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Abstract
We initiate the study of strategic behavior in
screening processes with multiple classifiers. We
focus on two contrasting settings: a “conjunc-
tive” setting in which an individual must satisfy
all classifiers simultaneously, and a sequential set-
ting in which an individual to succeed must satisfy
classifiers one at a time. In other words, we intro-
duce the combination of strategic classification
with screening processes. We show that sequen-
tial screening pipelines exhibit new and surprising
behavior where individuals can exploit the sequen-
tial ordering of the tests to “zig-zag” between clas-
sifiers without having to simultaneously satisfy
all of them. We demonstrate an individual can
obtain a positive outcome using a limited manipu-
lation budget even when far from the intersection
of the positive regions of every classifier. Finally,
we consider a learner whose goal is to design a
sequential screening process that is robust to such
manipulations, and provide a construction for the
learner that optimizes a natural objective.

1. Introduction
Screening processes (Arunachaleswaran et al., 2022; Blum
et al., 2022; Cohen et al., 2020) involve evaluating and se-
lecting individuals for a specific, pre-defined purpose, such
as a job, educational program, or loan application. These
screening processes are generally designed to identify which
individuals are qualified for a position or opportunity, of-
ten using multiple sequential classifiers or tests. For ex-
ample, many hiring processes involve multiple rounds of
interviews; university admissions can involve a combination
of standardized tests, essays, or interviews. They have sub-
stantial practical benefits, in that they can allow a complex
decision to be broken into a sequence of smaller and cheaper
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steps; this allows, for example, to split a decision across
multiple independent interviewers, or across smaller and
easier-to-measure criteria and requirements.

Many of the decisions made by such screening processes are
high stakes. For example, university admissions can affect
an individual’s prospects for their entire life. Loan decisions
can have a long-term (sometimes even inter-generational)
effect on a family’s wealth or socio-economic status. When
these decisions are high stakes, i.e. when obtaining a pos-
itive outcome is valuable or potentially life-changing or
obtaining a negative outcome can be harmful, individuals
may want to manipulate their features to trick the classifier
into assigning them a positive outcome.

In machine learning, this idea is known as strategic classifi-
cation, and was notably introduced and studied by (Brückner
& Scheffer, 2011; Hardt et al., 2016). The current work aims
to incorporate strategic classification within screening pro-
cesses, taking a departure from the classical point of view in
the strategic classification literature that focuses on a single
classifier (see related work section).

The key novel idea of our model of strategic screening pro-
cesses (or pipelines), compared to the strategic classification
literature, comes from the fact that i) an individual has to
pass and manipulate her way through several classifiers, and
ii) that we consider sequential screening pipelines.

In a sequential screening pipeline, once an individual (also
called Agent) has passed a test or stage of this pipeline,
she can “forget” about the said stage; whether or not she
passes the next stage depends only on her performance in
that stage. For example, a job candidate that has passed the
initial human resources interview may not need to worry
about convincing that interviewer, and can instead expand
her effort solely into preparing for the first technical round
of interviews. Alternatively, imagine a student ‘cramming’
for a sequence of final exams, where one has a finite capacity
to study that is used up over a week of tests. One wants to
achieve a minimum score on each test, with a minimum of
effort, by studying in between each test.

Our goal in this work is to examine how considering a
pipeline comprised of a sequence of classifiers affects and
modifies the way a strategic agent manipulates her features
to obtain a positive classification outcome, and how a learner
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Figure 1. Suppose the agent is the disqualified (i.e., placed in the
negative region of the conjunctions of h1, h2) point. A trivial ma-
nipulation strategy is to use the shortest direct path to the positive
region, which is the dashed red path. However, the agent may also
first manipulate slightly to pass h1, then manipulate minimally
again to pass h2, as depicted with the blue solid path. This is what
we call a zig-zag strategy.

(which we primarily call the Firm) should take this strate-
gic behavior into account to design screening pipelines that
are robust to such manipulation. In our model, 1) the firm
deploys a sequential pipeline of classifiers, 2) the agent is
given full knowledge of the pipeline and computes their op-
timal manipulation strategy, then 3) the agent goes through
the screening pipeline and implements said optimal manipu-
lation strategy in order to pass the tests sequentially, one at
a time.

We make a distinction between the following two cases: 1)
the firm deploys its classifiers sequentially which we refer
to as a sequential screening process; 2) the firm deploys a
single classifier whose positive classification region is the
intersection of the positive regions of the classifiers that form
the pipeline which we sometimes refer to as simultaneous
(or conjunctive) testing—this single classifier is basically the
conjunction or intersection of classifiers from the pipeline.
The former corresponds to a natural screening process that is
often used in practice and for which we give our main results,
while the latter is primarily considered as a benchmark for
our results for the sequential case.

Our Contributions. We show a perhaps surprising result:
an agent can exploit the sequential nature of the screening
process and move through the whole pipeline even when she
started far from the intersection of the positive classification
regions of all classifiers. In other words, the sequentiality
of screening processes can improve an agent’s ability to
manipulate her way through multiple classifiers compared
to the simultaneous screening. We name the resulting set of
strategies for such an agent in the sequential case “zig-zag”
strategies. In other words, whenever the agent does not
manipulate straight to a point that is classified as positive by
the conjunction of all classifiers, we call it a zig-zag strategy.
An example of such a strategy that zig-zags between two
classifiers is provided in Figure 1.

In Figure 1, since there is a small angle θ between the two
tests, an agent at the bottom of the figure can zag right and
then left as shown by the blue lines. In this case, the agent is

classified as positive in every single step, and by making θ
arbitrarily small, will have arbitrarily lower total cost (e.g.,
the cumulative ℓ2 distance) compared to going directly to
the intersection point of the classifiers. We provide concrete
classifiers and an initial feature vector for such a case in
Example 3.2.

In fact, in Section 3.2 we show that for a given point, as θ
goes to zero, the ratio between the total cost of the zig-zag
strategy and the cost of going directly to the intersection can
become arbitrarily large. As we assume that conjunction
of the classifiers captures the objective of the firm, using a
pipeline can allow more disqualified people to get a positive
outcome by manipulating their features. We show this in
Figure 2: This figure shows the region of the agents space
that can successfully manipulate to pass two linear tests in
the two-dimensional setting, given a budget τ for manipula-
tion. As shown by the figure, individuals in the green region
of Figure 2.c can pass the tests in the sequential setting
but would not be able to do so if they had to pass the tests
simultaneously.

We further show how the optimal zig-zag strategy of an
agent can be obtained computationally efficiently via a sim-
ple convex optimization framework in Section 3.3 and pro-
vide a closed-form characterization of this strategy in the
special case of 2-dimensional features and a pipeline of
exactly two classifiers in Section 3.4.

In Section 3.5 we consider a “monotonicity” condition under
which, agents prefer to use the simple strategy which passes
all classifiers simultaneously in a single move and does not
zig-zag between classifiers.

Finally, in Section 4.1, we exhibit a defense strategy that
maximizes true positives subject to not allowing any false
positives. Interestingly, we show that under this strategy,
deploying classifiers sequentially allows for a higher utility
for the firm than using a conjunction of classifiers.

