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Abstract
Curriculum learning (CL) - training using sam-
ples that are generated and presented in a mean-
ingful order - was introduced in the machine learn-
ing context around a decade ago. While CL has
been extensively used and analysed empirically,
there has been very little mathematical justifica-
tion for its advantages. We introduce a CL model
for learning the class of k-parities on d bits of
a binary string with a neural network trained by
stochastic gradient descent (SGD). We show that
a wise choice of training examples involving two
or more product distributions, allows to reduce
significantly the computational cost of learning
this class of functions, compared to learning under
the uniform distribution. Furthermore, we show
that for another class of functions - namely the
‘Hamming mixtures’ - CL strategies involving a
bounded number of product distributions are not
beneficial.

1. Introduction
Several experimental studies have shown that humans and
animals learn considerably better if the learning materials
are presented in a curated, rather than random, order (Elio
& Anderson, 1984; Ross & Kennedy, 1990; Avrahami et al.,
1997; Shafto et al., 2014). This is broadly reflected in the
educational system of our society, where learning is guided
by an highly organized curriculum. This may involve several
learning steps: with easy concepts introduced at first and
harder concepts built from previous stages.

Inspired by this, (Bengio et al., 2009) formalized a curricu-
lum learning (CL) paradigm in the context of machine learn-
ing and showed that for various learning tasks it provided
improvements in both the training speed and the perfor-
mance obtained at convergence. This seminal paper inspired
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many subsequent works, that studied curriculum learning
strategies in various application domains, e.g. computer
vision (Sarafianos et al., 2017; Dong et al., 2017), com-
putational biology (Xiong et al., 2021), auto-ML (Graves
et al., 2017), natural language modelling (Shi et al., 2013;
Zaremba & Sutskever, 2014; Shi et al., 2015; Campos,
2021). While extensive empirical analysis of CL strate-
gies have been carried out, there is a lack of theoretical
analysis. In this paper, we make progress in this direction.

A stylized family of functions that is known to pose com-
putational barriers is the class of k-parities over d bits of
a binary string. In this work we focus on this class. To
define this class: for each subset S of coordinates, the par-
ity over S is defined as +1 if the number of negative bits
in S is even, and −1 otherwise, i.e. χS(x) :=

∏
i∈S xi,

xi ∈ {±1}. The class of k-parities contains all χS such
that |S| = k and it has cardinality

(
d
k

)
. Learning k-parities

requires learning the support of χS by observing samples
(x, χS(x)), x ∈ {±1}d, with the knowledge of the cardi-
nality of S being k. This requires finding the right target
function among the

(
d
k

)
functions belonging to the class.

Learning parities is always possible, and efficiently so, by
specialized methods (e.g. Gaussian elimination over the
field of two elements). Moreover, ((Abbe & Sandon, 2020))
showed that there exists a neural net that learns parities of
any degree if trained by SGD with small batch size. How-
ever, this is a rather unconventional net. In fact, under the
uniform distribution, parities are not efficiently learnable
by population queries with any polynomially small noise.
The latter can be explained as follows. Assume we sam-
ple our binary string uniformly at random, i.e. for each
i ∈ {1, ..., d}, xi ∼ Rad(1/2)1. Then, the covariance be-
tween two parities χS , χS′ is given by:

Ex∼Rad(1/2)⊗d [χS(x)χS′(x)] =

{
1 if S = S′,

0 if S ̸= S′,

where x ∼ Rad(1/2)⊗d denotes the product measure such
that xi

iid∼ Rad(1/2), i ∈ {1, ..., d}. More abstractly, a
parity function of k bits is uncorrelated with any function
of k − 1 or less bits. This property makes parities hard
to learn for any progressive algorithm, such as gradient
descent. Indeed, when trying to learn the set of relevant

1z ∼ Rad(p) if P(z = 1) = 1− P(z = −1) = p.
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features, a learner cannot know how close its progressive
guesses are to the true set. In other words, all wrong guesses
are indistinguishable, which suggests that the learner might
have to perform exhaustive search among all the

(
d
k

)
sets.

The hardness of learning unbiased parities - and more in
general any classes of functions with low cross-correlations
- with gradient descent has been analysed e.g. in (Abbe &
Sandon, 2020), where the authors show a lower bound on the
computational complexity of learning low cross-correlated
classes with gradient-based algorithms with bounded gra-
dient precision. For k-parities, this gives a computational
lower bound of dΩ(k) for any architecture and initialization.

