Task-specific experimental design for treatment effect estimation

Bethany Connolly©  Kim Moore
Gary Willis

Abstract

Understanding causality should be a core require-
ment of any attempt to build real impact through
Al Due to the inherent unobservability of coun-
terfactuals, large randomised trials (RCTs) are the
standard for causal inference. But large experi-
ments are generically expensive, and randomisa-
tion carries its own costs, e.g. when suboptimal
decisions are trialed. Recent work has proposed
more sample-efficient alternatives to RCTs, but
these are not adaptable to the downstream appli-
cation for which the causal effect is sought. In
this work, we develop a task-specific approach to
experimental design and derive sampling strate-
gies customised to particular downstream applica-
tions. Across a range of important tasks, real-
world datasets, and sample sizes, our method
outperforms other benchmarks, e.g. requiring an
order-of-magnitude less data to match RCT per-
formance on targeted marketing tasks.

1. Introduction

Artificial intelligence makes its impact through the influence
it has on actions taken in the real world. This influence is
often indirect, e.g. when machine learning predictions in-
form human decision making. The field of causal inference
studies the effect of actions on outcomes directly. Causal
inference is thus central to the broader programme of engi-
neering AI’s positive effects on society.

Treatment effect estimation is a paradigm of causal inference
that ranges from measuring the average treatment effect
(ATE) of an intervention at the population level to the more
granular prediction of individual treatment effects (ITE).
Such treatment efficacy measures are useful across domains,
from education (Olaya et al., 2020) and customer retention
(Devriendt et al., 2021) to medicine (Qi & Tang, 2019) and
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marketing (Verbeke et al., 2023).

The fundamental challenge of causal inference is the inacces-
sibility of counterfactuals: upon observing an individual’s
response to one treatment, their response had they received
a different treatment is not observable. Treatment effect es-
timation must therefore occur through observation of many
individuals, and large randomised controlled trials are the
hallmark of experimental design (Devriendt et al., 2018).
RCTs minimise bias in cohort selection and treatment as-
signment to produce treatment groups representative of the
population at large (Markozannes et al., 2021).

At smaller sample sizes, however, randomised treatment as-
signments often result in feature imbalances between treat-
ment groups (Morgan & Rubin, 2012). This has spurred
substantial research into covariate balancing between treat-
ment groups (Greevy et al., 2004; Morgan & Rubin, 2012;
Kallus, 2018). These techniques focus on treatment assign-
ment given a fixed cohort of trial participants.

There is recent interest in optimising cohort selection as well
(Qin et al., 2021; Jesson et al., 2021; Addanki et al., 2022).
Such work aims to reduce the sample size required for per-
formant treatment effect estimation. This is fundamentally
an active learning (AL) (Ren et al., 2021) task wherein a
population of unknown treatment response represents a pool
of unlabelled data; a point is labelled when that individual’s
outcome is observed in a trial (Puha et al., 2020). In this
context, AL can further be viewed as a multi-armed bandit
problem (Deng et al., 2011).

In our view, AL techniques designed for supervised learning
are ill-suited for causal modelling. Due to the fundamental
challenge of causal inference, treatment effect models must
be trained on loss functions that do not directly target the
treatment effect. The T-learner (Gutierrez & Gérardy, 2017),
for example, is the difference in two models trained sepa-
rately to predict outcomes in each treatment group. Such
proxy tasks are often far removed from the downstream ap-
plication, e.g. ordering subjects by ITE. Loss-targeting AL
methods (Roy & McCallum, 2001) are thus ill-fit for causal
problems. Uncertainty-based AL (Beluch et al., 2018) is
not well-suited either: in treatment effect estimation, one
aims to learn the difference in two outcome probabilities,
irrespective of their entropies.
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In this work, we remedy this problem by introducing a new
approach to sample selection for treatment effect estimation.
We take inspiration from Mindermann et al. (2022), focusing
on data points that are “worth learning,” though we do not
employ the RHO loss presented in that work as it too is
inherently supervised. Instead we derive a series of analytic
sample-selection strategies tailored to specific applications.

1.1. Our contributions

In this paper, we are concerned with the optimisation of
experimental design, i.e. the process of sampling individuals
from a large population and assigning them treatments for a
trial. The outcomes that result are used to model treatment
effects and these predictions are then used to perform some
downstream task. Our primary contributions include:

1. We introduce a novel approach to experimental design
specific to the downstream task to be performed.

2. As an important example, we present an algorithm for
experimental design for cases in which the area under
the Qini curve (AUQ) (Radcliffe & Surry, 2011) is a
good proxy for performance on the downstream task.

3. We validate our approach on several large real-world
datasets and demonstrate state-of-the-art sample effi-
ciency. In particular, on AUQ tasks our method re-
quires about an order-of-magnitude less data to match
the performance achieved by an RCT.

Our empirical analysis on large real-world datasets is it-
self significant, as tests on small semi-synthetic datasets are
the norm in much of the related literature. We show that
our method (i) scales well to large populations, (ii) leads
unequivocally to statistically significant increases in perfor-
mance, and (iii) works well on real-world data, whereas
semi-synthetic data is often unrealistically simplistic.

2. Background

Let X denote a domain of features with density p(X), and
let 7 = {0, 1} represent a binary set of treatments that can
be applied to individuals in the domain. Experimental de-
sign refers to the process of selecting individuals from X,
assigning treatments from 7, and observing outcomes that
take values in ). In particular, we are interested in learn-
ing treatment effects. Provided no unobserved variables
confound treatment and outcome, the individual treatment
effect, or uplift, for x € X is given by

w@z) =E[Y|X =2, T=1]-E[Y|X =2,T=0] (1)

We use 4(x) to denote a learnt estimate of the uplift. The
average treatment effect can be written as:

ATE[u] :/Xp(x) u(zx) dx (2)

2.1. Metrics

A variety of metrics exist to judge a learnt treatment effect,
each being the primary measure of performance in a specific
context. In practice, one estimates these metrics using an
RCT test set, in which individuals are sampled from p(X)
and their treatments 7' are uniformly randomised.

MEAN SQUARED ERROR

First consider the mean squared error (MSE) of the model:
MSE[i] — / p(@) (@) — u(@)2de )
X

In this work, the MSE principally serves as a simple example
to demonstrate our method. The MSE is used primarily in
the context of synthetic data where u(x) is known exactly.
The PEHE (precision in estimation of heterogeneous effects)
is a common proxy for MSE in practice (Qin et al., 2021).

SQUARED ATE ERROR

In a clinical context, the purpose of a trial is often to esti-
mate the ATE of a particular intervention on a population.
The squared ATE error (ATE[d] — ATE[u]) ? is therefore a
useful target metric for this context. The true ATE[u] can
be estimated well as a simple difference in empirical means
E[Y|T =1] —E[Y|T = 0] on an RCT test set.

QINI CURVE AND AUQ

In the context of targeted marketing, the task is often to
determine which subset of one’s customer base should re-
ceive a finite budget of advertisements to maximise return
on investment. A model 4 (x) can perform this task by se-
lecting those customers with highest predicted uplift. The
Qini curve Q( f) measures performance at this task by trac-
ing out the expected increase in per-capita outcomes as a
function of the fraction f of customers accommodated by
the budget (Radcliffe, 2007). The Qini curve is maximised
as the model @(x) tends to the ground truth u(z).