Related Work. Our work inscribes itself at the intersec-
tion of two recent lines of work. The first one studies how
strategic behavior affects decision-making algorithms (e.g.
regression or classification algorithms), and how to design
decision rules that take into account or dis-incentivize strate-
gic behavior. This line of work is extensive and comprised
of the works of (Brückner & Scheffer, 2011; Hardt et al.,
2016; Kleinberg & Raghavan, 2020; Braverman & Garg,
2020; Miller et al., 2020; Liu et al., 2020; Jagadeesan et al.,
2021; Haghtalab et al., 2020; Meir et al., 2010; 2011; 2012;
Dekel et al., 2010; Chen et al., 2018; Cummings et al., 2015;
Khajehnejad et al., 2019; Ustun et al., 2019; Chen et al.,
2020b; Björkegren et al., 2020; Dee et al., 2019; Perote &
Perote-Pena, 2004; Ahmadi et al., 2021; Tang et al., 2021;
Hu et al., 2019; Milli et al., 2019; Perdomo et al., 2020;
Ghalme et al., 2021; Braverman & Garg, 2020; Ahmadi
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Figure 2. Each agent has a manipulation budget of τ and the cost
function is ℓ2 distance. Then, (a) shows the region of agents who
afford to manipulate their feature vectors to pass both tests simul-
taneously, (b) shows the region of agents who afford to manipulate
their feature vectors to pass the tests sequentially (i.e, first h1, then
h2), and (c) shows the difference in these two regions.

et al., 2022; Bechavod et al., 2021; 2022; Shavit et al., 2020;
Dong et al., 2018; Chen et al., 2020a; Harris et al., 2021).

The second line of work is separate and aims to understand
how decisions compose and affect each other in decision-
making and screening pipelines (Cohen et al., 2020; Bower
et al., 2017; Blum et al., 2022; Arunachaleswaran et al.,
2022; Dwork et al., 2020; Dwork & Ilvento, 2018). These
works study settings in which multiple decisions are made
about an individual or an applicant. (Harris et al., 2021)
has a similar motivation to ours in studying how multiple
rounds of interaction change strategic dynamics, however,
the linearity of their model allows them to treat time-steps
independently while our agents can benefit from using in-
formation on the subsequent steps of the pipeline.

However, and to the best of our knowledge, there is little
work bringing these two fields together and studying strate-
gic behavior in the context of decision pipelines comprised
of multiple classifiers. This is where the contribution of the
current work lies.

Interestingly, there are interesting connections between our
model with classical work in learning intersections of half-

spaces (Klivans & Servedio, 2004; Klivans & Sherstov,
2009). In our model, we think of the half-spaces as known
in advance, so our model differs in that agents do not need to
learn half-spaces. However, future work could instead con-
sider a learner who must learn the intersection of half-spaces
while simultaneously considering the effect of strategic be-
havior, a complex learning problem. Further, there is a
subtle distinction that agents in our work that agents may
modify their features to pass half-spaces sequentially, but
without needing to be in the intersection of all half-spaces;
the crux of our contribution is in fact to show that sequen-
tiality often leads to very different agent behavior than mod-
ifying features to reach the intersection of the classifiers’
positive region.

The sequentiality of our framework is related to the line of
work on convex body chasing (Sellke, 2020; Friedman &
Linial, 1993; Bubeck et al., 2019; Argue et al., 2021; Guan
et al., 2022; Bansa et al., 2018; Bubeck et al., 2020), but
once again, a distinction between our paper and this line of
work is that agents know all classifiers in advance and does
not need to plan for an adversary.

Finally, perhaps closest to our work is the line of work on
Online Convex Optimization (OCO) with switching costs
and known loss functions. These works also assume that
(1) the (single) agent observes the loss function before pick-
ing a point at each round or even observes the next (fixed
size) loss functions sequence, and (2) the cost functions
are dependent on the previous point xt, (e.g., ℓ2 distance
between the current and the previous point). However, our
work differs in some of the specific assumptions we make
(for example, an agent cannot choose their initial features,
while one can choose the starting point in Online Convex
Optimization with switching costs and known loss func-
tions (Shi et al., 2020; Li et al., 2021; Cesa-Bianchi et al.,
2013)), but more importantly, our main focus is different:
beyond characterizing the optimal strategy for a strategic
agent, we are interested in i) understanding how sequen-
tiality affects and potentially increases agents’ ability to
strategize and ii) developing screening pipelines that are
robust to strategic behavior.

2. Our Model
Formally, individuals (or agents) are represented by a set
of features x ∈ X , where X ⊆ Rd, for d ≥ 1. The
firm has a fixed sequence of binary tests or classifiers
h1, h2, . . . , hk : X → {0, 1} that are deployed to select
qualified individuals while screening out unqualified indi-
viduals. Here, an outcome of 1 (positive) corresponds to an
acceptance, and an outcome of 0 (negative) corresponds to
a rejection. Once a person is rejected by a test they leave
the pipeline.
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In the whole paper, we assume that the classifiers are linear
and defined by half-spaces; i.e. hi(x) = 1 ⇐⇒ w⊤

i x ≥
bi for some vector wi ∈ Rd and real threshold bi ∈ R.
Equivalently, we often write hi(x) = 1

[
w⊤

i x ≥ bi
]
.1

In this work we assume that the true qualifications of indi-
viduals are determined by the conjunction of the classifiers
adopted by the firm in the pipeline, i.e. an agent x is qual-
ified if and only if hi(x) = 1 for all i. In other words, the
firm has designed a pipeline that makes no error in predict-
ing individuals’ qualifications absent strategic behavior.

However, in the presence of strategic behavior, individu-
als try to manipulate their feature vectors to become posi-
tively classified by the classifiers simply because they re-
ceive a positive utility from a positive outcome. Similar to
prior works, throughout this work, we assume a “white box”
model meaning agents know the parameters for each classi-
fier. More precisely, the firm commits to using a sequential
screening process consisting of classifiers h1, h2 . . . hk, and
each agent knows the parameters of each hypothesis, the
order of the tests, her own feature value x, and the cost to
manipulate to any other point in the input space.

An agent’s cost function is modeled by a function c : X ×
X → R≥0 that takes two points x, x̂ and outputs the cost of
moving from x to x̂. One can think of x as the initial feature
vector of an agent and x̂ as the manipulated features. In
the sequential setting that we consider, we take the cost of
manipulation to be the cumulative cost across every single
manipulation. In particular, for a manipulation path x(0) →
x(1) → x(2) → . . . → x(k) taken by an agent whose true
feature values are x(0), the cost of manipulation is given
by

∑k
i=1 c(x

(i−1), x(i)). We assume such manipulations do
not change nor improve one’s true qualifications2 and we
discuss how the firm mitigates this effect of manipulation.

In turn, the firm’s goal is to have an accurate screening
process whose predictions are as robust to and unaffected by
such strategic: the firm modifies its classifiers h1, · · · , hk to
h̃1, · · · , h̃k so that the output of h̃1, · · · , h̃k on manipulated
agents’ features can identify the qualified agents optimally
with respect to a given “accuracy measure”; we will consider
two such measures in Section 4.

