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Abstract
We introduce the problem of active causal struc-
ture learning with advice. In the typical well-
studied setting, the learning algorithm is given the
essential graph for the observational distribution
and is asked to recover the underlying causal di-
rected acyclic graph (DAG) G∗ while minimizing
the number of interventions made. In our setting,
we are additionally given side information about
G∗ as advice, e.g. a DAG G purported to be G∗.
We ask whether the learning algorithm can bene-
fit from the advice when it is close to being cor-
rect, while still having worst-case guarantees even
when the advice is arbitrarily bad. Our work is in
the same space as the growing body of research
on algorithms with predictions. When the advice
is a DAG G, we design an adaptive search algo-
rithm to recover G∗ whose intervention cost is at
most O(max{1, logψ}) times the cost for verify-
ing G∗; here, ψ is a distance measure between G
and G∗ that is upper bounded by the number of
variables n, and is exactly 0 when G = G∗. Our
approximation factor matches the state-of-the-art
for the advice-less setting.

1. Introduction
A causal directed acyclic graph on a set V of n variables is
a Bayesian network in which the edges model direct causal
effects. A causal DAG can be used to infer not only the
observational distribution of V but also the result of any
intervention on any subset of variables V ′ ⊆ V . In this
work, we restrict ourselves to the causally sufficient setting
where there are no latent confounders, no selection bias, and
no missingness in data.

The goal of causal structure learning is to recover the un-
derlying DAG from data. This is an important problem
with applications in multiple fields including philosophy,
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medicine, biology, genetics, and econometrics (Reichen-
bach, 1956; Hoover, 1990; King et al., 2004; Woodward,
2005; Rubin & Waterman, 2006; Eberhardt & Scheines,
2007; Sverchkov & Craven, 2017; Rotmensch et al., 2017;
Pingault et al., 2018). Unfortunately, in general, it is known
that observational data can only recover the causal DAG up
to an equivalence class (Pearl, 2009; Spirtes et al., 2000).
Hence, if one wants to avoid making parametric assump-
tions about the causal mechanisms, the only recourse is
to obtain experimental data from interventions (Eberhardt
et al., 2005; 2006; Eberhardt, 2010).

Such considerations motivate the problem of interventional
design where the task is to find a set of interventions of
optimal cost which is sufficient to recover the causal DAG.
There has been a series of recent works studying this prob-
lem (He & Geng, 2008; Hu et al., 2014; Shanmugam et al.,
2015; Kocaoglu et al., 2017; Lindgren et al., 2018; Gree-
newald et al., 2019; Squires et al., 2020; Choo et al., 2022;
Choo & Shiragur, 2023) under various assumptions. In par-
ticular, assuming causal sufficiency, (Choo et al., 2022) gave
an adaptive algorithm that actively generates a sequence of
interventions of bounded size, so that the total number of
interventions is at most O(log n) times the optimal.

Typically though, in most applications of causal structure
learning, there are domain experts and practitioners who
can provide additional “advice” about the causal relations.
Indeed, there has been a long line of work studying how
to incorporate expert advice into the causal graph discov-
ery process; e.g. see (Meek, 1995a; Scheines et al., 1998;
De Campos & Ji, 2011; Flores et al., 2011; Li & Beek, 2018;
Andrews et al., 2020; Fang & He, 2020). In this work, we
study in a principled way how using purported expert advice
can lead to improved algorithms for interventional design.

Before discussing our specific contributions, let us ground
the above discussion with a concrete problem of practical
importance. In modern virtualized infrastructure, it is in-
creasingly common for applications to be modularized into
a large number of interdependent microservices. These
microservices communicate with each other in ways that de-
pend on the application code and on the triggering userflow.
Crucially, the communication graph between microservices
is often unknown to the platform provider as the applica-
tion code may be private and belong to different entities.
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However, knowing the graph is useful for various critical
platform-level tasks, such as fault localization (Zhou et al.,
2019), active probing (Tan et al., 2019), testing (Jha et al.,
2019), and taint analysis (Clause et al., 2007). Recently,
(Wang et al., 2023) and (Ikram et al., 2022) suggested view-
ing the microservices communication graph as a sparse
causal DAG. In particular, (Wang et al., 2023) show that
arbitrary interventions can be implemented as fault injec-
tions in a staging environment, so that a causal structure
learning algorithm can be deployed to generate a sequence
of interventions suf�cient to learn the underlying commu-
nication graph. In such a setting, it is natural to assume
that the platform provider already has an approximate guess
about the graph, e.g. the graph discovered in a previous run
of the algorithm or the graph suggested by public metadata
tagging microservice code. The research program we put
forth is to design causal structure learning algorithms that
can take advantage of such potentially imperfect advice1.

1.1. Our contributions

In this work, we studyadaptive intervention designfor
recoveringnon-parametriccausal graphswith expert advice.
Speci�cally, our contributions are as follows.

• Problem Formulation. Our work connects the causal
structure learning problem with the burgeoning re-
search area ofalgorithms with predictionsor learning-
augmented algorithms(Mitzenmacher & Vassilvitskii,
2022) where the goal is to design algorithms that by-
pass worst-case behavior by taking advantage of (possi-
bly erroneous) advice or predictions about the problem
instance. Most work in this area has been restricted to
online algorithms, data structure design, or optimiza-
tion, as described later in Section 2.5. However, as
we motivated above, expert advice is highly relevant
for causal discovery, and to the best of our knowlege,
ours is the �rst attempt to formally address the issue of
imperfectadvice in this context.

• Adaptive Search Algorithm. We consider the setting
where the advice is a DAGG purported to be the ori-
entations of all the edges in the graph. We de�ne a
distance measure which is always bounded byn, the
number of variables, and equals 0 whenG = G� . For
any integerk � 1, we propose an adaptive algorithm to
generate a sequence of interventions of size at mostk
that recovers the true DAGG� , such that the total num-
ber of interventions isO(log  (G; G� ) � logk) times
the optimal number of interventions of sizek. Thus,

1Note however that the system in (Wang et al., 2023) is not
causally suf�cient due to confounding user behavior and (Ikram
et al., 2022) does not actively perform interventions. So, the
algorithm proposed in this work cannot be used directly for the
microservices graph learning problem.

our approximation factor is never worse than the factor
for the advice-less setting in (Choo et al., 2022). Our
search algorithm also runs in polynomial time.

• Veri�cation Cost Approximation . For a given upper
boundk � 1, a verifying intervention set for a DAG
G� is a set of interventions of size at mostk that, to-
gether with knowledge of the Markov equivalence class
of G� , determines the orientations of all edges inG� .
The minimum size of a verifying intervention set for
G� , denoted� k (G� ), is clearly a lower bound for the
number of interventions required to learnG� (regard-
less of the advice graphG). One of our key technical
results is a structural result about� 1. We prove that
for any two DAGsG andG0 within the same Markov
equivalence class, we always have� 1(G) � 2 � � 1(G0)
and that this is tight in the worst case. Beyond an im-
proved structural understanding of minimum verifying
intervention sets, which we believe is of independent
interest, this enables us to “blindly trust” the informa-
tion provided by imperfect advice to some extent.

Similar to prior works (e.g. (Squires et al., 2020; Choo
et al., 2022; Choo & Shiragur, 2023)), we assume causal
suf�ciency and faithfulness while using ideal interventions.
Under these assumptions, running standard causal discovery
algorithms (e.g. PC (Spirtes et al., 2000), GES (Chickering,
2002)) will always successfully recover the correct essential
graph from data. We also assume that the given expert
advice is consistent with observational essential graph. See
Appendix A for a discussion about our assumptions.

1.2. Paper organization

In Section 2, we intersperse preliminary notions with related
work. Our main results are presented in Section 3 with the
high-level technical ideas and intuition given in Section 4.
Section 5 provides some empirical validation. See the ap-
pendices for full proofs, source code, and experimental
details.

2. Preliminaries and Related Work

Basic notions about graphs and causal models are de�ned in
Appendix B. To beverybrief, if G = ( V; E) is a graph on
jV j = n nodes/vertices whereV (G), E (G), andA(G) �
E (G) denote nodes, edges, and arcs ofG respectively, we
write u � v to denote that two nodesu; v 2 V are connected
in G, and writeu ! v or u  v when specifying a certain
direction. Theskeletonskel(G) refers to the underlying
graph where all edges are made undirected. Av-structurein
G refers to a collection of three distinct verticesu; v; w 2 V
such thatu ! v  w andu 6� w. Let G = ( V; E) be
fully unoriented. For verticesu; v 2 V , subset of vertices
V 0 � V and integerr � 0, we de�nedist G (u; v) as the
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shortest path length betweenu andv, andN r
G (V 0) = f v 2

V : minu2 V 0 dist G (u; v) � r g � V as the set of vertices
that arer -hops away fromV 0 in G. A directed acyclic graph
(DAG) is a fully oriented graph without directed cycles. For
any DAGG, we denote its Markov equivalence class (MEC)
by [G] and essential graph byE(G). DAGs in the same
MEC have the same skeleton and the essential graph is a
partially directed graph such that an arcu ! v is directed
if u ! v in everyDAG in MEC [G], and an edgeu � v
is undirected if there exists two DAGsG1; G2 2 [G] such
that u ! v in G1 and v ! u in G2. It is known that
two graphs are Markov equivalent if and only if they have
the same skeleton and v-structures (Verma & Pearl, 1990;
Andersson et al., 1997) and the essential graphE(G) can
be computed fromG by orienting v-structures inskel(G)
and applying Meek rules (see Appendix D). In a DAGG, an
edgeu ! v is acovered edgeif Pa(u) = Pa(v) n f ug. We
useC(G) � E (G) to denote the set of covered edges ofG.

2.1. Ideal interventions

An interventionS � V is an experiment where all variables
s 2 S is forcefully set to some value, independent of the
underlying causal structure. An intervention isatomicif
jSj = 1 andbounded sizeif jSj � k for somek � 1;
observational data is a special case whereS = ; . The
effect of interventions is formally captured by Pearl's do-
calculus (Pearl, 2009). We call anyI � 2V a intervention
set: an intervention set is a set of interventions where each
intervention corresponds to a subset of variables. Anideal
interventiononS � V in G induces an interventional graph
GS where all incoming arcs to verticesv 2 S are removed
(Eberhardt et al., 2005). It is known that intervening onS
allows us to infer the edge orientation of any edge cut byS
andV n S (Eberhardt, 2007; Hyttinen et al., 2013; Hu et al.,
2014; Shanmugam et al., 2015; Kocaoglu et al., 2017).

We now give a de�nition and result for graph separators.

De�nition 2.1 (� -separator and� -clique separator, De�ni-
tion 19 from (Choo et al., 2022)). Let A; B; C be a partition
of the verticesV of a graphG = ( V; E). We say thatC
is an� -separatorif no edge joins a vertex inA with a ver-
tex in B andjAj; jB j � � � jV j. We callC is an� -clique
separatorif it is an � -separatorand a clique.

Theorem 2.2((Gilbert et al., 1984), instantiated for un-
weighted graphs). Let G = ( V; E) be a chordal graph with
jV j � 2 and p vertices in its largest clique. There exists
a 1=2-clique-separatorC involving at mostp � 1 vertices.
The cliqueC can be computed inO(jE j) time.

For ideal interventions, anI -essential graphEI (G) of G
is the essential graph representing the Markov equivalence
class of graphs whose interventional graphs for each in-
tervention is Markov equivalent toGS for any intervention
S 2 I . There are several known properties aboutI -essential

graph properties (Hauser & Bühlmann, 2012; 2014): Ev-
ery I -essential graph is a chain graph2 with chordal3 chain
components. This includes the case ofI = ; . Orientations
in one chain component do not affect orientations in other
components. In other words, to fully orient any essential
graphE(G� ), it is necessary and suf�cient to orient every
chain component inE(G� ).

