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Abstract
We present a shape-guided expert-learning frame-
work to tackle the problem of unsupervised 3D
anomaly detection. Our method is established on
the effectiveness of two specialized expert models
and their synergy to localize anomalous regions
from color and shape modalities. The first expert
utilizes geometric information to probe 3D struc-
tural anomalies by modeling the implicit distance
fields around local shapes. The second expert con-
siders the 2D RGB features associated with the
first expert to identify color appearance irregulari-
ties on the local shapes. We use the two experts to
build the dual memory banks from the anomaly-
free training samples and perform shape-guided
inference to pinpoint the defects in the testing sam-
ples. Owing to the per-point 3D representation
and the effective fusion scheme of complemen-
tary modalities, our method efficiently achieves
state-of-the-art performance on the MVTec 3D-
AD dataset with better recall and lower false posi-
tive rates, as preferred in real applications.

1. Introduction
Unsupervised anomaly detection and localization have many
applications in manufacturing and health care. Previous
methods mainly use color information to identify defects
and abnormal regions in the input images. While the color
information is generally sufficient for localizing anomalies
in most cases, it has also been shown that the 3D geometric
information, when adequately used, can be beneficial for
achieving better performance (Horwitz & Hoshen, 2022).
Our work aims to solve the problem of 3D anomaly de-
tection and localization on the recently published MVTec
3D-AD dataset. We propose shape-guided dual-memory
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Figure 1. Results of our method on the MVTec 3D-AD dataset.
Defects that are only perceptible in one but not the other modality
can be successfully localized by our method.

learning to combine the color and geometric information
for higher anomaly localization accuracy with lower com-
putation and memory costs. Figure 1 illustrates the comple-
mentary advantage of our method for precisely localizing
the defects from different modalities.

The performance of anomaly detection is often evaluated
by the per-region overlap (PRO) (Bergmann et al., 2021)
and the corresponding false positive rate for consecutively
increasing anomaly thresholds. The most common setting is
to report the area under the PRO curve (AU-PRO) integrated
up to a false positive rate of 30% (i.e., integration limit at
0.3). However, in real applications, a false positive rate
of 30% might be too large and thus imprecise to pinpoint
the defect. To address this issue, we design our method to
pursue higher AU-PRO at very small integration limits. Our
method uses neural implicit functions (NIFs) to represent
local shapes by signed distance fields, as done by current
methods on 3D reconstruction (Jiang et al., 2020; Takikawa
et al., 2021; Ma et al., 2021; 2022; Li et al., 2022). Par-
titioning a point-cloud sample into NIF-represented local
patches allows us to model 3D objects of complex shapes
under orientation changes. The local signed distance fields
also enable fine-grained per-point anomaly prediction. As
a result, our method achieves the state-of-the-art AU-PRO
on the MVTec 3D-AD benchmark, even at very small in-
tegration limits, which is considered rather challenging for
previous 2D and 3D anomaly detection methods.

We summarize the contributions of this work as follows:

1. The proposed shape-guided approach effectively in-
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tegrates the complementary modalities of color and
geometry. Our method requires less memory usage
and facilitates faster inference.

2. We present the first work that uses neural implicit func-
tions of signed distance fields to represent local shapes
for 3D anomaly detection. Advantageously, we can
model 3D point clouds of complex structures to the
per-point fine-grained level.

3. Our method achieves state-of-the-art performance on
the MVTec 3D-AD dataset, especially at small integra-
tion limits, which means better recall and lower false
positive rates as preferred in real applications.

2. Related Work
2.1. 2D Anomaly Detection

Many methods have been presented to solve unsuper-
vised 2D anomaly detection and localization. Most of
the 2D-based methods are evaluated on the MVTec AD
dataset (Bergmann et al., 2019; 2021), while a recent bench-
mark by (Zheng et al., 2022) also shows that many unsu-
pervised 2D-based methods can also perform well on the
MVTec 3D-AD dataset (Bergmann et al., 2022) even only
using RGB information. In the following, we briefly review
several 2D-based methods.

Feature embedding-based methods. Methods like (De-
fard et al., 2020; Lee et al., 2022; Roth et al., 2022) use
a pretrained model to extract the normal features during
the training phase. During the testing phase, the testing
features are compared with the individual training features
or their distributions using a distance metric. If a testing
feature differs from the training features, the region of the
testing feature is more likely to belong to an anomaly region.
The feature embedding-based methods are straightforward,
but there might be a higher computation cost in finding the
corresponding normal features in the training data.

