greedy maximal matching
1: Input: ADAG G = (V;E), avalid ordering ¢, a subset of edges E

2: Output: A CRG maximal matchindlg. s

3: Initialize Mg s ; andC C (G)

4: whileC 6 ; do

5. X argmin, ;¢ yzv jur vacgl 6(2)9

6: Yy argming,y .. ,0cf c(2)+ n? 1, ;259
7. Addthearx! ytoMg: .:s

8: Remove all arcs witl ory as endpoints fron®

9: end while

10: return Mg; s

To prove the transformation argument (Lemma F.3), we need to rst understand how the status of covered edges evolve
when we perform a single edge reversal. The following lemma may be of independent interest beyond this work.

Lemma F.2 (Covered edge status changes due to covered edge reversa) be a moral DAG with MEQG ] and
consider any DAGG 2 [G ]. Supposé& = (V;E) has a covered edge! y 2 C(G) E andwereversa ! yto
y ! xtoobtain a new DAGS?2 [G ]. Then, all of the following statements hold:

1.y! x2C(GY. Note that this is the covered edge that was reversed.
2. If an edgee does not involve or y, thene 2 C(G) if and only ife 2 C(G9).
3. Ifx 2 Chg(a) forsomea 2 V nfx;yg, thena! x 2 C(G)ifandonlyifa! y 2 C(G9.

4. 1fb2 Chg(y) andx ! b2 E(G) forsomeb2 V nfx;yg, theny! b2 C(G)ifandonlyifx! b2 C(GP.

Using Lemma F.2, we derive our transformation argument.
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Lemma F.3. Consider two moral DAG&; and G, from the same MEC such that they differ only in one covered edge
direction:x ! y2 E(G;) andy! x 2 E(G)).

Let vertexa be the direct parent of in G4, if it exists. LetS E be asubsetsuchthat! x 2 Sandx! y;y! x 625
(if a does not exist, ignore conditian! x 2 S).

Suppose g, is an ordering forG; such thaty = argmin, ., ,,c(c,)f &,(2) + n? 1, ;2sgand denotMg,. 6,8
as the corresponding CRG maximal matching®®:). Then, there exists an explicit modi cation of, to ¢,, and
Mg,; ,;s to a CRG maximal matchinglg,: .,:s for (Gz) such thajMg,: ;, :si= jMg,; ,:s]-

To be precise, giveng,, we willde ne ¢, in our proofs as follows:

8

3 e, (x) ifv=y
G, (u) ifv=x

3 c.(y) ifv=u

"o, (v) else

Gz(v) =

@

As discussed earlier, Theorem 3.1 follows by pickiBg= argmax g, g | 1(G) andG; = argmin g, | 1(G), applying
Algorithm 2 to nd a transformation sequence of covered edge reversals between them, and repeatedly applying Lemma F.3
with the conditioning seb = A(Gs) \ A(Gy) to conclude thaGs andG; have the same sized CRG maximal matchings,

and thus implying thamingzic 1 1(G) = 1(Gs) 2 1(Gt) =2 argmaxg, g | 1(G). Note that we keep the
conditioning set unchanged throughout the entire transformation prodess Gs to G;.

For an illustrated example of conditional-root-greedy (CRG) maximal matchings and how we update the permutation
ordering, see Figure 6 and Figure 7.

Figure 6. Consider the following simple setup of two DAGs andG, which agree on all arc directions exceptfot y in G; and
y ! xinG;. Dashed arcs represent the covered edges in each DAG. The numbers below each vertex indigatartiec, orderings
respectively. IG1, u = argmin ZZChGl(X)f ¢, (2)g. Observe that Equation (1) modi es the ordering onlyfary; ug (in blue) while
keeping the ordering of all other vertices xed. Supp8se A(G1)\ A(G;) = fa! b;a! x;a! y;a! u;x! b;x! uy! bg
With respect to ¢, andS, The conditional-root-greedy maximal matchings (see Algorithm 3Magg: 6,8 = fa! x;y! bgand
Mg,; 5,55 = fa! y;x! bg.

G. Deferred proofs
G.1. Preliminaries

Our proofs rely on some existing results which we rst state and explain below.

Lemma G.1(Lemma 27 of (Choo et al., 2022)Fix an essential grapE(G ) andG 2 [G ]. If | 2V is a verifying set,
thenl separates all unoriented covered edge v of G.