For any intervention setI � 2V , we write R(G; I ) =
A(EI (G)) � E to mean the set of oriented arcs in theI -
essential graph of a DAGG. For cleaner notation, we write
R(G; I ) for single interventionsI = f I g for someI � V ,
andR(G; v) for single atomic interventionsI = ff vgg
for somev 2 V . For any interventional setI � 2V , de-
�ne GI = G[E n R(G; I )] as thefully directedsubgraph
DAG induced by theunoriented arcsin EI (G), whereG;

is the graph obtained after removing all the oriented arcs in
the observational essential graph due to v-structures. See
Figure 1 for an example. In the notation ofR(�; �), the
following result justi�es studying veri�cation and adap-
tive search via ideal interventions only on DAGs with-
out v-structures, i.e. moral DAGs (De�nition 2.4): since
R(G; I ) = R(G; ; I ) _[ R(G; ; ), any oriented arcs in the
observational graph can be removedbefore performing any
interventionsas the optimality of the solution is unaffected.4

Theorem 2.3((Choo & Shiragur, 2023)). For any DAG
G = ( V; E) and intervention setsA ; B � 2V ,

R(G; A [ B )

= R(GA ; B) _[ R(GB ; A ) _[ (R(G; A) \ R(G; B))

De�nition 2.4 (Moral DAG). A DAG G is called amoral
DAG if it has no v-structures. So,E(G) = skel( G).

2.2. Verifying sets

A verifying setI for a DAG G 2 [G� ] is an intervention
set that fully orientsG from E(G� ), possibly with repeated
applications of Meek rules (see Appendix D), i.e.EI (G� ) =
G� . Furthermore, ifI is a verifying set forG� , then so is
I [ S for any additional interventionS � V . While there
may be multiple verifying sets in general, we are often
interested in �nding one with a minimum size.

De�nition 2.5 (Minimum size verifying set). An interven-
tion setI � 2V is called a verifying set for a DAGG�

if EI (G� ) = G� . I is a minimum size verifying setif
EI 0(G� ) 6= G� for anyjI 0j < jIj .

2A partially directed graph is achain graphif it does not
contain any partially directed cycles where all directed arcs point
in the same direction along the cycle.

3A chordal graph is a graph where every cycle of length at least
4 has an edge that is not part of the cycle but connects two vertices
of the cycle; see (Blair & Peyton, 1993) for an introduction.

4The notationA _[ B denotes disjoint union of setsA andB .
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For bounded size interventions, theminimum veri�cation
number� k (G) denotes the size of the minimum size verify-
ing set for any DAGG 2 [G� ]; we write� 1(G) for atomic
interventions. That is, any revealed arc directions when
performing interventions onE(G� ) respectsG. (Choo et al.,
2022) tells us that it is necessary and suf�cient to inter-
vene on a minimum vertex cover of the covered edgesC(G)
in order to verify a DAGG, and that� 1(G) is ef�ciently
computable givenG sinceC(G) induces a forest.

Theorem 2.6((Choo et al., 2022)). Fix an essential graph
E(G� ) andG 2 [G� ]. An atomic intervention setI is a min-
imal sized verifying set forG if and only ifI is a minimum
vertex cover of covered edgesC(G) of G. A minimal sized
atomic verifying set can be computed in polynomial time
since the edge-induced subgraph onC(G) is a forest.

For any DAGG, we useV(G) � 2V to denote the set
of all atomicverifying sets forG. That is, eachatomic
intervention set inV(G) is a minimum vertex cover ofC(G).

2.3. Adaptive search using ideal interventions

Adaptive search algorithms have been studied in earnest (He
& Geng, 2008; Hauser & B̈uhlmann, 2014; Shanmugam
et al., 2015; Squires et al., 2020; Choo et al., 2022; Choo &
Shiragur, 2023) as they can use signi�cantly less interven-
tions than non-adaptive counterparts.5

Most recently, (Choo et al., 2022) gave an ef�cient algo-
rithm for computing adaptive interventions with provable
approximation guarantees on general graphs.

Theorem 2.7((Choo et al., 2022)). Fix an unknown un-
derlying DAGG� . Given an essential graphE(G� ) and
intervention set boundk � 1, there is a deterministic poly-
nomial time algorithm that computes an intervention setI
adaptively such thatEI (G� ) = G� , andjIj has size
1. O(log(n) � � 1(G� )) whenk = 1
2. O(log(n) � log(k) � � k (G� )) whenk > 1.

Meanwhile, in the context of local causal graph discovery
where one is interested in only learning asubsetof causal
relationships, theSubsetSearch algorithm of (Choo &
Shiragur, 2023) incurs a multiplicative overhead that scales
logarithmically with the number of relevant nodes when
orienting edges within a node-induced subgraph.

De�nition 2.8 (Relevant nodes). Fix a DAGG� = ( V; E)
and arbitrary subsetV 0 � V . For any intervention set
I � 2V and resulting interventional essential graphEI (G� ),
we de�ne therelevant nodes� (I ; V 0) � V 0 as the set of
nodes withinV 0 that is adjacent to some unoriented arc
within the node-induced subgraphEI (G� )[V 0].

5If the essential graphE(G� ) is a path ofn nodes, then non-
adaptive algorithms need
( n) atomic interventions to recoverG�

while O(log n) atomic interventions suf�ces for adaptive search.
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Figure 1. (I) Ground truth DAGG� ; (II) Observational essential
graphE(G� ) whereC ! E  D is a v-structure and Meek rules
orient arcsD ! F andE ! F ; (III) G; = G[E n R(G; ; )]
where oriented arcs inE(G� ) are removed fromG� ; (IV) MPDAG
~G 2 [G� ] incorporating the following partial order advice(S1 =
f B g; S2 = f A; D g; S3 = f C; E; F g), which can be converted
to required arcsB ! A andB ! D . Observe thatA ! C is
oriented by Meek R1 viaB ! A � C, the arcA � D is still
unoriented, the arcB ! A disagrees withG� , and there are two
possible DAGs consistent with the resulting MPDAG.

For an example of relevant nodes, see Figure 1: For the
subsetV 0 = f A; C; D; E; F g in (II), only f A; C; D g are
relevant since incident edges toE andF are all oriented.

Theorem 2.9 ((Choo & Shiragur, 2023)). Fix an un-
known underlying DAGG� . Given an interventional es-
sential graphEI (G� ), node-induced subgraphH with
relevant nodes� (I ; V (H )) and intervention set bound
k � 1, there is a deterministic polynomial time algorithm
that computes an intervention setI adaptively such that
EI[I 0(G� )[V (H )] = G� [V (H )], andjI 0j has size
1. O(log(j� (I ; V (H )) j) � � 1(G� )) whenk = 1
2. O(log(j� (I ; V (H )) j) � log(k) � � k (G� )) whenk > 1.

Note thatk = 1 refers to the setting of atomic interventions
and we always have0 � j � (I ; V (H )) j � n.

2.4. Expert advice in causal graph discovery

There are three main types of information that a domain ex-
pert may provide (e.g. see the references given in Section 1):

(I) Required parental arcs:X ! Y

(II) Forbidden parental arcs:X 6! Y

(III) Partial order or tiered knowledge: A partition of the
n variables into1 � t � n setsS1; : : : ; St such that
variables inSi cannot come afterSj , for all i < j .

In the context of orienting unorientedX � Y edges in an
essential graph, it suf�ces to consider only information of
type (I): X 6! Y impliesY ! X , and a partial order can
be converted to a collection of required parental arcs.6

6For every edgeX � Y with X 2 Si andY 2 Sj , enforce
the required parental arcX ! Y if and only if i < j .
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Maximally oriented partially directed acyclic graphs
(MPDAGs), a re�nement of essential graphs under addi-
tional causal information, are often used to model such
expert advice and there has been a recent growing interest in
understanding them better (Perkovic et al., 2017; Perkovic,
2020; Guo & Perkovic, 2021). MPDAGs are obtained by
orienting additional arc directions in the essential graph due
to background knowledge, and then applying Meek rules.
See Figure 1 for an example.

2.5. Other related work

Causal Structure Learning Algorithms for causal struc-
ture learning can be grouped into three broad categories,
constraint-based, score-based, and Bayesian. Previous
works on the �rst two approaches are described in Ap-
pendix C. In Bayesian methods, a prior distribution is as-
sumed on the space of all structures, and the posterior is
updated as more data come in. Heckerman (1995) was one
of the �rst works on learning from interventional data in this
context, which spurred a series of papers (e.g. Heckerman
et al. (1995); Cooper & Yoo (1999); Friedman & Koller
(2000); Heckerman et al. (2006)). Research on active exper-
imental design for causal structure learning with Bayesian
updates was initiated by Tong & Koller (2000; 2001) and
Murphy (2001). Masegosa & Moral (2013) considered a
combination of Bayesian and constraint-based approaches.
Cho et al. (2016) and Agrawal et al. (2019) have used active
learning and Bayesian updates to help recover biological
networks. While possibly imperfect expert advice may be
used to guide the prior in the Bayesian approach, the works
mentioned above do not provide rigorous guarantees about
the number of interventions performed or about optimality,
and so they are not directly comparable to our results here.

Algorithms with predictions Learning-augmented algo-
rithms have received signi�cant attention since the seminal
work of Lykouris & Vassilvitskii (2021), where they investi-
gated the online caching problem with predictions. Based
on that model, Purohit et al. (2018) proposed algorithms for
the ski-rental problem as well as non-clairvoyant scheduling.
Subsequently, Gollapudi & Panigrahi (2019), Wang et al.
(2020), and Angelopoulos et al. (2020) improved the initial
results for the ski-rental problem. Several works, includ-
ing (Rohatgi, 2020; Antoniadis et al., 2020a; Wei, 2020),
improved the initial results regarding the caching problem.
Scheduling problems with machine-learned advice have
been extensively studied in the literature (Lattanzi et al.,
2020; Bamas et al., 2020a; Antoniadis et al., 2022). There
are also results for augmenting classical data structures with
predictions (e.g. indexing (Kraska et al., 2018) and Bloom
�lters (Mitzenmacher, 2018)), online selection and match-
ing problems (Antoniadis et al., 2020b; Dütting et al., 2021),
online TSP (Bernardini et al., 2022; Gouleakis et al., 2023),

and a more general framework of online primal-dual algo-
rithms (Bamas et al., 2020b).

In the above line of work, the extent to which the predic-
tions are helpful in the design of the corresponding on-
line algorithms, is quanti�ed by the following two prop-
erties. The algorithm is called (i)� -consistentif it is � -
competitivewith no prediction error and (ii)� -robustif it is
� -competitivewith any prediction error. In the language of
learning augmented algorithms or algorithms with predic-
tions, our causal graph discovery algorithm is 1-consistent
andO(log n)-robust when competing against the veri�ca-
tion number� 1(G� ), the minimum number of interventions
necessary needed to recoverG� . Note that even with arbi-
trarily bad advice, our algorithm uses asymptotically the
same number of interventions incurred by the best-known
advice-free adaptive search algorithm (Choo et al., 2022).

3. Results

Our exposition here focuses on interpreting and contextu-
alizing our main results while deferring technicalities to
Section 4. We �rst focus on the setting where the advice is
a fully oriented DAGeG 2 [G� ] within the Markov equiv-
alence class[G� ] of the true underlying causal graphG� ,
and explain in Appendix E how to handle the case of partial
advice. Full proofs are provided in the appendix.

3.1. Structural property of veri�cation numbers

We begin by stating a structural result about veri�cation
numbers of DAGs within the same Markov equivalence
class (MEC) that motivates the de�nition of a metric be-
tween DAGs in the same MEC our algorithmic guarantees
(Theorem 3.5) are based upon.

Theorem 3.1. For any DAGG� with MEC[G� ], we have
thatmaxG2 [G � ] � 1(G) � 2 � minG2 [G � ] � 1(G).

Theorem 3.1 is the �rst known result relating the minimum
and maximum veri�cation numbers of DAGs given a �xed
MEC. The next result tells us that the ratio of two is tight.

Lemma 3.2(Tightness of Theorem 3.1). There exist DAGs
G1 andG2 from the same MEC with� 1(G1) = 2 � � 1(G2).

Theorem 3.1 tells us that we can blindly intervene on any
minimum verifying seteV 2 V( eG) of any given advice DAG
eG while incurring only at most a constant factor of 2 more
interventions than the minimum veri�cation number� (G� )
of the unknown ground truth DAGG� .

3.2. Adaptive search with imperfect DAG advice

Recall the de�nition ofr -hop from Section 2. To de�ne
the quality of the advice DAGeG, we �rst de�ne the notion
of min-hop-coveragewhich measures how “far” a given
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verifying set of eG is from the set of covered edges ofG� .

