
Inferring Relational Potentials in Interacting Systems

Armand Comas Massagué 1 Yilun Du 2 Christian Fernandez 1 Sandesh Ghimire 1 Mario Sznaier 1

Joshua B. Tenenbaum 2 Octavia Camps 1

Abstract
Systems consisting of interacting agents are
prevalent in the world, ranging from dynamical
systems in physics to complex biological
networks. To build systems which can interact
robustly in the real world, it is thus important to
be able to infer the precise interactions governing
such systems. Existing approaches typically dis-
cover such interactions by explicitly modeling the
feed-forward dynamics of the trajectories. In this
work, we propose Neural Interaction Inference
with Potentials (NIIP) as an alternative approach
to discover such interactions that enables greater
flexibility in trajectory modeling: it discovers a
set of relational potentials, represented as energy
functions, which when minimized reconstruct
the original trajectory. NIIP assigns low energy
to the subset of trajectories which respect the
relational constraints observed. We illustrate
that with these representations NIIP displays
unique capabilities in test-time. First, it allows
trajectory manipulation, such as interchanging
interaction types across separately trained models,
as well as trajectory forecasting. Additionally, it
allows adding external hand-crafted potentials
at test-time. Finally, NIIP enables the detection
of out-of-distribution samples and anomalies
without explicit training. Website: https:
//energy-based-model.github.io/
interaction-potentials.

1. Introduction
Dynamical systems are ubiquitous in both nature and ev-
eryday life. Such systems emerge naturally in scientific
settings such as chemical pathways and particle dynamics
as well as everyday settings such as in sports teams or social

1Northeastern University 2Massachusetts Institute of Tech-
nology. Correspondence to: Armand Comas <comasmas-
sague.a@northeastern.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Attraction to player

Attraction to goal

Player 1

Player 2

Ball

Figure 1. Interactions between NBA players. Complex dynam-
ics, such as the player trajectories in the NBA, may be explained
using a simple set of interactions. In this setting, one player aims
to block the other one from scoring.

events. Such dynamical systems may be decomposed as a
set of different interacting components, where the interac-
tions among them lead to complex dynamics. Modeling the
dynamics of such systems is hard: often times we only have
access to example trajectories, without knowledge of the
underlying interactions or the dynamics that govern them.

Consider the scenario given in Figure 1, consisting of a
two NBA players playing a basketball game (the rest of the
teams are ommited for clarity). While the motion of indi-
vidual players may appear stochastic in nature, each player
aims to score the basket on the opposite team’s side of the
court. Thus, we may utilize sets of interactions to explain
their behaviors – One or more offensive players move to-
wards the goal, while a defensive player moves to intercept
them and prevent them from scoring. By applying our un-
derlying knowledge of these interactions between players,
we may forecast the future dynamics of the basketball game
significantly more accurately.

Most works modeling such complex dynamics do not ex-
plicitly disentangle individual interactions between objects.
Instead, they rely on a learned network to implicitly dis-
entangle them (Battaglia et al., 2016; Gilmer et al., 2017;
van Steenkiste et al., 2018). In contrast, (Kipf et al., 2018)
propose Neural Relation Inference (NRI), which learns a
structured set of explicit interaction models between objects
and show how such explicit interaction modeling enables
more effective downstream predictions.

1

https://energy-based-model.github.io/interaction-potentials
https://energy-based-model.github.io/interaction-potentials
https://energy-based-model.github.io/interaction-potentials

Inferring Relational Potentials in Interacting Systems

In this work, we argue that we should instead model and dis-
entangle interactions between objects as a set of learned in-
teraction potentials, with dynamical prediction correspond-
ing to a potential satisfaction problem. To this end, we
propose Neural Interaction Inference with Potentials (NIIP),
where we encode each of these potentials as an energy func-
tion (Du et al., 2021).

In physics, a potential is the energy held by an object be-
cause of its position relative to other objects. To predict
future dynamics with NIIP, we solve a potential minimiza-
tion problem, where we optimize for a trajectory prediction
which minimizes our predicted energy. In different experi-
ments, we illustrate how our potential-based decomposition
of interactions provides unique benefits over prior learned
approaches for decomposing dynamics.

First, we show that the learned potentials are disentangled
and composable, enabling us to interchange interaction
types across separate models, trained with different datasets.
We also illustrate that such a decomposition enables us to
add flexible test-time potentials to incorporate new changes
in the environment. We further show that NIIP can detect
anomalies (out-of-distribution relation types) without a ded-
icated training. Finally, we compare our model to existing
approaches for trajectory forecasting in both synthetic and
real settings, illustrating that NIIP performs well in of mid-
and long- term prediction.

In summary, in this work, we contribute the following: (i).
We propose Neural Interaction Inference with Potentials
(NIIP) a novel method that discovers, in an unsupervised
manner, the underlying interactions between particles in a
system as a set of energy functions or potentials. (ii). We
illustrate how such a potential-based decomposition of in-
teractions offers unique properties related to composability,
such as interchanging interaction types across separate mod-
els or adding new hand-crafted potentials at test-time. (iii).
We further show how NIIP can detect out-of-distribution
samples by design, without further training. And (iv). we
illustrate how such a potential decomposition of interactions
enables accurate mid- and long-horizon trajectory prediction
performance, often surpassing existing methods.

2. Potentials as Energy Based Models
We will consider potentials as specifying a set X of trajec-
tories x ∈ RT×D which possess an underlying property we
desire. In section Section 2.1, we discuss how we can rep-
resent potentials on trajectories using an EBM. We further
discuss how we may compose multiple potentials together
as EBMs in Section 2.2.

2.1. Energy-based Models
Definition. An Energy-Based Model (EBM) is defined
probabilistically using the Boltzmann distribution pθ(x) =

exp(−Eθ(x))
Z(θ) , with an underlying partition function Z(θ) =∫

exp(−Eθ(x))dx, where θ denotes the weights that pa-
rameterize the energy function Eθ. We will represent a
potential as an EBM, defined using a neural network pa-
rameterized energy function Eθ(x) : RD → R that maps
each datapoint to a scalar value representing an energy. A
potential then corresponds to the set of datapoints with low
assigned energy. Thus, datapoints x satisfying our peten-
tial have high likelihood, and all other datapoints have low
likelihood. Potential satisfaction or minimization then cor-
responds to sampling from the EBM distribution pθ(x).

Minimizing Potentials. In our framework, minimizing
a potential corresponds to sampling from the EBM which
defines it, and thus finding high-likelihood data points un-
der pθ(x). We follow existing works and utilize a gradient
based MCMC procedure, Langevin Dynamics (Welling &
Teh, 2011; Du & Mordatch, 2019) to sample from the EBM
distribution. In particular, to optimize a potential, we ini-
tialize a trajectory x0 from uniform noise. We then run M
iterative steps following:

x̃m = x̃m−1 − λ
2∇xEθ

(
x̃m−1

)
+ ωm, ωm ∼ N (0, σ), (1)

where at each step we iteratively optimize the trajectory
with respect to the energy function, using an underlying
gradient step size of λ and noise scale of σ. We include
hyperparameter details for sampling in Section A.1 of the
appendix, and heuristically set the noise scale of σ = 0.

2.2. Composing Potentials

Next, we discuss how we may compose different sets of
potentials together, where each potential is parameterized by
a separate EBM Ej

θ(x). Our composition operator builds on
existing works on composing EBMs representing concepts
(Du et al., 2021).

Sampling Composed Potentials. Given a set of separate
potentials, we wish to solve for a set of trajectories x which
jointly satisfy each of the potentials. In our EBM formula-
tion, this corresponds to finding a trajectory x which is low
energy under each of the specified energy functions Ej

θ(x).

Such a setting is equivalent to finding a trajectory x which
has high likelihood under each EBM probability distribution
pjθ(x). This corresponds to sampling from the distribution
defined by the product of the individual EBM distributions,∏

j

pjθ(x) ∝ e−
∑

j Ej
θ(x) = e−E′

θ(x), (2)

which corresponds to a new EBM with energy function
E′

θ(x) (an analogous approach can be applied to generate
images subject to a set of concepts (Du et al., 2020)). Thus,
we may sample from the composition of a set of potentials
using a sampling procedure as Equation 1, using the new

2

Inferring Relational Potentials in Interacting Systems

energy function E′
θ(x), defined as the sum of each indi-

vidual energy function. Intuitively, this corresponds to a
continuous optimization procedure on each energy function.

In our setting, different energy functions Ej
θ(x) are con-

structed by conditioning an energy function on separate
latent vectors. These latents are directly inferred without
supervision from input trajectories by training an encoder
jointly with the energy function parameters.