Normalizing flows. CFLOW-AD uses the conditional nor-
malizing flow with a positional encoder to model a distri-
bution of normal patches (Gudovskiy et al., 2022); it aims
to separate the in-distribution testing patches and out-of-
distribution ones based on the probability density function.
In CSflow (Shi et al., 2022), feature maps of different scales
are processed by a fully convolutional normalizing flow,
transforming the original distribution of the input data to an
interpretable latent space, which improves the accuracy of
detecting anomalies.

Student-teacher networks and simulation-based ap-
proaches. In the Uninformed Students method (Bergmann
et al., 2020), a teacher network is pretrained on a large
dataset of nature data to learn the discriminative embed-

dings, and then the pretrained teacher network is used to
train the student networks with non-defect data. The goal
is to make the output from the student resemble the output
from the teacher. For inference, the regression errors be-
tween two discriminative embeddings from both networks
are treated as the anomaly scores of the input data. Not
particular for 2D anomaly detection, AST (Rudolph et al.,
2023) uses both color and depth information for anomaly
detection and aims to increase the distances between the
student and teacher outputs of the abnormal patches, which
means the anomalies can be easier separated from the nor-
mal regions. To solve the issue of lacking abnormal samples
in unsupervised anomaly detection, simulation-based meth-
ods like (Li et al., 2021; Schlüter et al., 2022; Yang et al.,
2022) artificially add noise onto the normal data to simulate
defects, and the models are trained on the simulated abnor-
mal samples. Our method follows the standard setting of
unsupervised anomaly detection. We do not rely on sim-
ulated abnormal samples while achieving state-of-the-art
results on MVTec 3D-AD.

2.2. 3D Anomaly Detection

Due to the lack of more comprehensive 3D datasets, not
much previous work has focused on unsupervised 3D
anomaly detection, except for a few methods tackling the
problem on 3D brain scans (Behrendt et al., 2022; Bengs
et al., 2022; Viana et al., 2020). Bergmann et al. intro-
duce the MVTec 3D-AD dataset (Bergmann et al., 2022) for
benchmarking unsupervised 3D anomaly detection meth-
ods. The dataset contains high-resolution color point clouds
of manufactured products. The training and validation sets
consist of only anomaly-free samples as in real-world inspec-
tion scenarios. An unsupervised method trained from these
anomaly-free samples must detect unknown types of de-
fects shown in the test samples of the corresponding object
categories. Unlike the previous color-image-based datasets
for anomaly detection (Bergmann et al., 2019; 2021), the
point-cloud representation of the MVTec 3D-AD dataset
provides helpful geometric cues for detecting defects that
are not easy to identify in color images. Bergmann and Sat-
tlegger (Bergmann & Sattlegger, 2022) propose a student-
teacher framework that learns adaptive geometric features
for unsupervised 3D anomaly detection, where the teacher
network is trained in a self-supervised manner to encode
local geometric descriptions from local patches. They eval-
uate their method on the MVTec 3D-AD dataset and show
that their proposed 3D Student-Teacher can reliably localize
geometric anomalies in test point clouds. In this work, we
also use the MVTec 3D-AD dataset to evaluate the proposed
method and achieve state-of-the-art results.

Horwitz and Hoshen use the MVTec 3D-AD dataset to
analyze the usefulness of 3D information for anomaly detec-
tion (Horwitz & Hoshen, 2022). They conclude that “3D in-
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Figure 2. The shape expert model. Motivated by Neural-Pull (Ma
et al., 2021), we consider PointNet and NIF to learn local represen-
tation of surface geometry. For each point q near the local surface
of a 3D patch P , the shape model is trained to predict its signed
distance s = ϕ(q; f), where f is the feature vector by PointNet.

formation is often required to identify anomalies, even when
color is available”. Their study also shows that rotation-
invariant 3D representations that model local fine-grained
structures are critical for 3D anomaly detection. They fur-
ther propose an approach called BTF (Back to the Feature),
combining the complementary attributes from color and ge-
ometric modalities to achieve better results on the MVTec
3D-AD dataset.

We observe similar issues and properties of 3D representa-
tions for anomaly detection. Therefore, we extract rotation-
invariant features from the point cloud and adopt an implicit
representation that can model find-grained 3D local struc-
tures through signed distance functions. Furthermore, we
present a shape-guided mechanism that effectively integrates
the color and geometric modalities to achieve state-of-the-
art performance in 3D anomaly detection.