De�nition 3.3 (Min-hop-coverage). Fix a DAG G� with
MEC [G� ] and consider any DAGeG 2 [G� ]. For any
minimum verifying seteV 2 V( eG), we de�ne themin-
hop-coverageh(G� ; eV ) 2 f 0; 1; 2; : : : ; ng as the minimum
number of hops such thatbothendpoints of covered edges

C(G� ) of G� belong inN h(G � ; eV )
skel( E(G � )) ( eV ).

Using min-hop-coverage, we now de�ne a quality measure
 (G� ; eG) for DAG eG 2 [G� ] as an advice for DAGG� .

De�nition 3.4 (Quality measure). Fix a DAGG� with MEC
[G� ] and consider any DAGeG 2 [G� ]. We de�ne (G� ; eG)
as follows:

 (G� ; eG) = max
eV 2V ( eG)

�
�
� �

�
eV ; Nh(G � ; eV )

skel( E(G � )) ( eV )
� �

�
�

By de�nition,  (G� ; G� ) = 0 andmaxG2 [G � ]  (G� ; G) �
n. In words, (G� ; eG) only counts the relevant nodes within
the min-hop-coverage neighborhood after intervening on
theworstpossible verifying seteV of eG. We de�ne via
the worst set because any search algorithmcannotevaluate
h(G� ; eV ), sinceG� is unknown, and can only consider an
arbitrary eV 2 V( eG). See Figure 2 for an example.

Our main result is that it is possible to design an algorithm
that leverages an advice DAGeG 2 [G� ] and performs inter-
ventions to fully recover an unknown underlying DAGG� ,
whose performance depends on the advice quality (G� ; eG).
Our search algorithm only knowsE(G� ) and eG 2 [G� ] but
knows neither (G� ; eG) nor � (G� ).

Theorem 3.5. Fix an essential graphE(G� ) with an un-
known underlying ground truth DAGG� . Given an advice
graph eG 2 [G� ] and intervention set boundk � 1, there ex-
ists a deterministic polynomial time algorithm (Algorithm 1)
that computes an intervention setI adaptively such that
EI (G� ) = G� , andjIj has size
1. O(maxf 1; log  (G� ; eG)g � � 1(G� )) whenk = 1
2. O(maxf 1; log  (G� ; eG)g � logk � � k (G� )) whenk > 1.

Consider �rst the setting ofk = 1 . Observe that when the
advice is perfect (i.e.eG = G� ), we useO(� (G� )) interven-
tions, i.e. a constant multiplicative factor of the minimum
number of interventions necessary. Meanwhile, even with
low quality advice, we still useO(log n � � (G� )) interven-
tions, asymptotically matching the best known guarantees
for adaptive search without advice. To the best of our knowl-
edge, Theorem 3.5 is the �rst known result that principally
employs imperfect expert advice with provable guarantees
in the context of causal graph discovery via interventions.

Consider now the setting of bounded size interventions
wherek > 1. The reason why we can obtain such a result is
precisely because of our algorithmic design: we deliberately

a c

b

d

e

zn : : : z2 z1

G�

a c

b

d

e

zn : : : z2 z1

eG

Figure 2. Consider the moral DAGsG� and eG 2 [G� ] on
n + 5 nodes, where dashed arcs represent the covered edges in
each DAG. A minimum sized verifying seteV = f a; e; z2g 2
V( eG) of eG is given by the boxed vertices on the right. As
N 1

skel( G � ) ( eV ) = f a; b; c; d; e; z1 ; z2 ; z3g includes both endpoints

of all covered edges ofG� , we see thath(G� ; eV ) = 1 . Inter-
vening oneV = f a; e; z2g in G� orients the arcsb ! a  c,
c  e ! d, andz3 ! z2 ! z1 respectively which then trig-
gers Meek R1 to orientc ! b via e ! c � b and to orient
z4 ! z3 via e ! c ! : : : ! z4 � z3 (after a few invoca-
tions of R1), sof a; b; e; z1 ; z2 ; z3g will not be relevant nodes
in EeV (G� ). Meanwhile, the edgec � d remains unoriented in
EeV (G� ), so� ( eV ; N 1

skel( G � ) ( eV )) = jf c; dgj = 2 . One can check

that (G� ; eG) = 2 while n could be arbitrarily large. On the other
hand, observe that is notsymmetric: in the hypothetical situation
where we useG� as an advice foreG, the min-hop-coverage has
to extend along the chainz1 � : : : � zn to reachf z1 ; z2g, so
h(G� ; V � ) � n and ( eG; G � ) � n since the entire chain remains
unoriented with respect to anyV � 2 V (G� ).

designed an algorithm that invokesSubsetSearch as a
black-box subroutine. Thus, the bounded size guarantees of
SubsetSearch given by Theorem 2.9 carries over to our
setting with a slight modi�cation of the analysis.

4. Techniques

Here, we discuss the high-level technical ideas and intuition
behind how we obtain our adaptive search algorithm with
imperfect DAG advice. See the appendix for full proofs; in
particular, see Appendix F for an overview of Theorem 3.1.

For brevity, we write to mean (G� ; eG) and drop the
subscriptskel(E(G� )) of r -hop neighborhoods in this sec-
tion. We also focus our discussion to the atomic interven-
tions. Our adaptive search algorithm (Algorithm 1) uses
SubsetSearch as a subroutine.

We begin by observing thatSubsetSearch (E(G� ); A)
fully orientsE(G� ) into G� if the covered edges ofG� lie
within the node-induced subgraph induced byA.

Lemma 4.1. Fix a DAG G� = ( V; E) and letV 0 � V
be any subset of vertices. SupposeI V 0 � V is the set
of nodes intervened bySubsetSearch (E(G� ); V 0). If

6



Active causal structure learning with advice

C(G� ) � E (G� [V 0]), thenEI V 0(G� ) = G� .

Motivated by Lemma 4.1, we design Algorithm 1 to repeat-
edly invokeSubsetSearch on node-induced subgraphs
N r ( eV ), starting from anarbitrary verifying seteV 2 V( eG)
and forincreasingvalues ofr .

For i 2 N [ f 0g, let us denoter (i ) 2 N [ f 0g as the value
of r in thei -th invocation ofSubsetSearch , where we
insist thatr (0) = 0 andr (j ) > r (j � 1) for any j 2 N.
Note thatr = 0 simply implies that we intervene on the
verifying seteV , which only incursO(� 1(G� )) interventions
due to Theorem 3.1. Then, we can appeal to Lemma 4.1 to
conclude thatE(G� ) is completely oriented intoG� in the
t-th invocation ifr (t) � h(G� ; eV ).

While the high-level subroutine invocation idea seems sim-
ple, one needs to invokeSubsetSearch atsuitably cho-
sen intervalsin order to achieve our theoretical guarantees
we promise in Theorem 3.5. We now explain how to do so in
three successive attempts while explaining the algorithmic
decisions behind each modi�cation introduced.

As a reminder, wedo notknow G� and thusdo notknow
h(G� ; eV ) for any verifying seteV 2 V( eG) of eG 2 [G� ].

NAIVE ATTEMPT: INVOKE FOR r = 0 ; 1; 2; 3; : : :

The most straightforward attempt would be to invoke
SubsetSearch repeatedly each time we increaser by
1 until the graph is fully oriented – in the worst case,
t = h(G� ; eV ). However, this may cause us to incur
way too many interventions. Suppose there areni rele-
vant nodes in thei -th invocation. Using Theorem 2.9, one
can only argue that the overall number interventions in-
curred isO(

P t
i =0 logni � � (G� )) . However,

P
i logni

could be signi�cantly larger thanlog(
P

i ni ) in general,
e.g.log 2 + : : : + log 2 = ( n=2) � log 2 � logn. In fact,
if G� was a path onn verticesv1 ! v2 ! : : : ! vn and
eG 2 [G� ] misleads us withv1  v2  : : :  vn , then this
approach incurs
( n) interventions in total.

TWEAK 1: ONLY INVOKE PERIODICALLY

Since Theorem 2.9 provides us a logarithmic factor in
the analysis, we could instead consider only invoking
SubsetSearch after the number of nodes in the sub-
graphincreases by a polynomial factor. For example, if
we invokedSubsetSearch with ni previously, then we
will wait until the number of relevant nodes surpassesn2

i
before invokingSubsetSearch again, where we de�ne
n0 � 2 for simplicity. Sincelogni � 2 logni � 1, we can
see via an inductive argument that the number of interven-
tions used in the �nal invocation will dominate the total
number of interventions used so far:nt � 2 lognt � 1 �
lognt � 1 + 2 log nt � 2 � : : : �

P t � 1
i =0 logni . Sinceni � n

for anyi , we can already prove thatO(log n � � 1(G� )) inter-

v1 v2 v3

v4

v5

...

vn

G�

v1 v2 v3

v4

v5

...

vn

eG

eV = f v1g

Figure 3. Consider the ground truth DAGG� with unique mini-
mum verifying setf v2g and an advice DAGeG 2 [G� ] with chosen
minimum verifying seteV = f v1g. So,h(G� ; eV ) = 1 and ideally
we want to argue that our algorithm uses a constant number of inter-
ventions. Without tweak 2 andn0 = 2 , an algorithm that increases
hop radius until the number of relevant nodes is squared willnot in-
vokeSubsetSearch until r = 3 because� ( eV ; N 1) = 1 < n 2

0

and� ( eV ; N 2) = 2 < n 2
0 . However,� ( eV ; N 3) = n � 1 and we

can only conclude that the algorithm usesO(log n) interventions
by invokingSubsetSearch on a subgraph onn � 1 nodes.

ventions suf�ce, matching the advice-free bound of Theo-
rem 2.7. However, this approach and analysis doesnot take
into account the quality ofeG and isinsuf�cient to relatent

with the advice measure .

TWEAK 2: ALSO INVOKE ONE ROUND BEFORE

Suppose the �nal invocation ofSubsetSearch is onr (t)-
hop neighborhood while incurringO(log nt � � 1(G� )) in-
terventions. This means thatC(G� ) lies within N r ( t ) ( eV )
but not within N r ( t � 1) ( eV ). That is, N r ( t � 1) ( eV ) (
N h(G � ; eV ) ( eV ) � N r ( t ) ( eV ). While this tells us thatnt � 1 �
j� ( eV ; N r ( t � 1) ( eV )) j < j� ( eV ; Nh(G � ; eV ) ( eV )) j =  , what
we want is to conclude thatnt 2 O ( ). Unfortunately,
even when = r (t � 1) + 1 , it could be the case that
j� ( eV ; Nh(G � ; eV ) ( eV )) j � j N r ( t ) ( eV )j as the number of rel-
evant nodes could blow up within a single hop (see Fig-
ure 3). To control this potential blow up in the analysis,
we can introduce the following technical �x: whenever
we want to invokeSubsetSearch on r (i ), �rst invoke
SubsetSearch on r (i ) � 1 and terminate earlier if the
graph is already fully oriented intoG� .

PUTTING TOGETHER

Algorithm 1 presents our full algorithm where the inequality
� (I i ; N r

skel( E(G � )) ( eV )) � n2
i corresponds to the �rst tweak

while the termsCi andC0
i correspond to the second tweak.

In Appendix H, we explain why our algorithm (Algorithm 1)
is simply the classic “binary search with prediction”7 when
the given essential graphE(G� ) is an undirected path. So,

7e.g. see https://en.wikipedia.org/wiki/
Learning_augmented_algorithm#Binary_search

7
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another way to view our result is ageneralizationthat works
on essential graphs of arbitrary moral DAGs.

Algorithm 1 Adaptive search algorithm with advice.

1: Input : Essential graphE(G� ), advice DAGeG 2 [G� ],
intervention sizek 2 N

2: Output : An intervention setI such that each interven-
tion involves at mostk nodes andEI (G� ) = G� .

3: Let us writeSSto meanSubsetSearch .
4: Let eV 2 V( eG) be any atomic verifying set ofeG.
5: if k = 1 then
6: De�ne I 0 = eV as an atomic intervention set.
7: else
8: De�ne k0 = min f k; j eV j=2g, a = djeV j=k0e � 2,

and` = dloga jCje. Compute labelling scheme on
eV with (j eV j; k; a) via Lemma 4.3 and de�neI 0 =
f Sx;y gx 2 [` ];y 2 [a], whereSx;y � eV is the subset of
vertices whosex th letter in the label isy.