To write down an estimator of the Qini curve on a finite
sample {1, ...,z,} from the underlying population, one
must first order this sample according to descending pre-
dicted uplift: let {21, ... %, } denote the ordering in which
(&;) > 0(Z;41) for all 4. Then

Note this estimator references the true uplift distribution;
Algorithm 2 in the appendix details the procedure to evaluate
the Qini curve on an RCT test set, in which u(z) is of
course unobserved. The area under the Qini curve provides
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a general metric on model performance across budgets:
1
R ATE|u
avalil = [ dro() - ATEY
0
We subtract off the area under the straight line between

(0,0) and (1, ATE[u]) as this is the Qini curve of a random
baseline model (Gutierrez & Gérardy, 2017).

®)

In App. C.1, we describe one additional metric known as
ERUPT (expected response under prescribed treatments).

3. Theory

Here we develop an approach to experimental design that
optimises performance on a downstream task, as quantified
by a metric R. This target metric generally differs from the
loss function used to train any model.

First, we make a simplifying assumption, taking a discrete
feature space X = {z1,x2,...,2x}. This will not limit
the applicability of our method: we present an approach to
discretisation in Sec. 3.3 that allows us to apply our method
on continuous data. Also, for concreteness, we assume
binary outcomes ) = {0, 1}; footnote 1 describes how to
alter our results for continuous ).

Second, we aim to optimise E[R[U]], and we need to select
a representative model U to insert into this expression. We
opt to work with Eq. (6) below as it allows us to derive
a sampling strategy by hand. This choice does not limit
the applicability of our method either: any downstream
model can be trained on the sample that results from our
method, and in Sec. 4 we empirically demonstrate excellent
performance for a variety of model types.

To motivate our choice of U, note that we would have com-
plete knowledge of the treatment effect if we had access to
p(Y =1|X =2, T =t) =: 0%,. Let us use 6, to denote
any prediction of these values (and we’ll suppress subscripts
when referring to the full set {6,:}). Then, given a prior
Pa(© = 0) with hyperparameter dependence indicated by «,
and given observations {(x;, t;, y;) }™_, there exists a pos-
terior predictive po (Y | X = o, T = ¢, {(x4, ti, y:) }1q)-
Motivated by Eq. (1), we take the difference in the means of
the posterior predictives for 7' = 1 and 0 as our representa-
tive uplift model, and we place a Beta distribution prior over
0., with hyperparameters' o, and B, as it is conjugate
to the Bernoulli likelihood. This results in

1 o~
3 41 Qat + Z;L:(Tt) Yia,t)

Ux) = > (=1)
pord gt + Pat + n(z,1)

(6)

In this equation, n(z,t) denotes the number of samples
in {(x;,t;,y:) ", with z; = x and ¢; = t, and we have

!"To accommodate the case of continuous outcomes, one could
substitute @« — pv and 8 — v (1 — p) in Eq. (6) where i and v
are the parameters of a normal-gamma prior.

capitalised U (z) and Yj(, 1) to emphasise that the model
is a random variable through its dependence on outcomes
Yiz.t) ~ p(Y|X = 2,T = t). The target metric R[U]isa
random variable as well, and our method involves calculat-
ing its expectation value by hand:

E[R[U])] = fF({n(z,1)}; 0%) (7

The function fX ({n(xz,t)}; 6*) is computed explicitly for
a few key target metrics in the following section.

Now, 6* is unknown in practice, and R[U] is generically
unobserved during the experiment as well. Nonetheless, the
latent value of the target metric R[U] will change at each
step n(x,t) — n(x,t) + 1, as this amounts to drawing an
outcome Yy, (5 141 ~ p(Y[X = 2,T = t) and using it to
update the model U. Each improvement in R[U] can be
viewed as a reward. The true reward distribution belongs to
a family of distributions indexed by 6, each with expectation

value fR ({n(x,t)}; 0), and every observation tightens the
posterior p, (0 = 6 ] {(@i, ti,y5) 11y

We thus have a 2k-armed bandit wherein pulling the (z, t)
arm accrues a reward and improves the estimation of future
rewards. This system can be optimised through Thompson
sampling (Thompson, 1933), wherein at each step one draws
a value of 6 from the posterior, then selects the next (z,t)
that maximises the expected reward given 6.

We therefore propose an approach to experimental design
in which one cycles through the following sequence:

L. Draw: 6 ~ pa (6 = 0] {(@. ti. ) Vi)

. R n@E@*t)+1 at(z*,t*)] .
2. Select: afgfia)x fa <{n(x,t) otherwise ; 0

3. Observe: Yy, (g= )41 ~ p(Y|X = 2", T =1t7)
4. Update: po(© =0 | {(zi, ti, yi)}11)

Thompson sampling optimises E[R[U]] in two ways: it
results in an asymptotically (i.e. as n — oo) optimal sam-
pling policy, and it achieves minimal regret, i.e. rewards
forgone due to suboptimality at finite n are minimised
(Agrawal & Goyal, 2012; Kaufmann et al., 2012).

Our full method, including discretisation (see Sec. 3.3), is
detailed in Algorithm 1 and summarised in Fig. 2. It can be
run in a sequential/online fashion as described here, if ob-
servations can be made between selection steps. Otherwise,
it should be run in batches by iterating between steps 1-2
and deferring steps 3-4 to be performed at longer intervals;
see App. A and Fig. 16.

3.1. Calculations for example target metrics

Here we provide examples of X ({n(z,t)}; 6*) for a few
key target metrics. The bias and variance of our representa-
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tive model, Eq. (6), arise throughout these calculations, so
we collect results for these quantities here. (See App. C for
all derivations of the results in this section.)

1

—u(@)] = (-

t+1 gt — (awt + Bwt) G;t
=0 Ol + ﬂmt + TL(Z'7 t)
Loor, (1—0%,)n(a,t)

VU (z)] = ; (Oézt+5zt+n(:v,t))2 )

E[U (x)

In these equations, we replaced E[Y|X = z,T = ¢] and
VIY|X =z, T = t] with 6%, and 6%, (1 — 0%,) respectively,
as Y is Bernoulli distributed.

MEAN SQUARED ERROR

Beginning with the simplest case, consider the MSE, which
takes the following expected value on U:

E[MSE[U]] = ) p(=) E[(U(z) — u(x))?] ©
= > »@) (E[0(x) - u(@)]” + V[U ()] )

= —fa > ({n(z, 1)}; 07)

where one can refer to Eq. (8) to write down the explicit
dependence of fMSE({n(x,t)}; 6*) on its arguments. We
refer to the process of using Eq. (9) to iterate through our
4-step method of Sec. 3 as MSE-optimised sampling.

SQUARED ATE ERROR

Similar to the case of the MSE, th§ squared ATE error takes
the following expected value on U:

FAE({n(a,0)}; 07) = (10)
(X @) EO@) -~ u@)]) ~ 3 @) V[0 ()]

The explicit dependence of fATE({n(z,t)}; 6*) on its argu-
ments follows again from Eq. (8). ATE-optimised sampling
refers to the insertion of Eq. (10) into the method of Sec. 3.