3. Neural Interaction Inference with Potentials
Next, we discuss Neural Interaction Inference with Poten-
tials (NIIP), our unsupervised approach to decompose a
trajectory x(1...T)i, consisting of N separate nodes at each
timestep, into a set of separate EBM Ej

θ(x) potentials. NIIP
is composed by two steps: (i) an encoder for obtaining a set
of potentials and (ii) a sampling process which optimizes
for a predicted trajectory, minimizing the inferred potentials.
Energy functions in NIIP are trained using autoencoding,
similar to (Du et al., 2021). We provide an illustration of
our approach in Figure 2, pseudocode in Algorithm 1 and an
illustration of the architecture in Figure A1 of the Appendix.

3.1. Relational Potentials

To effectively parameterize different potentials for separate
interactions, we learn a latent conditioned energy function
Eθ(x, z) : RT×D × RDz −→ R. Then, inferring a set of
different potentials corresponds to inferring a latent z ∈
RDz that conditions an energy function.

Given a trajectory x(1...T)i, we infer a set of L different
latent vectors for each each directed pair of interacting nodes
in a trajectory. Thus, given a set of N different nodes, this
corresponds to a set of N(N − 1)L energy functions.

To generate a trajectory, we optimize the energy function
E(x) =

∑
ij,l E

ij,l
θ (x; zij,l), across node indices i and j

from 1 to N and latent vectors l from 1 to L. However,
assigning one energy function to each latent code becomes
prohibitively expensive as the number of nodes in a trajec-
tory increases. Thus, to reduce this computational burden,
we parameterize L energy functions as shared message pass-
ing graph networks, grouping all edge contributions ij in a
single network. The energy is then computed as a summa-
tion over all individual node energies after message passing.
To evaluate the energy corresponding to a single edge factor
zij,l we mask out the contributions of all other edges to the
final node energies. Architecture and further details can be
found in Section A.2 of the appendix.

To condition to message passing shared graph network on
each inferred latent zij,l, each edge e(i, j) in the graph is
conditioned by the corresponding encoded edge latent code
zij,l, by means of FiLM modulation (Perez et al., 2018).

3.2. Inferring Energy Potentials

We utilize Encθ(x) : RT×D −→ RDz to encode the ob-
served trajectories x into L latent representations per edge
in the observation. We utilize a fully connected GNN with
message-passing to infer latents using the encoder module
in (Kipf et al., 2018). Instead of classifying edge types and
using them as a gate ouputs, we utilize a continuous latent
code zij,l, allowing for higher flexibility.

3.3. Training Objective

To train NIIP, we infer a set of different EBM potentials by
auto-encoding the underlying trajectory. In particular, given
a trajectory x(1...T)i = (x(1)i, . . . ,x(T)i), we split the
trajectory into initial conditions x(1...T0), corresponding
to the first T0 states of the trajectory and x(T0...T), corre-
sponding to the subsequent states of the trajectory, where
each state of the trajectory consists of N different nodes.
The edge potentials are encoded by observing a portion of
the overall trajectory x(1...T ′), where T ′ ≤ T .

We infer a set of different L latents per edge of input ob-
servations utilizing the observed states x(1...T ′) using the
encoder specified in Section 3.2, generating a set of latents
{z}. We then aim to train energy functions so that the fol-
lowing unnormalized distribution assigns low energy and
high likelihood to the full trajectory x:

p(x|{z}) ∝
∏

i,j,l∀i̸=j

p(x|zij,l) =

= exp
(
−Eij,l

θ (x;Encθ(x(1...T ′))ij,l)
)
, (3)

where zij,l = Encθ(x(1...T ′))ij,l and Eij,l
θ is the energy

function linked to the lth potential of the encoded edge be-
tween nodes i and j, respectively.

Since we wish to learn a set of potentials with high likeli-
hood for the observed trajectory x, as a tractable supervised
manner to learn such a set of valid potentials, we directly
supervise that sample using Equation 1 corresponds to the
original trajectory x, similar to (Du et al., 2021). In particu-
lar, we sample M steps of Langevin sampling starting from
x̃0, which is initialized from uniform noise and the initial
conditions fixed as the ground-truth x(1...T0):

x̃m = x̃m−1 − λ

2
∇x

∑
ij,l

Eij,l
θ (x̃m−1; zij,l) + ωm, (4)

where m is the mth step and λ is the step size and ωm ∼
N (0, λ). We then compute MSE objective with x̃M , which
is the result of M sampling iterations and the ground truth
trajectory x:

LMSE(θ) = ∥x̃M − x∥2. (5)

3

Inferring Relational Potentials in Interacting Systems

Observed trajectory

zG,B zB,R

zR,G

GNN Encoder arg min
xm [Eθ (xm; zG,B) + Eθ (xm; zB,R) + Eθ (xm; zR,G)]

Interaction Potentials Energy Optimization Final Prediction

EBM Decoder:

x1:T′ z

Eθ (xm; z) = 100

m

Eθ (xm+1; z) = 50

m + 1

Eθ (xM; z) = 0.2

M

…

Figure 2. Overview of NIIP. In the left, a portion x (1 . . . T ′) of the input trajectory is observed by Encθ and encoded by a GNN into
interaction potentials, in the form of a set of latent vectors z for each edge in the graph. In the right, energy functions parametrized as
GNNs for each edge latent vector in z are constructed. Energy functions are trained so that optimizing a trajectory x0 from uniform noise
into a final trajecotry xM reconstructs the future states of the observed trajectory. This refinement process uses Langevin Dynamics (Eq.
4). Given the full trajectory xm at sampling step m, we update it by summing the gradient contributions of the energy function associated
to each edge, resulting in xm+1.

Algorithm 1 Training algorithm for NIIP.
Input: Full trajectories x, Observed trajectories x(1...T ′), Initial conditions
x(1...T0), step size λ, number of gradient steps M , Encoder Encθ , energy
functions Eij,l

θ , noise ωm = 0, true data distribution pD
while not converged do

xi ∼ pD
▷ Encode components zij,l from x(1...T ′)
{z} ← Encθ(x(1...T ′))
▷ Optimize sample x0

i via gradient descent:
x0
i ∼ U(0, 1)

for gradient step n = 1 to N do
x̃m ← x̃m−1 − λ

2
∇x

∑
ij,l E

ij,l
θ (x̃m−1; zij,l) + ωm

end for
▷ Optimize objective LMSE wrt θ:
∆θ ← ∇θ∥x̃m − x∥2
Update θ based on ∆θ using optimizer

end while

Figure 3. Training Algorithm. NIIP is trained to infer a set of
potentials, represented as energy functions, using a trajectory re-
construction objective. A set of latents {z} is inferred from the
beginning of a trajectory x(1...T ′), and define different potentials.
A trajectory is optimized w.r.t. to energy functions and supervised
with the trajectory x.

We optimize both x̃ and the parameters θ with automatic
differentiation. The overall training algorithm is provided
in Algorithm 1.

4. Experiments
In this section we firstly describe our datasets (Section 4.1)
and baselines (Section 4.2). Following, in Section 4.3, we
discuss experiments on (i.) recombination of interaction
types across datasets and (ii.) contribution of the potentials.
Next, in Section 4.4, we describe out-of-distribution sam-
ple detection experiments. We show how to incorporate
test-time potentials in Section 4.5. Finally, we describe the
quantitative results for trajectory forecasting in Section 4.6.
In the appendix we give implementation details (Section
A.1), experimental details (Section A.3), additional exam-

ples (Section A.5) and provide a detailed ablation study
(Section A.6).

4.1. Datasets

We test our model in three different domains. First, we carry
on experiments in two simulated environments: (i.) Particles
connected by springs, and (ii.) Particles with charges. Next,
we test several properties of our model in (iii.) NBA SportVu
motion dataset, which displays real motion from tracked
basketball players along several NBA games. Finally, we
test our performance in (iv.) JPL Horizons, a physics-based
realistic dataset.

Simulated data. Following the experimental setting de-
scribed in (Kipf et al., 2018), we generate states (position
and velocity) of a dynamical system for N = 5 particles for
70 time-steps. Our model observes the first 49 states, fixes
one state and predicts the following 20. We generate 50k
training samples and 10k for validation and test splits.

In this setting, the rules by which particles interact are
known and simple. However, they can generate very com-
plex behaviour.

• Springs: The particles move inside a box with elastic col-
lisions. They are connected by a spring with probability
0.5, and interact according to Hooke’s law.

• Charged: The particles move inside a box as in Springs.
They are assigned a positive or negative charge qi ∈ {±q}
with probability 0.5 and interact via Coulomb forces.

NBA SportVU SportVU is an automated ID and track-
ing service that collects data of NBA players and the ball
(N = 11) during games. The inherent complexity of human
motion and interactions while playing a sport makes this
dataset especially challenging for forecasting. The dataset

4

Inferring Relational Potentials in Interacting Systems

is generated by splitting each of the labeled events into 65
steps trajectories of coordinates x,y. We compute the veloci-
ties to generate the states. The dataset is composed of 50k
samples for training and 1k samples for validation and test.