However, if we look at different product distributions, then
the inner product of a monomial and a component xi that
is inside and outside the support becomes distinguishable.
Suppose the inputs are generated as x ∼ Rad(p)⊗d, for
some p ∈ (0, 1). Then the covariance between χS and χS′

is:

Ex∼Rad(p)⊗d

[
(χS(x)− E[χS(x)]) · (χS′(x)− E[χS′(x)])

]
= µ2k−|S∩S′|

p − µ2k
p ,

where we denoted by µp := Ez∼Rad(p)[z] = 2p− 1. This
implies that if for instance |p − 0.5| > 0.1, just comput-
ing correlations with each bit, will recover the parity with
complexity linear in d and exponential in k. If we choose
p = 1− 1/k, say, we can get a complexity that is linear in d
and polynomial in k. Moreover, the statements above hold
even for parities with random noise.

This may lead one to believe that learning biased parities
is easy for gradient descent based methods for deep nets.
Indeed, (Malach et al., 2021) showed that biased parities are
learnable by SGD on a differentiable model consisting of a
linear predictor and a fixed module implementing the parity.
However, if we consider fully connected networks, as our
experiments show (Figure 1), while gradient descent for a
p far from a half converges efficiently to zero training loss,
the learned function actually has non-negligible error when
computed with respect to the uniform measure. This is intu-
itively related to the fact that, by concentration of measure,
there are essentially no examples with Hamming weight2

close to d/2 in the training set sampled under Rad(p)⊗d,
and therefore it is not reasonable to expect for a general
algorithm like gradient descent on fully connected networks
(that does not know that the target function is a parity) to
learn the value of the function on such inputs.

We thus propose a more subtle question: Is it possible to
generate examples from different product distributions and
present them in a specific order, in such a way that the error
with respect to the unbiased measure becomes negligible?

2The Hamming weight of x ∈ {±1}d is: H(x) =∑d
i=1 1(xi = 1).

As we mentioned, training on examples sampled from a
biased measure is not sufficient to learn the parity under the
unbiased measure. However, it does identify the support of
the parity. Our curriculum learning strategy is the following:
We initially train on inputs sampled from Rad(p)⊗d with p
close to 1, then we move (either gradually or by sharp steps)
towards the unbiased distribution Rad(1/2)⊗d. We show
that this strategy allows to learn the k-parity problem with
a computational cost of dO(1) with SGD on the hinge loss
or on the covariance loss (see Def. 3.2). In our proof, we
consider layer-wise training (similarly to e.g. (Malach et al.,
2021; Malach & Shalev-Shwartz, 2020; Barak et al., 2022))
and the result is valid for any (even) k and d.

As we mentioned earlier, the failure of learning parities un-
der the uniform distribution from samples coming from a
different product measure is due to concentration of Ham-
ming weight. This leads us to consider a family of functions
that we call Hamming mixtures. Given an input x, the out-
put of a Hamming mixture is a parity of a subset S of the
coordinates, where the subset S depends on the Hamming
weight of x (see Def. 2.4). Our intuition is based on the
fact that given a polynomial number of samples from, say,
the p = 1/4 biased measure, it is impossible to distinguish
between a certain parity χS and a function that is χS , for
x’s whose Hamming weight is at most 3/8d, and a differ-
ent function χT , for x’s whose Hamming weight is more
than 3/8d, for some T that is disjoint from S. In other
words, a general algorithm does not know whether there is
consistency between x’s with different Hamming weight.
We show a lower bound for learning Hamming mixtures
with curriculum strategies that do not allow to get enough
samples with relevant Hamming weight.

Of course, curriculum learning strategies with enough learn-
ing steps allow to obtain samples from several product distri-
butions, and thus with all relevant Hamming weights. There-
fore, we expect that CL strategies with unboundedly many
learning steps will be able to learn the Hamming mixtures.

While our results are restricted to a limited and stylized
setting, we believe they may open new research directions.
Indeed, we believe that our general idea of introducing cor-
relation among subsets of the input coordinates to facilitate
learning, may apply to more general settings. We discuss
some of these future directions in the conclusion section of
the paper.