AREA UNDER QINI CURVE

The AUQ is more complicated but in many contexts much
more relevant (Radcliffe & Surry, 2011; Rzepakowski &
Jaroszewicz, 2012; Gutierrez & Gérardy, 2017). In the large
n limit, E[AUQ[U]] takes the following value:

A ({n(z,t)}; 6%) = (11)

1 1 u(z') — u(zx)
L)

a P oa €04
4.0 plx) ’ ply=1x,t=0) us(x)
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Figure 1: Synthetic density (a), baseline propensity (b), and
uplift (c) distributions, along with the samples that result
from our optimised methods; (d) and (e) correspond to
u1 and ue, respectively, and (f) shows the ATE-optimised
sample from (e) split by treatment and control.

where the dependence of f2Y({n(z,t)}; 6*) on its argu-
ments follows from u(x) = 6%, — 6%, and the shorthand

1 * *)

Za:t It

t=0

+(x —2') (12)

We refer to the insertion of Eq. (11) into the method of
Sec. 3 as AUQ-optimised sampling.

In App. C.6, we derive [T ({n(z,t)}; 6*) for the ERUPT
metric as an additional example.

3.2. Intuition for task-specific sampling

Here we demonstrate our optimised samplers on synthetic
data. (See App. B for details of this experiment.)

For this experiment, we take X = {1,2,...,20} with a
truncated Gaussian density p(X') as shown in Fig. 1(a). We
set the baseline propensity,ie.p(Y =1|X =z, T =0),
to a linear function of z as depicted in Fig. 1(b). We consider
two uplift distributions, u; (x) and ug(x), mirror images of
each other defined using sigmoids; see Fig. 1(c).

In this section, we aim to provide intuition for the different
IR ({n(x,t};0%)s derived in Sec. 3.1. To isolate the effect
of this function, we cycle through the 4-step algorithm of
Sec. 3 but with po (6 = 6 | {(x4,t;,yi)}1—1) set to a point
mass at the correct value of 6*. We set o,y = B.: = 0in
IR ({n(x,t}; %) for concreteness as well.

The resulting distributions are plotted in Fig. 1(d) for uq(x)
and Fig. 1(e) for uq(x), where they are compared against
an RCT sample. Fig. 1(f) shows the ATE-optimised sam-
ple from Fig. 1(e) split into its 7' = 0 and 1 components.
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Figure 2: Schematic of our end-to-end method for task-specific experimental design for treatment effect estimation.

Our samplers generically select different distributions for
treatment and control to optimise the target metric.

Note from Fig. 1 that the RCT sample is proportional to the
density, whereas the MSE-optimised sample is also sensitive
to the variance in outcomes (see Eq. 9) which pulls the dis-
tribution to the right. The ATE-optimised sample comes out
roughly in between, as it has stronger (i.e. squared) depen-
dence on the density (see Eq. 10). The AUQ-optimised sam-
ple is additionally sensitive to uplift differences u(x) —u(z’)
(see Eq. 11) which leads to a strong peak coincident with
the sharp gradient in u(x).

3.3. Discretisation for general datatypes

Our method, as developed so far, assumes a discrete feature
space. Here we describe our approach to discretisation to
accommodate continuous and mixed-type data.

We discretise data using a variational autoencoder (VAE)
(Kingma & Welling, 2013) trained on X’. In particular, we
encode the dataset and place a rectangular grid on latent
space to partition X" into a finite set {x1,22,..., 2z} as
required. This is the final ingredient in our approach to
experimental design; see Algorithm 1 and Fig. 2.

This approach to discretisation partitions the data in a
smooth homogeneous space rather than the heterogeneous
space of raw features. It also gives us control over the car-
dinality k, which influences the runtime of our algorithm.
We thus find it useful to perform latent-space discretisation
regardless of the datatypes in X'. App. C shows further that
discretisation does not introduce bias into our method.

UNIFORM SAMPLING IN LATENT SPACE

Having defined a grid on latent space, one simple but novel
alternative to Algorithm 1 is to select grid cells and assign
treatments both uniformly at random. We refer to this as
uniform sampling in latent space. As it is task-agnostic
by construction, one cannot expect this strategy to perform
optimally across metrics. Indeed, Fig. 8 in the appendix
shows poor performance for the ATE task. Despite this, we
show in Sec. 4.2 that uniform sampling in latent space is
remarkably effective for the AUQ task. App. D develops
an importance-sampling formalism that could be used to
determine when uniform sampling will perform well.

In App. A, we isolate the advantage of discretisation with a
VAE by comparing uniform sampling in latent space to uni-

Algorithm 1 Task-specific experimental design

Input: Population X' ; Target metric R ; Sample size n

VAE’s latent representation of population Xj,ent
Rectangular grid on latent space 3
Prior parameters oy and Sy foreachb € Bandt € T

Output: Sample of experimental results {(z;, t;, y;) }i;

Initialise nyy = 0forb € Bandt € T
fori =1tondo
Draw 6y; ~ Beta(ay, Bp) foreachb € Bandt € T
for eachb € Bandt € T do
Set nj,, = nyy foreachd’ € Bandt' € T
Increment nj, < nj, + 1
Set for = fR({n}, };0) using R-specific formula
end for
Select (b;, t;) = argmax, ) for
Sample Zjyene uniformly from Xjyeene N b;
Select individual z; € & that corresponds to Zjaent
Observe y; ~ p(Y|X =2, T =t;)
Mpt; < N, + 1
Qp;t; <= Qbyt; + Yi
Brit; < Boit, + (1 — i)
end for
return {(x;,t;,y;) iy

form sampling in feature space; see Fig. 9 in the appendix.

4. Experiments

Here we present empirical analyses of our approach to ex-
perimental design. See App. B for full experimental details.

4.1. Validation on synthetic data

In Sec. 3.2 we used two synthetic datasets to show distribu-
tions resulting from our optimised samplers. Here we take
the u; (z) case, use the samples from Fig. 1(d) to train uplift
models according to Eq. (6), and measure model perfor-
mance according to the metrics of Sec. 2.1. Fig. 3 displays
the results, with one plot for each target metric and one
curve for each optimised sampler. We also include ordi-
nary RCT sampling as well as uniform sampling in latent
space for comparison. Note that, across sample sizes, the
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Figure 3: Performance of MSE-, ATE-, and AUQ-optimised
samplers across target metrics on synthetic data, compared
to RCT and uniform sampling on X.

MSE/ATE/ AUQ - optimised sampler outperforms the al-
ternatives when judged by the test-set MSE/ ATE/ AUQ,
respectively. This provides the first empirical validation of
our approach to task-specific experimental design.

4.2. Performance on real-world data

Here we describe experiments carried out on real-world
data, but first we address a subtlety in our setup. We aim to
benchmark a new method of experimental design using data
gathered from historical experiments that were performed
as RCTs. We circumvent this apparent paradox as follows.
Most of the datasets we use are very large in size; in partic-
ular, after discretisation there are many examples of most
(x,t) combinations we would be interested in sampling in
our experimental design. We thus treat the large pool of data
as though treatments were yet unassigned, and whenever the
dataset lacks an (z, t) that our algorithm selects, we select
the algorithm’s next preference instead.