9: end if
10: Intervene onI 0 and initializer  0, i  0, n0  2.
11: while EI i (G

� ) still has undirected edgesdo
12: if � (I i ; N r

skel( E(G � )) ( eV )) � n2
i then

13: Incrementi  i + 1 and recordr (i )  r .
14: Updateni  � (I i ; N r

skel( E(G � )) ( eV ))

15: Ci  SS(EI i (G
� ); N r � 1

skel( E(G � )) ( eV ); k)
16: if EI i � 1 [ C i (G

� ) still has undirected edgesthen
17: C0

i  SS(EI i � 1 [ C i (G
� ); N r

skel( E(G � )) ( eV ); k)
18: UpdateI i  I i � 1 [ Ci [ C0

i .
19: else
20: UpdateI i  I i � 1 [ Ci .
21: end if
22: end if
23: Incrementr  r + 1 .
24: end while
25: return I i

For bounded size interventions, we rely on the following
known results.

Theorem 4.2(Theorem 12 of (Choo et al., 2022)). Fix an
essential graphE(G� ) andG 2 [G� ]. If � 1(G) = `, then
� k (G) � d `

k e and there exists a polynomial time algo. to
compute a bounded size intervention setI of sizejIj �
d`

k e+ 1 .

Lemma 4.3(Lemma 1 of (Shanmugam et al., 2015)). Let
(n; k; a) be parameters wherek � n=2. There exists a
polynomial time labeling scheme that produces distinct`
length labels for all elements in[n] using letters from the
integer alphabetf 0g [ [a] where` = dloga ne. Further, in
every digit (or position), any integer letter is used at most
dn=ae times. This labelling scheme is a separating system:
for anyi; j 2 [n], there exists some digitd 2 [`] where the
labels ofi andj differ.

Theorem 4.2 enables us to easily relate� 1(G) with � k (G)
while Lemma 4.3 provides an ef�cient labelling scheme to
partition a set ofn nodes into a setS = f S1; S2; : : :g of
bounded size sets, eachSi involving at mostk nodes. By
invoking Lemma 4.3 witha � n0=k wheren0 is related to
� 1(G), we see thatjSj � n 0

k � logk. As � k (G) � � 1(G)=k,
this is precisely why the bounded intervention guarantees
in Theorem 2.7, Theorem 2.9 and Theorem 3.5 have an
additional multiplicativelogk factor.

5. Empirical validation

While our main contributions are theoretical, we also per-
formed some experiments to empirically validate that our
algorithm is practical, outperforms the advice-free baseline
when the advice quality is good, and still being at most a
constant factor worse when the advice is poor.

Motivated by Theorem 2.3, we experimented on synthetic
moral DAGs from Wien̈obst et al. (2021b): For each undi-
rected chordal graph, we use the uniform sampling algo-
rithm of Wien̈obst et al. (2021b) to uniformly sample 1000
moral DAGs eG1; : : : ; eG1000 and randomly choose one of
them asG� . Then, we givef (E(G� ); eGi )gi 2 [1000] as input
to Algorithm 1.

Figure 4 shows one of the experimental plots; more detailed
experimental setup and results are given in Appendix I. On

the X-axis, we plot (G� ; eV ) =
�
�
� �

�
eV ; Nh(G � ; eV )

skel( E(G � )) ( eV )
� �

�
� ,

which is alower boundand proxy8 for  (G� ; eG). On the
Y-axis, we aggregate advice DAGs based on their quality
measure and also show (in dashed lines) the empirical distri-
bution of quality measures of all DAGs within the Markov
equivalence class.

As expected from our theoretical analyses, we see that the
number of interventions by our advice search starts from
� 1(G� ), is lower than advice-free search of (Choo et al.,
2022) when (G� ; eV ) is low, and gradually increases as
the advice quality degrades. Nonetheless, the number of
interventions used is always theoretically bounded below
O( (G� ; eV ) � � 1(G� )) ; we do not plot (G� ; eV ) � � 1(G� )
since plotting it yields a “squashed” graph as the empirical
counts are signi�cantly smaller. In this speci�c graph in-
stance, Figure 4 suggests that our advice search outperforms
its advice-free counterpart when given an advice DAGeG
that is better than� 40%of all possible DAGs consistent
with the observational essential graphE(G� ).

8We do not know if there is an ef�cient way to compute
 (G� ; eG) besides the naive (possibly exponential time) enumera-
tion over all possible minimum verifying sets.
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Figure 4. Experimental plot for one of the synthetic graphsG� ,
with respect to1000 � j [G� ]j � 1:4 � 106 uniformly sampled
advice DAGs eG from the MEC[G� ]. The solid lines indicate
the number of atomic interventions used while the dotted lines
indicate the empirical cumulative probability density ofeG. The
true cumulative probability density lies within the shaded area with
probability at least 0.99 (see Appendix I for details).

6. Conclusion and discussion

In this work, we gave the �rst result that utilizes imperfect
advice in the context of causal discovery. We do so in a
way that the performance (i.e. the number of interventions
in our case) does not degrade signi�cantly even when the
advice is inaccurate, which is consistent with the objectives
of learning-augmented algorithms. Speci�cally, we show
a smooth bound that matches the number of interventions
needed for veri�cation of the causal relationships in a graph
when the advice is completely accurate and also depends
logarithmically on the distance of the advice to the ground
truth. This ensures robustness to “bad” advice, the number
of interventions needed is asymptotically the same as in the
case where no advice is available.

Our results do rely on the widely-used assumptions of suf-
�ciency and faithfulness as well as access to ideal iterven-
tions; see Appendix A for a more detailed discussion. Since
wrong causal conclusions may be drawn when these assump-
tions are violated by the data, thus it is of great interest to
remove/weaken these assumptions while maintaining strong
theoretical guarantees in future work.

6.1. Interesting future directions to explore

Partial advice In Appendix E, we explain why hav-
ing a DAG eG as advice may not always be possible and
explain how to extend our results to the setting ofpar-
tial advice by considering the worst case DAG consis-
tent with the given partial adviceA . The question is

whether one can design and analyze a better algorithm than
a trivial max eG2A . For example, maybe one could pick
eG = argmin G2A maxH 2 [G � ]  (H; G)? The motivation is
as follows: If[G� ] is a disc inR2 and is the Euclidean dis-
tance, theneG should be the point withinA that is closest to
the center of the disc. Note that we can only optimize with
respect tomaxH 2 [G � ] because we do not actually knowG� .
It remains to be seen if such an object can be ef�ciently com-
puted and whether it gives a better bound thanmax eG2A .

Incorporating expert con�dence The notion of “con�-
dence level” and “correctness” of an advice are orthogonal
issues – an expert can be con�dently wrong. In this work,
we focused on the case where the expert is fully con�dent
but may be providing imperfect advice. It is an interesting
problem to investigate how to principally handle both issues
simultaneously; for example, what if the advice is not a
DAG eG 2 [G� ] in the essential graph but a distribution over
all DAGs in [G� ]? Bayesian ideas may apply here.

Better analysis? Empirically, we see that the log factor is
a rather loose upper bound both for blind search and advice
search.Can there be a tighter analysis?(Choo et al., 2022)
tells us that
(log n � � 1(G� )) is unavoidable whenE(G� )
is a path onn vertices with� 1(G� ) = 1 but this is a special
class of graphs. What if� 1(G� ) > 1? Can we give tighter
bounds in other graph parameters? Furthermore, in some
preliminary testing, we observed that implementing tweak
2 or ignoring it yield similar empirical performance and we
wonder if there is a tighter analysis without tweak 2 that has
similar guarantees.
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A. Remark about assumptions

Undercausal suf�ciency, there are no hidden confounders (i.e. unobserved common causes to the observed variables). While
causal suf�ciency may not always hold, it is still a reasonable assumption to make in certain applications such as studying
gene regulatory networks (e.g. see (Wang et al., 2017)).

Faithfulnessassumes that independencies that occur in the data do not occur due to “cancellations” in the functional
relationships, but rather due to the causal graph structure. It is known (Meek, 1995b; Spirtes et al., 2000) that, under many
natural parameterizations and settings, the set of unfaithful parameters for any given causal DAG has zero Lebesgue measure
(i.e. faithfulness holds; see also Section 3.2 of (Zhang & Spirtes, 2002) for a discussion about faithfulness). However, one
should be aware that the faithfulness assumption may be violated in reality (Andersen, 2013; Uhler et al., 2013), especially
in the presence of sampling errors in the �nite sample regime.

Ideal interventionsassume hard interventions (forcefully setting a variable value) and the ability to obtain as many
interventional samples as desired, ensuring that we always recover the directions of all edges cut by interventions. Without
this assumption, we may fail to correctly infer some arc directions and our algorithms will only succeed with some success
probability.

Our assumption that the given expert advice is consistent with observational essential graph is purely for simplicity and can
be removed by deciding which part of the given advice to discard so that the remaining advice is consistent. However, we
feel that deciding which part of the inconsistent advice to discard will unnecessarily complicate our algorithmic contributions
without providing any useful insights, and thus we made such an assumption.

B. Additional Preliminaries

For any setA, we denote its powerset by2A . We writef 1; : : : ; ng as[n] and hide absolute constant multiplicative factors in
n using standard asymptotic notationsO(�), 
( �), and�( �). The indicator function1predicateis 1 if the predicate is true and
0 otherwise. Throughout, we useG� to denote the (unknown) ground truth DAG, its Markov equivalence class by[G� ] and
the corresponding essential graph byE(G� ). We writeA _[ B andA n B to represent the disjoint union and set difference of
two setsA andB respectively.

B.1. Graph basics

We consider partially oriented graphs without parallel edges.

Let G = ( V; E) be a graph onjV j = n nodes/vertices whereV (G), E (G), andA(G) � E (G) denote nodes, edges, and
arcs ofG respectively. The graphG is said to be fully oriented ifA(G) = E(G), fully unoriented ifA(G) = ; , and
partially oriented otherwise. For any subsetV 0 � V andE 0 � E , we useG[V 0] andG[E 0] to denote the node-induced and
edge-induced subgraphs respectively. We writeu � v to denote that two nodesu; v 2 V are connected inG, and write
u ! v or u  v when specifying a certain direction. Theskeletonskel(G) refers to the underlying graph where all edges
are made undirected. Av-structurein G refers to a collection of three distinct verticesu; v; w 2 V such thatu ! v  w
andu 6� w. A directed cycle refers to a sequence ofk � 3 vertices wherev1 ! v2 ! : : : ! vk ! v1. An acyclic
completion / consistent extensionof a partially oriented graph refers to an assignment of edge directions to the unoriented
edgesE(G) n A(G) such that the resulting fully oriented graph has no directed cycles.

SupposeG = ( V; E) is fully unoriented. For verticesu; v 2 V , subset of verticesV 0 � V and integerr � 0, de�ne
dist G (u; v) as the shortest path length betweenu andv, dist G (V 0; v) = min u2 V 0 dist G (u; v), andN r

G (V 0) = f v 2
V : dist G (v; V 0) � r g � V as the set of vertices that arer -hops away fromV 0, i.e. r -hop neighbors ofV 0. We omit the
subscriptG when it is clear from context.

SupposeG = ( V; E) is fully oriented. For any vertexv 2 V , we writePa(v); Anc(v); Des(v) to denote the parents,
ancestors and descendants ofv respectively and we writeDes[v] = Des(v) [ f vg andAnc[v] = Anc(v) [ f vg to include
v itself. We de�neCh(v) � Des(v) as the set ofdirect childrenof v, that is, for anyw 2 Ch(v) there doesnot exists
z 2 V n f v; wg such thatz 2 Des(v) \ Anc(w). Note that,Ch(v) � f w 2 V : v ! wg � Des(v).
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B.2. Causal graph basics

A directed acyclic graph (DAG) is a fully oriented graph without directed cycles. By representing random variables by
nodes, DAGs are commonly used as graphical causal models (Pearl, 2009), where the joint probability densityf factorizes
according to the Markov property:f (v1; : : : ; vn ) =

Q n
i =1 f (vi j pa(v)) , wherepa(v) denotes the values taken byv's

parents. One can associate a (not necessarily unique)valid permutation / topological ordering� : V ! [n] to any (partially
directed) DAG such that oriented arcs(u; v) satisfy� (u) < � (v) and unoriented arcsf u; vg can be oriented asu ! v
without forming directed cycles when� (u) < � (v).