JPL Horizons The JPL Horizons on-line ephemeris sys-
tem provides access to solar system data. It characterizes
the 3D location and velocity of solar system objects (targets)
as a function of time, as seen from locations within the solar
system (origins). We choose this dataset as a realistic take
on physical interactions. Here, inter-particle forces are a
product of gravity, and therefore mass. However, we do
not provide information about the mass or any other object
attribute. There are other factors of complexity. First, there
are hidden nodes (smaller objects) that are not visible to the
observer, introducing noise to the trajectories. Second, the
origin from which we observe the trajectories varies along
samples. This dataset consists on the trajectories captured
between 1800 and 2022, with one datapoint every 10 days.
We define the nodes as N = 12 targets of the solar sys-
tem: 8 planets, 3 moons and the Sun. This data is captured
from 13 origins: each one of the targets plus the solar sys-
tem barycenter (SSB). We gather 1880 trajectories of 43
timesteps split as 1504/188/188 for train, validation and test.

4.2. Baselines

We consider a Static baseline, which copies the previous
state vector, a multi-node LSTM which is trained to predict
the state vector difference at every timestep. It concatenates
input representations from all objects after passing them
through an MLP. We also evaluate NRI, the architecture
presented in (Kipf et al., 2018) to infer the interaction graph
(learned), and with a fully connected graph of a single edge
type (full graph). We further add a GNN conditioned to the
observed trajectories. For NBA SportsVU we will also eval-
uate on two social interaction-based methods: Social-LSTM
(S-LSTM) (Alahi et al., 2016) and Directional-LSTM (Tra-
jNet++) (Kothari et al., 2021), PwD (Janner et al., 2022),
a diffusion-based planning method, and dNRI (Graber &
Schwing, 2020), an extension of NRI that allows for dy-
namic switches of edge-types.

4.3. Independence of Relational Potentials

NIIP assigns an energy function to each one of the rep-
resentations learned by the encoder. Those constrain the
generative process by conditioning the features of their as-
sociated EBM. The optimization procedure, hence, aims to
minimize all potentials. We train our model to ensure that
different potentials contribute independently to the genera-
tive process by addition of their associated gradients. Our
training procedure enforces separation among (i.) Potentials
associated to different relations and (ii.) Individual poten-
tials affecting the same edges. We argue that our training

GT Charged Recombined

+

+

+ =

=

=

GT Springs

Figure 4. NIIP can recombine encoded potentials at test-time
learned from different datasets. Illustrated, samples from
Springs (Col. 1) and Charged (Col. 2) and their recombinations
(Col. 3). NIIP encodes both trajectories. NIIP is able to reconstruct
trajectories framed in green while swapping the edge potentials
associated to the nodes in the green dashed box for the ones in the
red dashed boxes. Recombinations look semantically plausible.

procedure aids discovery of independent potentials allowing
composition among disjoint training distributions.

Recombination To verify our claims, we show how NIIP
can compose relational potentials learned from two different
distributions, at test-time. Figure 4 shows qualitative results
of recombinations from Springs and Charged datasets. The
process is as follows: we train two instances of our model
(NIIPS , NIIPC) to reconstruct Springs and Charged trajecto-
ries respectively. Given sample trajectories drawn from each
dataset (Col. 1 for Springs and 2 for Charged), we encode
them into their relational potentials. For each row, we aim
to reconstruct the trajectory framed in green while swapping
one of the potential pairs (green dashed box) with one drawn
from the other dataset (red dashed box). As an example, in
the first row of the figure, we encode the Springs trajectory
with NIIPS and the Charged trajectory with NIIPC . Next,
we fix the initial conditions of the Charged trajectories and
sample by optimizing the relational energy functions. To
achieve recombination, each model targets specific edges.
We minimize the potentials encoded by NIIPS for the mu-
tual edges corresponding to the nodes in green dashed boxes.
The rest of edge potentials are encoded by NIIPC . The sam-
pling process is done jointly by both models, each minimiz-
ing their corresponding potentials. The result is a natural
combination of the two datasets, which affect only the tar-
geted edges. Reconstructed trajectories in Figure 4 (col. 3)
are semantically reasonable.

Contribution of Potentials As introduced, we can assign
more than one potential to each edge. We argue that each
one of those L potentials will control different aspects of

5

Inferring Relational Potentials in Interacting Systems

Outlier Detection - Energies per Node

Figure 5. Out-Of-Distribution Detection with NIIP. A model
trained with certain relation types can detect when a trajectory
exhibits a new type of relation. The illustrated trajectories show
the energy associated to each one of the nodes. Red trajectories:
Charged particles, Blue-Green trajectories: Springs particles. We
train NIIP in Springs dataset. Our model assigns higher energies
to those nodes that behave differently than the training set.

Evaluation Train: Springs (S)

Node energy

Springs (S) 5.1e-3
Charged (C) 1.8e-1
S&C (eval S) 9.1e-2
S&C (eval all) 1.4e-1
S&C (eval C) 1.9e-1

Evaluation Train: NBA Players (P)

Node energy

P&Ball (eval P) 5.9e-2
P&Ball (eval all) 8.4e-2
P&Ball (eval Ball) 3.2e-1

Detection Accuracy

Ball 70.1%

Table 1. Quantitative evaluation of out-of-distribution detec-
tion. We evaluate the average energy associated to each node-type
in a scene. In the left, NIIP is trained on Springs and evaluated onn
(i) Springs (ii) Charged and (iii) S&C, a Springs-Charged mixed
dataset. For the NBA case in the right, we train NIIP for the subset
of player (P) trajectories of the dataset and evaluate the energies
in a setting with player nodes and one ball node. We measure
accuracy in detecting the ball trajectory.

the same interaction. A qualitative example shown in Figure
6 depicts the gradient orientation of two sets of potentials
evaluated in a single node. We can see how each potential
pushes the player trajectory into different directions, each
one of them pointed to a different player of the rival team.

4.4. Out-Of-Distribution Detection

We further utilize the potential value or energy produced by
NIIP over a trajectory to detect out-of-distribution interac-
tions in a trajectory. In our proposed architecture, energy
is evaluated at the node level. Therefore, if NIIP has been
trained with a specific dataset, the potentials associated to
out-of-distribution type of edges are expected to correspond
to higher energy.

We design a new dataset (Charged-Springs) as a combina-
tion of Springs and Charged interaction types. In simulation,
nodes are assigned both roles of Charged and Springs parti-
cles, but all the forces they receive correspond to one of the
two types with probability p = 0.5. We train a model with
the Springs dataset and evaluate the energies in the proposed
mixed setting.

Figure 5 shows qualitatively how the energy is considerably

Gradients for function #2Gradients for function #1

Figure 6. Energy potentials discovered by our approach control
different aspects of the trajectories. For a model trained with 2
energy functions, this illustration shows the gradients associated
to each energy function applied to a ground-truth sample. Each
potential pushes the player of interest into a different direction.

Edge potentials (Edge + Avoid Area) potentials

Avoid

Potentials GT NRI NIIP +Padd s1 +Padd s2 +Padd s3

Goal: Squared Distance 7.53e-1 7.52e-1 7.52e-1 7.02e-1 6.18e-1 3.89e-1
Avoid Area: % in area 49.6% 49.6% 49.5% 48.3% 31.7% 21.8%

Figure 7. With NIIP we can add and control test-time potentials
to achieve a desired behavior. We design test-time potentials to
steer trajectories into a goal. In row 1 of the table, we show
the squared distance after applying a goal potential towards the
center (0,0) of the scene with different strengths. In row 2, we
report the percentage of time-steps that particles stay in a particular
area A = [(0,−1), (1, 1)] after applying a potential that enforces
avoiding A. The figure shows the effect of applying test-time
potentials in the latter experiment.

higher for the nodes with Charged-type forces (drawn in
red). Quantitative results are summarized in Table 1 for 1k
test samples. In the left, we can see that energies correspond-
ing to Spring-type nodes are considerably lower than for
Charged-type nodes, indicating that potentials are correctly
capturing the behavior of the desired interactions.

We further evaluate the OOD detection for NBA SportsVU
dataset. For this experiment, we train NIIP with the 10 play-
ers disregarding the Ball node. At test-time, we evaluate the
trained model switching one of the players by the Ball node
for 1k samples. We observe how the energy corresponding
to the Ball is considerably higher. We further train a single
parameter binary classifier and find that we can detect the
Ball in 70.1% of instances (Table 1 right).

4.5. Flexible Generation

Another advantage of our approach is that it can flexibly
incorporate test-time user specified potentials. For this ex-
periment, we investigate three different sets of potentials.

6

Inferring Relational Potentials in Interacting Systems

Edge Potentials (Edge + Velocity) Potentials

(Edge + 2xVelocity) Potentials(Edge - Velocity) Potentials

Edge Potentials (Edge + Attraction) Potentials

Figure 8. NIIP is able to incorporate new potentials in test-time.
We can see depicted reconstructions of NBA samples with added
potentials. Left: (Col. 1, Row 1): Reconstruction of the encoded
trajectory. (Col. 1, Row 2): Decrease of velocity. (Col. 2, Row
1): Low increase of velocity. (Col. 2, Row 2): High increase of
velocity. Right: (Col. 1, Row 3): Reconstruction of the encoded
trajectory, (Col. 2, Row 3): Attraction of the players to a goal
point (blue dot). Painted orange, the ground-truth ball trajectory.