Lemma G.2(Lemma 28 of (Choo et al., 2022)Fix an essential grapE(G ) andG 2 [G ]. If| 2V is an intervention
set that separates every unoriented covered edgev of G, thenl is a verifying set.

Lemma G.1 tells us that we have to intervene on one of the endpoimtsyafovered edge in order to orient it while
Lemma G.2 tells us that doing so for all covered edges suf ces to orient the entire causal DAG.
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D e~

G, 3 4 Go

Figure 7. Consider the following simple setup of two DA@&s andG4 which agree on all arc directions except fof y in Gs and
y ! xinGs. Dashed arcs represent the covered edges in each DAG. The numbers below each vertex indigatertie, orderings
respectively. Observe th&Gs) = fx! u;x! y;y! bg. IfwedeneS= A(G3)\ A(G4)= fx! b;x! uy! bg, wesee
that the conditional-root-greedy maximal matchings (see Algorithm 3)aye ,,s = fx! ygandMg,; 5,:;s = fy! xg. Note
that Algorithm 3 doesiotchoosex | u 2 C(G1) despite (u) < (y) becausex! u2 S,so (y) < (u)+ n2.

G.2. Veri cation numbers of DAGs within same MEC are bounded by a factor of two

We use the following simple lemma in our proof of Lemma F.2.

Lemma G.3. For any covered edge! yinaDAGG = (V;E), we havey 2 Chg(x). Furthermore, each vertex only
appears as an endpoint in the collection of covered e@€g at most once.

Proof. For the rst statement, suppose, for a contradiction, $h&2Ch(x). Then, there exists some2 V nfx;ygsuch
thatz 2 Des(x) \ Anc(y). Fix an arbitrary ordering for G and letz = argmax,; pes(x)\ anc(y)f (2)9- Then, we see
thatz ! ywhilez 6! x sincez 2 Des(x). So,x! y cannotbe a covered edge. Contradiction.

For the second statement, suppose, for a contradiction, that there are two coveradledges! x 2 C(G) that ends
with x. Sinceu! x 2 C(G), we musthave ! u. Sincev! x 2 C(G), we must havei! v. We cannot have both
u! vandv! usimultaneously. Contradiction. O

Lemma F.2 (Covered edge status changes due to covered edge reversa) be a moral DAG with MEQG ] and
consider any DAGS 2 [G ]. Supposé = (V;E) has acovered edge! y 2 C(G) E andwerevers& ! yto
y ! xto obtain a new DAGS°2 [G ]. Then, all of the following statements hold:

1.y! x2C(GY. Note that this is the covered edge that was reversed.

2. If an edgee does not involve or y, thene 2 C(G) if and only ife 2 C(G9).

3. Ifx 2 Chg(a) forsomea 2 V nfx;yg, thena! x 2 C(G)ifandonlyifa! y 2 C(G9.

4. Ifb2 Chg(y) andx ! b2 E(G) forsomeb2 V nfx;yg, theny! b2 C(G)ifandonlyifx! b2 C(GY.

Proof. The only parental relationships that changed when we revexsingy toy ! x arePago(y) = Pag(y) nfxgand
Pago(x) = Pag(x) [f yg. For any other verten 2 V nfx;yg, we havePago(u) = Pag(u). The rsttwo points have
the same proof: as parental relationships of both endpoints are unchanged, the covered edge status is unchanged.

3. Sincex ! y2C(G),we havea! y2 E(G). We prove both directions separately.
Supposa! x 2 C(G). Then,Pag(a) = Pag(x) nfag. Sincex ! y 2 C(G), thenPag(x) = Pag(y) nfxg. So,
we havePago(a) = Pag(a) = Pag(x) nfag= Pag(y) nfx;ag= Pago(y) nfag. Thus,a! y 2 C(G9.
Supposea! x 62 G). Then, one of the two cases must occur:
(a) There exists some vertexsuch thau! aandu 6! x in G.
Sincex ! yis acovered edge, 6! x impliesu 6! yin G. Thereforea! y 62 QG% duetou! a.

(b) There exists some vertexsuch thawv ! x andv 6! ain G.
There are two possibilities for6! a:v6 aorv a. Ifv6 a, thenv! x aisav-structure. IV a, then
X 62Ch(a) since we hava! v! x. Both possibilities lead to contradictions.