For any DAGG, we denote its Markov equivalence class (MEC) by[G] and essential graph byE(G). DAGs in the same
MEC have the same skeleton and the essential graph is a partially directed graph such that an arcu ! v is directed ifu ! v
in everyDAG in MEC [G], and an edgeu � v is undirected if there exists two DAGsG1; G2 2 [G] such thatu ! v in
G1 andv ! u in G2. It is known that two graphs are Markov equivalent if and only if they have the same skeleton and
v-structures (Verma & Pearl, 1990; Andersson et al., 1997). In fact, the essential graphE(G) can be computed fromG by
orienting v-structures in the skeletonskel(G) and applying Meek rules (see Appendix D). An edgeu ! v is acovered edge
(Chickering, 1995) ifPa(u) = Pa(v) n f ug. We useC(G) � E (G) to denote the set of covered edges ofG. The following
is a well-known result relating covered edges and MECs.

Lemma B.1((Chickering, 1995)). If G andG0 belong in the same MEC if and only if there exists a sequence of covered
edge reversals to transform between them.

C. Additional Related Works on Causal Structure Learning

Constraint-based algorithms, such as ours, use information about conditional independence relations to identify the
underlying structure. From purely observational data, the PC (Spirtes et al., 2000), FCI (Spirtes et al., 2000) and RFCI
algorithms (Colombo et al., 2012) have been shown to consistently recover the essential graph, assuming causal suf�ciency,
faithfulness, and i.i.d. samples. The problem of recovering the DAG using constraints from interventional data was �rst
studied by Eberhardt et al. (2006; 2005); Eberhardt (2007). Many recent works (Hu et al., 2014; Shanmugam et al., 2015;
Kocaoglu et al., 2017; Lindgren et al., 2018; Greenewald et al., 2019; Squires et al., 2020; Choo et al., 2022; Choo &
Shiragur, 2023) have followed up on these themes.

Score-based methods maximize a particular score function over the space of graphs. For observational data, the GES
algorithm (Chickering, 2002) uses the BIC to iteratively add edges. Extending the GES, Hauser & Bühlmann (2012)
proposed the GIES algorithm that uses passive interventional data to orient more edges. Hybrid methods, like Solus et al.
(2021) for observational and Wang et al. (2017) for interventional data, use elements of both approaches.

D. Meek rules

Meek rules are a set of 4 edge orientation rules that are sound and complete with respect to any given set of arcs that has a
consistent DAG extension (Meek, 1995a). Given any edge orientation information, one can always repeatedly apply Meek
rules till a unique �xed point (where no further rules trigger) to maximize the number of oriented arcs.

De�nition D.1 (The four Meek rules (Meek, 1995a), see Figure 5 for an illustration).

R1 Edgef a; bg 2 E(G) n A(G) is oriented asa ! b if 9 c 2 V such thatc ! a andc 6� b.

R2 Edgef a; bg 2 E(G) n A(G) is oriented asa ! b if 9 c 2 V such thata ! c ! b.

R3 Edgef a; bg 2 E(G) n A(G) is oriented asa ! b if 9 c; d 2 V such thatd � a � c, d ! b  c, andc 6� d.

R4 Edgef a; bg 2 E(G) n A(G) is oriented asa ! b if 9 c; d 2 V such thatd � a � c, d ! c ! b, andb 6� d.

There exists an algorithm (Algorithm 2 of (Wienöbst et al., 2021a)) that runs inO(d � jE (G)j) time and computes the closure
under Meek rules, whered is the degeneracy of the graph skeleton9.

9A d-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at mostd. Note that the degeneracy of a
graph is typically smaller than the maximum degree of the graph.
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Figure 5.An illustration of the four Meek rules

E. Imperfect partial advice via MPDAGs

In the previous sections, we discuss advice that occurs in the form of a DAGeG 2 [G� ]. However, this may be too much to
ask for in certain situations. For example:

• The Markov equivalence class may be too large for an expert to traverse through and propose an advice DAG.

• The expert only has opinions about a subset of a very large causal graph involving millions of nodes / edges.

As discussed in Section 2.4, we can formulate such partial advice as MPDAGs. Given a MPDAG as expert advice, a natural
attempt would be to sample a DAGeG from it to use the full advice. Unfortunately, it is #P-complete even to count the
number of DAGs consistent with a given MPDAG in general (Wienöbst et al., 2021b) and we are unaware of any ef�cient
way to sample uniformly at random from it. Instead, we propose to pick an arbitrary DAGeG as advice within the given
MPDAG: pick any unoriented edge, orient arbitrarily, apply Meek rules, repeat until fully oriented. The following result
follows naturally by maximizing over all possible DAGs consistent with the given partial advice.

Theorem E.1. Fix an essential graphE(G� ) with an unknown underlying ground truth DAGG� . Given a setA of DAGs
consistent with the given partial advice and intervention set boundk � 1, there exists a deterministic polynomial time
algorithm that computes an intervention setI adaptively such thatEI (G� ) = G� , andjIj has size
1. O(maxf 1; log maxeG2A  (G� ; eG)g � � 1(G� ))

2. O(maxf 1; log maxeG2A  (G� ; eG)g � logk � � k (G� ))
whenk = 1 andk > 1 respectively.

F. Technical Overview for Theorem 3.1

As discussed in Section 2, it suf�ces to prove Theorem 3.1 with respect to moral DAGs.

Our strategy for proving Theorem 3.1 is to consider two arbitrary DAGsGs (source) andGt (target) in the same equivalence
class and transform a verifying set forGs into a verifying set forGt using Lemma B.1 (see Algorithm 2 for the explicit
algorithm10). Instead of proving Theorem 3.1 by analyzing the exact sequence of covered edges produced by Algorithm 211

when transforming between the DAGsGmin = argmin G2 [G � ] � 1(G) andGmax = argmaxG2 [G � ] � 1(G), we will prove
something more general.

Observe that taking both endpoints of any maximal matching of covered edges is a valid verifying set that is at mosttwice
the size of the minimum verifying set. This is because maximal matching is a 2-approximation to the minimum vertex
cover. Motivated by this observation, our proof for Theorem 3.1 uses the following transformation argument (Lemma F.3):
for two DAGs G andG0 that differ only on the arc direction of a single covered edgex � y, we show that given a
conditional-root-greedy (CRG) maximal matching12 on the covered edges ofG, we can obtain another CRG maximal
matchingof the same sizeon the covered edges ofG0, after reversingx � y and transformingG to G0.

So, starting fromGs, we compute a CRG maximal matching, then we apply the transformation argument above on the
sequence of covered edges given by Algorithm 2 until we get a CRG maximal matching ofGt of the same size. Thus, we
can conclude that the minimum vertex cover sizes ofGs andGt differ by a factor of at most two. This argument holds for
anypair of DAGs(Gs; Gt ) from the same MEC.

10Lemma 2 of (Chickering, 1995) guarantees thatx ! y is a covered edge of the currentGs whenever step 9 is executed.
11The correctness of Algorithm 2 is given in (Chickering, 1995) where the key idea is to show thatx ! y found in this manner is a

covered edge. This is proven in Lemma 2 of (Chickering, 1995).
12A special type of maximal matching (see De�nition F.1).
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Algorithm 2 (Chickering, 1995): Transforms between two DAGs within the same MEC via covered edge reversals
1: Input : Two DAGsGs = ( V; Es) andGt = ( V; Et )
2: Output : A sequenceseq of covered edge reversals that transformsGs to Gt

3: seq  ;
4: while Gs 6= Gt do
5: Fix an arbitrary valid ordering� for Gs.
6: Let A  A(Gs) n A(Gt ) be the set of differing arcs.
7: Let y  argminy 2 V : PaA (y )6= ; f � (y)g.
8: Let x  argmaxz 2 PaA (y ) f � (z)g.
9: Add x ! y to seq .

10: UpdateGs by replacingx ! y with y ! x.
11: end while
12: return seq

We now de�ne what is a conditional-root-greedy (CRG) maximal matching. As the set of covered edgesC(G) of any DAG
G induces a forest (see Theorem 2.6), we de�ne the CRG maximal matching using a particular greedy process on the tree
structure ofC(G). The CRG maximal matching is unique with respect to a �xed valid ordering� of G and subsetS. We
will later consider CRG maximal matchings withS = A(Gs) \ A(Gt ), where the arc setS remains unchanged throughout
the entire transformation process.

De�nition F.1 (Conditional-root-greedy (CRG) maximal matching). Given a DAGG = ( V; E) with a valid ordering� G

and a subset of edgesS � E , we de�ne the conditional-root-greedy (CRG) maximal matchingM G;� G ;S as theunique
maximal matching onC(G) computed via Algorithm 3: greedily choose arcsx ! y where thex has no incoming arcs by
minimizing � G (y), conditioned onfavoring arcs outside ofS.

Algorithm 3 Conditional-root-greedy maximal matching
1: Input : A DAG G = ( V; E), a valid ordering� G , a subset of edgesS � E
2: Output : A CRG maximal matchingM G;� G ;S

3: Initialize M G;� G ;S  ; andC  C (G)
4: while C 6= ; do
5: x  argminz 2 f u2 V j u ! v2 C gf � G (z)g
6: y  argminz2 V : x ! z 2 C f � G (z) + n2 � 1x ! z2 Sg
7: Add the arcx ! y to M G;� G ;S

8: Remove all arcs withx or y as endpoints fromC
9: end while

10: return M G;� G ;S

To prove the transformation argument (Lemma F.3), we need to �rst understand how the status of covered edges evolve
when we perform a single edge reversal. The following lemma may be of independent interest beyond this work.

Lemma F.2 (Covered edge status changes due to covered edge reversal). Let G� be a moral DAG with MEC[G� ] and
consider any DAGG 2 [G� ]. SupposeG = ( V; E) has a covered edgex ! y 2 C(G) � E and we reversex ! y to
y ! x to obtain a new DAGG0 2 [G� ]. Then, all of the following statements hold:

1. y ! x 2 C(G0). Note that this is the covered edge that was reversed.

2. If an edgee does not involvex or y, thene 2 C(G) if and only ife 2 C(G0).

3. If x 2 ChG (a) for somea 2 V n f x; yg, thena ! x 2 C(G) if and only ifa ! y 2 C(G0).

4. If b 2 ChG (y) andx ! b 2 E(G) for someb 2 V n f x; yg, theny ! b 2 C(G) if and only ifx ! b 2 C(G0).

Using Lemma F.2, we derive our transformation argument.
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Lemma F.3. Consider two moral DAGsG1 andG2 from the same MEC such that they differ only in one covered edge
direction: x ! y 2 E(G1) andy ! x 2 E(G2).

Let vertexa be the direct parent ofx in G1, if it exists. LetS � E be a subset such thata ! x 2 S andx ! y; y ! x 62S
(if a does not exist, ignore conditiona ! x 2 S).

Suppose� G1 is an ordering forG1 such thaty = argmin z : x ! z2C (G1 ) f � G1 (z) + n2 � 1x ! z2 Sg and denoteM G1 ;� G 1 ;S

as the corresponding CRG maximal matching forC(G1). Then, there exists an explicit modi�cation of� G1 to � G2 , and
M G1 ;� G 1 ;S to a CRG maximal matchingM G2 ;� G 2 ;S for C(G2) such thatjM G1 ;� G 1 ;S j = jM G2 ;� G 2 ;S j.

To be precise, given� G1 , we will de�ne � G2 in our proofs as follows:

� G2 (v) =

8
>>><

>>>:

� G1 (x) if v = y
� G1 (u) if v = x
� G1 (y) if v = u
� G1 (v) else

(1)

As discussed earlier, Theorem 3.1 follows by pickingGs = argmaxG2 [G � ] � 1(G) andGt = argmin G2 [G � ] � 1(G), applying
Algorithm 2 to �nd a transformation sequence of covered edge reversals between them, and repeatedly applying Lemma F.3
with the conditioning setS = A(Gs) \ A(Gt ) to conclude thatGs andGt have the same sized CRG maximal matchings,
and thus implying thatminG2 [G � ] � 1(G) = � 1(Gs) � 2 � � 1(Gt ) = 2 � argmaxG2 [G � ] � 1(G). Note that we keep the
conditioning setS unchanged throughout the entire transformation processfrom Gs to Gt .