1While more general classes of classifiers could be consid-
ered, linear classifiers are a natural starting point to study strategic
classification. This linearity assumption arises in previous work,
e.g. (Kleinberg & Raghavan, 2020; Tang et al., 2021; Ahmadi et al.,
2022) to only name a few.

2E.g., in a loan application, such manipulations could be open-
ing a new credit card account: doing so may temporarily increase
an agent’s credit score, but does not change anything about an
agent’s intrinsic financial responsibility and ability to repay the
loan.

2.1. Agent’s Manipulation

We proceed by formally defining the minimal cost of ma-
nipulation, which is the minimal cost an agent has to invest
to pass all classifiers, and the best response of an agent for
both sequential and simultaneous testing.

Definition 2.1 (Manipulation Cost: Sequential). Given a
sequence of classifiers h1, . . . , hk, a global cost function c,
and an agent x(0) ∈ X , the manipulation cost of an agent
in the sequential setting is defined as the minimum cost
incurred by her to pass all the classifiers sequentially, i.e.,

c∗seq

(
x(0), {h1, . . . , hk}

)
= min

x(1),...,x(k)∈X

k−1∑
i=0

c(x(i), x(i+1))

s.t. hi(x
(i)) = 1 ∀i ∈ [k].

The best response of x(0) to the sequential testing
h1, . . . , hk is the path x(1), . . . , x(k) that minimizes the ob-
jective.

Definition 2.2 (Manipulation Cost: Conjunction or Simul-
taneous). Given a set of classifiers {h1, . . . , hk}, a global
cost function c, and an agent x, the manipulation cost of an
agent in the conjunction setting is defined as the minimum
cost incurred by her to pass all the classifiers at the same
time, i.e.,

c∗conj (x, {h1, . . . , hk}) = min
z∈X

c(x, z)

s.t. hi(z) = 1 ∀i ∈ [k].

The best response of x to the conjunction of h1 . . . , hk is
the z that minimizes the objective.

3. Best Response of Agents in a Screening
Process with Oblivious Defender

In this section, we study the manipulation strategy of an
agent. In particular, we present algorithms to compute op-
timal manipulation strategies efficiently. For brevity, some
of the proofs are relegated to the appendix. We make the
following assumption on the cost function in most of the
section, unless explicitly noted otherwise:

Assumption 3.1. The cost of moving from x to x̂ is given
by c(x, x̂) = ∥x̂ − x∥2, where ∥.∥2 denotes the standard
Euclidean norm.

3.1. Optimal Strategies in the Conjunction Case

As a warm-up to our zig-zag strategy in Section 3.3, we
first consider the optimal strategy for our benchmark, which
is the case of the simultaneous conjunction of k classifiers.
In the case where agents are supposed to pass a collection
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of linear classifiers simultaneously, the best response of an
agent x ∈ Rd is given by solving the following optimization
problem

min
z

c(x, z)

s.t. w⊤
i z ≥ bi ∀i ∈ [k].

(1)

which is a convex program as long as c is convex in z.

In the special case in which d = 2 and k = 2, i.e. when
feature vectors are two-dimensional and an agent must be
positively classified by the conjunction of two linear clas-
sifiers h1(x) = 1(w⊤

1 x ≥ b1) and h2(x) = 1(w⊤
2 x ≥ b2),

we provide a closed form characterization of an agent’s
strategy.

We assume that the two classifiers are not parallel to each
other because if w2 = kw1 for some k ∈ R, then one can
show that either the acceptance regions of h1 and h2 do not
overlap, or the optimal strategy of an agent is simply the
orthogonal projection onto the intersection of the acceptance
regions of h1 and h2.

We further assume, without loss of generality, that b1 =
b2 = 0 because if either b1 or b2 is nonzero, one can use the
change of variables x′ ≜ x + s to write the classifiers as
h1(x

′) = 1(w⊤
1 x

′ ≥ 0) and h2(x
′) = 1(w⊤

2 x
′ ≥ 0). Here

s is the solution to {w⊤
1 s = −b1, w

⊤
2 s = −b2}.

For any w ∈ R2 with ∥w∥2 = 1, let Pw(x) and dw(x) be
the orthogonal projection of x onto the region {y ∈ R2 :
w⊤y ≥ 0}, and its orthogonal distance to the same region,
respectively. We have

Pw(x) ≜

{
x if w⊤x ≥ 0

x− (w⊤x)w if w⊤x < 0
,

dw(x) ≜

{
0 if w⊤x ≥ 0

|w⊤x| if w⊤x < 0
.

Given this setup, the best response characterization of an
agent x can be given as follows. If h1(x) = h2(x) = 1 then
z = x. Otherwise, the best response is either the orthogonal
projection onto the acceptance region of h1 or h2, or moving
directly to the intersection of the classifiers (⃗0):

1. If h1(Pw2
(x)) = 1, then z = Pw2

(x) and the cost of
manipulation is c∗conj

(
x(0), {h1, h2}

)
= dw2(x).

2. If h2(Pw1
(x)) = 1, then z = Pw1

(x) and the cost of
manipulation is c∗conj

(
x(0), {h1, h2}

)
= dw1(x).

3. if h1(Pw2
(x)) = h2(Pw1

(x)) = 0 then z = 0⃗ and the
cost of manipulation is c∗conj

(
x(0), {h1, h2}

)
= ∥x∥2.

Given a budget τ , agents who can manipulate with a cost of
at most τ to pass the two tests simultaneously, i.e. {x(0) :
c∗conj

(
x(0), {h1, h2}

)
≤ τ} is highlighted in Figure 2.a.

h2

h1

x

x̂

x̃(1) x̃(2)

Figure 3. An example for a zig-zag strategy being better for an
agent that starts at x in the sequential case than moving in a single
step. Here, an agent would prefer to first manipulate to x̃(1) then to
x̃(2) (the blue arrows) instead of straightforwardly moving from x
to x̂ as would be optimal in the conjunction case (the red arrow).

3.2. A Zig-Zag Manipulation on Sequential
Classification Pipelines

Here, we make the observation that the sequential nature
of the problem can change how an agent will modify her
features in order to pass a collection of classifiers, compared
to the case when said classifiers are deployed simultaneously.
We illustrate this potentially counter-intuitive observation
via the following simple example:

Example 3.2. Consider a two-dimensional setting. Suppose
an agent going up for classification has an initial feature
vector x = (0, 0). Suppose the cost an agent faces to change
her features from x to a new vector x̂ is given by ∥x̂ −
x∥2. Further, imagine an agent must pass two classifiers:
h1(x) = 1 {4x2 − 3x1 ≥ 1}, and h2(x) = 1 {x1 ≥ 1},
where xi is the i−th component of x.

It is not hard to see, by triangle inequality, that if an agent
is facing a conjunction of h1 and h2, an agent’s cost is
minimized when x̂ = (1, 1) (this is in fact the intersection
of the decision boundaries of h1 and h2), in which case
the cost incurred by an agent is

√
1 + 1 =

√
2 (see the red

manipulation in Figure 3).