The rst case implies! y 62 QG9 while the second case cannot happen.
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4. We prove both directions separately.
Suppose/ ! b2 C(G). Then,Pag(y) = Pag(b) nfyg. Sincex ! y 2 C(G), thenPag(x) = Pag(y) nfxg. So,
we havePago(b) nfxg = Pag(b) nfxg= Pag(y) [f ygnfxg= Pag(x)[f yg= Pago(x). Thus,x ! b2 C(G9.
Suppose/ ! b62 QG). Then, one of the two cases must occur:
¢ There exists some vertex! y andu 6! b.
Sincex ! yisacovered edge,! yimpliesu! x. Thereforex! b62 QG% due tou 6! b.

* There exists some vertex! bandv 6! vy.
There are two possibilities far6! y:v6 yorv y.Ifv6 y,thenv! b yisav-structure. I vy, then
b 62Ch(y) since we havg ! v ! h. Both possibilities lead to contradictions.

The rst case impliex ! b62 QG% while the second case cannot happen. O

Lemma F.3. Consider two moral DAG&; and G, from the same MEC such that they differ only in one covered edge
direction:x ! y 2 E(Gy) andy! x 2 E(Gy).

Let vertexa be the direct parent of in Gy, if it exists. LetS E be asubsetsuchthat! x 2 Sandx! y;y! x 625
(if a does not exist, ignore conditian! x 2 S).

Suppose g, is an ordering forG; such thaty = argmin, ., ,5c(c,)f &,(2) + n2 1, ;2sgand denotMg, . 6,8
as the corresponding CRG maximal matching@@,). Then, there exists an explicit modi cation of, to ¢,, and
Mg, ¢,;s to a CRG maximal matchinglg,; .,;s for (Gz) such thajMe,; ¢ :sj = jMc,; ¢,:s]-

Proof. De ne u = argmin ,; ¢y, (x)f ,(2)g as the lowest ordered child af Note that Algorithm 3 chooses! 'y
instead ofk ! u by de nition of y. This impliesthak ! u 2 S wheneveu 6 vy.

Letus de ne ¢, as follows:

G, (u) ifv=x
c.(y) ifv=u
c,(v) else

8 .
% c,(x) ifv=y
Gz(v) = §

Clearly, g,(X) < o,(y)and g,(x) > ,(y). Meanwhile, for any other two adjacent verticeandv®, observe that
6, (V)< 6, (V9 0 6, (V) < 6,(V9) so g, agrees with the arc orientations of, except forx y. See Figure 6
for an illustrated example.

De ne vertexb as follows:

b=argmin z2V : z2 Des(x) andy! zZC(Gl)f Gl(z)+ n 1x 2259

If vertex b exists, then we know th&t2 Chg, (y) andx ! b2 C(G;) by Lemma G.3 and Lemma F.2. By minimality laf
De nition F.1 will choosey !  bif picking a covered edge starting wishfor Mg, ; ; :s. So, we can equivalently de ne
vertexbas follows:

b= argmin z2V : z2 Des(y) andx! 22C(G2)f Gz(z) +n? 1 2250
By choice of g,, De nition F.1 will choosex !  bif picking a covered edge starting withfor Mg,; ,:s-

We will now construct a same-sized maximal matchig,. .,.s fromMg,; ; ;s (Step 1), argue that it is maximal
matching ofC(G;) (Step 2), and that it is indeed a conditional-root-greedy matchin@({@g) with respect to ¢, andS
(Step 3). There are three cases that cover all possibilities:

Case 1Vertexaexistsa! x 2 Mg,; s, and vertexbexists.
Case 2 Vertexa exists,a! x 2 Mg;,: .S and verteXb does not exist.

Case3a! x6Mg,; 4,:s-
This could be due to vertexnot existing, oa! x 62 @G1), orMg,; ., ;s containing a covered edge endingaato
a! x was removed from consideration.
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Step 1: Construction ofMg,; 4,;s suchthatjMg,; ¢,:s] = jMa,; ,:si-

By Lemma F.2, covered edge statuses of edges whose endpoints do not ineolyevill remain unchanged. By de nition
of y, we know that De nition F.1 will choose ! v if picking a covered edge starting withfor Mg, . :s.

Sincea! x 2 Mg,; ., incases 1and 2, we know that there is no arcs of the fofm in Mg,; ., :s. Since there is no
arcofthe form ! xinMg,; ;s incase 3, we knowthat! y 2 Mg;,; ¢, :s-

CaselDeneMg,; 5,5 = Mg,; o,s [f a! y;x! bgnfa! xy! bg.
Case 2Dene Mg,; 5,:s = Mg,; o,;s [f a! ygnfal xg.