We do so qualitatively by reconstructing a given 40 step
trajectory of the NBA dataset in Figure 8, and also quantita-
tively in Table 7 for 20 step trajectory prediction.

Velocity Potentials We incorporate the following
velocity potential as an energy function: E =

ϵλ
∑

i,t

√
(vt

x,i)
2 + (vt

y,i)
2 = ϵλ

∑
i,t mod(vt

i), for par-

ticle i in time t. The weight λ = 1e− 2/N scales the effect
of this function over the rest and ϵ is a multiplicative con-
stant that indicates the strength and direction of the potential.
Figure 8 (two top rows), we show (i.) ϵ = 0: Reconstruction
(top-left); (ii.) ϵ = 4: Decrease of velocity (middle-left);
(iii.) ϵ = −5: Low increase of velocity (top-right); and (iv.)
ϵ = −10: High increase of velocity (middle-right). Results
satisfy test potentials.

Goal Potentials We also add at test-time an attraction po-
tential as a the squared distance of the predicted coordinates
to the goal: P = ϵλ

∑
i,t(p̃

0:T−1
i − g)2, where g is defined

as the coordinates of our goal point. We define the trajectory
coordinates p̃t

i as an accumulation of the un-normalized

velocities vt
i predicted by NIIP: p̃t+1

i =
∑

t(v
0:t
i) + p0

i for
particle i at time-step t. Here, p1 is fixed initial ground-truth
location of the particle at time 0 and λ = 5e− 4/N .

Figure 8 (bottom row) illustrates the scenarios (i.) Recon-
struction (bottom-left) and Attraction to the goal (bottom-
right, goal in blue). The reconstructed trajectory follows
the new potential, while maintaining the potentials of the
encoded trajectory.

In Table 7 (row 1), we explore quantitatively the effect of
different magnitudes of the added goal potential for predic-
tion in the Charged dataset. Our test set is composed by
1k samples. For this experiment, the particles live within
a [−1, 1] box, for both x and y coordinates. The goal is
the center g = (0, 0). In the table, Padd indicates the use
of edge potentials encoded by NIIP while adding the new
potentials with different strengths: (i.) s1 : ϵ = 1, (ii.)
s2 : ϵ = 5 and (iii.) s3 : ϵ = 10. We observe how the
squared distance to the goal decreases as expected.

Avoid Area Potentials In this case, we penalize the por-
tion of the predicted trajectory p̃t

i that is inside a given
restricted area A. We do so by computing the distance of
each particle i that lays within the region A to the borders
bA of A. The added potential is: P = ϵλ

∑
i,t(p̃

0:T−1
A,i −

bA − C)2, where C is a small margin that ensures that the
particles are repelled outside of the boundaries of A. With
λ = 1e− 3/N .

In Table 7 (row 2), we explore the effect of different
strengths of this potential type, in the prediction task. We
also provide a visual example. For this experiment, we avoid
the area A = [(0,−1), (1, 1)], which corresponds to half of
the box (see Figure). We use the following parameters: (i.)
s1 : ϵ = 1, (ii.) s2 : ϵ = 5e1 and (iii.) s3 : ϵ = 5e2.

4.6. Quantitative Comparison

In this Section, we aim to assess NIIP’s capability for trajec-
tory forecasting. For all datasets, we will observe a portion
of the trajectory and predict 20 timesteps.

We first test our approach in Springs and Charged datasets.
We evaluate the Mean-Squared Error (MSE) against (Kipf
et al., 2018), their chosen baselines, a generic Conditional-
GNN. Our models observes 49 timesteps and fixes the 50th
as initial conditions for prediction. We can see in Table 2
that NIIP achieves better prediction error in both datasets.

Similarly, for NBA (Table A2 (left)) the model observes 40
timesteps and fixes the following 5 as initial conditions for
prediction. NIIP outperforms the baselines in terms mid and
long-term prediction error, and underperform in the short-
term. The models designed for social interaction perform
poorly in long-term prediction, while they have shown to
excel in other tasks such as collision avoidance.

7

Inferring Relational Potentials in Interacting Systems

Springs Charged

Prediction steps 1 10 20 1 10 20

Static 1.70e-3 2.71e-2 2.55e-2 5.09e-3 2.30e-2 5.55e-2
LSTM 1.10e-7 2.07e-6 4.65e-5 9.69e-4 5.43e-3 1.15e-2
Cond. GNN 1.35e-5 2.21e-5 3.44e-5 3.67e-3 5.61e-3 1.05e-2
NRI (full graph) 6.10e-4 7.82e-3 1.01e-2 1.59e-3 3.52e-3 7.74e-3
NRI (learned) 5.81e-7 1.10e-5 2.90e-5 1.47e-3 3.19e-3 6.65e-3
NIIP (Ours) 1.99e-7 1.20e-6 2.71e-6 9.38e-4 3.07e-3 5.97e-3

Table 2. Mean squared error (MSE) in predicting future states
for Springs and Charged simulation datasets, with 5 interacting
objects. NIIP outperforms existing methods.

For the JPL Horizons dataset in Table A2 (right), NIIP
outperforms the baselines also in mid and long-term predic-
tion. Models have access to 23 timesteps. NIIP observes 20
timesteps and fixes 3 as initial conditions for prediction. JPL
Horizons is a challenging dataset given the unknown masses
of the bodies involved, as well as effects of unobserved
smaller bodies nearby them.

5. Literature
Dynamics and Relational Inference Several works in the
past years have studied the problem of learning dynamics
of a physical system from simulated trajectories with graph
neural networks (GNNs) (Guttenberg et al., 2016; Gilmer
et al., 2017; van Steenkiste et al., 2018; Lu et al., 2021; Li
et al., 2018; Yang et al., 2022; Rubanova et al., 2022). As
an extension of the foundational work of (Battaglia et al.,
2016), interaction networks, (Kipf et al., 2018) proposes to
infer an explicit interaction structure while simultaneously
learning the dynamical model of the interacting systems in
an unsupervised manner, by inferring edge classes with a
classifier. Selecting models based on observed trajectories
is also the base of (Alet et al., 2019; Goyal et al., 2019;
Graber & Schwing, 2020; Webb et al., 2019). (Graber &
Schwing, 2020) extends (Kipf et al., 2018) to temporally
dynamic edge constraints, which yields better results in real-
world datasets. NIIP differs from these approaches as the
generation procedure uses an optimization solver to satisfy
a set of potentials, while learning relation representations
as potentials from observation. NIIP models trajectories
in the absence of attributes, by observing particles behave
and without supervision. Similarly, in (Goyal et al., 2021)
interactions are encoded as condition-action rules, which
offer dynamics decomposition and modularity but lack the
illustrated properties that energy functions offer.

Energy-Based Models Energy-based models have a long
history in machine learning. Early work focuses on density
modeling (Hinton, 2002; Du & Mordatch, 2019) by aiming
to learn a function that assigns low energy values to data
that belongs to the input distribution. To successfully sam-
ple data-points, EBMs have recently relied gradient-based
Langevin dynamics (Du & Mordatch, 2019). Recent works
have illustrated that such a gradient-based optimization pro-
cedure can enable the composition of different energy func-

NBA SportsVU JPL Horizons

Prediction steps 1 10 20 1 10 20

S-LSTM 6.60e-5 6.67e-3 2.57e-2 - - -
TrajNet++ 5.30e-5 5.88e-3 2.33e-2 - - -
Static 2.13e-4 3.04e-3 1.07e-2 3.33e-3 5.54e-2 9.05e-2
LSTM 8.07e-5 1.42e-3 5.31e-3 1.97e-6 3.98e-5 1.09e-4
PwD 2.58e-4 1.17e-3 3.33e-3 8.38e-3 8.72e-3 9.04e-3
Cond. GNN 1.71e-4 1.12e-3 3.11e-3 4.57e-6 4.66e-6 5.96e-6
NRI (learned) 3.56e-6 7.46e-4 2.74e-3 2.67e-7 7.35e-7 1.16e-6
dNRI 2.11e-6 9.11e-4 3.52e-3 1.51e-7 4.51e-6 2.26e-5
NIIP (Ours) 3.15e-5 5.84e-4 2.37e-3 2.98e-7 4.32e-7 5.84e-7

Table 3. Mean squared error (MSE) in predicting future states
for NBA dataset and JPL Horizons dataset, with 11 and 12
interacting objects respectively. NIIP performs better than the
baselines at mid to long terms.

tions (Du et al., 2020) and can successfully be applied to
high-dimensional domains such as images (Liu et al., 2021;
Zhang et al., 2022; Nie et al., 2021), trajectories (Urain et al.,
2021; Du et al., 2019), and concepts (Wu et al., 2022). In
(Rubanova et al., 2022) an energy approach is used to model
trajectories. They make use of known object attributes and a
global energy landscape to generate trajectories, while they
do not discover interaction representations. NIIP leverages
the properties of energy functions to learn energy potentials
that can be composed in different ways. Unsupervised dis-
covery of composable energy functions has been previously
explored on images (Du et al., 2021; Zhang et al., 2022). In
this work, we extend ideas of unsupervised concept learn-
ing in EBMs to potentials and apply them to dynamical
modelling and relational inference.