3. Method
Different from the 2D setting, training data, e.g., MVTec 3D-
AD, for 3D anomaly detection are connectedly presented in
two different modalities, including pixelwise RGB values
and pointwise 3D coordinates. To fully exploit the comple-
mentary effect of the two representation forms, we design
a shape-guided appearance reconstruction scheme that effi-
ciently connects the two information streams to enhance the
accuracy of predicting and localizing anomalies.

3.1. Shape-Guided Expert Learning

The proposed method is established based on the effective-
ness of two specialized expert models and their synergy to
better address the task of 3D anomaly detection. The first
expert utilizes 3D information to probe possible anomalies
in shape geometry, and the second expert considers the RGB
information to single out any appearance irregularities (in
the aspect of color). In what follows, we describe how these
two expert models are developed and correlated.

Shape expert. With the availability of pointwise coordi-
nates, we consider designing a 3D shape expert for anomaly

detection by focusing on learning local geometry repre-
sentation. Our motivation to aim for local representation
is twofold. First, defects or anomalous parts often occur
locally rather than globally. Second, the formulation for
learning the local representation of point clouds tends to be
more scalable and efficient.

As shown in Figure 2, we leverage two existing models,
namely PointNet (Qi et al., 2017) and Neural Implicit Func-
tion (NIF) (Ma et al., 2022), for point-cloud applications
to explore the 3D shape information. Specifically, we first
divide a complete point cloud into 3D patches and carry out
local representation learning. For each resulting patch, we
sample, say, 500 points and apply PointNet to obtain its fea-
ture vector, denoted as f , which encodes the corresponding
local geometry. Now let the NIF model be ϕ. To train ϕ for
anomaly detection, we follow the technique in (Ma et al.,
2021) to sample a set of query points, Q = {q}, near the
surface of the underlying 3D patch, and pass these queries
along with the PointNet feature f to the NIF model to pre-
dict their signed distances, {s}. We express the process of
predicting the signed distance s of a query point q ∈ Q with
respect to the local surface by

q ∈ Q
ϕ, f7−−−−→ s = ϕ(q; f), (1)

where besides the input q, the predicted outcome s is condi-
tioned on the patchwise feature vector f by PointNet.

Each pair {ϕ, f} in (1) constitutes a signed distance function
(SDF) and can be used to measure the local surface geometry
of a point cloud. Since the NIF ϕ is universal to all patches
and category-agnostic, upon the completion of learning the
shape expert, we only need to store all the patchwise feature
vectors {f} into the SDF memory bank, denoted as MS , to
implicitly encode all “normal” local representations.

Appearance expert. The goal of constructing the appear-
ance expert is to create a shape-guided memory bank MA

that can be used to reconstruct “normal” RGB features.

We consider the paired relationship of a point cloud and its
2D RGB image, as illustrated in Figure 3. Having learned
the shape expert, we can examine the mapping between
an SDF and its corresponding RGB features. For each
SDF, we trace back its 500 sampled points (i.e., the input to
PointNet) in the 3D receptive field and then calculate their
2D coordinates to retrieve the corresponding RGB features.
To enhance its representation capacity in color appearance,
the 2D correspondences are uniformly expanded by two
pixels on the feature map to include more RGB features.
(See Figure 4.) In our implementation, each SDF would
correspond to around 40 to 60 RGB feature vectors. As
such, we can obtain the shape-guided memory bank MA,
which comprises SDF-specific RGB dictionaries of the same
number as the SDFs in MS .
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Figure 3. Dual memory banks. Since NIF is universal to all 3D patches, we only need to store their respective feature vector f into the
SDF memory bank, denoted as MS . On the other hand, each patch corresponds to a region in the RGB feature map and results in an
SDF-specific dictionary. All such shape-guided RGB dictionaries are saved to form the RGB memory bank MA.

: One patch of SDF feature

: Corresponding RGB features

: Neighborhood of corresp. RGB features

28*28 RGB feature map3D point cloud

Mapping

Figure 4. We project each 3D patch onto the image space and ob-
tain its RGB features (in green). To account for the boundaries
of possible defects of holes or cracks, the original mapping is ex-
tended by a 2-pixel neighborhood (in blue) to accommodate more
RGB features. The tactic to expand RGB features can improve the
detection of abnormalities in empty regions due to defects.