However, if the classifiers are offered sequentially, i.e. h1

then h2, consider the following feature manipulation: first,
the agent sets x̃(1) = (0, 1/4), in which case she passes
h1 and incurs a cost of 1/4. Then, the agent sets x̃(2) =
(1, 1/4); the cost to go from x̃(1) to x̃(2) is ∥2(1, 1/4) −
(0, 1/4)∥ = 1 (see the blue manipulation in Figure 3). In
turn, the total cost of this manipulation to pass (i.e., get
a positive classification on) both classifiers is at most 1 +
1/4 = 5/4, and is always better than the

√
2 cost for the

conjunction of classifiers! □

Intuitively, here, the main idea is that in the “conjunction
of classifiers” case, an agent must manipulate her features
a single time in a way that satisfies all classifiers at once.
However, when facing a sequence of classifiers h1, . . . , hk,
once an agent has passed classifier hi−1 for any given i,
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it can “forget” classifier hi−1 and manipulate its features
to pass hi while not being required to pass hi−1 anymore.
In turn, the potential manipulations for an agent in the se-
quential case are less constrained than in the conjunction of
classifiers case. This result is formalized below:

Claim 3.3. Let h1, . . . , hk be a sequence of k linear clas-
sifiers. For any agent with initial feature vector x ∈ Rd

(d ≥ 1), c∗conj (x, {h1, . . . , hk}) ≥ c∗seq (x, {h1, . . . , hk}).

Intuitively, the above claim follows from the observation
that any best response solution to the conjunction case in
particular still passes all classifiers and has the same cost in
the sequential case.

However, there can be a significant gap between how much
budget an agent needs to spend in the conjunctive versus
in the sequential case to successfully pass all classifiers
(for illustration, see Figure 2). In fact, we show below
that the multiplicative gap between the conjunctive and
sequential manipulation cost can be unbounded, even in the
two-dimensional setting:

Lemma 3.4. Consider d = 2. For any constant M > 0,
there exists two linear classifiers h1 and h2 and an initial

feature vector x(0) such that
c∗conj(x

(0),{h1,h2})
c∗seq(x(0),{h1,h2})

≥ M .

Proof. Pick x(0) = (0, 0). Let γ > 0 be a real num-
ber. Consider h1(x) = 1

{
x1

γ + x2 ≥ 1
}

and h2(x) =

1

{
x1

γ − x2 ≥ 1
}

. Let x̂ be the agent’s features after ma-
nipulation. To obtain a positive classification outcome, the
agent requires both x̂1 ≥ γ(1 − x̂2) and x̂1 ≥ γ(1 + x̂2).
Since one of 1− x̂2 or 1+x̂2 has to be at least 1, this implies
x̂1 ≥ γ. In turn, c(x, {h1, h2}) = ∥x̂∥ ≥ γ.

However, in the sequential case, a manipulation that passes
h1 is to set x(1) = (0, 1). Then a manipulation that passes
h2, starting from x(1), is to set x(2) = (0,−1). The total
cost is ∥(0, 1)−(0, 0)∥+∥(0,−1)−(0, 1)∥ = 1+2 = 3. In
particular,

c∗conj(x,{h1,...,hk})
c∗seq(x,{h1,...,hk}) ≥ γ/3. The result is obtained

by setting γ = 3M .

3.3. An Algorithmic Characterization of an agent’s
Optimal Strategy in the Sequential Case

In this section, we show that in the sequential setting, an
agent can compute her optimal sequences of manipulations
efficiently. Consider any initial feature vector x(0) ∈ Rd

for an agent. Further, suppose an agent must pass k linear
classifiers h1, . . . , hk. For i ∈ [k], we write once again
hi(x) = 1[w⊤

i x ≥ bi] the i-th classifier that an agent must
get a positive classification on. Here and for this subsection
only, we relax our assumption on the cost function to be
more general, and not limited to ℓ2 costs:

Assumption 3.5. The cost c(x, x̂) of moving from feature
vector x to feature vector x̂ is convex in (x, x̂).

This is a relatively straightforward and mild assumption;
absent convexity, computing the best feature modifications
for even a single step can be a computationally intractable
problem. The assumption covers but is not limited to a large
class of cost functions of the form c(x, x̂) = ∥x̂−x∥, for any
norm ∥.∥. It can also encode cost functions where different
features or directions have different costs of manipulation;
an example is c(x, x̂) = (x̂− x)

⊤
A (x̂− x) where A is

a positive definite matrix, as used in (Shavit et al., 2020;
Bechavod et al., 2022).

In this case, an agent’s goal, starting from her initial feature
vector x(0), is to find a sequence of feature modifications
x(1) to x(k) such that: 1) for all i ∈ [k], hi(x

(i)) = 1.
I.e., xi passes the i-th classifier; and 2) the total cost∑k

i=1 c(x
(i−1), x(i)) of going from x(0) → x(1) → x(2) →

. . . → x(k) is minimized. This can be written as the follow-
ing optimization problem:

min
x(1),...,x(k)

k∑
i=1

c(x(i−1), x(i))

s.t. w⊤
i x

(i) ≥ bi ∀i ∈ [k].

(2)

Claim 3.6. Program (2) is convex in (x(1), . . . , x(k)).

In turn, we can solve the problem faced by an agent’s compu-
tationally efficiently, through standard convex optimization
techniques.

3.4. A Closed-Form Characterization in the 2-Classifier,
2-Dimensional Case

We now provide closed-form characterization of an agent’s
best response in the sequential case, under the two-
dimensional two-classifier (d = k = 2) setting that we
considered in Section 3.1. Here, we take the cost function
to be the standard Euclidean norm, i.e. c(x, x̂) = ∥x̂− x∥2,
as per Assumption 3.1.

Theorem 3.7. Consider two linear classifiers h1(x) =
1(w⊤

1 x ≥ 0) and h2(x) = 1(w⊤
2 x ≥ 0) where ∥wi∥2 = 1

for i ∈ {1, 2} and an agent x(0) ∈ R2 such that h1(x
(0)) =

0 and h2(Pw1(x
(0))) = 0. Let 0 < θ < π be the angle

between (the positive region of) the two linear classifiers;
i.e. θ is the solution to cos θ = −w⊤

1 w2. Then:

1. If | tan θ| > ∥Pw1
(x(0))∥2/dw1

(x(0)), then the best
response for an agent is to pick x(2) = x(1) =
0⃗. In this case, the cost of manipulation is
c∗seq

(
x(0), {h1, h2}

)
= ∥x(0)∥2.

2. If | tan θ| ≤ ∥Pw1(x
(0))∥2/dw1(x

(0)), then the best

6
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response is given by

x(1) =

(
1− dw1

(x(0))

∥Pw1(x
(0))∥2

| tan θ|
)
Pw1

(x(0))

and x(2) = Pw2
(x(1)), and the cost of manipulation is

given by

c∗seq

(
x(0), {h1, h2}

)
= dw1(x

(0))| cos θ|+ ∥Pw1(x
(0))∥2 sin θ.