For an illustrated example of conditional-root-greedy (CRG) maximal matchings and how we update the permutation
ordering, see Figure 6 and Figure 7.

a

x y

bu

1

2 4

3 5 G1

a

x y

bu

1

3 2

4 5 G2

Figure 6. Consider the following simple setup of two DAGsG1 andG2 which agree on all arc directions except forx ! y in G1 and
y ! x in G2 . Dashed arcs represent the covered edges in each DAG. The numbers below each vertex indicate the� G 1 and� G 2 orderings
respectively. InG1 , u = argmin z2 ChG 1 ( x ) f � G 1 (z)g. Observe that Equation (1) modi�es the ordering only forf x; y; u g (in blue) while
keeping the ordering of all other vertices �xed. SupposeS = A(G1)\ A(G2) = f a ! b; a ! x; a ! y; a ! u; x ! b; x ! u; y ! bg.
With respect to� G 1 andS, The conditional-root-greedy maximal matchings (see Algorithm 3) areM G 1 ;� G 1 ;S = f a ! x; y ! bg and
M G 2 ;� G 2 ;S = f a ! y; x ! bg.

G. Deferred proofs

G.1. Preliminaries

Our proofs rely on some existing results which we �rst state and explain below.

Lemma G.1(Lemma 27 of (Choo et al., 2022)). Fix an essential graphE(G� ) andG 2 [G� ]. If I � 2V is a verifying set,
thenI separates all unoriented covered edgeu � v of G.

Lemma G.2(Lemma 28 of (Choo et al., 2022)). Fix an essential graphE(G� ) andG 2 [G� ]. If I � 2V is an intervention
set that separates every unoriented covered edgeu � v of G, thenI is a verifying set.

Lemma G.1 tells us that we have to intervene on one of the endpoints ofany covered edge in order to orient it while
Lemma G.2 tells us that doing so for all covered edges suf�ces to orient the entire causal DAG.
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x y

bu

1 3

2 4 G1

x y

bu
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3 4 G2

Figure 7. Consider the following simple setup of two DAGsG3 andG4 which agree on all arc directions except forx ! y in G3 and
y ! x in G4 . Dashed arcs represent the covered edges in each DAG. The numbers below each vertex indicate the� G 3 and� G 4 orderings
respectively. Observe thatC(G3) = f x ! u; x ! y; y ! bg. If we de�ne S = A(G3) \ A(G4) = f x ! b; x ! u; y ! bg, we see
that the conditional-root-greedy maximal matchings (see Algorithm 3) areM G 3 ;� G 3 ;S = f x ! yg andM G 4 ;� G 4 ;S = f y ! xg. Note
that Algorithm 3 doesnot choosex ! u 2 C(G1) despite� (u) < � (y) becausex ! u 2 S, so� (y) < � (u) + n2 .

G.2. Veri�cation numbers of DAGs within same MEC are bounded by a factor of two

We use the following simple lemma in our proof of Lemma F.2.

Lemma G.3. For any covered edgex ! y in a DAGG = ( V; E), we havey 2 ChG (x). Furthermore, each vertex only
appears as an endpoint in the collection of covered edgesC(G) at most once.

Proof. For the �rst statement, suppose, for a contradiction, thaty 62Ch(x). Then, there exists somez 2 V n f x; yg such
thatz 2 Des(x) \ Anc(y). Fix an arbitrary ordering� for G and letz� = argmax z2 Des(x ) \ Anc(y) f � (z)g. Then, we see
thatz� ! y while z� 6! x sincez� 2 Des(x). So,x ! y cannotbe a covered edge. Contradiction.

For the second statement, suppose, for a contradiction, that there are two covered edgesu ! x; v ! x 2 C(G) that ends
with x. Sinceu ! x 2 C(G), we must havev ! u. Sincev ! x 2 C(G), we must haveu ! v. We cannot have both
u ! v andv ! u simultaneously. Contradiction.

Lemma F.2 (Covered edge status changes due to covered edge reversal). Let G� be a moral DAG with MEC[G� ] and
consider any DAGG 2 [G� ]. SupposeG = ( V; E) has a covered edgex ! y 2 C(G) � E and we reversex ! y to
y ! x to obtain a new DAGG0 2 [G� ]. Then, all of the following statements hold:

1. y ! x 2 C(G0). Note that this is the covered edge that was reversed.

2. If an edgee does not involvex or y, thene 2 C(G) if and only ife 2 C(G0).

3. If x 2 ChG (a) for somea 2 V n f x; yg, thena ! x 2 C(G) if and only ifa ! y 2 C(G0).

4. If b 2 ChG (y) andx ! b 2 E(G) for someb 2 V n f x; yg, theny ! b 2 C(G) if and only ifx ! b 2 C(G0).

Proof. The only parental relationships that changed when we reversingx ! y to y ! x arePaG0(y) = PaG (y) n f xg and
PaG0(x) = PaG (x) [ f yg. For any other vertexu 2 V n f x; yg, we havePaG0(u) = PaG (u). The �rst two points have
the same proof: as parental relationships of both endpoints are unchanged, the covered edge status is unchanged.

3. Sincex ! y 2 C(G), we havea ! y 2 E(G). We prove both directions separately.

Supposea ! x 2 C(G). Then,PaG (a) = PaG (x) n f ag. Sincex ! y 2 C(G), thenPaG (x) = PaG (y) n f xg. So,
we havePaG0(a) = PaG (a) = PaG (x) n f ag = PaG (y) n f x; ag = PaG0(y) n f ag. Thus,a ! y 2 C(G0).

Supposea ! x 62 C(G). Then, one of the two cases must occur:

(a) There exists some vertexu such thatu ! a andu 6! x in G.
Sincex ! y is a covered edge,u 6! x impliesu 6! y in G. Therefore,a ! y 62 C(G0) due tou ! a.

(b) There exists some vertexv such thatv ! x andv 6! a in G.
There are two possibilities forv 6! a: v 6� a or v  a. If v 6� a, thenv ! x  a is a v-structure. Ifv  a, then
x 62Ch(a) since we havea ! v ! x. Both possibilities lead to contradictions.

The �rst case impliesa ! y 62 C(G0) while the second case cannot happen.
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4. We prove both directions separately.

Supposey ! b 2 C(G). Then,PaG (y) = PaG (b) n f yg. Sincex ! y 2 C(G), thenPaG (x) = PaG (y) n f xg. So,
we havePaG0(b) n f xg = PaG (b) n f xg = PaG (y) [ f yg n fxg = PaG (x) [ f yg = PaG0(x). Thus,x ! b 2 C(G0).

Supposey ! b 62 C(G). Then, one of the two cases must occur:

• There exists some vertexu ! y andu 6! b.
Sincex ! y is a covered edge,u ! y impliesu ! x. Therefore,x ! b 62 C(G0) due tou 6! b.

• There exists some vertexv ! bandv 6! y.
There are two possibilities forv 6! y: v 6� y or v  y. If v 6� y, thenv ! b  y is a v-structure. Ifv  y, then
b 62Ch(y) since we havey ! v ! b. Both possibilities lead to contradictions.

The �rst case impliesx ! b 62 C(G0) while the second case cannot happen.

Lemma F.3. Consider two moral DAGsG1 andG2 from the same MEC such that they differ only in one covered edge
direction: x ! y 2 E(G1) andy ! x 2 E(G2).

Let vertexa be the direct parent ofx in G1, if it exists. LetS � E be a subset such thata ! x 2 S andx ! y; y ! x 62S
(if a does not exist, ignore conditiona ! x 2 S).

Suppose� G1 is an ordering forG1 such thaty = argmin z : x ! z2C (G1 ) f � G1 (z) + n2 � 1x ! z2 Sg and denoteM G1 ;� G 1 ;S

as the corresponding CRG maximal matching forC(G1). Then, there exists an explicit modi�cation of� G1 to � G2 , and
M G1 ;� G 1 ;S to a CRG maximal matchingM G2 ;� G 2 ;S for C(G2) such thatjM G1 ;� G 1 ;S j = jM G2 ;� G 2 ;S j.

Proof. De�ne u = argmin z2 ChG 1 (x ) f � G1 (z)g as the lowest ordered child ofx. Note that Algorithm 3 choosesx ! y
instead ofx ! u by de�nition of y. This implies thatx ! u 2 S wheneveru 6= y.

Let us de�ne� G2 as follows:

� G2 (v) =

8
>>><

>>>:

� G1 (x) if v = y
� G1 (u) if v = x
� G1 (y) if v = u
� G1 (v) else

Clearly,� G1 (x) < � G1 (y) and� G2 (x) > � G2 (y). Meanwhile, for any other two adjacent verticesv andv0, observe that
� G1 (v) < � G1 (v0) () � G2 (v) < � G2 (v0) so� G2 agrees with the arc orientations of� G1 except forx � y. See Figure 6
for an illustrated example.

De�ne vertexbas follows:

b = argmin z2 V : z2 Des(x ) andy! z2C (G1 ) f � G1 (z) + n2 � 1x ! z2 Sg

If vertexbexists, then we know thatb 2 ChG1 (y) andx ! b 2 C(G2) by Lemma G.3 and Lemma F.2. By minimality ofb,
De�nition F.1 will choosey ! b if picking a covered edge starting withy for M G1 ;� G 1 ;S . So, we can equivalently de�ne
vertexbas follows:

b = argmin z2 V : z2 Des(y) andx ! z2C (G2 ) f � G2 (z) + n2 � 1x ! z2 Sg

By choice of� G2 , De�nition F.1 will choosex ! b if picking a covered edge starting withx for M G2 ;� G 2 ;S .

We will now construct a same-sized maximal matchingM G2 ;� G 2 ;S from M G1 ;� G 1 ;S (Step 1), argue that it is maximal
matching ofC(G2) (Step 2), and that it is indeed a conditional-root-greedy matching forC(G2) with respect to� G2 andS
(Step 3). There are three cases that cover all possibilities:

Case 1 Vertexa exists,a ! x 2 M G1 ;� G 1 ;S , and vertexbexists.

Case 2 Vertexa exists,a ! x 2 M G1 ;� G 1 ;S , and vertexbdoes not exist.

Case 3 a ! x 62M G1 ;� G 1 ;S .
This could be due to vertexa not existing, ora ! x 62 C(G1), or M G1 ;� G 1 ;S containing a covered edge ending ata so
a ! x was removed from consideration.
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Step 1: Construction ofM G2 ;� G 2 ;S such that jM G2 ;� G 2 ;S j = jM G1 ;� G 1 ;S j.

By Lemma F.2, covered edge statuses of edges whose endpoints do not involvex or y will remain unchanged. By de�nition
of y, we know that De�nition F.1 will choosex ! y if picking a covered edge starting withx for M G1 ;� G 1 ;S .

Sincea ! x 2 M G1 ;� G 1
in cases 1 and 2, we know that there is no arcs of the formx ! � in M G1 ;� G 1 ;S . Since there is no

arc of the form� ! x in M G1 ;� G 1 ;S in case 3, we know thatx ! y 2 M G1 ;� G 1 ;S .

Case 1 De�ne M G2 ;� G 2 ;S = M G1 ;� G 1 ;S [ f a ! y; x ! bg n fa ! x; y ! bg.

Case 2 De�ne M G2 ;� G 2 ;S = M G1 ;� G 1 ;S [ f a ! yg n fa ! xg.

Case 3 De�ne M G2 ;� G 2 ;S = M G1 ;� G 1 ;S [ f y ! xg n fx ! yg.

By construction, we see thatjM G2 ;� G 2 ;S j = jM G1 ;� G 1 ;S j.

Step 2: M G2 ;� G 2 ;S is a maximal matching of the covered edgeC(G2) of G2.

To prove thatM G2 ;� G 2 ;S is a maximal matching ofC(G2), we argue in three steps:

2(i) Edges ofM G2 ;� G 2 ;S belong toC(G2).

2(ii) M G2 ;� G 2 ;S is a matching ofC(G2).

2(iii) M G2 ;� G 2 ;S is maximal matching ofC(G2).

Step 2(i): Edges ofM G2 ;� G 2 ;S belong toC(G2).