3.2. Shape-Guided Inference

With the dual memory banks MS and MA, we are ready
to perform inference to detect whether a testing sample x
includes anomalies/defects. (See Figure 5.) The steps are
listed as follows.

1. Use PointNet to get all patch-level SDFs, {f̃} of x.

2. Use ResNet to get the RGB feature map of x. Those
pixels that are associated with at least one SDF are
considered foreground in the 2D RGB image.

3. For each SDF in {f̃}, find its k1 = 10 nearest neigh-
bors in MS to form the respective dictionary and obtain
its approximation f̂ via sparse representation.

4. For each patch of x, use the patchwise reconstructed
f̂ to compute the signed distances, s = ϕ(q̂; f̂), for all
the 3D points, {q̂}, from its receptive field.

5. Adopt the absolute values of signed distances from all
the patches of x to form the final SDF score map.

6. For all the relevant SDFs in MS that are used in com-
puting sparse representations of step 3, take the union
of all their associated RGB dictionaries in MA and
form a shape-guided RGB dictionary, denoted as D̂.

7. For each foreground RGB feature vector from step 2,
find its k2 = 5 nearest neighbors from D̂ and obtain
its sparse representation. The ℓ2 distances yielded by
the approximations form the final RGB score map.

8. Perform score-map alignment (to be described next)
and pixelwise take the maximum of the SDF and RGB
responses as the corresponding anomaly score.

Score-map alignment. Fusing the SDF and RGB score
maps by max pooling requires values of the two to be in a
comparable range. Since anomalous samples are not avail-
able in training for estimating proper statistics, we overcome
this difficulty by simulating inference for 25 randomly se-
lected training samples and adopting a “leave-oneself-out”
strategy to mimic the testing outcomes. This would ex-
clude the SDF and RGB features of a query itself from the
nearest-neighbor searches in the testing steps. To align the
two resulting score distributions, we consider the mapping
y 7→ a× y + b such that mean± 3× standard deviation
of the RGB score distribution would map to their SDF coun-
terpart. The resulting scaling and shifting parameters a and
b can be readily used in reference to rectify an RGB score y
into a× y + b.

Finally, we remark that so far our formulation is described
to address 3D anomaly detection only for a single category.
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Figure 5. Shape-guided inference. The dual memory banks are connected by an SDF-to-RGB relationship that enables each SDF in MS

to locate its corresponding shape-guided RGB dictionary in MA. The design facilitates the use of sparse representation in inference.

Nevertheless, considering that the ten object categories of
MVTec 3D-AD are unmistakably distinct and our implemen-
tation of a classifier indeed achieves 100% classification ac-
curacy, our method essentially provides a unified approach
to tackling anomaly detection on MVTec 3D-AD.

4. Experiments
4.1. Experimental Setup

Dataset. We evaluate our method on MVTec 3D-
AD (Bergmann & Sattlegger, 2022), which provides ten
different categories of 3D objects for 2D+3D anomaly de-
tection. MVTec 3D-AD contains 2,656 training, 294 vali-
dation, and 1,197 test samples. The training and validation
data do not have any defects, while the test data are split
into 249 normal samples and 948 anomalous samples. The
anomalous test samples include about 4 to 5 different types
of defects in each category. MVTec 3D-AD differs from the
preceding 2D-AD dataset: Each sample is provided with
a high-resolution point cloud and the corresponding RGB
image. Our proposed method aims to fully utilize the impor-
tant 2D and 3D modalities for better performance in defect
detection. We divide each point-cloud sample of the training
data into patches to enrich the shape diversity and use the
patches to train the PointNet and the NIF model. The same
training samples with the associated RGB modality are then
used to build the dual memory banks.

Preprocessing. The preprocessing of point clouds com-
prises several steps. First, we follow the baseline method
BTF (Horwitz & Hoshen, 2022) to remove the point cloud
of the background in the whole dataset. Next, we prepare the
npz files of the cropped patches from the training and test
samples in advance according to the procedure of extracting
local patches described in the next paragraph. The npz files
for training and testing contain 3D points and their corre-

sponding 2D indexes, but the npz files for training PointNet
and NIF consist of both the spatially sub-sampled points
and the original points. Furthermore, we resize the original
point clouds and images from a resolution of 800× 800 to
224× 224 using nearest and bicubic interpolation, respec-
tively, like the baseline (Horwitz & Hoshen, 2022).