Case 3Dene Mg, ¢,:s = Mg,; o,;s[fy! xgnfx! yg

By construction, we see thiig,; ¢,:s] = [Ma;; o,:si-

Step 2:Mg,; ¢,;s is @ maximal matching of the covered edg€(G;) of G,.

To prove thaMg,; ., ;s is @ maximal matching o(G;), we argue in three steps:
2(i) Edges oMg,; .,:s belong toC(G>).
2(ii) Mg,; ¢,:s isamatching of(G,).

2(jii) Mg,; 5,;s is maximal matching 0€(Gz).

Step 2(i): Edges oMg,; ,,:s belong toC(Gy).

By Lemma F.2, covered edge statuses of edges whose endpoints do not inaolyewill remain unchanged. Since
Mg,; ,:s is amatching, it has at most one edgi@volving endpointx and at most one edg®@involving endpointy (€°
could bee).

Case 1Sincebexists, the edges i ,; ;s with endpoints involving x;ygarea! xandy! b BylLemmaF.2, we
know thata! y;x! b2 C(G,).

Case 2 Sincebdoes not exist, the only edgeMiy,; . ;s with endpoints involvingx;ygisa! x. By Lemma F.2, we
know thata! y 2 C(G,).

Case 3Sincea! X 6Mg,; 5,;s,Wehavex! y2 Mg,; ;s by minimality ofy.
In all cases, we see thittg,; .,;s C (G2).

Step 2(ii): Mg,; .,:s is a matching of (Gy).

It suf ces to argue that there ar®otwo edges ifMg,; .,:s sharing an endpoint. Sindég,. . :s isamatching, this can
only happen via newly added endpointMrg,; ., :s-

Case 1 The endpoints of newly added edges are exactly the endpoints of removed edges.

Case 2 Since we removed ! x and addea! 'y, it suf ces to check that there are no edgedi,; . :s involvingy.
This is true sincd does not exist in Case 2.

Case 3 The endpoints of newly added edges are exactly the endpoints of removed edges.

Therefore, we conclude thitg,; .,:s is a matching off(G,).
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Step 2(iii): Mg,; ,;s is a maximal matching of (Gz).

Foranyu! v 2 C(G), we show that there is some edgeMrs,; .,:s with at least one o or v is an endpoint. By
Lemma F.2, covered edge statuses of edges whose endpoints do not ineolyevill remain unchanged, so it suf ces to
considerjf u;vg\f x;ygj 1.

We check the following 3 scenarios corresponding tavg\f x;ygj 1 below:

(i) y2fu;vg.
The endpoints oMg,; ,, always containy.
(i) y621;vgandx! v 2C(Gy), forsomev2 V nfx;yg.

Sincex ! v2C(Gy) andy! xin Gy, it mustbe the case thgt! vin G,. SinceG; andG, agrees on all arcs
exceptx y,wehavethay! vinG;aswell Sincx! v 2 C(G;),we know thaty 2 Chg,(x) via Lemma G.3.
So,we havg ! v 2 C(G;) viaLemmaF.2. Sincetheskt :y! v 2 C(G;)gis non-empty, verteb exists. In
both cases 1 and 3, the endpointdwbf,; , includesx.

(i) y6210;vgandu! x 2 C(Gy), forsomeu 2 V nfx;yg.

By Lemma G.3, we know that 2 Chg,(u). Meanwhile, sincey ! x 2 C(G), we must haver ! y in G,.

However, this implies that 62Chg, (u) sinceu! y ! x exists. This is a contradiction, so this situation cannot
happen.

As the above argument holds for any v 2 C(Gz), we see thaMg,; ., is maximal matching fo(G2).

Step 3:Mg,; ¢,;s is a conditional-root-greedy maximal matching.
We now compare the execution of Algorithm 3 brs,; S) and( ,; S). Note thatS remains unchanged.

We know the following:

* Since g,(Y)= o,(x)anda! x 2 S,ifaexistsanda! x ischosen by Algorithm 3 of ¢,;S), then it means

that there armoa! varcinC(G;) suchthat! v 62S. So,a! y will be chosen by Algorithm 3 0/ ¢,;S) if a
exists.

e Since ¢,(Y) = ,(X), X is chosen as a root by Algorithm 3 ¢ng,; S) if and only if y is chosen as a root by
Algorithm 3 on( ¢,;S).