6. Discussion
Limitations. Our existing formulation of NIIP has several
existing limitations. First, NIIP is currently limited to encod-
ing energy potentials associated with edges in graph neural
networks. In practice, many potentials in nature are often
not just simply pairwise, but depend on multiple sets of
different particles. An interesting direction of future work is
to explore how to generalize the use of the energy functions
to capture multi-node interactions in a graph.

In addition, we found that relational potential discovered
by NIIP were not necessarily cleanly disentangled. When
recombining potentials between two datapoints with large
differences, we sometimes found that interactions would be
incorrectly generated. Similarily, we found that discovered
potentials would erroneously assign high energy to particle
interactions exhibiting the correct interaction. We believe
that some of these issues may be rooted in the potential
functions capturing unwanted information along with rela-
tional information (such as trajectory shapes). As a result,
for instance, swapping relation potentials may produce un-
realistic interactions. In the future, we believe that explicitly
enforcing our encoding function to discard all trajectory
information other than the relationship types may lead to
improved performance.

8

Inferring Relational Potentials in Interacting Systems

Conclusion. In this work we introduced Neural Interac-
tion Inference with Potentials (NIIP) which infers relational
potentials specified as energy functions to model the dy-
namics of an interacting system. We illustrate how NIIP as
an alternative approach to discover such interactions that
enables greater flexibility in trajectory modeling: it dis-
covers a set of relational potentials, represented as energy
functions, which when minimized reconstruct the original
trajectory. Throughout this work we explore and test the
different advantages that our approach brings to trajectory
modeling. Particularly, we show that NIIP displays unique
capabilities in test-time. It allows trajectory manipulation,
such as interchanging interaction types across separately
trained models. NIIP can also detect out-of-distribution
samples without having been trained to do so, by observing
the energies that correspond to each particle. We further
show how we can modify the behavior of the modeled tra-
jectories by adding test-time potentials. Finally, NIIP can
also predict trajectories faithfully in the future, displaying
favorable mid- and long-term performance when compared
to existing approaches.

7. Acknowledgements
This work was supported by NSF grants IIS-1814631
and CNS–2038493, AFOSR grant FA9550-19-1-0005, and
ONR grant N00014-21-1-2431. Yilun Du is supported by a
NSF Graduate Fellowship.

References
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-

Fei, L., and Savarese, S. Social lstm: Human trajectory
prediction in crowded spaces. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
961–971, 2016. 5

Alet, F., Weng, E., Lozano-Perez, T., and Kaelbling,
L. P. Neural relational inference with fast modular meta-
learning. In NeurIPS, 2019. 8

Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D. J., and
Kavukcuoglu, K. Interaction networks for learning about
objects, relations and physics. NIPS, 2016. 1, 8

Du, Y. and Mordatch, I. Implicit generation and modeling
with energy based models. In NeurIPS, 2019. 2, 8

Du, Y., Lin, T., and Mordatch, I. Model based planning with
energy based models. CORL, 2019. 8

Du, Y., Li, S., and Mordatch, I. Compositional visual gen-
eration with energy based models. In NeurIPS, 2020. 2,
8

Du, Y., Li, S., Sharma, Y., Tenenbaum, J. B., and Mor-
datch, I. Unsupervised learning of compositional energy
concepts. NeurIPS, 2021. 2, 3, 8

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. ICML, 2017. 1, 8

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine,
S., Bengio, Y., and Schölkopf, B. Recurrent independent
mechanisms. ICLR, abs/1909.10893, 2019. 8

Goyal, A., Didolkar, A., Ke, N. R., Blundell, C., Beaudoin,
P., Heess, N. M. O., Mozer, M. C., and Bengio, Y. Neural
production systems. ArXiv, abs/2103.01937, 2021. 8

Graber, C. and Schwing, A. G. Dynamic neural relational
inference. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 5, 8

Guttenberg, N., Virgo, N., Witkowski, O., Aoki, H., and
Kanai, R. Permutation-equivariant neural networks ap-
plied to dynamics prediction. ArXiv, abs/1612.04530,
2016. 8

Hinton, G. E. Training products of experts by minimizing
contrastive divergence. Neural Computation, 14:1771–
1800, 2002. 8, 11

Janner, M., Du, Y., Tenenbaum, J. B., and Levine, S. Plan-
ning with diffusion for flexible behavior synthesis. In
ICML, 2022. 5

Jhuang, H., Gall, J., Zuffi, S., Schmid, C., and Black, M. J.
Towards understanding action recognition. In ICCV, pp.
3192–3199, December 2013. 15

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. S. Neural relational inference for interacting systems.
ICML, 2018. 1, 3, 4, 5, 7, 8, 13

Kothari, P., Kreiss, S., and Alahi, A. Human trajectory
forecasting in crowds: A deep learning perspective. IEEE
Transactions on Intelligent Transportation Systems, pp.
1–15, 2021. doi: 10.1109/TITS.2021.3069362. 5, 13

Li, Y., Wu, J., Tedrake, R., Tenenbaum, J. B., and Torralba,
A. Learning particle dynamics for manipulating rigid
bodies, deformable objects, and fluids. arXiv preprint
arXiv:1810.01566, 2018. 8

Liu, N., Li, S., Du, Y., Tenenbaum, J. B., and Torralba, A.
Learning to compose visual relations. NeurIPS, 2021. 8

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021. 8

9

Inferring Relational Potentials in Interacting Systems

Nie, W., Vahdat, A., and Anandkumar, A. Controllable and
compositional generation with latent-space energy-based
models. In NeurIPS, 2021. 8

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and
Courville, A. C. Film: Visual reasoning with a general
conditioning layer. In AAAI, 2018. 3, 11

Rubanova, Y., Sanchez-Gonzalez, A., Pfaff, T., and
Battaglia, P. Constraint-based graph network simulator.
ICML, 2022. 8

Urain, J., Li, A., Liu, P., D’Eramo, C., and Peters, J.
Composable energy policies for reactive motion gen-
eration and reinforcement learning. arXiv preprint
arXiv:2105.04962, 2021. 8

van Steenkiste, S., Chang, M., Greff, K., and Schmidhuber,
J. Relational neural expectation maximization: Unsuper-
vised discovery of objects and their interactions. ICLR,
2018. 1, 8

Webb, E., Day, B., Andrés-Terré, H., and Lio’, P. Factorised
neural relational inference for multi-interaction systems.
ArXiv, abs/1905.08721, 2019. 8

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In ICML, 2011. 2

Wu, T., Tjandrasuwita, M., Wu, Z., Yang, X., Liu, K., So-
sivc, R., and Leskovec, J. Zeroc: A neuro-symbolic
model for zero-shot concept recognition and acquisition
at inference time. ArXiv, abs/2206.15049, 2022. 8

Yang, L., Daskalakis, C., and Karniadakis, G. E. Generative
ensemble regression: Learning particle dynamics from
observations of ensembles with physics-informed deep
generative models. SIAM Journal on Scientific Comput-
ing, 44(1):B80–B99, 2022. 8

Zhang, R., Che, T., Ivanovic, B., Wang, R., Pavone, M.,
Bengio, Y., and Paull, L. Robust and controllable object-
centric learning through energy-based models. arXiv
preprint arXiv:2210.05519, 2022. 8

10

Inferring Relational Potentials in Interacting Systems

A. Appendix
In this appendix, we present implementation details in Section A.1. Details about the architecture and training procedure
can be found in Section A.2. Next, experiment settings are described in Section A.3. Following, a complexity analysis can
be found in Section A.4. Additional qualitative results with generated trajectories can be found in Section A.5, together with
additional quantitative results for downstream tasks and new prediction experiments. We further run an ablation study of
each of our proposed components in Section A.6, together with an ablation study in test-time. Finally we discuss the broader
impact of our work in Section A.7.

A.1. Implementation details

Software: We implemented this method using Ubuntu 18.04, Python 3.6, Pytorch 1.10, Cuda 11.2 and several additional
libraries which will be provided as a environment requirements file.

Hardware: For each of our experiments we used 1 GPU RTX 2080 Ti (Blower Edition) with 12.8GB of memory. Models
are trained for approximately 1 day.

A.2. Architecture and Training Details

In this section we discuss in depth the architecture of the main modules of our method. We also discuss the idiosyncrasies of
our training procedure.