The proof of this theorem is provided in the Appendix. First,
note that once the first feature modification has happened
and an agent has passed classifier h1 and is at x(1), the
theorem states that an agent picks x(2) to simply be the
orthogonal projection onto the positive region of h2. This is
because the cost for going from x(1) to x(2) is simply the l2
distance between them, in which case picking x(2) to be the
orthogonal projection of x(1) on h2 minimizes that distance.
The main contribution and challenge of Theorem 3.7 are
therefore to understand how to set x(1) and what is the
minimum amount of effort that an agent expands to do so.

Now let’s examine different cases in Theorem 3.7. Note
that we assumed h1(x

(0)) = 0 and h2(Pw1(x
(0))) = 0, i.e.

that an agent is not in the positive region for the first test
and Pw1

(x(0)) is not in the positive region for the second
test, because otherwise, the solution is trivial. In fact, if
h1(x

(0)) = 1, then the solution is simply staying at x(0)

for the first test and then projecting orthogonally onto the
positive region of h2 to pass the second test:

x(1) = x(0), x(2) = Pw2(x
(1))

c∗seq

(
x(0), {h1, h2}

)
= dw2

(x(0))

This corresponds to region R1 of agents in Figure 4. If
h1(x

(0)) = 0, but h2(Pw1
(x(0))) = 1, then the best re-

sponse solution is simply the orthogonal projection onto the
positive region of h1:

x(2) = x(1) = Pw1(x
(0))

c∗seq

(
x(0), {h1, h2}

)
= dw1

(x(0))

This corresponds to region R4 of agents in Figure 4. Addi-
tionally, the first case in the closed-form solutions in Theo-
rem 3.7 corresponds to the region of the space where agents
prefer to travel directly to the intersection of the two clas-
sifiers than deploying a zig-zag strategy: this corresponds
to region R3 in Figure 4. The second case corresponds to
the region where agents do find that a zig-zag strategy is
less costly and gives the algebraic characterization of the
optimal zig-zag strategy. This region for an agent is denoted
by R2 in Figure 4. Also, as shown by Figure 4.b, the zig-zag

h2

h1

h2

h1

θ

θ

θ

x(0)

x(1)

x(2)

h2

h1

θ

θ
R4

R3

R1

(a)

(b)

R2

(c)

Figure 4. (a) Different cases for how agents best respond: agents
in R1 stay at their location to pass the first test and project onto h2

to pass the second. Agents in R2 deploy a zig-zag strategy. Agents
in R3 move to the intersection of h1 and h2. Agents in R4 project
onto h1. (b) Geometric characterization of the zig-zag strategy:
the line passing through x(0) and x(1) has angle θ with the line
perpendicular to h1. (c) This figure highlights the positive regions
of h1, h2, and their intersection.

strategy of agents in R2 has the following geometric charac-
terization: pick x(1) on h1 such that the line passing through
x(0) and x(1) has angle θ with the line perpendicular to h1.

Given a budget τ , agents who can manipulate with a cost
of at most τ to pass the two tests in the sequential setting,
i.e. {x(0) : c∗seq

(
x(0), {h1, h2}

)
≤ τ} is highlighted in

Figure 2.b.

We conclude this section by showing that if θ ≥ π/2, then
agents incur the same cost in the sequential setting as they
would under the conjunction setting. In other words, agents
can deploy the strategy that they would use if they had to
pass the two tests simultaneously. The proof of this theorem
is provided in the Appendix.

Theorem 3.8. If π/2 ≤ θ < π, then for every agent x(0)

there exists optimal strategies x(1) and x(2) s.t. x(1) = x(2),
i.e., c∗seq

(
x(0), {h1, h2}

)
= c∗conj

(
x(0), {h1, h2}

)
.

3.5. Monotonicity

We now consider a monotonicity property that excludes the
possibility of a zig-zag strategy arising. A similar property
is noted in (Milli et al., 2019).

7
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Definition 3.9 (Feature Monotone Classifiers). Classifier
hi : Rd → {0, 1} is monotone if for every individual x that
is classified as positive by hi, any feature-wise increase in
the features of x results in a positive classification by hi.
Formally,

∀x ∈ Rd : hi(x) = 1 ⇒ hi(x+ α) = 1 ∀α ∈ (R≥0)
d.

Note that this monotonicity property may not hold in some
classification problems. For example, when applying for a
mortgage for $100, 000, presumably monotonically increas-
ing income means one is more credit-worthy. However, if
an individual reports a $3 million a year income for a loan
of $100, 000, such a large income could instead indicate
fraudulent income reporting or remarkably poor financial
planning since presumably such a high net worth individual
should not need such a small loan.

In fact, in case k = 2, the angle θ measures the “alignment”
between the classifiers. In the above example, the classifiers
may not be aligned. Increases in income are desirable to
show financial responsibility; yet, beyond a certain point
(for example, when the income becomes much larger than
the desired loan), income may become an indicator of poor
financial planning or fraudulent transactions. In some hiring
settings, having sufficient qualifications is desirable; yet,
over-qualification can often be grounds for rejection of a job
application.

Theorem 3.10. Let h1, . . . , hk be a sequence of monotone
classifiers, and let the initial feature vector x(0) be such that
hi(x

(0)) = 0 for every i ∈ [k]. Assume the cost function
can be written as c(x, x̂) = ∥x̂ − x∥ for some norm ∥.∥.
Then, we have that

c∗seq

(
x(0), {h1, . . . , hk}

)
= c∗conj

(
x(0), {h1, . . . , hk}

)
.

Theorem 3.10 in particular implies that under our mono-
tonicity assumption and for a large class of reasonable cost
functions, an agent has no incentive to zig-zag in the sequen-
tial case and in fact can simply follow the same strategy
as in the simultaneous or conjunctive case. This insight
immediately extends even when x(0) is positively classified
by some but not all of the hi’s as any best response is guar-
anteed to increase the feature values and thus will maintain
the positive classification results of these classifiers.

3.6. Myopic or Greedy Strategy

A natural question that reader might have is how the cost of
the zig-zag strategy compares to the cost of a greedy strategy
that simply manipulates to the nearest passing point of the
current test. One advantage of a greedy strategy is that an
agent only needs to know what the next classifier they face
is, rather than the entire screening pipeline in advance.

Given that the agent has full information about the pipeline,
the zig-zag manipulation is by definition the optimal strat-
egy and the greedy strategy can be sub-optimal. In the
two-classifier two-dimensional case that we consider in our
paper, our theorem states that the zig-zag manipulation is
the unique optimal manipulation and that this manipulation
is different from the greedy manipulation (see Figure 4(b)).
In fact, for k = 2, the additive gap between the cost of the
zig-zag strategy and the greedy strategy can be shown to
be (1 − cos(θ)) · r where θ is the angle between the two
classifiers and r is the distance of the agent from the first
classifier.

One can also show that the gap is unbounded when k grows
large: previous work (Friedman & Linial, 1993) shows an
unbounded gap between the movement cost of being greedy
and directly going to the closest point at the intersection of
the half-spaces. Because the optimal zig-zag strategy cannot
do worse than directly reaching this closest point, the gap
between zig-zag and greedy is also unbounded.