* By de nition of b, if it exists, thery ! b2 Mg;,; 5,;5 0 X! b2 Mg,; 4,:s-
* By the de nition of g,, we see that Algorithm 3 makes the “same decisions” when choosing arcs rooted on
V nfa;x;y; bg.
ThereforeMg,. .,:s isindeed a conditional-root-greedy maximal matching@@®,) with respect to g, andS. O
Theorem 3.1. For any DAGG with MEC[G ], we have thatmaxg,(c ; 1(G) 2 mingyc | 1(G).
Proof. Consider any two DAGS&s; G; 2 [G ]. To transformGg = (V; Es) to G; = (V; E;), Algorithm 2 ips covered

edges one by one such tha&ts n E;j decreases in a monotonic manner. We will repeatedly apply Lemma F.3 with
S = A(Gs)\ A(G;) on the sequence of covered edge reversals produced by Algorithm 2.

Let ¢, be an arbitrary ordering fdgs and we compute an initial conditional-root-greedy maximal matchin@fG)
with respect to some orderings, and conditioning seb. To see why Lemma F.3 applies at each step for reversing a
covered edge from! ytoy! X, we need to ensure the following:

1. If x has a parent vertex(i.e.x 2 Chg, (a)), thena! x 2 S.

Ifa! x 62S,thenthera! X is acovered edge that should be ipped to transform fi@gto G;. However, this
means that Algorithm 2 would pick! x to reverse instead of picking! y to reverse. Contradiction.

22



Active causal structure learning with advice

2.x! y;y! x62S.
This is satis ed by the de nition ofS = E5\ E; since reversing ! ytoy! x implies that neither of them are 8.

3. y=argmin, ., eyl 6:(2)+ n* 1a 2250

Sincex ! 'y 625, this is equivalent to checking yf= argmin, ., ,»c(c,)f ,(2)g. This is satis ed by line 7 of
Algorithm 2.

4. Mg, ¢,;s Is a conditional-root-greedy maximal matching €G;) with respect to some ordering, and condi-
tioning setS.

This is satis ed since we always maintain a conditional-root-greedy maximal matchin§ eneghchanged throughout.

By applying Lemma F.3 witts = A(Gs) \ A(Gy) repeatedly on the sequence of covered edge reversals produced by
Algorithm 2, we see that there exists a conditional-root-greedy maximal matbhig .. for ((Gs) and a conditional-
root-greedy maximal matchind g, ; ,, for (Gt) such thaiMg,; . j = Mq,; ¢,i-

The claim follows since maximal matching is a 2-approximation to minimum vertex cover, and the veri cation number
(G) of any DAGG is the size of the minimum vertex cover of its covered edg&3). O

Lemma 3.2(Tightness of Theorem 3.1)here exist DAG&; and G, from the same MEC withy (G1) =2 1(G3).

Proof. See Figure 8. O

o
]

1)

© ®

G]_ GZ

Figure 8. The ratio of 2 in Theorem 3.1 is tigh&; andG, belong in the same MEC with(G;) =2 and (G2) = 1. The dashed arcs
represent the covered edges and the boxed vertices represent a minimum vertex cover of the covered edges.

G.3. Adaptive search with imperfect advice

Lemma 4.1. FixaDAGG = (V;E) andletV® V be any subset of vertices. Suppbse V is the set of nodes
intervened bySubsetSearch (E(G );V9.If QG ) E(G [V9), theng (G )= G .

Proof. By Theorem 2.9 SubsetSearch fully orients edges within the node-induced subgraph induced %yi.e.
SubsetSearch  will perform atomic interventions ohyo  V resulting ing ,,(G )[VY = G [V9. SinceC(G )
E(G [V9) and all covered edgeXG ) were oriented, then according to Lemma G.1, it must be the cas¥ that o
for some minimum vertex cove¥ of C(G ), so we see thaR(G ;V ) R(G ;lyo). By Lemma G.2, we have
R(G ;V )= A(G ) and soSubsetSearch (E(G );V?9 fully orientsE(G ). O

We will now prove our main result (Theorem 3.5) which shows that the number of interventions needed is a function of the
quality of the given advice DAG. Let us rst recall how we de ned the quality of a given advice and restate our algorithm.
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De nition 3.4 (Quality measure)Fix a DAGG with MEC[G ] and consider any DA@& 2 [G ]. We de ne (G ;&) as
follows:

G ;€)= max ¢:NEC ®) g
( ) P2V (&) skel( E(G ))( )

Algorithm 1 Adaptive search algorithm with advice.
1: Input: Essential grapk(G ), advice DAGGE 2 [G ], intervention sizé 2 N

2: Output: An intervention set such that each intervention involves at mistodes andg (G )= G .