Architecture The architecture of NIIP is composed of 3 main modules: (i.) The encoder in Figure A3 is composed
by convolutional and multi-layer perceptron blocks, with ELU activation functions. It encodes the observable trajectory
x(1...T ′) into a set of L latent codes per edge, with a total of N × (N − 1) edges. (ii.) The short-term energy function in
Figure A2 processes the trajectory in chunks of 5 time-steps. (iii.) The long-term energy function in Figure A1 processes
the trajectory with several convolutional filters, while reducing its temporal resolution. It finally temporally pools the
whole trajectory. It is designed to observe the overall shape of the trajectory. Both energy functions make use of the Swish
activation function. The resulting energy is the summation of the short and long-term energies E = ELT + EST . The
terms node → edge and edge → node correspond to the different steps of message passing procedure. In node → edge,
information from a connected node pair is concatenated in an edge representation. edge → node represents the summated
contribution of all edge features connected to every node. The conditioning blocks modulate the energy function features by
means of FiLM modulation (Perez et al., 2018).

An illustration of the overall architecture can be seen in Figure A1.

Potential Splitting To generate a trajectory, we optimize the energy function E(x) =
∑

ij,l E
ij,l
θ (x; zij,l), across node

indices i and j from 1 to N and latent vectors l from 1 to L. Explicitly computing one energy function per edge becomes
prohibitively expensive as the number of nodes in a trajectory increases. As introduced, the computational burden is reduced
by utilizing a shared message passing graph network to compute a fixed set of features for all edges (Tables A1, A2, A3
and Figure A1). Hence, the energy corresponding to a single edge factor zij,l is obtained by masking out the contributions
of all other edges. However, in order to recombine edge types across multiple datasets it is desirable to train the model to
combine multiple energy function contributions. With this objective, in training time we randomly split the encoded edge
potentials into two disjoint subsets. The generated trajectory is a product of joint optimization of two energy functions,
each one conditioned to one of the subsets. Each energy function observes one subset of potentials while masking out the
contributions of the rest of edges.

Regularization To speed up training and regularize the energy values, we found useful to add the Contrastive Divergence
loss LCD (Hinton, 2002):

LCD = EpD(x)

∑
ij,l

Eij,l
θ (x; zij,l)

− Estop grad(qθ(x̃))

∑
ij,l

Eij,l
θ (x̃; zij,l)

 , (6)

where pD(x) is the true distribution of the data, and qθ the distribution approximated by NIIP. We also regularize the
energy values by penalizing the squared energy resulting from above. These regularizations are not necessary for the

11

Inferring Relational Potentials in Interacting Systems

… …
Condition

Fix

x0 ∼ 𝒰(0,1)

LMSE xM

× M

…

E E E E∑ ()

xm+1

−
λ2 ∇

x∑
E

θ (x
m;z)

xm

Figure A1. Architecture and methodology of our approach. In the left, Encθ observes a portion of the input trajectory x and encodes
them into potentials, in the form of latent vectors zij,l. In the right, a set of energy functions parametrized as GNNs are conditioned by
zij,l at the edge level. We initialize a trajectory x0 as uniform noise and the ground-truth initial conditions x(1..T0), and update it by
minimizing the energy functions associated to the encoded potentials. We sample by means of Langevin Dynamics. We supervise the
reconstructed trajectories with an MSE objective with respect to the ground-truth trajectory.

successful training of our model. However, they are helpful to stabilize training and therefore used for all experiments. Both
regularizations are added to the primary objective (MSE) with a weight of λreg = 1e− 4.

Node → Edge

5x1 CNN Block Down (2) 64

CNN Conditioning Block (2) 64

CNN Conditioning Block (2) 64

Temporal Avg. Pool

Edge → Node

MLP 64

Dense → 1: ELT

Long-Term Energy

Table A1. Architecture for the long-term energy func-
tion. The energy computed evaluates the whole trajec-
tory by leveraging 1D convolutional layers with a final
temporal average pooling. Number of layers specified
in parentheses.

Node → Edge

5x1 CNN Block Down (2) 64

Unfold Trajectory K:5, S:1

Dense 64

MLP Conditioning Block (2) 64

MLP Conditioning Block (2) 64

Edge → Node

MLP (2) 64

Dense → 1: EST

Short-Term Energy

Table A2. Architecture for the short-term energy func-
tion. The energy computed evaluates chunks of 5 steps
of a trajectory, obtained with strides of size 1. Number
of layers specified in parentheses.

Node → Edge

5x1 CNN Block Down (3) 64

Temporal Avg. Pool

MLP (2) 64

Edge → Node

MLP (2) 64

Node → Edge

MLP (2) 64

Dense + LN → (L×Num. edges)

Table A3. Architecture for the encoder. Number of
layers specified in parentheses.

A.3. Experimental details

In the following section we discuss the specific setting for each one of the experiments. In all cases, NIIP uses Adam
optimizer and a learning rate of LR = 3e − 4 with a scheduled decay of γ = 0.5 every 100k iterations. The illustrated
trajectories shown in the figures have been plotted by accumulating the un-normalized velocities of each predicted state to
an initial ground-truth coordinate.

Baselines We choose the following baselines:

• Static: Copies last input state vector and compares to Ground Truth.

• LSTM (multi-node): LSTM model trained to predict the state vector difference at every time-step. It consists of a
tow-layer LSTM with shared parameters and 256 hidden units. The input to the model is passsed through a two-layer

12

Inferring Relational Potentials in Interacting Systems

MLP with ReLU activations before it is passed to the LSTM. Node states are concatenated before being processed
by the model. This allows communication across node trajectories. The last hidden vector of the LSTM for each
time-steps is also passed through a two-layer MLP with ReLU activations, which outputs a predicted state difference.
This is done individually for each particle. The LSTM has access to the ground-truth input states until prediction starts.

• NRI (learned graph): For this model, an encoder infers interactions while simultaneously learning the dynamics
from observational data. The encoder outputs a latent code that represents the underlying interaction graph and the
reconstruction is based on graph neural networks. For the realistic experiments, we use the LSTM-decoder version, as
recommended in their paper. NRI is considered the de facto standard for relational inference. The variations of NRI
used are: (i): CNN encoder - MLP decoder for the synthetic experiments and (ii): CNN encoder - LSTM decoder for
the realistic experiments, as shown in their paper.

• NRI (full graph): This instanciation of NRI is similar to the one above, with the difference that the latent graph is
fixed. The encoder is only allowed to output 1 type of edge representation.

• dNRI: Extension of NRI to a dynamic relation setting. The encoder infers separate relation graphs for every time-step.
The reconstruction is based on graph neural networks, also in a dynamic fashion. We also use the LSTM decoder
version, which produces better results than the MLP decoder version.

• Conditional GNN: For this model, we encode the edges similarly as in NIIP, with the observed part of the trajectory.
We decode them in one shot by means of a GNN with message passing.

• Social LSTM and Directional LSTM (TrajNet++): This two models are implemented by (Kothari
et al., 2021) and executed following instructions in their github https://github.com/vita-epfl/
trajnetplusplusbaselines. The architectures are LSTM-based, and use different types pooling functions to
gather information surrounding each node. The code is addapted to a state with dimensionality 4 instead of 2.

• Planning with Diffusion (PwD): Consists on a diffusion probabilistic model that plans by iteratively denoising
trajectories.

Quantitative Comparison Our setting is the following: we train and evaluate the baselines to predict 20 time-steps in the
future after observing a partial trajectory. Predicted states come immediately after the observed and fixed time-steps.

We firstly generate Springs and Charged datasets following the code provided by the authors of (Kipf et al., 2018). We use
interaction strengths 5 and 1 respectively. The data is normalized using the statistics of the first 49 states of the training
data. NIIP is trained with 2 energy functions and latent size per edge potential of Dz = 64. We use hidden layers of size
256. We encode 49 time-steps into a set of potentials, fix 1 time-step from the ground-truth and predict the following 20.
We use a number of sampling steps M = 5 and a step-size of λ = 0.4. We use a batch size of 40 and train for 500 epochs.
We find it beneficial (although not necessary) to supervise all the M = 5 trajectories sampled with Langevin, with an
exponential weighting scheme. The selected baselines are trained for 500 epochs with the same scheme as NIIP. Following
their indications, we use teacher forcing for NRI, but we supervise predicted states of 20 time-steps. For the LSTM case,
the model unrolls 20 time-steps predictions during training, and supervises all outputs of the model, including the burn-in
predictions as in (Kipf et al., 2018). For the C-GNN, we encode 50 time-steps into edge conditions of size Dz = 64 and
predict the following 20. In all cases, best models are selected through validation.

Similarly, we run experiments in NBA SportsVU dataset, normalizing with the training data statistics. C-GNN is trained
similarly as before with a batch size of 8 for 25 epochs. For prediction in NBA experiments, NIIP encodes 40 time-steps
into a set of potentials of dimension Dz = 64, fixes 5 time-steps from the ground-truth and predicts the following 20. In
training and testing, only the 20 predicted time-steps are generated and supervised with the ground-truth trajectory. We use
hidden layers of size 64 due to computational limitations. For LSTM, we use the same training scheme as in the synthetic
datasets. Our model is trained for 25 epochs, with a batch size of 6 and single set of edge potentials. Number of sampling
steps M varies from 3 to 5 along the first 200k iterations and a step-size of λ = 0.4.