Local patches. The previous methods PCP (Ma et al.,
2022) and LIG (Jiang et al., 2020) perform well by dividing
the point cloud into several local regions. Recent progress
in learning implicit neural features also facilitates analysis
and modeling of the local structure of the point cloud. Our
method also divides the entire point cloud into local patches
to model the local structures of the point cloud. Inspired by
Point-MAE (Pang et al., 2022), we use Farthest Point Sam-
pling (FPS) to sample a set of points from the original point
could, and then we find the K-nearest neighbors within the
receptive field centered at each FPS point to form a local
patch. Note that each point in the original point cloud may
be considered a K-nearest neighbor of multiple FPS points,
i.e., the local patches may overlap with each other to share
some neighborhoods. Due to the overlapping of patches,
we dynamically adjust the size of the sampled set (i.e., the
number of FPS points) to ensure that the union of the local
patches covers as much as possible the original point cloud.

Parameter settings. We divide each point-cloud sample
into overlapped 3D local patches. Each local patch con-
tains 500 points (K = 500). We ensure that the number
of local patches is large enough to cover all points in a
point-cloud sample jointly. For example, we choose an
overlapping ratio of 10 such that we may obtain roughly
150 local patches for a point-cloud sample consisting of
about 7,500 points (derived from ‘overlapping ratio’ times
‘total number of points’ divided by ‘size of a local patch’,
i.e., 10× 7500/500 = 150). In the preprocessing step for
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Table 1. Anomaly detection performance evaluated by the metric of Img-AUROC on the MVTec 3D-AD dataset (Bergmann et al., 2022).
The best results are marked in red, and the second-best results are in blue.

Method Bagel
Cable
Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

PaDim 0.975 0.775 0.698 0.582 0.959 0.663 0.858 0.535 0.832 0.760 0.764
CSflow 0.894 0.917 0.749 0.668 0.938 0.897 0.603 0.419 0.971 0.726 0.778
BTF (RGB) 0.854 0.840 0.824 0.687 0.974 0.716 0.713 0.593 0.920 0.724 0.785
CFlow 0.880 0.858 0.828 0.563 0.986 0.738 0.757 0.628 0.970 0.720 0.793
PatchCore 0.912 0.902 0.885 0.709 0.952 0.733 0.727 0.562 0.962 0.768 0.811
AST (RGB) 0.947 0.928 0.851 0.825 0.981 0.951 0.895 0.613 0.992 0.821 0.880

RGB only

Ours (RGB) 0.911 0.936 0.883 0.662 0.974 0.772 0.785 0.641 0.884 0.706 0.815
BTF (SIFT) 0.696 0.553 0.824 0.696 0.795 0.773 0.573 0.746 0.936 0.553 0.714
BTF (FPFH) 0.820 0.533 0.877 0.769 0.718 0.574 0.774 0.895 0.990 0.582 0.753
AST (Depth) 0.881 0.576 0.965 0.957 0.679 0.797 0.990 0.915 0.956 0.611 0.8333D only

Ours (SDF) 0.983 0.682 0.978 0.998 0.960 0.737 0.993 0.979 0.966 0.871 0.916
BTF (RGB+FPFH) 0.938 0.765 0.972 0.888 0.960 0.664 0.904 0.929 0.982 0.726 0.873
AST (RGB + Depth) 0.983 0.873 0.976 0.971 0.932 0.885 0.974 0.981 1.000 0.797 0.9373D+RGB
Ours (Shape-guided) 0.986 0.894 0.983 0.991 0.976 0.857 0.990 0.965 0.960 0.869 0.947

training PointNet and NIF, we sample just 20 query points
around each real point as done by PCP (Ma et al., 2022). We
set the learning rate and batch size to 0.0001 and 32, respec-
tively, which empirically achieves efficient convergence.

4.2. Implementation Detail

Training the experts. We use the training samples to train
a simplified PointNet for extracting 3D features from local
patches and fine-tune an ImageNet pretrained ResNet for
extracting the 28× 28 RGB feature maps. We also train a
Neural Implicit Function (NIF) to derive the sign distance
function (SDF) from the 3D features extracted by PointNet,
as shown in Figure 2. The simplified PointNet consists of
three convolution layers and two fully connected layers,
each including batch normalization. The NIF model is a
multilayer perceptron to characterize the latent shape of the
local geometry. Our 2D model for the RGB cue comprises
a Wide ResNet-50-2 (Zagoruyko & Komodakis, 2016) as in
PatchCore (Roth et al., 2022), and we extract and combine
the features from the first and second layers.