3: Let ¥ 2 V(6) be any atomic verifying set d@&.

4: if k =1 then

5. Denely= ¥ asan atomic intervention set.

6: else

7:  Denek®=minfk;j®j=2g,a= djfj=k% 2, and” = dog, jCje. Compute labelling scheme &hwith (j&j; k; a)
via Lemma 4.3 and de néo = f Sxy Ox2p1y2a), WhereSy, ¥ is the subset of vertices whos# letter in the
label isy.

8: end if

9: Intervene orl ¢ and initializer 0,i 0O,ng 2.

10: while E , (G ) still has undirected edge®

110 i (i Neg y (#)  nf then

12: Incremeni i +1 andrecord (i) r.

13: Updaten; (113 Nercece ) (%))

14: Ci  SubsetSearch (B, (G );N{iec y (#):K)

15: if B, . c, (G ) still has undirected edgesen

16: C? SubsetSearch (B, ,[ ¢, (G );N{egc y(#):K)
17: Updatel; | i 1[ G| Cio.

18: else

19: Updatel; |  1[ Cj.

20: end if

21: endif

22:  Incrementr r+1.

23: end while

24: return 1

Theorem 3.5. Fix an essential grapk(G ) with an unknown underlying ground truth DA . Given an advice graph

€ 2 [G ] and intervention set bourkd 1, there exists a deterministic polynomial time algorithm (Algorithm 1) that
computes an intervention setadaptively such thaf (G ) = G , andjlj has size

1.0(maxf1;log (G ;€)g 1(G))whenk=1

2.0(maxf1;log (G ;G)g logk (G )) whenk > 1.

Proof. Consider Algorithm 1. Observe thag = 2 ensures that3 > n o.

In this proof, we will drop the subscripkel(E(G )) when we discuss thehop neighborNsrkel(E(G ) (). We rst prove
the case wherk = 1 then explain how to tweak the proof for the caséof 1.

If Algorithm 1 terminates when= 0, thenl = |, = ¥ and Theorem 3.1 tells us thigt2 O ( 1(G )).

Now, suppose Algorithm 1 terminates witk= t, for some nal roundt > 0. As Algorithm 1 uses an arbitrary verifying set
of € in step 3, we will argue thad(maxf 1;logjN "€ ¥)(®)jg (G )) interventions are used in the while-loop, for any
arbitrary chosei® 2 V(6). The theorem then follows by taking a maximization over all possibilitieg(iB).

In Line 12,r (i) records the hop value such thdt ;;N"()(€)) n2, forany0 i<t . By construction of the algorithm,
we know the following:
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1. Forany0<i t, A A
n= (1N O@) n2 > (NG 1) %)

because (i) 1did nottrigger Algorithm 1 to record (i).
2. By Theorem 2.9 and Equation (2), forahy i t,

iCij 20(log (1i;N"® (€)) (G )) O (logn; 1 1(G))

icd 20(og (1:N'D(®) 1(G) O (ogn (G )) )

Note that the bound fqiCJ is an over-estimation (but this is okay for our analytical purposes) since some nodes
previously counted for (I ;N (€)) may no longer be relevant &, | ¢, (G ) after intervening or€;.

3. Sincen; pn*iforany0<i t, we know thamn; ntlz2t J forany0 | t.So,forany0 t° t, we have
XO X0 oy Xo
log(n;) log ns? = '035“5@ 2 log(nyo) 4)
i=0 i=0 i=0
4. By de nition of t, h(G ;¥), and Lemma 4.1,
r¢ 1)<h(G;€) r() (5)
and
NTE D (@) (N"C P (g)  NTO(9) (6)
Combining Equation (2), Equation (3), and Equation (4), we get
X 1 K 1 ! ! X 1 !
(icij+ich 20 logni 1+logni  (G) O logni 1(G) O (logni 1 1(G)) (7)
i=1 i=1 i=1

To relatejl +j with jN (G %) (@)j, we consider two scenarios depending on whether the essential graph was fully oriented
after intervening orC; or CP.