The datasets we use for our experiments are described at
length in App. B.1. In brief, we test our method on:

e STROKE: clinical trial evaluating aspirin’s effect on
stroke patients; our sub-selection procedure results in
a dataset of size 9k (Sandercock et al., 2011).

e CRITEOVISIT & CRITEOCONVERSION: marketing
trial evaluating effectiveness of email campaign on two
different outcomes; we sub-select 7M rows of data
(Diemert et al., 2018).

e RETAILHERO: marketing trial in which we engineered
features from purchase history data for 200k individu-
als (see App. B.1 for references).

Next we describe performance results for two downstream
applications: clinical trials and targeted marketing.

APPLICATION TO CLINICAL TRIALS

Here we take the squared ATE error as our target metric.
While STROKE is our only example of a true clinical trial,

Stroke RetailHero
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Figure 4: Performance of ATE-optimised sampler across
datasets, benchmarked against RCT and Recursive GSW.

we include all our datasets in this study. In this experi-
ment, we sample data according to different algorithms,
then reweight the sample according to the population den-
sity to estimate the ATE.

In Fig. 4 we show the performance of our ATE-optimised
sampler alongside RCT. On three of four datasets, our ATE-
optimised sampler provides a meaningful advantage over
RCT with respect to the target metric.

We also benchmark the Recursive Gram-Schmidt Walk
(GSW) method of Addanki et al. (2022) though it does
not outperform RCT on STROKE or RETAILHERO. Due to
the quadratic scaling of the GSW algorithm with respect to
population size (Harshaw et al., 2019), Recursive GSW is
infeasible on both CRITEO datasets. Fig. 8 in the appendix
further benchmarks the B-EMCMITE method of Puha et al.
(2020). This is a loss-targeting method of supervised AL
applied to causal modelling, which is only computation-
ally feasible for very small populations. We find its ATE
performance to be poor in our experiments.

Fig. 10 in the appendix benchmarks the time complexity of
our method against Recursive GSW and B-EMCMITE as a
function of population size. This is a very favourable result
for our method, as the only step in Algorithm 1 that scales
with population size is the uniform sampling of an occupant
from the selected latent grid cell.

APPLICATION TO TARGETED MARKETING

Here we take the AUQ as our target metric and exclude
STROKE from this study, as the AUQ requires a very large
test set to estimate precisely. In this experiment, we sample
data according to different algorithms, then train T-learners
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Figure 5: Performance of AUQ-optimised sampling and uni-
form sampling in latent space across datasets, benchmarked
against RCT, Leverage Scoring, and uncertainty sampling.

(Gutierrez & Gérardy, 2017) on the samples to predict uplift,
and finally measure the AUQ of each T-learner.

In Fig. 5 we show the performance of our AUQ-optimised
sampler. Across all sample sizes and datasets, our method
provides a substantial improvement over RCT, gener-
ally matching its performance with roughly an order-of-
magnitude smaller sample.

Fig. 5 also benchmarks the Leverage Scoring method of Ad-
danki et al. (2022), which performs between our method and
RCT, as well as an uncertainty-based approach to supervised
AL (Beluch et al., 2018) in which points are selected that
have the highest entropy in predicted outcomes, according
to the model-in-training. The latter is not tailored to causal
modelling and performs commensurate with RCT.

Fig. 5 further shows that uniform sampling in latent space
performs on par with AUQ-optimised sampling. This is
quite remarkable, given the state-of-the-art nature of our
AUQ-optimised sampler and the simplicity of our uniform
sampler. We understand this as follows:

AUQ-optimised sampling targets segments of the population
where uplift differences are large; this is a direct result of
Eq. (11) that we demonstrated in Sec. 3.2. In addition, our
sampler has the largest uncertainty on uplift in regions that
have been under-sampled. Through our Thompson sampling
procedure of Sec. 3, our sampler will attribute the largest
swings in uplift — and thus the largest uplift differences —
to the least-sampled regions of the data. This can result in
a sampling strategy that is not too different from uniform.
(See Fig. 11 in the appendix for an example).

App. A includes two further results that we mention here:
(i) Whereas Fig. 5 displays the mean AUQ of the various
samplers, Fig. 12 shows the distribution of AUQ across trials
to give a sense of how often our method outperforms RCT in
practice. (ii) Fig. 13 explores an additional use case, ERUPT-
optimised sampling, where our method outperforms RCT,
Leverage Scoring, and uniform sampling in latent space.

a Latent dimensionality b Grid resolution [ Prior distribution
41e—3 41e—3 41e—3

RCT 1= .. auQ (o) 1 RCT
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----- AUQ (4D) --- AUQ (30) «+==+ AUQ (Uniform)
Oro3 0" 100 %0° 0° 100 %0° 0° 10
Sample size Sample size Sample size

Figure 6: Hyperparameter sensitivity of AUQ-optimised
sampling to latent dimension, grid resolution, and prior
choice on CRITEOVISIT, with RCT as an anchor point.

4.3. Sensitivity to hyperparameters

Here we evaluate the sensitivity of our method to the hyper-
parameters required to fully define it.

LATENT SPACE DIMENSIONALITY

Provided latent space has capacity to capture the factors
of variation underlying the raw data, we would not expect
strong dependence on the choice of latent dimensionality.
Our experiments above were performed with latent dimen-
sion 2, and in Fig. 6(a) we test our AUQ-optimised sampler
on CRITEOVISIT with latent dimension 4. The result is
that performance hardly varies with this hyperparameter.
(Though note that latent dimensionality would need to be
tuned more carefully for higher-dimensional feature spaces.)

SAMPLING GRID RESOLUTION

Regarding the rectangular grid used to discretise latent
space, one would expect a trade-off: a finer grid allows
more precise targeting, while a coarser grid allows lower-
variance 6, estimates (see Sec. 3). Our experiments above
all used 20x20 grids, and in Fig. 6(b) we test our AUQ-
optimised sampler on CRITEOVISIT with 10x10 and 30x30
grids, showing minimal dependence on this hyperparameter.

PRIOR DISTRIBUTION

The prior (in particular «,; and S,;) directly influences the
formula used to select the training sample (see Sec. 3) so
we should expect dependence on this choice.

For the ATE experiments above, we used oy = S, = 1,
placing uniform priors on the Bernoulli outcome probabili-
ties. For the AUQ experiments, we defaulted to an informed
prior with oy = 1+ p(x)n; and Bx = 1+ p(z)n; .
Here ni is a ballpark estimate of the successes/failures
anticipated for treatment group ¢ (but agnostic of x) in an
experiment of the given size. Thus o, and S, reflect the
anticipated base rates in the data. (These estimates need not
be accurate; Fig. 14 in the appendix shows minimal effect
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Figure 7: Variation of the downstream model trained on
AUQ-optimised, uniform, and RCT samples from CRITEO-
VISIT. Our methods outperform RCT across model choices.

when the n;"’s are doubled or halved.)

In Fig. 6(c) we show how AUQ-optimised sampling on
CRITEOVISIT depends on the prior. The informed prior
does provide a meaningful advantage over the uniform prior
when it comes to AUQ performance, though even the unin-
formed prior provides a large improvement over RCT.

UPLIFT MODEL TYPE

Finally we demonstrate that our method works well for a
variety of downstream uplift models. While we derived
our algorithm using one specific model (Eq. 6) our AUQ
experiments used a T-learner (Gutierrez & Gérardy, 2017)
for the modelling task. The good performance of Fig. 5 thus
provides initial validation of this claim.