Score alignment. The scale of the RGB features is very
different from that of the SDF features, which yields dif-
ferent score distributions. We need to calibrate the two
distributions before fusing the scores. We randomly choose
25 training samples to simulate the score distribution before
pixel-level testing. To calibrate the distributions of scores,
we align the mean ±3× standard deviation of RGB scores
with the mean ±3× standard deviation of SDF scores by
applying an affine transformation to the RGB scores. When
testing, we use the previously calculated weight and bias of
the affine transformation to align the RGB scores to the SDF
scores. Finally, we can fuse the two score maps directly by
taking the per-pixel maximum.

4.3. Evaluation Metrics

We adopt the Area Under the Receiver Operator Curve (AU-
ROC) to evaluate the performance of the proposed method
on both image-level (Img-AUROC) and pixel-level (Pix-
AUROC). To evaluate the prediction more precisely for
each pixel in the MVTec 3D-AD data, we use per-region
overlap (PRO) (Bergmann et al., 2021) and compute the
Area Under PRO curve (AUPRO) as an evaluation metric
for anomaly localization using the produced anomaly scores
and the ground-truth connected components.

4.4. Experimental Results

Table 1 compares our method and existing methods on the
MVTec 3D-AD dataset, evaluated with the Img-AUROC
metric. We compare our method with PaDim (Defard
et al., 2020), CSflow(Shi et al., 2022), BTF (Horwitz &
Hoshen, 2022), CFlow (Gudovskiy et al., 2022), Patch-
Core (Roth et al., 2022), AST (Rudolph et al., 2023), and
3D-ST (Bergmann & Sattlegger, 2022). Table 2 shows
anomaly localization performance with the AUPRO met-
ric, where we compute the integration of the PRO values
over the false-positive rates (FPRs). Like most previous
methods, we use 0.3 as the upper limit of the FPR inte-
gration limit. A smaller FPR integration limit means we
assume a lower toleration of false positives. Since it is
more critical for the anomaly localization performance at
low integration limits in real-world scenarios, we compare
our method with existing methods at seven different integra-
tion limits {0.3, 0.2, 0.1, 0.07, 0.05, 0.03, 0.01} in Figure 6.
The results show that our method achieves state-of-the-art
performance at the standard integration limit of 0.3 and very
low integration limits.
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Table 2. Anomaly localization performance measured by the metric of AUPRO on the MVTec 3D-AD dataset. The best results are marked
in red, and the second-best results are in blue.

Method Bagel
Cable
Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

CFlow 0.855 0.919 0.958 0.867 0.969 0.500 0.889 0.935 0.904 0.919 0.871
BTF (RGB) 0.898 0.948 0.927 0.872 0.927 0.555 0.902 0.931 0.903 0.899 0.876
PatchCore 0.899 0.953 0.957 0.918 0.930 0.719 0.920 0.937 0.938 0.929 0.910
PaDim 0.980 0.944 0.945 0.925 0.961 0.792 0.966 0.940 0.937 0.912 0.930

RGB only

Ours (RGB) 0.946 0.972 0.96 0.914 0.958 0.776 0.937 0.949 0.956 0.957 0.933
3D-ST 0.950 0.483 0.986 0.921 0.905 0.632 0.945 0.988 0.976 0.542 0.833
BTF (SIFT) 0.894 0.722 0.963 0.871 0.926 0.613 0.870 0.973 0.958 0.873 0.866
BTF (FPFH) 0.972 0.849 0.981 0.939 0.963 0.693 0.975 0.981 0.980 0.949 0.9283D only

Ours (SDF) 0.974 0.871 0.981 0.924 0.898 0.773 0.978 0.983 0.955 0.969 0.931
BTF (RGB+FPFH) 0.976 0.967 0.979 0.974 0.971 0.884 0.976 0.981 0.959 0.971 0.9643D+RGB Ours (Shape-guided) 0.981 0.973 0.982 0.971 0.962 0.978 0.981 0.983 0.974 0.975 0.976

Table 3. Comparison of inference time (second) per sample, frame per second (FPS), the number of features (NoF), and the percentage of
RGB memory usage on an Nvidia GTX 1080 GPU.