Importantly, we remark that a limitation of the curriculum
strategy presented in this paper is that it requires an ora-
cle that provides labeled samples from arbitrary product
measures. However, in applications one usually has a fixed
dataset and would like to select samples in a suitable order,
to facilitate learning. We leave to future work the analysis
of a setting where curriculum and non-curriculum have a
common sampling distribution.
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Contributions. Our contributions are the following.

1. We propose and formalize a mathematical model for
curriculum learning;

2. We prove that our curriculum strategy allows to learn
k-parities with SGD with the hinge loss or with the co-
variance loss on a two-layers fully connected network
with a computational cost ofdO(1) ;

3. We empirically verify the effectiveness of our curricu-
lum strategy for a set of fully connected architectures
and parameters;

4. We propose a class of functions - theHamming mix-
tures- that is provably not learnable by some curricu-
lum strategies with �nitely many learning steps. We
conjecture that acontinuouscurriculum strategy (see
Def. 2.6) may allow to signi�cantly improve the per-
formance for learning such class of functions.

1.1. Related Work

Learning parities on uniform inputs. Learningk-parities
overd bits requires determining the set of relevant features
among

� d
k

�
possible sets. The statistical complexity of this

problem is thus� (k log(d)) . The computational complexity
is harder to determine.k-parities can be solved indO(1)

time by specialized algorithms (e.g. Gaussian elimination)
that have access to at leastd samples. In the statistical query
(SQ) framework (Kearns, 1998) - i.e. when the learner has
access only to noisy queries over the input distribution -k-
parities cannot be learned in less then
( dk ) computations.
(Abbe & Sandon, 2020; Shalev-Shwartz et al., 2017) showed
that gradient-based methods suffer from the same SQ com-
putational lower bound if the gradient precision is not good
enough. On the other hand, (Abbe & Sandon, 2020) showed
that one can construct a very speci�c network architecture
and initialization that can learn parities beyond this limit.
This architecture is however far from the architectures used
in practice. (Barak et al., 2022) showed that SGD can learn
sparsek-parities with SGD with batch sized� (k ) on a small
network. Moreover, they empirically provide evidence of
`hidden progress' during training, ruling out the hypothesis
of SGD doing random search. (Andoni et al., 2014) showed
that parities are learnable by ad� (k ) network. The problem
of learningnoisyparities (even with small noise) is conjec-
tured to be intrinsically computationally hard, even beyond
SQ models (Alekhnovich, 2003).

Learning parities on non-uniform inputs. Several
works showed that when the input distribution is not the
Unif f� 1gd, then neural networks trained by gradient-based
methods can ef�ciently learn parities. (Malach et al., 2021)
showed that biased parities are learnable by SGD on a dif-
ferentiable model consisting of a linear predictor and �xed

module implementing the parity. (Daniely & Malach, 2020)
showed that sparse parities are learnable on a two layers
network if the input coordinates outside the support of the
parity are uniformly sampled and the coordinates inside the
support are correlated. To the best of our knowledge, none
of these works propose a curriculum learning model to learn
parities under the uniform distribution.

Curriculum learning. Curriculum Learning (CL)in the
context of machine learning has been extensively analysed
from the empirical point of view (Bengio et al., 2009; Wang
et al., 2021; Soviany et al., 2022). However, theoretical
works on CL seem to be more scarce. In (Saglietti et al.,
2022) the authors propose an analytical model for CL for
functions depending on a sparse set of relevant features. In
their model, easy samples have low variance on the irrel-
evant features, while hard samples have large variance on
the irrelevant features. In contrast, our model does not re-
quire knowledge of the target task to select easy examples.
In (Weinshall et al., 2018; Weinshall & Amir, 2020) the au-
thors analyse curriculum learning strategies in convex mod-
els and show an improvement on the speed of convergence
of SGD. In contrast, our work covers an intrinsically non-
convex problem. Some works also analysed variants of CL:
e.g. self-paced CL (SPCL), i.e. curriculum is determined by
both prior knowledge and the training process (Jiang et al.,
2015), implicit curriculum, i.e. neural networks tend to con-
sistently learn the samples in a certain order (Toneva et al.,
2018). To a different purpose, (Abbe et al., 2021a; 2022a)
analyse staircase functions - sum of nested monomials of
increasing degree - and show that the hierarchical structure
of such tasks guides SGD to learn high degree monomials.
Moreover, (Re�netti et al., 2022; Kalimeris et al., 2019)
show that SGD learns functions of increasing complexity
during training. In a concurrent work (Abbe et al., 2023),
the authors propose a curriculum learning algorithm (named
`Degree Curriculum') that consists of training on Boolean
inputs of increasing Hamming weight, and they empirically
show that it reduces the sample complexity of learning pari-
ties on small input dimension. However, the paper does not
include a theoretical analysis of such curriculum.