In Fig. 7 we validate this further by showing the T-learner’s
performance trained on AUQ-optimised samples from
CRITEOVISIT alongside that of an S-learner and of Eq. (6)
itself (with a,; = B¢ = 0). While absolute performance
varies across model types, we find that training a model on a
sample selected with our method dramatically outperforms
that same model trained on an RCT sample.

TARGET METRIC & BATCH SIZE

App. A includes two further results that we mention here for
completeness. First, Fig. 15 shows the performance of our
AUQ-, ATE-, and MSE-optimised samplers evaluated on
both the AUQ and ATE-squared-error metrics on CRITEO-
VISIT. This demonstrates that no sampler, not even RCT,
performs well across target metrics as disparate as AUQ
and ATE squared error. This result calls into question any
attempt at task-agnostic experimental design and provides
further justification for our general approach.

Second, Fig. 16 shows that our AUQ-optimised sampler is
extremely insensitive to the batch size with which observed
outcomes are used to update its posterior (cf. step 4 in Sec. 3
and the discussion below it). The ATE-optimised sampler is
more sensitive but still demonstrates useful performance.

5. Related work

Here we compare our work to other studies of experimental
design for treatment effect estimation.

Deng et al. (2011) frame experimental design as a multi-
armed bandit problem as we do. They arrive at a formula
similar to our fMSE({n(z,t)};0) with ay = Bz = 0, but
leaving out dependence on the density p(z). In comparison,
we consider our approach to be more general as we consider
a variety of target metrics, including the AUQ which we
have not seen targeted in any other experimental design
work. Deng et al. (2011) also assume the data is split into
subpopulations but do not include any algorithm to do so —
a hurdle to applying their method in practice.

Puha et al. (2020) devise an approach to experimental design
called B-EMCMITE, which targets individuals who max-
imise the expected change in the uplift model’s loss function,
taking inspiration from supervised AL. This is downstream-
task-agnostic, in contrast with our approach. We benchmark
our ATE-optimised sampler against B-EMCMITE in Fig. 8,
at least where computationally feasible, and find that our
method strongly outperforms it. B-EMCMITE scales poorly
as it requires model gradients across the entire population
at every selection step; see Fig. 10.

Addanki et al. (2022) present two sampling algorithms, Re-
cursive GSW and Leverage Scoring, intended for ATE and
ITE estimation, respectively. They prove a notion of optimal-
ity under very restrictive assumptions — e.g. that outcomes,
and thus the uplift itself, are linear functions of the features.
In Sec. 4.2 we show that our optimised samplers outperform
Recursive GSW and Leverage Scoring across tasks, datasets,
and sample sizes — except for the ATE task on RETAILHERO
(see Fig. 4) where results are even.

Our work relates to pool-based AL with expected-model-
change querying (Ren et al., 2021). The defining distinction
is that we do not query according to the uplift model’s
loss function; instead, our approach targets the metric that
defines performance on the downstream task.

Our method of uniform sampling in latent space relates to
core-set methods (Sener & Savarese, 2018) in AL. VAEs
have been used elsewhere to obtain low-dimensional repre-
sentations for general AL (Pourkamali-Anaraki & Wakin,
2019; Sinha et al., 2019), though we have not seen this ap-
plied to the problem of causal modelling outside our work.

6. Conclusion

We have introduced a novel method of experimental design
for treatment effect learning, in which a task-specific for-
mula governs cohort selection and treatment assignment.
We derived this formula explicitly for four metrics — MSE,
ATE, AUQ, ERUPT — which find relevance in distinct ap-
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plications. Our method outperforms RCT and other bench-
marks almost universally across the tasks, datasets, and
sample sizes we studied. Most notably, on the AUQ metric
prevalent in contexts in which the ITE is of primary interest,
our method requires about an order-of-magnitude less data
to match RCT performance.

In our view, the primary limitation of our method is that
it requires by-hand calculations for each target metric, and
future work could explore data-driven alternatives to this
requirement. Follow-up work could also explore alterna-
tives to Thompson sampling as the backbone of our method.
More generally, we hope our work spurs further advances in
the field, so that efficient causal inference can have a positive
impact across a wide range of important applications.
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A. Additional experimental results

In this appendix, we provide the additional experimental
results that were referenced throughout the paper.

Fig. 8 displays the performance of ATE-optimised sampling
and uniform sampling in latent space across datasets, bench-
marked against RCT, Recursive GSW (Addanki et al., 2022)
and B-EMCMITE (Puha et al., 2020). Across datasets, this
result shows that uniform sampling in latent space is not
well-aligned with the ATE prediction task. It also shows
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Figure 8: Performance of ATE-optimised sampler across
datasets benchmarked against RCT, uniform sampling in
latent space, Recursive GSW, and B-EMCMITE.
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Figure 11: The first 10® points selected from CRITEOVISIT by RCT, uniform sampling in latent space, and our AUQ-

optimised sampler displayed with respect to the rectangular grid on latent space.
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Figure 12: Box-and-whiskers plots showing the distribution in performance achieved by AUQ-optimised sampling and RCT

across trials. These are the same experimental results used to compute mean performance in Fig. 5.
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Figure 13: Performance of ERUPT-optimised sampling across datasets, benchmarked against RCT, Leverage Scoring, as
well as always-treat and never-treat baselines.
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that B-EMCMITE, where computationally feasible, is quite
misaligned as well.

Fig. 9 demonstrates the performance of uniform sampling in
latent space on CRITEOVISIT benchmarked against uniform
sampling in feature space. For the latter, we split each raw
feature at its median value, which results in 2" = 4096
distinct bins for this dataset with n = 12 features (though
only 238 of them are populated). This baseline performs
better than RCT but much worse than uniform sampling
in latent space, demonstrating the advantage of the smooth
dense representation that the VAE provides.

Fig. 10 benchmarks the time complexity of our sampling al-
gorithms against Recursive GSW (Addanki et al., 2022) and
B-EMCMITE (Puha et al., 2020) as a function of population
size. For cases where it was more expensive to run the exper-
iments at the largest population sizes, the data points were
extrapolated (dashed line) from the experimentally observed
results (solid line). This explains our limited application of
these other methods in our experiments and demonstrates
an additional advantage of our approach.

Fig. 11 shows the distributions of data points selected by
RCT, uniform sampling in latent space, and our AUQ-
optimised sampler. The plots display the occupancies within
the rectangular grid on latent space after the first 10> points
are drawn by each algorithm. Note the broad similarity
between the cohorts selected by AUQ-optimised sampling
and uniform sampling in latent space.

Fig. 12 shows the performance of our AUQ-optimised sam-
pler, benchmarked against RCT, and displayed as a box-and-
whiskers plots at each sample size. This gives visibility into
the distribution of performance achieved by each method,
whereas Fig. 5 showed only the mean performance over
many trials.

Fig. 13 displays the performance of our ERUPT-optimised
sampler, which is presented below in App. C. Our method
outperforms Leverage Scoring (Addanki et al., 2022) and
RCT across samples sizes and datasets. The ERUPT-
optimised sampler also distinctly outperforms uniform sam-
pling in latent space, in contrast to the results of Fig. 5
for the AUQ target. We describe both this metric and this
experiment in further detail in App. C.1.