Method
Inference

Time ↓ FPS ↑ NoF ↓ Memory
Usage ↓ Img-ROC ↑ Pix-ROC ↑ AUPRO

(0.3) ↑ AUPRO
(0.01) ↑

BTF 2.19 0.46 20,823 10% 0.873 0.993 0.964 0.394
w/o Shape-guided 3.60 0.29 208,230 100% 0.947 0.996 0.976 0.453

Shape-guided 2.05 0.69 26,452 13.5% 0.947 0.996 0.976 0.456

Figure 6. Anomaly localization performance (AUPRO) of ours and
previous methods for varying integration limits.

4.5. Computational Complexity

Inference time and memory usage. Inference perfor-
mance and memory usage are important in industrial ap-
plications. Our method with the shape-guided mechanism
requires only low memory usage to achieve state-of-the-art
results of both the pixel-level and image-level predictions,
as shown in Table 3. We show the average inference time
per sample and the average RGB memory usage of our
method and BTF. BTF uses the PatchCore method to sub-
sample 10% features for the coreset, where 10% is the most
common setting in PatchCore. Note that the memory occu-
pied by the RGB features is much larger than that occupied
by SDF features, and the inference time for RGB query is
also much greater than SDF query, so we only compare the
RGB-related computations. We also include the inference

speed (measured in frames per second) and the number of
features involved in the NN search when detecting anoma-
lies on a single test sample. Our shape-guided mechanism
contributes to achieving the best AUPRO (0.3) and AUPRO
(0.01) at the fastest speed of 0.69 fps.

Detailed analysis. The computational complexity of
anomaly detectors can be assessed by examining the com-
putations executed on both GPU and CPU. GPUs primarily
handle feature extraction using models like ResNet or Point-
Net. For instance, the ResNet model we employ for RGB
features necessitates 5.0 GMACs with 4.13M parameters,
while our SDF model (PointNet + NIF) for point cloud de-
mands 1.29 GMACs with 3.17M parameters. Conversely,
BTF, following PatchCore, only employs the ResNet model
for RGB features, which requires 5.0 GMACs with 4.13M
parameters. Overall, our method requires about 25% more
GMACs than BTF. Nonetheless, we found that subsequent
operations, such as kNN feature search carried out by CPUs,
predominantly influence the total computational costs of
anomaly detection algorithms. The FPFH representation
in BTF also needs additional CPU computation. Hence, a
more comprehensive comparison of AD algorithms’ com-
putational costs would involve evaluating their overall in-
ference time and memory usage in conjunction with GPU
GMACs/FLOPs.
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Table 4. Comparison of different patch size K.

K Img-ROC ↑ AUPRO
(0.3) ↑ AUPRO

(0.01) ↑ Inference
Time ↓

1000 0.894 0.965 0.413 1.72
750 0.929 0.973 0.439 1.88
500 0.947 0.976 0.456 2.05
250 0.966 0.975 0.451 3.61

4.6. Patch Size Analysis

We evaluate our method for different patch sizes K. The
results are listed in the Table 4. Increasing the value of
K corresponds to dividing the point cloud into overlapped
3D patches of a larger size. Observe that a large patch
size has the advantage of encompassing a complete region
of anomalous occurrence, but meanwhile may confuse the
SDF to encode the local 3D surface geometry properly. We
choose to set K = 500 for the sake of inference efficiency
and accuracy.

4.7. Qualitative Results

Comparison with other methods. Figure 7 demonstrates
that our method outperforms others in precisely localizing
anomalous regions. Our method performs well even with a
low integration limit.

Anomaly
Sample

Ground
Truth CFlow BTF Ours

 

Figure 7. Visualization of ours and other methods.

Benefits of cross-modality. We provide more qualitative
results in Figure 8. We highlight the complementarity of
the appearance and shape experts in our approach. A green
checkmark (✓) on an expert means the expert is responsive
to the anomalous region, while a red cross (X) means the
expert is inactive. Our fusion scheme benefits from such

complementarity and can successfully identify the anoma-
lous region on the final score map.

Failure cases. Our method combines the advantages of
RGB and 3D point cloud to make them complementary
in anomaly detection. Therefore, if neither can effectively
detect anomalies, the performance will fall below expecta-
tions. In Figure 9, most of our failure cases occur on elusive
anomalies that are difficult to detect, and existing methods
also underperform on these types of data.

Anomaly
Sample

Ground
Truth

RGB
Score Map

SDF
Score Map

Final
Score Map

Appearance
Expert

Shape
Expert

 

Figure 8. Complementary characteristics of cross-modality.