By Lemma F.2, covered edge statuses of edges whose endpoints do not involvex or y will remain unchanged. Since
M G1 ;� G 1 ;S is a matching, it has at most one edgee involving endpointx and at most one edgee0 involving endpointy (e0

could bee).

Case 1 Sincebexists, the edges inM G1 ;� G 1 ;S with endpoints involvingf x; yg area ! x andy ! b. By Lemma F.2, we
know thata ! y; x ! b 2 C(G2).

Case 2 Sincebdoes not exist, the only edge inM G1 ;� G 1 ;S with endpoints involvingf x; yg is a ! x. By Lemma F.2, we
know thata ! y 2 C(G2).

Case 3 Sincea ! x 62M G1 ;� G 1 ;S , we havex ! y 2 M G1 ;� G 1 ;S by minimality of y.

In all cases, we see thatM G2 ;� G 2 ;S � C (G2).

Step 2(ii): M G2 ;� G 2 ;S is a matching ofC(G2).

It suf�ces to argue that there areno two edges inM G2 ;� G 2 ;S sharing an endpoint. SinceM G1 ;� G 1 ;S is a matching, this can
only happen via newly added endpoints inM G2 ;� G 2 ;S .

Case 1 The endpoints of newly added edges are exactly the endpoints of removed edges.

Case 2 Since we removeda ! x and addeda ! y, it suf�ces to check that there are no edges inM G1 ;� G 1 ;S involving y.
This is true sincebdoes not exist in Case 2.

Case 3 The endpoints of newly added edges are exactly the endpoints of removed edges.

Therefore, we conclude thatM G2 ;� G 2 ;S is a matching ofC(G2).
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Step 2(iii): M G2 ;� G 2 ;S is a maximal matching ofC(G2).

For anyu ! v 2 C(G2), we show that there is some edge inM G2 ;� G 2 ;S with at least one ofu or v is an endpoint. By
Lemma F.2, covered edge statuses of edges whose endpoints do not involvex or y will remain unchanged, so it suf�ces to
considerjf u; vg \ f x; ygj � 1.

We check the following 3 scenarios corresponding tojf u; vg \ f x; ygj � 1 below:

(i) y 2 f u; vg.

The endpoints ofM G2 ;� G 2
always containsy.

(ii) y 62 fu; vg andx ! v 2 C(G2), for somev 2 V n f x; yg.

Sincex ! v 2 C(G2) andy ! x in G2, it must be the case thaty ! v in G2. SinceG1 andG2 agrees on all arcs
exceptx � y, we have thaty ! v in G1 as well. Sincex ! v 2 C(G2), we know thatv 2 ChG2 (x) via Lemma G.3.
So, we havey ! v 2 C(G1) via Lemma F.2. Since the setf v : y ! v 2 C(G1)g is non-empty, vertexbexists. In
both cases 1 and 3, the endpoints ofM G2 ;� G 2

includesx.

(iii) y 62 fu; vg andu ! x 2 C(G2), for someu 2 V n f x; yg.

By Lemma G.3, we know thatx 2 ChG2 (u). Meanwhile, sincey ! x 2 C(G2), we must haveu ! y in G2.
However, this implies thatx 62ChG2 (u) sinceu ! y ! x exists. This is a contradiction, so this situation cannot
happen.

As the above argument holds for anyu ! v 2 C(G2), we see thatM G2 ;� G 2
is maximal matching forC(G2).

Step 3: M G2 ;� G 2 ;S is a conditional-root-greedy maximal matching.

We now compare the execution of Algorithm 3 on(� G1 ; S) and(� G2 ; S). Note thatS remains unchanged.

We know the following:

• Since� G2 (y) = � G1 (x) anda ! x 2 S, if a exists anda ! x is chosen by Algorithm 3 on(� G1 ; S), then it means
that there areno a ! v arc inC(G1) such thata ! v 62S. So,a ! y will be chosen by Algorithm 3 on(� G2 ; S) if a
exists.

• Since� G2 (y) = � G1 (x), x is chosen as a root by Algorithm 3 on(� G1 ; S) if and only if y is chosen as a root by
Algorithm 3 on(� G2 ; S).

• By de�nition of b, if it exists, theny ! b 2 M G1 ;� G 1 ;S () x ! b 2 M G2 ;� G 2 ;S .

• By the de�nition of � G2 , we see that Algorithm 3 makes the “same decisions” when choosing arcs rooted on
V n f a; x; y; bg.

Therefore,M G2 ;� G 2 ;S is indeed a conditional-root-greedy maximal matching forC(G2) with respect to� G2 andS.

Theorem 3.1. For any DAGG� with MEC[G� ], we have thatmaxG2 [G � ] � 1(G) � 2 � minG2 [G � ] � 1(G).

Proof. Consider any two DAGsGs; Gt 2 [G� ]. To transformGs = ( V; Es) to Gt = ( V; Et ), Algorithm 2 �ips covered
edges one by one such thatjEs n E t j decreases in a monotonic manner. We will repeatedly apply Lemma F.3 with
S = A(Gs) \ A(Gt ) on the sequence of covered edge reversals produced by Algorithm 2.

Let � G s be an arbitrary ordering forGs and we compute an initial conditional-root-greedy maximal matching forC(Gs)
with respect to some ordering� G s and conditioning setS. To see why Lemma F.3 applies at each step for reversing a
covered edge fromx ! y to y ! x, we need to ensure the following:

1. If x has a parent vertexa (i.e. x 2 ChG1 (a)), thena ! x 2 S.

If a ! x 62S, then thena ! x is a covered edge that should be �ipped to transform fromGs to Gt . However, this
means that Algorithm 2 would picka ! x to reverse instead of pickingx ! y to reverse. Contradiction.
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2. x ! y; y ! x 62S.

This is satis�ed by the de�nition ofS = Es \ E t since reversingx ! y to y ! x implies that neither of them are inS.

3. y = argmin z : x ! z2C (G1 ) f � G1 (z) + n2 � 1x ! z2 Sg.

Sincex ! y 62S, this is equivalent to checking ify = argmin z : x ! z2C (G1 ) f � G1 (z)g. This is satis�ed by line 7 of
Algorithm 2.

4. M G1 ;� G 1 ;S is a conditional-root-greedy maximal matching forC(G1) with respect to some ordering� G1 and condi-
tioning setS.

This is satis�ed since we always maintain a conditional-root-greedy maximal matching andS is unchanged throughout.

By applying Lemma F.3 withS = A(Gs) \ A(Gt ) repeatedly on the sequence of covered edge reversals produced by
Algorithm 2, we see that there exists a conditional-root-greedy maximal matchingM G s ;� G s

for C(Gs) and a conditional-
root-greedy maximal matchingM G t ;� G t

for C(Gt ) such thatjM G s ;� G s
j = jM G t ;� G t

j.

The claim follows since maximal matching is a 2-approximation to minimum vertex cover, and the veri�cation number
� (G) of any DAGG is the size of the minimum vertex cover of its covered edgesC(G).

Lemma 3.2(Tightness of Theorem 3.1). There exist DAGsG1 andG2 from the same MEC with� 1(G1) = 2 � � 1(G2).

Proof. See Figure 8.

a

cb

d

G1

a

cb

d

G2

Figure 8. The ratio of 2 in Theorem 3.1 is tight:G1 andG2 belong in the same MEC with� (G1) = 2 and� (G2) = 1 . The dashed arcs
represent the covered edges and the boxed vertices represent a minimum vertex cover of the covered edges.

G.3. Adaptive search with imperfect advice

Lemma 4.1. Fix a DAGG� = ( V; E) and letV 0 � V be any subset of vertices. SupposeI V 0 � V is the set of nodes
intervened bySubsetSearch (E(G� ); V 0). If C(G� ) � E (G� [V 0]), thenEI V 0(G� ) = G� .

Proof. By Theorem 2.9,SubsetSearch fully orients edges within the node-induced subgraph induced byV 0, i.e.
SubsetSearch will perform atomic interventions onI V 0 � V resulting inEI V 0(G� )[V 0] = G� [V 0]. SinceC(G� ) �
E (G� [V 0]) and all covered edgesC(G� ) were oriented, then according to Lemma G.1, it must be the case thatV � � I V 0

for some minimum vertex coverV � of C(G� ), so we see thatR(G� ; V � ) � R(G� ; I V 0). By Lemma G.2, we have
R(G� ; V � ) = A(G� ) and soSubsetSearch (E(G� ); V 0) fully orientsE(G� ).

We will now prove our main result (Theorem 3.5) which shows that the number of interventions needed is a function of the
quality of the given advice DAG. Let us �rst recall how we de�ned the quality of a given advice and restate our algorithm.
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De�nition 3.4 (Quality measure). Fix a DAGG� with MEC[G� ] and consider any DAGeG 2 [G� ]. We de�ne (G� ; eG) as
follows:

 (G� ; eG) = max
eV 2V ( eG)

�
�
� �

�
eV ; Nh(G � ; eV )

skel( E(G � )) ( eV )
� �

�
�

Algorithm 1 Adaptive search algorithm with advice.

1: Input : Essential graphE(G� ), advice DAG eG 2 [G� ], intervention sizek 2 N
2: Output : An intervention setI such that each intervention involves at mostk nodes andEI (G� ) = G� .
3: Let eV 2 V( eG) be any atomic verifying set ofeG.
4: if k = 1 then
5: De�ne I 0 = eV as an atomic intervention set.
6: else
7: De�ne k0 = min f k; j eV j=2g, a = djeV j=k0e � 2, and` = dloga jCje. Compute labelling scheme oneV with (j eV j; k; a)

via Lemma 4.3 and de�neI 0 = f Sx;y gx 2 [` ];y 2 [a], whereSx;y � eV is the subset of vertices whosex th letter in the
label isy.

8: end if
9: Intervene onI 0 and initializer  0, i  0, n0  2.

10: while EI i (G
� ) still has undirected edgesdo

11: if � (I i ; N r
skel( E(G � )) ( eV )) � n2

i then
12: Incrementi  i + 1 and recordr (i )  r .
13: Updateni  � (I i ; N r

skel( E(G � )) ( eV ))

14: Ci  SubsetSearch (EI i (G
� ); N r � 1

skel( E(G � )) ( eV ); k)
15: if EI i � 1 [ C i (G

� ) still has undirected edgesthen
16: C0

i  SubsetSearch (EI i � 1 [ C i (G
� ); N r

skel( E(G � )) ( eV ); k)
17: UpdateI i  I i � 1 [ Ci [ C0

i .
18: else
19: UpdateI i  I i � 1 [ Ci .
20: end if
21: end if
22: Incrementr  r + 1 .
23: end while
24: return I i

Theorem 3.5. Fix an essential graphE(G� ) with an unknown underlying ground truth DAGG� . Given an advice graph
eG 2 [G� ] and intervention set boundk � 1, there exists a deterministic polynomial time algorithm (Algorithm 1) that
computes an intervention setI adaptively such thatEI (G� ) = G� , andjIj has size
1. O(maxf 1; log  (G� ; eG)g � � 1(G� )) whenk = 1
2. O(maxf 1; log  (G� ; eG)g � logk � � k (G� )) whenk > 1.

Proof. Consider Algorithm 1. Observe thatn0 = 2 ensures thatn2
0 > n 0.

In this proof, we will drop the subscriptskel(E(G� )) when we discuss ther -hop neighborsN r
skel( E(G � )) (�). We �rst prove

the case wherek = 1 then explain how to tweak the proof for the case ofk > 1.

If Algorithm 1 terminates wheni = 0 , thenI = I 0 = eV and Theorem 3.1 tells us thatjIj 2 O (� 1(G� )) .

Now, suppose Algorithm 1 terminates withi = t, for some �nal roundt > 0. As Algorithm 1 uses an arbitrary verifying set
of eG in step 3, we will argue thatO(maxf 1; log jN h(G � ; eV ) ( eV )jg � � (G� )) interventions are used in the while-loop, for any
arbitrary choseneV 2 V( eG). The theorem then follows by taking a maximization over all possibilities inV( eG).

In Line 12,r (i ) records the hop value such that� (I i ; N r ( i ) ( eV )) � n2
i , for any0 � i < t . By construction of the algorithm,

we know the following:
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1. For any0 < i � t,
ni = � (I i ; N r ( i ) ( eV )) � n2

i � 1 > � (I i ; N r ( i ) � 1( eV )) (2)

becauser (i ) � 1 did not trigger Algorithm 1 to recordr (i ).