Fig. 14 explores the sensitivity of the informed prior dis-
cussed in Sec. 4.3 to inaccurate estimates of the treatment ef-
fect by systematically over- and under-estimating nff while
keeping n;” +n; constant. The n;" values can be combined
to predict the ATE, and we varied them in such a way as to
predict both double and half the actual ATE in the test set.
Fig. 14 demonstrates that our optimised samplers are robust
to such substantial variations in the prior.

Fig. 15 displays the performance of our AUQ-, ATE-, and
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Figure 14: Dependence of AUQ-optimised sampler on the
informed prior’s hyperparameters on CRITEOVISIT.

le-3 le-3
3 1.00
S
o
o2 Bo0.10
2 ]
o
(%]
E 0.01
1
103 104 10° 10° 104 10°
Sample Size Sample Size
RCT —— AUQ MSE — ATE

Figure 15: Performance of AUQ/ATE/MSE - optimised
samplers across target metrics on CRITEOVISIT.

MSE-optimised samplers evaluated on both the AUQ and
ATE-squared-error metrics on CRITEOVISIT. In a sense,
this result shows that one cannot ignore the downstream task
for which an experiment is being designed. No sampler, not
even RCT, performs well across target metrics as disparate
as AUQ and ATE squared error.

Fig. 16 displays the performance of our optimised sam-
plers across datasets when our method is run in batch mode.
Referring to the 4-step procedure of Sec. 3, batch mode
consists of iterating between steps 1-2 (until a full batch is
selected) and deferring steps 3-4 to be performed at longer
intervals (between batches). This reduces the frequency at
which the posterior distribution for Thompson sampling is
updated with new observations. Batch sizes are indicated
in parentheses in the legends of Fig. 16. This result shows
positive performance even at large batch sizes.

B. Experimental details

Here we provide the details of our setup for each of our
empirical analyses.
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Figure 16: Performance of optimised samplers across datasets and target metrics when our method is run in batch mode

(with batch sizes listed in parentheses in the legends).

B.1. Datasets
SYNTHETIC DATA

We created 1-dimensional synthetic datasets for Sec. 3.2
by sampling continuous features from a truncated normal
distribution on [0, 1], with mean ¢ = 0 and 0 = 0.2:

1 e ()
T D () —

p(X (13)

=)
where ¢ denotes the probability density function of the
standard normal distribution, and @ is its corresponding
cumulative distribution function. The data density is plotted
in Fig. 1(a). We set the baseline propensity to be a linear
function of the features

pY=1X=2,T=0)=04z (14)
The baseline propensity is plotted in Fig. 1(b). We explored
two sigmoidal uplift distributions, designed to replicate the
situation where the largest uplift individuals are found in
either the tail or the bulk of the data:

Q;

(14 exp(=bi(z

ui(z) = 15)

—¢i)))
where (a;, b;,¢;) = (0.7,4£20,0.2). The two uplift func-
tions are plotted in Fig. 1(c). Target metrics in Fig. 3 were
computed on a test set of 4M points.

STROKE

We extracted this dataset from the International Stroke Trial
(Sandercock et al., 2011), a large scale randomised trial
studying the health outcomes of 19,435 stroke patients given
different treatments upon hospital admission. We extracted
40 patient level features such as age, sex, and blood pressure
which were recorded upon admittance to the hospital. To
study a binary treatment effect we used patients receiving no
treatment drug as the control group and patients receiving
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only aspirin as the treatment group. We also dropped rows
from the pilot phase of the trial, as well as patients who
received alternative treatments, to get a dataset of 9,208
rows. The binary outcome corresponds to whether or not
the patient was discharged alive from hospital.

CRITEOVISIT & CRITEOCONVERSION

The Criteo Uplift Modelling dataset (Diemert et al., 2018)
is a large scale benchmark for ITE estimation. It has
13,979,592 rows comprised of 12 anonymized customer fea-
tures, a binary treatment indicator, and two possible binary
outcome measures (Visit and Conversion). We used this
dataset twice (CRITEOVISIT and CRITEOCONVERSION) to
consider each outcome in turn. The public treatment group
was randomly down-sampled to give a 50/50 balance be-
tween treatment and control groups. This resulted in a train
pool of 2,992,640 rows and a test set of 4,000,000 rows.

RETAILHERO

‘We created this dataset from raw customer, sales, and mar-
keting trial data in the scikit-uplift X5 RetailHero dataset?
which contains raw information about previous purchases
made by customers of the X5 RetailGroup. The customers
were exposed to a binary treatment and their corresponding
binary outcome was recorded. Customer features (e.g. age
and gender) were combined with new features engineered
from their purchase history e.g. total historical spend, aver-
age per transaction spend, and number of stores visited. This
resulted in a dataset of 23 customer features with 100,036
train rows and 100,000 test rows. We have made this dataset
and information about the engineered features publicly avail-
able.?

’Raw data: https://www.uplift-modeling.com/
en/v0.3.1/api/datasets/fetch_x5.html
3Processed data: https://tinyurl.com/RetailHero
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B.2. Models
VAE

The VAE architecture we used in our experiments is com-
prised of a 2-layer fully-connected encoder with 100-
dimensional hidden layers, a 2-dimensional latent space,
and a decoder with the same architecture as the encoder
which outputs a Bernoulli probability for binary features, a
softmax for categorical features, and a mean & variance for
continuous features. Given the positive results this simple
architecture supported, we did not tune the VAE beyond this
vanilla baseline (Kingma & Welling, 2013). We trained the
VAE using Adam (Kingma & Ba, 2015) with learning rate
10~* and early stopping on the validation-set ELBO.

The first step of our algorithm (see Fig. 2) is to discretise
the population of training data in latent space. We discre-
tised the continuous latent representation of each dataset by
taking the smallest hypercube that contains all of the data
and slicing each edge of the hypercube uniformly into a
number of cells (with a default of 20 unless stated other-
wise). Fig. 17 provides a visualisation of the resulting latent
distribution for each dataset studied in this paper.

ATE

For treatment effect estimation when targeting the ATE, we
began by computing the empirical uplift in each grid cell
b of discretised latent space B according to the sampled
training data. We then estimated the ATE by weighting each
of these empirical uplift values by the data density in that
grid cell and summing:

(-1

n(b,t) (16)

Yiw,0

Here the density p(b) in each cell is calculated according to
our available pool of training samples.

ITE

For ITE estimation, we used custom implementations of
the T-learner and the S-learner (Kiinzel et al., 2019). We
defaulted to the T-learner in all our experiments unless stated
otherwise (e.g. in Fig. 7). For either model, the core learners
of the ITE estimator were XGBoost models initialised with
following hyperparameters:

n-estimators: 400

objective: binary:logistic
eval-metric: rmse
max—-depth: 1 (T-learner), 2 (S-learner)

Additionally during model training, the sampled data was
partitioned 80/20 into training/validation sets for early stop-
ping (with early-stopping-rounds: 50).