2. De�nitions and Main Results

We de�ne a curriculum strategy for learning a general
Boolean target function. We will subsequently restrict our
attention to the problem of learning parities or mixtures of
parities. For brevity, we denote[d] = f 1; :::; dg. Assume
that the network is presented with samples(x; f (x)) , where
x 2 f� 1gd is a Boolean vector andf : f� 1gd ! R is
a target function that generates the labels. We consider a
neural networkNN(x; � ), whose parameters are initialized
at random from an initial distributionP0, and trained by
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stochastic gradient descent (SGD) algorithm, de�ned by:

� t +1 = � t � 
 t
1
B

BX

i =1

r � t L(� t ; f; x t
i ); (1)

for all t 2 f 0; :::; T � 1g, whereL is an almost surely
differentiable loss-function,
 t is the learning rate,B is
the batch size andT is the total number of training steps.
For brevity, we writeL (� t ; f; x ) := L(NN( :; � t ); f; x ). We

assume that for alli 2 [B ], x t
i

iid� D t , whereD t is a step-
dependent input distribution supported onf� 1gd. We de�ne
our curriculum learning strategy as follows. Recall that
z � Rad(p) if P(z = 1) = 1 � P(z = � 1) = p.

De�nition 2.1 (r-steps curriculum learning (r-CL)). For
a �xed r 2 N, let T1; :::Tr 2 N and p1; :::; pr 2 [0; 1].
Denote by�p := ( p1; :::; pr ) and �T := ( T1; :::; Tr � 1). We
say that a neural networkNN(x; � t ) is trained by SGD with
a r-CL( �T ; �p) if � t follows the iterations in (1) with:

D t = Rad( p1); 0 < t � T1;

D t = Rad( p2); T1 < t � T2;

� � �

D t = Rad( pr ); Tr � 1 < t � T:

We say thatr is the number ofcurriculum steps.

We assumer to be independent onT, in order to distinguish
ther -CL from thecontinuous-CL (see Def. 2.6 below). We
hypothesize thatr -CL may help to learn several Boolean
functions, if one chooses appropriater and�p. However, in
this paper we focus on the problem of learning unbiased
k-parities. For such class, we obtained that choosingr = 2 ,
a wisep1 2 (0; 1=2) andp2 = 1=2 brings a remarkable gain
in the computational complexity, compared to the standard
setting with no curriculum. An interesting future direction
would be studying the optimalr and�p. Before stating our
Theorem, let us clarify the generalization error that we are
interested in. As mentioned before, we are interested in
learning the target over the uniform input distribution.

De�nition 2.2 (Generalization error). We say that SGD
on a neural networkNN(x; � ) learns a target functionf :
f� 1gd ! R with r -CL( �T ; �p) up to error� , if it outputs a
networkNN(x; � T ) such that:

Ex � Rad(1 =2) 
 d

�
L (� T ; f; x )

�
� �; (2)

where L is any loss function such that
Ex � Rad(1 =2) 
 d [L (f; f; x )] = 0 .

We state here our main theoretical result informally. We
refer to Section 3.1 for the formal statement with exact
exponents and remarks.

Theorem 2.3(Main positive result, informal). There exists
a 2-CL strategy such that a 2-layer fully connected network

of dO(1) size trained by SGD with batch sizedO(1) can learn
anyk-parities (fork even) up to error� in at mostdO(1) =�2

iterations.

Let us analyse the computational complexity of the above.
At each step, the number of computations performed by a
2-layer fully connected network is given by:

(dN + N ) � B; (3)

whered is the input size,N is the number of hidden neurons
andB is the batch size. Multiplying by the total number
of steps and substituting the bounds from the Theorem we
get that we can learn thek-parity problem with a 2-CL
strategy in at mostdO(1) total computations. Speci�cally,
O(1) denotes quantities that do not depend onk or on d,
and the statement holds also for largek; d. We prove the
Theorem in two slightly different settings, see Section 3.1.