For this dataset, results in social interaction-based networks (S-LSTM, D-LSTM) are very poor in long term. This behavior
has been discussed with the authors of D-LSTM ((Kothari et al., 2021)), and concluded that it is expected when solving a
task of prediction. This models are usually employed for tasks such as pedestrian collision avoidance. After switching the
objective function to a purely MSE loss and changing the training strategy with the authors’ help, the results improved very
slightly. The model converged after 25 epochs.

13

https://github.com/vita-epfl/trajnetplusplusbaselines
https://github.com/vita-epfl/trajnetplusplusbaselines

Inferring Relational Potentials in Interacting Systems

NRI and dNRI are trained with a batch size of 40, a learning rate of LR = 5e− 4 and hidden sizes of 256. We train them
for 50 epochs. For both architectures, we use 2 edge types as recommended in the respective papers. Specifically, in NRI
they try for higher number of edge types and conclude that the model is overfitting. For dNRI, the best results both in short
and long-term are met by using teacher-forcing in 1 time-step predictions. Results for 20 time-step unrolls are significantly
worse.

Finally, experiments in JPL Horizons dataset are with the same baseline setting as NBA SportsVU. In this case, we train
all models for 2000 epochs (given the small size of the dataset). In none of the cases we see signs of overfitting. C-GNN
and NIIP use a batch size of 10 and 6 respectively. NIIP has a number of sampling steps M that varies from 3 to 5 along
the first 300k iterations and a step-size of λ = 0.4. In this experiment NRI and dNRI are trained for 2000 epochs with the
same hyperparameters as in the NBA experiments. For both experiments we observe that dNRI performs worse than NRI in
long-term. In this case, this is expected as relation-types do not change in time.

Recombination For recombination, we use a mixture of the Springs and Charged dataset, with interaction strengths of 0.1
and 0.5 respectively. While not necessary, we found recombinations slightly more natural-looking by leveraging a variation
of the original architecture. In this case, each EBM has a branch that evaluates trajectory energies unconditionally. That
branch is solely used by edges that have been masked out (i.e. conditioned in another EBM). The unconditional architecture
is therefore very similar to that in A1 and A2 but disregarding the conditioning blocks. We train NIIP for 120 epochs both
in Charged and Springs datasets separately, with a small latent size per potential of Dz = 8. For this experiment, NIIP is
trained to reconstruct 30 observed time-steps and predict the following 10, as we find prediction helpful for proper potential
learning. We use a dataset instance with double sampling frequency than for the other experiments. This task is especially
challenging, given that we are mixing different data distributions. While experiments can be carried out with the usual
setting, we find some additions helpful for better-looking results. i) We perform data augmentation by selecting randomly the
initial point of the trajectories in the range T0 = [1, . . . , 50], as velocity distributions diverge along the trajectories. ii) The
encoder observes the input data both rotated and instance-normalized. iii) We plot the trajectories by fixing the first location
and accumulating the unnormalized velocity states. At test-time, we sample M = 6 times with a step-size of λ = 16.

Out-of-distribution Detection We utilize the same Springs and Charged dataset variations as for the recombination
experiments. For evaluation we also utilize the Charged-Springs dataset explained in the main body of the paper. The energy
values are obtained at the node level by evaluating a ground-truth trajectory. The hyperparameters of the model are those of
the recombination experiments.

For the NBA SportsVU dataset we train a model with the same hyperparameters as for quantitative comparison. However,
we discard the node corresponding to the ball. We later evaluate the trained model in the same dataset but including the ball
and excluding one of the players. In both cases, we will have 10 agents.

We found especially useful to use the regularization in Equation 6. This maintains the in-distribution energy close to 0,
while increasing energy from out-of-distribution nodes.

A limitation found is that if a particle with new dynamics behaves like one in-distribution it might have lower energy than a
hard in-distribution sample. For instance, charged particles at long distances might behave like free-of-charge samples,
which is one of the modes of the Springs dataset. Similarly, a ball carried by a player might behave like a player and
therefore result in low energy. This can explain why the ball is not detected 30% of the time. Once again, we illustrate the
trajectories by accumulating the un-normalized velocities, which leads to smoother trajectories.

Flexible Generation For this experiment, we train a model in NBA SportsVU dataset with the same hyperparameters as
for quantitative comparison. However, in this case we only reconstruct 40 time-steps. For the Charged dataset experiments,
we also utilize the same setting as in training. The illustrations are made by accumulating the un-normalized velocities.
We skip the initial ground-truth timesteps and plot only the generated trajectories. The formulation of the hand-crafted
potentials is described with detail in the main body of the paper. λ corresponding to the weight of the new potential is found
by grid search by means of visual inspection. However, it is fixed across instances of the experiment. Extreme values for λ
will yield unrealistic results.

14

Inferring Relational Potentials in Interacting Systems

A.4. Complexity Analysis

Time (s)
per iteration
and sample

Train Test

NRI (CNN+MLP) 1.96e-3 7.06e-4
NRI (CNN+MLP) 4.96e-2 4.33e-2
NIIP (3 steps) 3.91e-3 1.78e-3
NIIP (6 steps) 5.91e-3 3.40e-3

Table A4. Time Complexity Analysis of NIIP w.r.t
an auto-regressive baseline. NIIP has similar time
complexity than NRI. The overhead due to the iterative
generative process is compensated with the one-shot
nature of our predictions.

Table A4 shows a temporal complexity analysis of NRI, an auto-
regressive baseline, and our model. We compare two versions of NRI:
One with an MLP decoder (synthetic datasets) and one with a RNN
decoder (NBA, Horizons). Both have a CNN encoder which is fairly
similar to ours. As NIIP computation time varies with the number of
sampling steps, we provide two measurements at 3 and 6 sampling
steps for generation. We find that the computation time of NIIP is
similar to that of baselines.

The EBM decoder of NIIP generates samples by computing gradients
which takes approximately ×2 longer than a feedforward network,
as it must compute the gradients for the backward pass. To generate
a single sample, NIIP further computes N Langevin steps. In our
experiments, N ranges from 3 to 6. This is an additional factor of
×N . However, NIIP predicts trajectories in one-shot. This differs from baselines such as NRI, where states are predicted
auto-regressively. The length T of the generated sequence doesn’t have a significant impact on complexity of NIIP, while
it adds a factor of ×T to auto-regressive approaches. Thus, this results in a similar time complexity for auto-regressive
baselines and NIIP.

A.5. More Examples and Additional Results

In this Section, we illustrate more examples of the main experiments and additional quantitative results.

jointLSTM NIIP (Ours)

Springs 99.3% 99.9%
Charged 58.9% 69.4%

Table A5. Edge Classification Accuracy. We
evaluate the NIIP’s learned representations.
Given our learned latent codes of size 64, we
train a linear layer to classify the edge types into
their ground-truth types.

Downstream tasks: Edge-type Prediction Following we provide the
results of NIIP in the downstream task of edge classification, given the
learned representations. We do this for Springs and Charged datasets, where
we do have ground-truth edge types. Given our learned representations of
size 64, we train a linear layer to classify the edge types into their ground-
truth types. We obtain the accuracy in A5

As we can see, NIIP is better than the baseline in both settings. In the
Charged dataset, the accuracy is substantially lower than for the Springs
dataset. A plausible explanation is that particles at long distances have close
to negligible pairwise attracting or repelling forces. This effect is not as
present in the Springs dataset.

JHMDB

Prediction steps 1 10

NRI 6.71e-4 8.98e-3
dNRI 9.21e-4 1.32e-2
NIIP (Ours) 3.05e-4 3.41e-3

Figure A2. Mean squared error (MSE) in pre-
dicting future states for JHMDB dataset, with
12 nodes for each limb joint. NIIP performs bet-
ter than the baselines.

JHMDB Experiments We include a real-world trajectory forecasting
experiment in the Joint-annotated Human Motion Data Base (Jhuang et al.,
2013). It contains 2D skeleton trajectories from 36-55 clips per action class
with each clip containing 15-40 frames. There are 31,838 annotated frames
in total, from which we filter the ones that contain at least 30 timesteps,
keep the 12 joints associated to the limbs and normalize in the range [-1,1].
This results in 1000 training trajectories, 100 for validation and 215 for
testing. We observe 16 timesteps, fix 4 and predict the following 10. We
compare to the NRI baseline with an LSTM decoder, and dNRI baseline.
NRI will observe the 20 first timesteps and predict the following 10. Once
again, dNRI does not display gains with respect to NRI.