14

B.3. Benchmarks

We benchmarked our optimised samplers against the work
of Addanki et al. (2022) which provides two sample effi-
cient algorithms for ATE and ITE estimation, namely Re-
cursive GSW and Leverage Scoring, respectively. The code
for using these algorithms on synthetic or semi-synthetic
data, where both treatment outcomes are available, is open
source*. We modified this code in order to benchmark the
methods on real data. Besides the modifications below, the
algorithms were implemented exactly as reported.

The Recursive GSW algorithm assigns treatments by recur-
sively splitting a given pool of training data Dy into halves
(Dyreatment and Deonrol) With covariates balanced between the
two. The aim is to obtain a small treatment and control
group which are both balanced and representative of Dyl
as a whole. Since our work utilises large datasets originally
obtained by RCT, we treated the two available treatment
arms as independent pools of data which are already bal-
anced. We then performed the Recursive GSW algorithm
on each treatment group separately to obtain treatment and
control samples.

We did not run Recursive GSW for CRITEOVISIT and
CRITEOCONVERSION because the algorithm scales poorly
to large datasets. See Fig. 10 for a visualisation of time for
one split of a dataset of size npool-

The Leverage Scoring algorithm works by assigning sam-
pling probabilities 7 to each point in Dpo1. The treatment
and control groups are then independently sampled with
probability 7 for each data point. To replicate this on our
datasets, we again treated the available treatment and control
groups as two independent pools of data with independent
m. Treatment and control groups were then independently
sampled as above.

Due to the stochastic nature of these batch sampling algo-
rithms, the desired sample size is not guaranteed. Instead
of reporting performance of these samplers at the target
sample size (as in the original paper), we report it at the
average sample size gathered over many experimental seeds
which, in the case of Leverage Scoring, we found to be
systematically smaller than the target size. Furthermore,
for Recursive GSW we gathered sample sizes only of par-
ticular fractions of the population size (1poo1/2°). While it
is possible to collect intermediate sample sizes by random
sub-sampling, this would introduce randomisation and de-
grade the covariate balancing that the algorithm is designed
to achieve.

‘nttps://github.com/raddanki/Sample—
Constrained-Treatment-Effect-Estimation
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Figure 17: Discretised latent representations of the full population of each dataset studied in this paper.

B.4. Compute and empirical analysis Algorithm 2 Qini curve estimation on RCT test set

All experiments were performed in parallel on 96 core, ~Input: DataD = {(zi ti,yi) Y

393 GB machines. For all datasets except STROKE, we Uplift model @

performed 384 trials per experiment, and we bootstrap- Number of points m at which to approximate curve
resampled the test set for each trial. Because of its smaller
size, experiments on STROKE each consisted of 1000 tri-
als, and we performed a fresh train-test split for each trial. Sort D = {(&4, L3, 90) Y1y s0 0(2;) > 0(2i41) for all i
We reported the performance of each sampling method as Set (fo, q0) = (0,0)

the mean target metric achieved across these trials, with
uncertainty bands representing the standard error.

Output: Qini curve values {(f;, ¢;)},

for: = 1tomdo

k=|n-i/m]
k ~
C. Theoretical details ko =225 (1 = 1)
k ~
In this appendix, we provide the algorithms, derivations, k1= Zj:l tj
and additional details mentioned throughout the paper. We R N —1k R
= by — k (1 —15) 9,
begin by providing the algorithm for evaluating the Qini u=h 2 =t Yi o 2= (=) 5
curve on an RCT test set in Algorithm 2. Set (fi,qi) = (i/m, u-i/m)
end for
C.1. The ERUPT metric return {(fi, )},

ERUPT’ (Expected Response Under Proposed Treatments)
(Zhao et al., 2017; Hitsch & Misra, 2018) quantifies a
model’s performance at the downstream task of predict-

ing the optimal treatment to assign each member of the ERUPT[il] = / p(z) O(a(z) — ¢) (u(z) — ) dz  (17)
population. It is defined as follows. x

assigned treatment by the model:

Given an uplift model @ : X — ) for a binary treatment, ~ Where © is the step function defined below in Eq. (31).
we can use this model to decide whether to treat a member ~ Larger values of ERUPT correspond to better treatment
of the popu]ation T according to the rule: assignments by the model. ERUPT is maximal when @ = u.

In the experimental results of Fig. 13, the “cost” of treatment
c is taken to be the ATE. This choice is motivated by the
where ¢ denotes the threshold for treatment being “worth-  fact that with such a cost, a random baseline would break
while.” For example, if the outcome ) is continuous and even at ERUPT= 0. Fig. 13 also marks the performance of

treat z if 4(x) > ¢

reflects spend, this can be interpreted as the cost of the treat- ~ “always treat” and “never treat” baselines as well.
ment (over the baseline or control). The ERUPT metric
measures the performance of such assignments by calcu-  C.2. Bias and variance of Eq. (6)

lating the true uplift « (minus cost ¢) over those who were . . . L
& P ( ) In the following sections, we provide derivations of the

SCoined by S. Weiss (2019) in an eponymous Medium article. ~ core functions f¥({n(x,t)}; 0*) that appear in Sec. 3 and
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around which our method is built. We will perform these
calculations explicitly for the case in which the population is
partitioned into bins to ensure that the discretisation process
within our method does not introduce any bias into our
approach. So in this section, we begin with the derivation
of the bias and variance results of Eq. (8), but under the
assumption that the feature space X has been discretised
into k bins. Let B represent the set of these bins. The model
defined in Eq. (6) applied to bins b € B then becomes:

op1 + Z?:Uil) Yi,1)
apt + By + n(b, 1)

apo + Z/?:(bfo) Yi,0)
ap + Bro + n(b,0)

Ub) =

(18)

where each Y, 1) ~ p(y|X = Xju4),T = t) and each
Xib,e) ~ plp. Instead of estimating the uplift at a fixed
r € X, this is now an estimate of the average uplift in b:

1
u(b) = p(b)/b(IE[YX =x,t=1]
-~ E[Y|X =z,t=0])p(z)dz (19)
where
p0):= [ pla)da 0)

To see this, we calculate the expected value of U(b) in the
bin b. Since U (b) depends on random variables in both X
and Y, we apply the law of total expectation to see that

n(l,t)

n(b,t)/
E Yilxex. (| = E[Y|X =z, p(z)d
> Wixowa| =t [E0IX = tpteis
=:n(l,)E[Y]b, 1] 2D
and so
~ _apr + (b, )E[Y[bt =1]
E [U(b)} oy + By + n(b1)
o + n(b,0)E[Y[bt = 0] 22)

apo + Bro + n(b,0)

We see from this expression that in the limit of large n(b, t)

we have E[U(b)] — u(b). Similarly, we can apply the law
of total variance to calculate

n(b,t)

n(b, t

V{3 Vil = ") [VIYIX = alpo)da
=1

+n(b, ) VIE[Y]X]] (23)
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where we have leveraged the pairwise independence of sam-
ples (X, Y). It transpires that

n(b,t)
\% Z Yilx=x,:| = n(b,t) o*(b,t) (24)
i=1
where
a?(b,t) :=E[Y?|b,t] —E[Y|b,t]° (25)
So we can write
. B n(b, 1)o(b, 1)
v [U(b)} (w1 + Bu + n(b,1))?
2
(b, 0)0*(b,0) 6

(apo + Bro + n(b,0))?