4. Manipulation Resistant Defenses
Up to this point in the paper, we have focused mainly on the
existence and feasibility of a zig-zag manipulation strategy
from the perspective of an agent. We now shift gears and
discuss the firm’s decision space. We are interested in under-
standing how the firm can modify its classifiers to maintain
a high level of accuracy (if possible), despite the strategic
manipulations of an agent. To this end, we assume there is a
joint distribution of features and labels D over X × {0, 1]}.
Interestingly, previous works (Brückner & Scheffer, 2011;
Hardt et al., 2016) show hardness results for finding optimal
strategic classifiers, where the objective is finding a single
classifier h that attains the strategic maximum accuracy.

Now, we can introduce the defender’s game for a typical
strategic classification problem.

min
h∈H

P(x,y)∼D[h(z
∗(x)) ̸= y]

s.t. z∗(x) = argmax
z

h(z)− c(x, z)
(3)

In our paper, h is actually given by the sequential composi-
tion of classifiers in the screening process and c(x, z) is the
sum of manipulation costs per stage. The objective function
in this optimization problem is a direct generalization of 0-1
loss for normal learning problems, only complicated by the
strategic behavior of an agent.

As Brückner & Scheffer (2011) observe, this is a bi-level
optimization problem and is NP-hard (Jeroslow, 1985) to
compute, even when constraints and objectives are linear.
Interestingly, Hardt et al. (2016) also show a hardness of
approximation result for general metrics. Because of these
past hardness results, we instead focus on a more tractable
defense objective.
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4.1. Conservative Defense

Here, we consider a different objective motivated by the
hiring process in firms, in which avoiding false positives
and not hiring unqualified candidates can be seen as ar-
guably more important than avoiding false negatives and not
missing out on good candidates. This objective, described
below, has been previously studied in the context of strategic
classification, in particular in (Ahmadi et al., 2022).
Definition 4.1 (No False Positive Objective). Given the
manipulation budget τ and the initial linear classifiers
h1, · · · , hk, the goal of the firm is to design a modified
set of linear classifiers h̃1, · · · , h̃k that maximize the true
positive rate of the pipeline on manipulated feature vectors
subject to no false positives. Recall that the ground truth is
determined by the conjunction of h1, · · · , hk on unmanipu-
lated feature vectors of agents.

Without loss of generality, we assume the pipeline is non-
trivial: the intersection of acceptance regions of h1, · · · , hk

is non-empty.

We prove that, under standard assumptions on linear classi-
fiers of the firm, a defense strategy that “shifts” all classifiers
by the manipulation budget, is the optimal strategy for the
firm in both pipeline and conjunction settings. We formally
define the defense strategy as follows:
Definition 4.2 (Conservative Strategy). Given the manipu-
lation budget τ , the firm conservatively assumes that each
agent has a manipulation budget of τ per test. For each test
hi(x) = 1[w⊤

i x ≥ bi], the firm replaces it by a “τ -shifted”
linear separator h̃i(x) = 1[w⊤

i x ≥ bi + τ ]). In this sec-
tion, without loss of generality, we assume that all wi’s have
ℓ2-norm equal to one.

Our statement holds when the linear classifiers satisfy the
following “general position” type condition.
Definition 4.3. We say a collection of linear classifiers
H = {h1(x) = 1[w⊤

1 x ≥ b1], · · · , hk(x) = 1[w⊤
k x ≥

bk]} with w1, · · · , wk ∈ Rd are in “general position” if
for any i ∈ [k], the intersection of {x|w⊤

i x = bi} and
{x|

∧
j∈[k],j ̸=i hj(x) = 1} lies in a (d − 1)-dimensional

subspace but in no (d − 2)-dimensional subspace. In R2,
this condition is equivalent to the standard general position
assumption (i.e., no three lines meet at the same point).
Moreover, this condition implies that no test in H is “re-
dundant”, i.e., for every i ∈ [k], the positive region of H
(i.e.,

∧
h∈H{x|h(x) = 1}) is a proper subset of the positive

region of H \ hi. See Figure 5 for an example in R2.

Now, we are ready to state the main result of this section.
Theorem 4.4. Consider a set of linear classifiers H =
{h1, · · · , hk} that are in “general position” (as in Defini-
tion 4.3). Moreover, suppose that each agent has a ma-
nipulation budget of τ . Then, in both the conjunction and

(a) (b)

h
h

Figure 5. In (a), the intersection of h with the positive half plane of
the other two classifiers that are in blue and gray shadows is a point
which is of zero dimension. This case is not in the general position
and h is a redundant classifier. However, in (b), the intersection
of h with the described positive regions is a line segment, a one-
dimensional object. Here, h is not redundant.

sequential settings, the conservative defense is a strategy
that maximizes true positives subject to zero false positives.

The proof is provided in Appendix D.1. Note that while
the conservative defense strategy has the maximum possible
true positive subject to zero false positive in both simultane-
ous and sequential settings, by Claim 3.3, the conservative
defense achieves a higher true positive rate in the sequential
setting compared to the simultaneous case. Informally, from
the firm’s point of view, under manipulation, the sequential
setting is a more efficient screening process.

5. Discussion
We have initiated the study of Strategic Screening, combin-
ing screening problems with strategic classification. This
is a natural and wide-spread problem both in automated
and semi-automated decision making. We believe these ex-
amples and our convex program can aid in the design and
monitoring of these screening processes. Substantial open
questions remain regarding fairness implications (Appendix
B) of the defender’s solution and exactly how susceptible
real world pipelines are to zig-zagging.
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A. Broader Impacts Analysis
The ICML 2023 Paper Guidelines at https://icml.cc/Conferences/2023/PaperGuidelines has a check-
list of best paper practices intended to promote responsible machine learning research. Most of these factors are either not
applicable to our work or we clearly satisfy these requirements.

This work is primarily theoretical. Throughout the paper, we state full assumptions of all theoretical results and provide
complete proofs. The main questions we want to discuss in this appendix are possible negative social impacts and the
limitations of our work.

A.1. Social Impacts

Social impacts related to strategic screening likely exist in real systems, since it seems probable variants of the zig-zag
strategy are in use by people in the wild. Our work makes the existence of such a strategy clear, and introduces some initial
approaches to mitigate such a manipulation strategy.

This line of research could clarify how to design screening processes which are more resistant to strategic manipulation.
This may perhaps help avoid some of the well-known fairness harms of strategic classification e.g. (Milli et al., 2019; Hu
et al., 2019) due to disparate abilities to manipulate features across different groups. We believe such considerations to be a
promising and important avenue for future research.

A.2. Limitations of Our Work

We discussed two key limitations briefly in the main body of the paper. One limitation comes in that since our paper is game
theoretic in nature, we need to provide a model of the utility functions of the firm/agents and the manipulation cost. The
current assumptions we make on these functions are consistent with other papers in the strategic classification literature, but
may not fully reflect practical phenomena and considerations. An interesting direction on this front would be to study wider
classes of model in future work, and to validate assumptions on costs and utilities using real data. Another limitation is the
full information assumption that agents perfectly understand and can perfectly reason about the classifiers; it may be of
interest to extend our result to models of incomplete understanding of or ability to reason about the firm’s decision rule such
as those of (Jagadeesan et al., 2021; Ghalme et al., 2021; Bechavod et al., 2022).