15

Inferring Relational Potentials in Interacting Systems

+

+

+ =

=

=

GT Springs GT Charged Recombined

Figure A3. More examples of recombinations. Illustrated, samples from Springs
(Col. 1) and Charged (Col. 2) and their recombinations (Col. 3). NIIP encodes
both trajectories. NIIP is able to reconstruct trajectories framed in green with the
initial conditions marked in blue, while swapping the potentials associated to the
nodes in the red dashed box. Recombinations look semantically plausible and
smooth.

Qualitative Examples Figure A3 illus-
trates cross-dataset combinations of poten-
tials. We encode ground-truth trajectories
(columns 1 and 2) separately into their cor-
responding potentials. We train a different
model for each data distribution. Next, we
fix initial conditions x0 (blue points) of the
scene framed in green and aim to reconstruct
them. In test-time we generate a trajectory by
minimizing simultaneously the energy func-
tions corresponding to the two models. Each
model targets specific edges. Particularly,
one model adds potentials corresponding to
the mutual edges of the particles highlighted
by a red dashed box, while the other aims to
reconstruct the rest of the trajectories.

Next, Figure A5 show qualitatively the pre-
dictions of NIIP compared to the ground truth
in the Charged dataset. The initial 49 steps
are the ground-truth trajectory. The black
dot indicates the beginning of our model’s
predictions (the trajectory color gets lighter
with time). Predictions are often accurate. In
cases where there is a significant difference
with the ground-truth (e.g. green node in the
center of Figure A5), the predicted trajectory
looks semantically plausible.

Figure A4 illustrates the ability of NIIP to add hand-crafted potentials in test-time. In the top row, a trajectory reconstruction
together with added goals that the nodes (players) are attracted to. In the bottom row, a trajectory reconstruction followed by
the same trajectory with variations of the agent velocities. The resulting plots show how both the edge potentials and the
newly added hand-crafted potentials are respected.

Finally, Figure A6 illustrates an example of the sampling procedure. By leveraging Langevin Dynamics sampling we refine
our predictions iteratively in a gradient-based optimization procedure. The model quickly understands the general shape of
the trajectories and refines them locally using the final sampling steps.

A.6. Ablation Study

Following, we add an ablation study carried on in the Charged dataset, with 150 epochs and a batch size of 40. We we utilize
also smaller filter size of 64 and we supervise only the last step of Langevin sampling, yielding sub-optimal performance.
However, it allows us to ablate the different options of our approach. Here, we analyse NIIP’s performance through a variety
of design choices. Those are the following:

• Latent size: We explore different sizes for the edge potentials. The choices are LS ∈ {16, 32, 64, 128}.

• Langevin step size. The choices are λ ∈ {0.1, 0.2, 2.0, 6.0, 10.0, 14.0}.

• Objective: We evaluate the impact of adding the contrastive divergence objective to the MSE reconstruction loss.

• Edge masking strategy: In a setting with 2 EBMs, we evaluate 1) a random masking strategy, 2) a masking strategy
based on the edge contribution to a specific node and 3) no masking strategy.

• Decoder baseline: We substitute the iterative energy minimization by a feed-forward graph decoder. This is equivalent
to the Conditional GNN baseline.

16

Inferring Relational Potentials in Interacting Systems

For this experiment, we follow the setting in the quantitative comparison and simply modify the variable of interest. That
analysis shows how a small langevin step is desirable in terms of performance (λ = 0.2). The model seems to be robust
to the latent size choice, although there is a slight preference for LS = 32. When it comes to the objective, we show
quantitatively that regularizing training with a contrastive divergence term improves performance. We can also observe how
a masking strategy is better than none. Finally, we show by comparing to a decoder baseline how our sampling strategy is
crucial for competitive results. Our ablation study is summarized in Table A6.

Similarly, we perform an ablation at test-time, with our best trained model for the Charge dataset. We analyse NIIP’s
performance under the following variations:

• Number of Langevin steps: We train our model with M = 6 langevin steps and test it with M ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20}.

• Number of nodes: We train NIIP with 5 nodes and test it in datasets with N = 3 and N = 7

Results are summarized in Table A7. ”Train” indicates the setting used in training. In this case we train for 300 epochs with
a batch size of 40.

A.7. Broader Impact

Understanding interactions across agents in a trajectory is fundamental to explain their present behavior and predict their
future. The importance of such understanding is higher when we do not have access to the true interaction types or they are
simply not a discrete set. In those cases, being able to learn representations of interactions from observational data provides
a window into the physics of the world we live in. These property is desirable in AI for applications such as molecular
dynamics modeling or autonomous vehicles, which have a huge impact on our lives. Despite the fact that there is a wide
range of approaches for inferring interactions and predicting trajectories, there is relatively little work on inferring these in a
interpretable and compositional manner. Our model aims to learn interaction potentials that allow for a higher degree of
manipulation over the learned representations. This interpretability and manipulability properties are important to AI, but
might raise concerns of abuse. Our approach, similar to many other approaches, may capture the implicit biases present in
data. There is also the potential threat of attacks to systems that rely on interpretable models, which can be more easily
targeted than those which are opaque.

17

Inferring Relational Potentials in Interacting Systems

Reconstruction: Edge Potentials (Edge - Velocity) Potentials (Edge + Velocity) Potentials

(Edge + Goal 1) Potentials (Edge + Goal 2) PotentialsReconstruction: Edge Potentials

Figure A4. More examples of NBA reconstructed trajectories with added potentials in test-time. NIIP can generate realistic
trajectories by respecting both (i). The learned edge potentials + (ii). new hand-crafted potentials added in test-time. Illustrated (top row)
we see the reconstruction of the trajectory with an added goal. We can see that the trajectories have the tendency to be attracted in the
direction indicated by the blue arrow. The actual goal is located outside the frame. We can see (bottom row) potentials of higher and lower
velocity than the reconstruction. In all cases, the trajectories follow the new potentials while respecting the original trajectory shapes.

Charged: 50 GT + 20 predictions

G
ro

un
d

Tr
ut

h
20

 P
re

d.
 N

II
P

Figure A5. Qualitative example of 20 predictions in the future of NIIP in the Charged particles dataset. In both rows, first 50 steps
are the ground-truth. The black dot indicates the beginning of predictions for row 1. In all cases, predictions are fairly close to the
ground-truth. In the cases where they differ (green node - center) the predictions are smooth and look reasonable.

18

Inferring Relational Potentials in Interacting Systems

Steps: 1 2 3 Ground Truth

Sampling Procedure in Trajectory Reconstruction

Figure A6. Examples of trajectory reconstruction procedure for 50 time-steps of the Charged dataset. We initialize the velocity as
uniform noise and optimize with 3 Langevin Dynamics steps. We obtain a faithful reconstruction of the ground-truth trajectories.

19

Inferring Relational Potentials in Interacting Systems

Ablation Study 1 step 10 step 20 step

Latent Size

16 1.20e-3 3.75e-3 7.06e-3
32 9.87e-4 3.60e-3 6.82e-3
64 1.15e-3 3.82e-3 7.00e-3
128 1.15e-3 3.91e-3 7.24e-3

Sampling step size

0.1 9.54e-4 3.53e-3 6.81e-3
0.2 9.07e-4 3.36e-3 6.62e-3
2.0 1.16e-3 3.82e-3 7.09e-3
6.0 1.15e-3 3.82e-3 7.00e-3
10.0 1.14e-3 3.78e-3 7.07e-3
14.0 1.19e-3 3.91e-3 7.29e-3

Masking type

Mask random 1.15e-3 3.82e-3 7.02e-3
Mask by node 1.15e-3 3.78e-3 7.03e-3
No masking 1.17e-3 3.82e-3 7.09e-3

Objective

MSE+CD 1.15e-3 3.82e-3 7.02e-3
MSE (no CD) 1.36e-3 4.02e-3 7.47e-3

Decoder (no sampling) 3.27e-3 5.31e-3 9.65e-3

Table A6. Ablation study investigating effects of different factors like latent size, sampling step size, masking type and objective in
results.

Ablation Study in Test 1 step 10 step 20 step

Number of Langevin steps M

1 1.06e-1 1.18e-1 2.47e-1
2 3.23e-2 4.34e-2 8.22e-2
3 7.00e-3 1.16e-2 2.68e-2
4 1.86e-3 4.63e-3 1.00e-2
5 1.03e-3 3.51e-3 7.05e-3
6 (Train) 8.85e-4 3.33e-3 6.54e-3
7 9.00e-4 3.33e-3 6.45e-3
8 8.93e-4 3.36e-3 6.47e-3
9 9.00e-4 3.39e-3 6.60e-3
10 9.10e-4 3.44e-3 6.66e-3
20 1.03e-3 3.64e-3 7.04e-3

Number of nodes N

3 1.79e-3 3.71e-3 6.74e-3
5 (Train) 8.85e-4 3.33e-3 6.54e-3
7 1.34e-3 4.66e-3 1.01e-2

Table A7. Ablation study investigating effects of different factors in test-time: Number of langevin steps and number of nodes.

20