Writing 0}, = E [Y'|b, t], we see that when )) = {0, 1} we
have

ay — (ap1 + Br) 054
apr + By +n(b,1)
051 (1 —65;)n(b,1)

(a1 + B + n(b, 1))2

E[U(b) — u(b)] = - (1-0)

V[U(b)] = + (1—=0) @7

in agreement with Eq. (8), though with a slightly altered
interpretation of 8*. The model of Eq. (18) then induces the
following model on X:

U(x) = 3 Ub)x(a € b)

beB

(28)

where x denotes the indicator function.

C.3. MSE-optimised sampler

Next we derive Eq. (9), but for the case in which we have
discretised X as described above. In this case, the MSE-
optimised sampler in fact aims to minimise the density-
weighted squared error of the predicted average uplift in
each bin b € B, rather than the squared error in uplift at
each point z € X. In particular,

p(®) E[(U(b) — u(b))?]

)=

E[MSE[U]]

=1

p(0) (B[0(0) — u(®)])* + V[T)])

o]

be
= —[2SF({n(0.1)}: 67)

where dependence on prior parameters, n(b, t), and 6* can
be inferred from Eq. (27).

(29)
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C4. ATE-optimised sampler

Next we derive the discretised analog of Eq. (10) for the
ATE-squared error:

IE[(ATE[U] - ATE[u})Z]

— E[ATE[U] — ATE[u]]” + V[ATE[U]]

= E{/X (U(x) — u(x))p(x) dxr

LJx

> (O)00) - [ue)pa)do)|

“beB b

> Ow)

“beB

(> ) E[O®) -

beB
— A ({n(b,t)}; 6%)

where dependence on prior parameters, n(b, t), and 6* can
be inferred from Eq. (27).

+V

=E

+V

)+Z V(U (b)

beB

(30)

C.5. AUQ-optimised sampler

Next we derive Eq. (11) for the AUQ in the large n(b, t)
limit. We first introduce some notation. Let

0 ifs <0
O(s) = 1/2 ifs=0 31
1 ifs >0
Then we can write
AUQ[UT = > p(b)p(t)u(¥)) OW ') — U(b))
b,b'eB
b'#£b
1
) > p(b)u(b (32)
beB

which implies

E[AUQIT]] = 3 p(b) p(t) u(¥) E [O(T () - U ()]

b,b'eB
b’ #£b

5 S p)uld)

beB

(33)

We thus need to compute

E[00®) - 0)) (34)
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We will not compute this exactly, but the central limit theo-
rem tells us that for large n(b, t) and n(', t), the difference

U(Y') — U(b) is approximately normally distributed, with
mean and variance given by
(', 0) =u®') —u(b) (35)
2,1 2,0 2(b,1 2(b
02(b/7b)20(7)+0(7)+0—(’) 0(70)
n(b’,1) n(t,0) n(b, 1) n(b,0)

where we have used the notation Eq. (25). (The depepdence
on the prior parameters oy and By drops out from U (b) in
the large n(b, t) limit.) Under this assumption,

E|OW®W)—-Ub 9 2) Puo(2)dz  (36)
:/ oo (2) 2
0
11 pu(b',b)
=~ 4 cerf
2" 3¢ ( 202(1)/,1)))

where erf denotes the error function , and we use ¢, 5 to
denote the normal density function with mean p(’, b) and
variance o2(b', b). It follows that

E[AUQ[U]] ~
/ / 1 u(b/)*u(b)
b) p(b b + —erf | ——=
b%gp() p(b)u®) |5+ 5 ( 202(b,,b)>]
b #b
5 S p)uld)
beB

in agreement with Eq. (11) up to a constant independent of
n(b, t) that can be dropped.
C.6. ERUPT-optimised sampler

Finally we derive f7 ({n(z,t)} ; 6*) for the ERUPT metric,
which turns out to be similar to the case of AUQ above:

E[ERUPT] = 7 E [0(0(b) — ¢)] / (u(x) — ¢) pl(z) da

beB b

N0} [@

beB

O(b) - )] () - o)

In the large n(b, t) limit, the central limit theorem implies
that U (b) — ¢ is approximately normally distributed, with
mean p;, = u(b) — ¢ and variance

2 UQ(bv 1)
2=

(37

g
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Thus, for each b € B, we have that

= /_OO O(zp)p(2p)dzp

o(zp)dz
)] a8

1 +erf< 205
>] (u(b) —¢)

(39)

E[@(Ub -

S—
3

MM—A

which then implies
~Y 5P POV e ( w
beB 2(‘Tb

= SR (b, 1) }:67)

E[ERUPT[U

D. Connection with importance sampling

Here we briefly view our approach to task-specific exper-
imentation from an alternative perspective. The different
distributions of n(z, t) values plotted in Fig. 1(d) and 1(e)
might lead one to wonder whether there could be a connec-
tion between our method and importance sampling.

A weak connection between our method and importance
sampling exists when the target metric can be viewed as
the error on the estimation of a particular integral. This
is explicitly true for the squared ATE error, and it is also
true for the AUQ but not for the MSE. (Up to a shift by
a constant, the AUQ can be interpreted as the difference
between the estimated integral AUQ[U ] and true integral
AUQ][u].) In this section we will assume the context of the
squared ATE error.

To make the connection, note that Eq. (2) can be written as

ATE = [ pla) plylet) (<) y dydida
X, T,Y
X, T,Y
where we have introduced an alternative sampling distri-
bution A(X,T) so that h(X,T) p(Y|X,T) defines a joint
probability distribution over (X', 7, ). Eq. (40) provides
an importance-sampling Monte Carlo estimate of the ATE
that depends on N independent samples (X;, T;,Y;) from
this joint distribution. Note the similarity between Eq. (40)
and ATE[U], i.e. the result of using Eq. (6) withaw = =0

in order to give an estimate of Eq. (2). The only difference
is that in ATE[U] the n(z, t) counts are controlled manually,

]W (=1)"*'y h(x, 1) dy dt da

p(X

DEY x, 1
> XZ,T)( ) | x,, 1,

(40)
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whereas in Eq. (40) the counts are stochastic, with expecta-
tion value n - h(z,t). We thus refer to Eq. (40) as ATE[U},),
as it can be interpreted as the ATE of an empirical uplift
model defined using samples from h(X, T').

The variance of ATE[U,] is given by

1 & X; _

MZV[,Z& %)< 1>T'+1Yi] (@1
’L:l 1 K3

_ l p(X)2 2 l 2

- 2B |t - e

B p(@)?E[Y?|X =2, T =t gt ATE?

N / n - h(x,t) YT
X, T

It follows from the Cauchy-Schwarz inequality that the
choice of h(X,T') that minimises this variance is given by

WXT) = o) VERIXT] @)
where Z is a constant normalisation factor. Sampling
from h*(X, T) differs from our proposed approach to task-
specific experimentation presented above, both because of
the stochasticity in the number of samples chosen in each
discrete bin (which is n - h(z,t) only in expectation) and
because of the weaker connection with Thompson sampling
(which is described precisely in Sec. 3 for the method of
this paper but which does not carry over cleanly to the im-
portance sampling setup).

Eq. (41) can be useful though in testing whether a particular
sampling distribution (X, T), e.g. an ordinary RCT or an
alternative proposal (such as uniform sampling in latent
space), should be expected to perform well.