Scenario 1: Fully oriented after intervening onC, i.e.f, , [ ¢, (G )= G . Then,

t[l
lt=Cil ¢ 1=CL(C 1LC DUt 2=::=CL (GLCHL®

i=1

In this caseh(G ;®) = r(t) 1. Bydenition,n; 1 j N'(t D(®)j and we have

e 1 NTE D (8)) < NPE 8] 8)
sinceN"(t D (@) ( NNG :¥)(@). So,
Xl
jld j®i=iCi+  (iGj+icY)
i=1
20 (logny 1 1(G )+ O(logny 1 1(G)) By Equation (3) and Equation (7)
O logjN"(® ®)(@)j 1(G) Equation (8)

Scenario 2: Fully oriented after intervening onC?, i.e.§, | [ c.[ co(G)= G .Then,

[t
le=CLCU ¢ 1=::=CGLCL (CLCYL®
1
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In this caseh(G ;%) = r(t) andN "G :¥)(¢) = N (). So,

ne j NTO(8)) = JNE (9] )
So,
X 1
ild § ®i=ici+icd+  (Gi+icd)
i=1
20 ((logny 1+ ny) 1(G )+ O(logny 1 1(G)) By Equation (3) and Equation (7)
O logjN"C ®)(@)] (G) Equation (9)

Sincej¥j 2 O ( 1(G )), we can conclude
n )

120 (G )+log jN™© ®)(8)] 1(G) O max LlogiN"© ®(¢)j 1(G)
in either scenario, as desired. The theorem then follows by taking a maximization 0@e2 Ml(G).
Adapting the proof for k > 1

By Theorem 4.2, (G ) d 1(G )=ke. So,jl oj2 O (logk (G )) viaLemma 4.3. The rest of the proof follows the
same structure except that we use the bounded size guarantee of Theorem 2.9, which incurs an additional multiplicative
logk factor.

Polynomial running time
By construction, the Algorithm 1 is deterministic. Furthermore, Algorithm 1 runs in polynomial time because:

« Hop information and relevant nodes can be computed in polynomial time via breadth rst search and maintaining
suitable neighborhood information.

« It is known that performing Meek rules to obtain essential graphs takes polynomial time (@¥teat al., 2021a)).

 Algorithm 1 makes at most two calls BubsetSearch whenever the number of relevant nodes is squared. Each
SubsetSearch call is known to run in polynomial time (Theorem 2.9). Since this happens each time the number of
relevant nodes is squared, this can happen at @d¢eg n) times.

O

Theorem E.1. Fix an essential grapE(G ) with an unknown underlying ground truth DAG . Given a sefA of DAGs
consistent with the given partial advice and intervention set bdund1, there exists a deterministic polynomial time
algorithm that computes an intervention seadaptively such thdf (G ) = G , andjlj has size

1. O(maxf1;logmaxe,, (G ;6)g 1(G))

2. O(maxf 1;log maxe,, (G ;6)g logk (G ))

whenk = 1 andk > 1 respectively.

Proof. Apply Theorem 3.5 while taking a maximization over all possible advice D&&®nsistent with the given partial
advice. O
H. Path essential graph

In this section, we explain why our algorithm (Algorithm 1) is simply the classic “binary search with predictish&n the
given essential grapB(G ) is an undirected path amvertices. So, another way to view our result igemeralizatiorthat
works on essential graphs of arbitrary moral DAGs.

1Be.g. seanttps://en.wikipedia.org/wiki/Learning_augmented_algorithm#Binary_search
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When the given essential graph is a path £(G*) on n vertices, we know that there are n possible DAGs in the Markov
equivalence class where each DAG corresponds to choosing a single root node and having all edges pointing away from it.
Observe that a verifying set of any DAG is then simply the root node as the set of of covered edges in any rooted tree are
precisely the edges incident to the root.

Therefore, given any & € [G*], we se that h(G*, ¥) measures the number of hops between the root of the advice DAG @
and the root of the true DAG G*. Furthermore, by Meek rule R1, whenever we intervene on a vertex u on the path, we will
fully orient the “half” of the path that points away from the root while the subpath between u and the root remains unoriented
(except the edge directly incident to w). So, one can see that Algorithm 1 is actually mimicking exponential search from the
root of & towards the root of G*. Then, once the root of G* lies within the r-hop neighborhood H, SubsetSearch uses
O(log |V (H)|) interventions, which matches the number of queries required by binary search within a fixed interval over
|V (H)| nodes.

I. Experiments
In this section, we provide more details about our experiments.

All experiments were run on a laptop with Apple M1 Pro chip and 16GB of memory. Source
code implementation and experimental scripts are available at https://github.com/cxjdavin/
active-causal-structure-learning-with-advice.