B. Fairness and Strategic Screening
Some of the works cited in the related work section consider fairness considerations in the space of strategic manipulation,
stemming either from unequal abilities to manipulate (Milli et al., 2019; Hu et al., 2019) or unequal access to information
about the classifiers (Bechavod et al., 2022) across different groups. We do not consider these connections in our work, but
these considerations are of significant interest and a natural direction for further research, especially due to the importance
of making fair decision in high-stake, life altering contexts. We finish with a few interesting examples for this.

Disparities might arise both in the conjunction and in the sequential setting, with or without defense. consider the classifiers
presented in Example 3.2 and an instance in which candidates belong to two groups, G1 and G2 with initial feature vector
distributed identically and characterized by different total manipulation budgets,

√
2 = τ2 > τ1 = 5/4. The narrative of the

fairness disparities in the conjunction case is a simple generalization of the single classifiers case (e.g., (Hardt et al., 2016))-
If the distribution is such that a significant fraction of individuals (from both groups) starts at a feature vector that is classified
by both classifiers as 0 and that requires

√
2 manipulation cost to reach their intersection— only the individuals form G2 will

be able to manipulate. For the sequential case, consider a distribution with a large enough fraction of individuals starting at
(0, 0). Example 3.2 demonstrates that only individuals from G2 will have sufficient budget to manipulate (using the zig-zag
strategy). If the firm applies the conservative defense, individuals from G1 that should have been classified as positive might
not have sufficient budget to manipulate their way to acceptance, which in turn implies higher false negative rates. This
indicates, similarly to prior results in strategic classification (e.g., (Hu et al., 2019)), how the members of the advantaged
group are more easily admitted or hired.

C. Proofs of Section 3
The following is a restatement of Claim 3.3.

13

https://icml.cc/Conferences/2023/PaperGuidelines


Sequential Strategic Screening

h2

h1

x(0)

x(1)

dw1
(x(0))

Pw1 (x
(0))

z

x(2)

θ

d′−z

Figure 6. This figure shows how we reduced the optimization problem in Equation 4 to the one in Equation 5.

Claim C.1. Let h1, . . . , hk be a sequence of k linear classifiers. For any agent with initial feature vector x ∈ Rd (d ≥ 1),
c∗conj (x, {h1, . . . , hk}) ≥ c∗seq (x, {h1, . . . , hk}).

Proof of Claim 3.3. Let c be the agent’s cost function. Let x̂ be a vector such that hi(x̂) = 1 for all i ∈ [k], and such that
c(x, x̂) ≤ τ where τ is the manipulation budget available to the agent. Since x̂ satisfies hi(x̂) = 1 for all i ∈ [k], the feature
modification x → x̂ gives a positive classification outcome to the agent in the sequential case. Further, the cost of this
manipulation is c(x, x̂) + 0 + . . .+ 0 = c(x, x̂). In turn, for any feasible one-shot manipulation that passes all classifiers in
the conjunctive case, there exists a feasible sequential manipulation that passes all classifiers in the sequential case which
could be of a lower cost; this concludes the proof.

Theorem 3.7. Consider two linear classifiers h1(x) = 1(w⊤
1 x ≥ 0) and h2(x) = 1(w⊤

2 x ≥ 0) where ∥wi∥2 = 1 for
i ∈ {1, 2} and an agent x(0) ∈ R2 such that h1(x

(0)) = 0 and h2(Pw1
(x(0))) = 0. Let 0 < θ < π be the angle between

(the positive region of) the two linear classifiers; i.e. θ is the solution to cos θ = −w⊤
1 w2. Then:

1. If | tan θ| > ∥Pw1(x
(0))∥2/dw1(x

(0)), then the best response for an agent is to pick x(2) = x(1) = 0⃗. In this case, the
cost of manipulation is c∗seq

(
x(0), {h1, h2}

)
= ∥x(0)∥2.

2. If | tan θ| ≤ ∥Pw1
(x(0))∥2/dw1

(x(0)), then the best response is given by

x(1) =

(
1− dw1

(x(0))

∥Pw1
(x(0))∥2

| tan θ|
)
Pw1(x

(0))

and x(2) = Pw2
(x(1)), and the cost of manipulation is given by

c∗seq

(
x(0), {h1, h2}

)
= dw1

(x(0))| cos θ|+ ∥Pw1
(x(0))∥2 sin θ.

Proof of Theorem 3.7. Given classifiers h1 and h2, the best response of an agent x(0) is a solution to the following
optimization problem, as noted in Section 3.3:

c∗seq

(
x(0), {h1, h2}

)
= min

x(1),x(2)

{
∥x(0) − x(1)∥2 + ∥x(1) − x(2)∥2 : w⊤

1 x
(1) ≥ 0, w⊤

2 x
(2) ≥ 0

}
First, we remark that given any x(1), the optimal choice of x(2) is the orthogonal projection of x(1) on classifier f2. Therefore,
the best response can be written as:

c∗seq

(
x(0), {h1, h2}

)
= min

x(1)∈R2

{
∥x(0) − x(1)∥2 + dw2

(
x(1)

)
: w⊤

1 z ≥ 0
}

(4)
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To simplify notations, we will denote x ≜ x(0). Under the assumptions of the theorem (more specifically, h1(x) = 0 and
h2(Pw1(x)) = 0), Equation (4) can be rewritten as an optimization over a one-dimensional variable:

min
0≤z≤d′

w1
(x)

{
g(z) ≜

√
d2w1

(x) + z2 + (d′w1
(x)− z) sin θ

}
(5)

where d′w1
(x) ≜ ∥Pw1

(x)∥2 – see Figure 6 for a graphical justification of this rewriting. Note that g(z) achieves its
minimum either at the boundaries or at the point where g′(z) = 0. Therefore, we have that the minimum is one of the
following:

z = 0 =⇒ g(z) = dw1
(x) + d′w1

(x) sin θ

z = d′w1
(x) =⇒ g(z) =

√
d2w1

(x) + d′2
w1

(x) = ∥x∥2
z = dw1(x)| tan θ| =⇒ g(z) = dw1(x) cos θ + d′w1

(x) sin θ (g′(z) = 0)

We can show that if | tan θ| > d′w1
(x)/dw1(x), then the minimizer z⋆ = d′w1

(x), meaning x(2) = x(1) = 0⃗, and that

c∗seq (x, {h1, h2}) = ∥x∥2

and if | tan θ| ≤ d′w1
(x)/dw1

(x), then the minimizer z⋆ = dw1
(x)| tan θ| which implies

x(1) =

(
1− dw1(x

(0))

∥Pw1(x
(0))∥2

| tan θ|
)
Pw1

(x(0))

and x(2) = Pw2(x
(1)), and that

c∗seq (x, {h1, h2}) = dw1
(x)| cos θ|+ d′w1

(x) sin θ

Therefore, putting the two cases together,

c∗seq (x, {h1, h2}) =

{
∥x∥2 if | tan θ| > d′w1

(x)/dw1(x)

dw1
(x)| cos θ|+ d′w1

(x) sin θ if | tan θ| ≤ d′w1
(x)/dw1

(x)

Theorem 3.8. If π/2 ≤ θ < π, then for every agent x(0) there exists optimal strategies x(1) and x(2) s.t. x(1) = x(2), i.e.,
c∗seq

(
x(0), {h1, h2}

)
= c∗conj

(
x(0), {h1, h2}

)
.