2. By Theorem 2.9 and Equation (2), for any1 � i � t,

jCi j 2 O (log � (I i ; N r ( i ) � 1( eV )) � � 1(G� )) � O (log ni � 1 � � 1(G� ))
jC0

i j 2 O (log � (I i ; N r ( i ) ( eV )) � � 1(G� )) � O (log ni � � 1(G� ))
(3)

Note that the bound forjC0
i j is an over-estimation (but this is okay for our analytical purposes) since some nodes

previously counted for� (I i ; N r ( i ) ( eV )) may no longer be relevant inEI i [ C i (G
� ) after intervening onCi .

3. Sinceni � 1 �
p

ni for any0 < i � t, we know thatnj � n1=2t � j

t for any0 � j � t . So, for any0 � t0 � t , we have

t 0
X

i =0

log(ni ) �
t 0

X

i =0

log
�

n1=2t 0� i

t 0

�
=

t 0
X

i =0

log(nt 0)
2t 0� i � 2 � log(nt 0) (4)

4. By de�nition of t, h(G� ; eV ), and Lemma 4.1,

r (t � 1) < h (G� ; eV ) � r (t) (5)

and
N r ( t � 1) ( eV ) ( N h(G � ; eV ) ( eV ) � N r ( t ) ( eV ) (6)

Combining Equation (2), Equation (3), and Equation (4), we get

t � 1X

i =1

(jCi j + jC0
i j) 2 O

  
t � 1X

i =1

logni � 1 + log ni

!

� � 1(G� )

!

� O

 
t � 1X

i =1

logni � � 1(G� )

!

� O (log nt � 1 � � 1(G� )) (7)

To relatejI t j with jN h(G � ; eV ) ( eV )j, we consider two scenarios depending on whether the essential graph was fully oriented
after intervening onCt or C0

t .

Scenario 1: Fully oriented after intervening onCt , i.e.EI t � 1 [ C t (G
� ) = G� . Then,

I t = Ct _[ I t � 1 = Ct _[ (Ct � 1 _[ C0
t � 1) _[ I t � 2 = : : : = Ct _[

t � 1[

i =1

(Ci _[ C0
i ) _[ eV

In this case,h(G� ; eV ) = r (t) � 1. By de�nition, nt � 1 � j N r ( t � 1) ( eV )j and we have

nt � 1 � j N r ( t � 1) ( eV )j < jN h(G � ; eV ) ( eV )j (8)

sinceN r ( t � 1) ( eV ) ( N h(G � ; eV ) ( eV ). So,

jI t j � j eV j = jCt j +
t � 1X

i =1

(jCi j + jC0
i j)

2 O (log nt � 1 � � 1(G� )) + O (log nt � 1 � � 1(G� )) By Equation (3) and Equation (7)

� O
�

log jN h(G � ; eV ) ( eV )j � � 1(G� )
�

Equation (8)

Scenario 2: Fully oriented after intervening onC0
t , i.e.EI t � 1 [ C t [ C 0

t
(G� ) = G� . Then,

I t = Ct _[ C0
t _[ I t � 1 = : : : = Ct _[ C0

t _[
t � 1[

i =1

(Ci _[ C0
i ) _[ eV
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In this case,h(G� ; eV ) = r (t) andN h(G � ; eV ) ( eV ) = N r ( t ) ( eV ). So,

nt � j N r ( t ) ( eV )j = jN h(G � ; eV ) ( eV )j (9)

So,

jI t j � j eV j = jCt j + jC0
t j +

t � 1X

i =1

(jCi j + jC0
i j)

2 O ((log nt � 1 + nt ) � � 1(G� )) + O (log nt � 1 � � 1(G� )) By Equation (3) and Equation (7)

� O
�

log jN h(G � ; eV ) ( eV )j � � 1(G� )
�

Equation (9)

Sincej eV j 2 O (� 1(G� )) , we can conclude

jI t j 2 O
�

� (G� ) + log jN h(G � ; eV ) ( eV )j � � 1(G� )
�

� O
�

max
n

1; log jN h(G � ; eV ) ( eV )j
o

� � 1(G� )
�

in either scenario, as desired. The theorem then follows by taking a maximization over alleV 2 V( eG).

Adapting the proof for k > 1

By Theorem 4.2,� k (G� ) � d � 1(G� )=ke. So,jI 0j 2 O (log k � � k (G� )) via Lemma 4.3. The rest of the proof follows the
same structure except that we use the bounded size guarantee of Theorem 2.9, which incurs an additional multiplicative
logk factor.

Polynomial running time

By construction, the Algorithm 1 is deterministic. Furthermore, Algorithm 1 runs in polynomial time because:

• Hop information and relevant nodes can be computed in polynomial time via breadth �rst search and maintaining
suitable neighborhood information.

• It is known that performing Meek rules to obtain essential graphs takes polynomial time ((Wienöbst et al., 2021a)).

• Algorithm 1 makes at most two calls toSubsetSearch whenever the number of relevant nodes is squared. Each
SubsetSearch call is known to run in polynomial time (Theorem 2.9). Since this happens each time the number of
relevant nodes is squared, this can happen at mostO(log n) times.

Theorem E.1. Fix an essential graphE(G� ) with an unknown underlying ground truth DAGG� . Given a setA of DAGs
consistent with the given partial advice and intervention set boundk � 1, there exists a deterministic polynomial time
algorithm that computes an intervention setI adaptively such thatEI (G� ) = G� , andjIj has size
1. O(maxf 1; log maxeG2A  (G� ; eG)g � � 1(G� ))

2. O(maxf 1; log maxeG2A  (G� ; eG)g � logk � � k (G� ))
whenk = 1 andk > 1 respectively.

Proof. Apply Theorem 3.5 while taking a maximization over all possible advice DAGseG consistent with the given partial
advice.

H. Path essential graph

In this section, we explain why our algorithm (Algorithm 1) is simply the classic “binary search with prediction”13 when the
given essential graphE(G� ) is an undirected path onn vertices. So, another way to view our result is ageneralizationthat
works on essential graphs of arbitrary moral DAGs.

13e.g. seehttps://en.wikipedia.org/wiki/Learning_augmented_algorithm#Binary_search
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When the given essential graph is a path E(G∗) on n vertices, we know that there are n possible DAGs in the Markov
equivalence class where each DAG corresponds to choosing a single root node and having all edges pointing away from it.
Observe that a verifying set of any DAG is then simply the root node as the set of of covered edges in any rooted tree are
precisely the edges incident to the root.

Therefore, given any eG ∈ [G∗], we se that h(G∗, eV ) measures the number of hops between the root of the advice DAG eG
and the root of the true DAG G∗. Furthermore, by Meek rule R1, whenever we intervene on a vertex u on the path, we will
fully orient the “half” of the path that points away from the root while the subpath between u and the root remains unoriented
(except the edge directly incident to u). So, one can see that Algorithm 1 is actually mimicking exponential search from the
root of eG towards the root of G∗. Then, once the root of G∗ lies within the r-hop neighborhood H , SubsetSearch uses
O(log |V (H)|) interventions, which matches the number of queries required by binary search within a fixed interval over
|V (H)| nodes.

I. Experiments
In this section, we provide more details about our experiments.

All experiments were run on a laptop with Apple M1 Pro chip and 16GB of memory. Source
code implementation and experimental scripts are available at https://github.com/cxjdavin/
active-causal-structure-learning-with-advice.

I.1. Experimental setup

For experiments, we evaluated our advice algorithm on the synthetic graph instances of (Wienöbst et al., 2021b)14 on graph
instances of sizes n = {16, 32, 64}. For each undirected chordal graph instance, we do the following:

1. Set m = 1000 as the number of advice DAGs that we will sample.

2. Use the uniform sampling algorithm of (Wienöbst et al., 2021b) to uniformly sample m advice DAGs eG1, . . . , eGm.

3. Randomly select G∗ from one of eG1, . . . , eGm.

4. For each eG ∈ { eG1, . . . , eGm},
• Compute a minimum verifying set eV of eG.

• Define and compute ψ(G∗, eV ) =
���ρ�eV ,Nh(G�;eV )

skel(E(G�))(
eV )
����.

• Compute a verifying set using (E(G∗), eG) as input to Algorithm 1.

5. Aggregate the sizes of the verifying sets used based on ψ(G∗, eV ) and compute the mean and standard deviations.

6. Compare against verification number ν1(G
∗) and the number of interventions used by the fully adaptive search (without

advice, which we denote as “blind search” in the plots) of (Choo et al., 2022).

7. Compute the empirical distribution of the quality measure amongst the m advice DAGs, then use standard sample
complexity arguments for estimating distributions up to ε error in TV distance to compute a confidence interval for
which the true cumulative probability density of all DAGs within the MEC lies within15. To be precise, it is known that
for a discrete distribution P on k elements, when there are m ≥ max{k/ε2, (2/ε2) · ln(2/δ)} uniform samples, the
probability that the TV distance between the true distribution P and the empirical distribution P is less than ε is at least
1− δ. Since the upper bound on the domain size of quality measure is the number of nodes n, by setting m = 1000
and δ = 0.01, we can compute ε = max{

p
n/m,

p
(2/m) · ln(2/δ)} and conclude that the probability that the true

cumulative probability density of all DAGs within the MEC lies within ε distance (clipped to be between 0 and 1) of
the empirical distribution is at least 99%.

14See Appendix E of (Wienöbst et al., 2021b) for details about each class of synthetic graphs. Instances are available at https:
//github.com/mwien/CliquePicking/tree/master/aaai_experiments

15For example, see Theorem 1 of (Canonne, 2020).
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I.2. Experimental remarks

• The uniform sampling code of (Wienöbst et al., 2021b) is written in Julia and it uses a non-trivial amount of memory,
which may make it unsuitable for running on a shared server with memory constraints.

• Note that ψ(G∗, eV ) ≤ ψ(G∗, eG) = maxeV ∈V( eG)

���ρ�eV ,Nh(G�;eV )
skel(E(G�))(

eV )
����. We use ψ(G∗, eV ) as a proxy for ψ(G∗, eG)

because we do not know if there is an efficient way to compute the latter besides the naive (possibly exponential time)
enumeration over all possible minimum verifying sets.

• We also experimented with an “unsafe” variant of Algorithm 1 where we ignore the second tweak of intervening one
round before. In our synthetic experiments, both variants use a similar number of interventions.

• We do not plot the theoretical upper bounds O(logψ(G∗, eV ) · ν1(G
∗)) or O(log n · ν1(G

∗)) because these values are
a significantly higher than the other curves and result in “squashed” (and less interesting/interpretable) plots.

• Even when ψ(G∗, eV ) = 0, there could be cases where (Choo et al., 2022) uses more interventions than ν1(G
∗).

For example, consider Figure 8 with G∗ = G2 and eG = G1. After intervening on eV = {b, c}, the entire graph
will be oriented so the ψ(G∗, eV ) = 0 while ν1(G

∗) = 1 < 2 = |eV |. Fortunately, Theorem 3.1 guarantees that
|eV | ≤ 2 · ν1(G

∗).

• Note that the error bar may appear “lower” than the verification number even though all intervention sizes are at least
as large as the verification number. For instance, if ν1(G

∗) = 6 and we used (6, 6, 7) interventions on three differenteG’s, each with ψ(G∗, eV ) = 0. In this case, the mean is 6.3333 . . . while the standard deviation is 0.4714 . . ., so the
error bar will display an interval of [5.86 . . . , 6.80 . . .] whose lower interval is below ν1(G

∗) = 6.

I.3. All experimental plots

For details about the synthetic graph classes, see Appendix E of (Wienöbst et al., 2021b). Each experimental plot is for
one of the synthetic graphs G∗, with respect to 1000 ≪ |[G∗]| uniformly sampled advice DAGs eG from the MEC [G∗].
The solid lines indicate the number of atomic interventions used while the dotted lines indicate the empirical cumulative
probability density of eG. The true cumulative probability density lies within the shaded area with probability at least 0.99.

(a) n = 16 (b) n = 32 (c) n = 64

Figure 9. Subtree-logn synthetic graphs
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