Anomaly
Sample

Ground
Truth CFlow BTF Ours

(RGB)
Ours
(SDF) Ours

Figure 9. Failure cases of our method.

5. Additional Ablation
5.1. Benefit of Combining RGB and 3D Information

In the MVtec 3D-AD dataset, most anomalies appear si-
multaneously in geometric structure and color. However,
some anomalies only appear in one of the two modalities.
As previously shown in Figure 1, using the 2D color-based
method cannot detect geometric anomalies, such as holes
in cookies that resemble chocolate chips, which cannot be
unambiguously detected from color cues. On the other hand,
the discoloration defect on foam also cannot be detected
using a pure 3D method. Thus we use the proposed dual-
expert learning and score alignment on the RGB and SDF
scores to combine the advantage of both modalities.
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Table 5. Ablation study of our method on the MVTec 3D-AD dataset with the evaluation metric of AUPRO at the integration limit of 0.3.

Method Bagel
Cable
Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

RGB only 0.946 0.972 0.96 0.914 0.958 0.776 0.937 0.949 0.956 0.957 0.933
SDF only 0.974 0.871 0.981 0.924 0.898 0.773 0.978 0.983 0.955 0.969 0.931

Shape-guided RGB only 0.948 0.972 0.959 0.91 0.961 0.774 0.936 0.95 0.954 0.956 0.932
Shape-guided RGB + SDF 0.981 0.973 0.982 0.971 0.962 0.978 0.981 0.983 0.974 0.975 0.976

Table 6. Ablation study of our method adopting sparse coding (SC)
or nearest neighbor (NN) in the RGB and SDF features, respec-
tively, for computing the distance from the query feature to the
normal feature set. Using sparse-coding reconstructed features is
better than using the nearest neighbor for RGB and SDF features.

RGB SDF Img-ROC Pix-ROC AUPRO
(0.3)

AUPRO
(0.01)NN SC NN SC

✓ ✓ 0.937 0.994 0.972 0.434
✓ ✓ 0.944 0.994 0.972 0.443

✓ ✓ 0.942 0.996 0.975 0.451
✓ ✓ 0.947 0.996 0.976 0.456

In Table 5, we compare the AUPRO scores of our method
with those of the RGB-only, SDF-only, and shape-guided
RGB-only methods. Figure 10 also shows that the combined
Img-AUROC scores exhibit significant margins between the
anomalous and the normal data distributions. From these
experimental results, we can see that our dual-expert models’
synergy improves the performance by effectively combining
the 2D color-based and the 3D geometry-based information.

5.2. The Effectiveness of Sparse Coding

Instead of directly computing the distance between the tar-
get feature and its nearest feature in the memory bank as the
anomaly score, we use sparse coding to reconstruct the tar-
get feature for both RGB and SDF features. Since the sparse
coding uses a dictionary derived from the normal features in
the memory bank, the sparse representation can accurately
describe an anomaly-free feature. The sparse representa-
tion helps the feature extracted from the non-defective local
region generalize better to its reconstructive counterpart,
allowing us to distinguish the normal and anomaly more
reliably. Table 6 shows the results of adopting sparse coding
or nearest neighbor in the RGB and SDF features, respec-
tively, for computing the distance from the query feature to
the normal feature set. Consequently, using reconstructed
features by sparse coding is better than using its nearest
neighbor for RGB and SDF features.

6. Conclusion
We have presented a new method to achieve the state-of-the-
art performance of unsupervised 3D anomaly detection on

Cookie : Normal data
: Anomalous data

Figure 10. Distributions of anomaly detection scores (Img-
AUROC). The fused Img-AUROC score distributions of shape-
guided RGB+SDF models (bottom row) have a larger margin
separating anomalous and normal data, meaning better anomaly
detection performance.

the MVTec 3D-AD dataset. Our method has better recall
rates and lower false-positive rates, which is preferable in
real applications requiring precise localization of defects.
Furthermore, the proposed framework is efficient, as our
implementations of the dual memory banks and the shape-
guide inference significantly reduce the computation and
memory costs. We have shown that using neural implicit
functions to model 3D local shapes is a great advantage in
detecting detailed irregularities in point clouds. This work
also provides hands-on techniques for fusing predictions
from different modalities, which, with the new shape-guided
expert learning framework, may benefit future development
in solving the unsupervised 3D anomaly detection task.
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