Proof. Let (x(1), x(2) = Pw2
(x(1))) be an optimal strategy of the agent in the sequential setting. Suppose x(1) ̸= x(2). We

have that

w⊤
1 x

(2) = w⊤
1

(
x(1) − (w⊤

2 x
(1))w2

)
= w⊤

1 x
(1) − (w⊤

2 x
(1))(w⊤

1 w2)

But note that w⊤
1 x

(1) ≥ 0 because x(1) passes the first classifier by definition, w⊤
2 x

(1) ≤ 0 because x(1) ̸= x(2), and
w⊤

1 w2 ≥ 0 because π/2 ≤ θ < π. Therefore, w⊤
1 x

(2) ≥ 0 which implies h1(x
(2)) = 1. However, if h1(x

(2)) = 1, then
the following manipulation: y(0) = x(0) and y(1) = y(2) = x(2) passes both tests and that its cost is: ∥x(2) − x(0)∥2 ≤
∥x(2)−x(1)∥2+ ∥x(1)−x(0)∥2 by the triangle inequality. Given the optimality of (x(1), x(2)), we conclude that (y(1), y(2))
is another optimal strategy that the agent can deploy.

Theorem 3.10. Let h1, . . . , hk be a sequence of monotone classifiers, and let the initial feature vector x(0) be such that
hi(x

(0)) = 0 for every i ∈ [k]. Assume the cost function can be written as c(x, x̂) = ∥x̂− x∥ for some norm ∥.∥. Then, we
have that

c∗seq

(
x(0), {h1, . . . , hk}

)
= c∗conj

(
x(0), {h1, . . . , hk}

)
.
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Proof. Let f1,...,k : Rd → {0, 1} denote the function that returns the conjunction of all the classifiers, i.e., f1,...,k(x) =
h1(x) ∧ . . . ∧ hk(x).

Let z∗1,...,k(x
0) denote the point on f1,...,k that minimizes the cost, i.e., z∗1,...,k(x

0) = argminx(1)∥x(0) − x(1)∥p. Note that
by definition, points on f1,...,k are classified as positive by all classifiers h1, . . . , hk (i.e., z∗1,...,k(x

0) this is the best response
for the conjunction case).

It follows from the triangle inequality that any x(1) such that h1(x
(1)) ∧ . . . ∧ hk(x

(1)) = 1 has cost c(x(0), x(1)) ≥
c(x(0), z∗1,...,k(x

0)).

We proceed by induction on the number of classifiers. For the induction base, consider k = 1. Clearly, in this case moving
to z∗1,...,k(x) yields the best response.

For the induction step, assume that for every initial point x′, and every k − 1 monotone classifiers h2, . . . , hk it holds that

∥x′ − z∗2,...,k(x
′)∥p ≤ ∥x′ − z2∥2 + . . .+ ∥zk−1 − zk∥p.

for every z2, . . . , zk ∈ Rd such that hi(zi) = 1.

Adding the additional classifier in the beginning, h1 and considering the initial point, x. Assume by contradiction that there
exists a path x = z0, z1 . . . , zk such that hi(zi) ≥ 0 for every i ∈ [k] and that

c∗seq(x, {h1, . . . , hk}) = ∥x− z1∥p + . . .+ ∥zk−1 − zk∥p
< ∥x− z∗1,...,k(x)∥p. (6)

Since the path from z1 to zk is a best response for h2, . . . , hk when the initial feature vector z1, by setting x′ = z1 we
can apply the induction step we and replace this path by x, z1, z

∗
2,...,k(x

′) without increasing the sum of manipulations. If
f1,...,k(z

∗
2,...,k(z1)) = 1, we have that ∥x− z1∥p + ∥z1 − z∗2,...,k(z1)∥p ≤ ∥x− z∗1,...,k(x)∥p due to the triangle inequality

and the definition of z∗1,...,k(x) and this is a contradiction to Eq. 6.

So assume f1,...,k(z
∗
2,...,k(z1)) = 0. Since hi(z

∗
2,...,k(z1)) = 1 for every i ≥ 2 by definition, we have that h1(z

∗
2,...,k) = 0.

As h1(z1) = 1, we can define z′ ∈ Rd such that

z′[j] = max{z∗2,...,k(z1)[j], z1[j]},

and from monotonicity it follows that f2,...,k(z′) = 1.

Finally, we have that ∥x− z1∥p+∥z1− z′∥p < ∥x− z1∥p+∥z1− z∗2,...,k(z1)∥p, which is a contradiction to the minimiality
of z∗2,...,k(z1) and thus to the minimality of z2, . . . , zk.

D. Proofs of Section 4
D.1. Conservative Defense Proofs

Theorem 4.4. Consider a set of linear classifiers H = {h1, · · · , hk} that are in “general position” (as in Definition 4.3).
Moreover, suppose that each agent has a manipulation budget of τ . Then, in both the conjunction and sequential settings,
the conservative defense is a strategy that maximizes true positives subject to zero false positives.

Proof of Theorem 4.4. First, we prove that conservative defense achieve zero false positive in both cases. To show this, by
Claim 3.3, it suffices to show it for the sequential setting only. Consider an agent x who initially (i.e., before manipulation)
is not in the positive region of conjunctions of h1, · · ·hk; i.e., Πj∈[k]hj(x

(0)) = 0. Hence, there exists a classifier hi such
that w⊤

i x
(0) < bi. Now, let x(i) : x(0) + ϵi denote the (manipulated) location of x right before stage i. Since the total

manipulation budget of x is τ , w⊤
i x

(i) ≤ w⊤
i x

(0) + w⊤
i ϵi < bi + τ (the choice of εi that maximizes w⊤

i ϵi is ϵi = τwi, and
w⊤

i (τwi) = τ since ∥wi∥2 = 1). Hence, h̃(x(i)) = 0 and agent x cannot pass the modified pipeline h̃1, · · · , h̃k.

Next, consider test i and let ∆i denote the subspace of points (i.e., agents) in the intersection of {x|hi(x) = 0} and∧
j∈[k],j ̸=i{x|hj(x) = 1}. By the general position assumption, ∆i is a (d− 1)-dimensional subspace and is a subset of the

(d− 1)-dimensional hyperplane corresponding to w⊤
i x = bi. Then, there exists only a unique linear separator which is at

distance exactly τ from ∆i (and is in the positive side of hi); ĥi(x) := 1[w⊤
i x ≥ bi + τ ]. Given that any defense strategy
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with zero false positive has to classify an agents in ∆i as negative, it is straightforward to verify that any “feasible” modified
linear separator h′

i (i.e., achieving zero false positive) results in true positive rate less than or equal to the one replaces h′
i

with ĥi.
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