I.1. Experimental setup

For experiments, we evaluated our advice algorithm on the synthetic graph instances of (Wiendbst et al., 2021b)'* on graph
instances of sizes n = {16, 32, 64}. For each undirected chordal graph instance, we do the following:

1. Set m = 1000 as the number of advice DAGs that we will sample.

2. Use the uniform sampling algorithm of (Wienébst et al., 2021b) to uniformly sample m advice DAGs &1, ..., Gp,.
3. Randomly select G* from one of &1, ..., &n,.

4. Foreach @ € {@q,..., G},

» Compute a minimum verifying set ¥ of &.
¢ Define and compute »(G*,¥) = p ¥, Nggls(g(%) (%)

 Compute a verifying set using (£(G*), &) as input to Algorithm 1.
5. Aggregate the sizes of the verifying sets used based on 1)(G*, ¥) and compute the mean and standard deviations.

6. Compare against verification number v1 (G*) and the number of interventions used by the fully adaptive search (without
advice, which we denote as “blind search” in the plots) of (Choo et al., 2022).

7. Compute the empirical distribution of the quality measure amongst the m advice DAGs, then use standard sample
complexity arguments for estimating distributions up to ¢ error in TV distance to compute a confidence interval for
which the true cumulative probability density of all DAGs within the MEC lies within'>. To be precise, it is known that
for a discrete distribution P on k elements, when there are m > max{k/c?, (2/¢?) - In(2/§)} uniform samples, the
probability that the TV distance between the true distribution P and the empirical distribution P is less than ¢ is at least
1 — 4. Since the upper bound on the domgiq size oéquality measure is the number of nodes n, by setting m = 1000
and = 0.01, we can compute ¢ = max{ n/m, (2/m)-1n(2/9)} and conclude that the probability that the true
cumulative probability density of all DAGs within the MEC lies within ¢ distance (clipped to be between 0 and 1) of
the empirical distribution is at least 99%.

4See Appendix E of (Wientbst et al., 2021b) for details about each class of synthetic graphs. Instances are available at https:
//github.com/mwien/CliquePicking/tree/master/aaai_experiments
'5For example, see Theorem 1 of (Canonne, 2020).
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I.2. Experimental remarks

The uniform sampling code of (Wienobst et al., 2021b) is written in Julia and it uses a non-trivial amount of memory,
which may make it unsuitable for running on a shared server with memory constraints.

Note that )(G*, ¥) < ¢(G*, &) = maxg ey » P, NST((E?(S(%) »(¥) . Weuse)(G*, ¥) asaproxy for )(G*, &)
because we do not know if there is an efficient way to compute the latter besides the naive (possibly exponential time)
enumeration over all possible minimum verifying sets.

We also experimented with an “unsafe” variant of Algorithm | where we ignore the second tweak of intervening one
round before. In our synthetic experiments, both variants use a similar number of interventions.

We do not plot the theoretical upper bounds O(log ¢ (G*, ¥) - v1(G*)) or O(log n - v1(G*)) because these values are
a significantly higher than the other curves and result in “squashed” (and less interesting/interpretable) plots.

Even when ¢(G*, ) = 0, there could be cases where (Choo et al., 2022) uses more interventions than v1(G*).
For example, consider Figure 8 with G* = G, and & = G;. After intervening on ¥ = {b,c}, the entire graph
will be oriented so the ¢(G*, ¥) = 0 while v1(G*) = 1 < 2 = |F|. Fortunately, Theorem 3.1 guarantees that

Note that the error bar may appear “lower” than the verification number even though all intervention sizes are at least
as large as the verification number. For instance, if 1 (G*) = 6 and we used (6, 6, 7) interventions on three different
&’s, each with P(G*, ?) = 0. In this case, the mean is 6.3333 ... while the standard deviation is 0.4714. . ., so the
error bar will display an interval of [5.86...,6.80...] whose lower interval is below v1(G*) = 6.

I.3. All experimental plots

For details about the synthetic graph classes, see Appendix E of (Wiendbst et al., 2021b). Each experimental plot is for
one of the synthetic graphs G*, with respect to 1000 < |[G*]| uniformly sampled advice DAGs @ from the MEC [G*].
The solid lines indicate the number of atomic interventions used while the dotted lines indicate the empirical cumulative
probability density of &. The true cumulative probability density lies within the shaded area with probability at least 0.99.

subtree-n=16-logn-nr=1.gr has MEC size 6.307e+05 subtree-n=32-logn-nr=1.gr has MEC size 1.174e+16 subtree-n=64-logn-nr=1.gr has MEC size 1.901e+36
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Figure 9. Subtree-logn synthetic graphs
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