One may ask whether ther -CL strategy is bene�cial for
learning general target tasks (i.e. beyond parities). While we
do not have a complete picture to answer this question, we
propose a class of functions for which somer -CL strategies
are not bene�cial. We call those functions theHamming
mixtures, and we de�ne them as follows.

De�nition 2.4 ((S,T,� )-Hamming mixture). For � 2 [0; 1],
S; T 2 [d], we say thatGS;T;� : f� 1gd ! R is a (S,T,� )-
Hamming mixture if

GS;T;� (x) := � S (x)1(H (x) � �d ) + � T (x)1(H (x) > �d );

whereH (x) :=
P d

i =1 1(x i = 1) is the Hamming weight of
x, � S (x) :=

Q
i 2 S x i and� T (x) :=

Q
i 2 T x i are the parity

functions over setS andT respectively.

The intuition of why such functions are hard for somer -CL
strategies is the following. Assume we train on samples
(x; GS;T:� (x)) , with S; T disjoint and� 2 (0; 1=2). Assume
that we use a2-CL strategy and we initially train on samples
x � Rad(p) 
 d for somep < � . If the input dimensiond is
large, then the Hamming weight ofx is with high probability
concentrated aroundpd (e.g. by Hoeffding's inequality).
Thus, in the �rst part of training the network will see, with
high probability, only samples of the type(x; � S (x)) , and
it will not see the second addend ofGS;T;� . When we
change our input distribution toRad(1=2)
 d, the network
will suddenly observe samples of the type(x; � T (x)) . Thus,
the pre-training onp will not help determining the support
of the new parity� T (in some sense the network will “forget”
the �rst part of training). This intuition holds for allr -CL
such thatp1; :::; pr � 1 < � . We state our negative result for
Hamming mixtures here informally, and refer to Section 4
for a formal statement and remarks.

Theorem 2.5(Main negative result, informal). For eachr -
CL strategy withr bounded, there exists a Hamming mixture
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Figure 1.Learning20-parities with2-steps curriculum, with initial biasp1 = 39=40 (top-left), p1 = 19=20 (top-center),p1 = 1 =20
(top-right), with continuous curriculum (bottom-left) and with no curriculum (bottom-right). In all plots, we use a 2-layers ReLU MLP
with batch size 1024, input dimension 100, and 100 hidden units.

GS;T;� that is not learnable by any fully connected neural
network ofpoly(d) size and permutation-invariant initial-
ization trained by the noisy gradient descent algorithm (see
Def. 4.1) withpoly(d) gradient precision inpoly(d) steps.

Inspired by the hardness of Hamming mixtures, we de�ne
another curriculum learning strategy, where, instead of hav-
ing �nitely many discrete curriculum steps, we gradually
move the bias of the input distribution during training from
a starting pointp0 to a �nal point pT . We call this strategy
acontinuous-CL strategy.

De�nition 2.6 (Continuous curriculum learning (C-CL)).
Let p0; pT 2 [0; 1]. We say that a neural networkNN(x; � t )
is trained by SGD with a C-CL(p0; pT ; T) if � t follows the
iterations in (1) with:

D t = Rad
�

p0 + t �
pT � p0

T

�
t 2 [T]: (4)

We conjecture that a well chosen C-CL might be bene�cial
for learning any Hamming mixture. A positive result for
C-CL and comparison betweenr -CL and C-CL are left for
future work.

3. Learning Parities

3.1. Theoretical Results

Our goal is to show that the curriculum strategy that we
propose allows to learnk-parities with a computational
complexity ofdO(1) . We prove two different results. In
the �rst one, we consider SGD on the hinge loss and prove
that a network with� (d2) hidden units can learn thek-parity

problem indO(1) computations, if trained with a well chosen
2-CL strategy. Let us state our �rst Theorem.

Theorem 3.1(Hinge Loss). Let k; d be both even integers,
such thatk � d=2. LetNN(x; � ) =

P N
i =1 ai � (wi x+ bi ) be

a 2-layers fully connected network with activation� (y) :=
Ramp(y) (as de�ned in(9)) and N = ~� (d2 log(1=� ))3.
Consider trainingNN(x; � ) with SGD on the hinge loss with
batch sizeB = ~� (d10=�2 log(1=� )) . Then, there exists an
initialization, a learning rate schedule, and a 2-CL strategy
such that afterT = ~� (d6=�2) iterations, with probability
1 � 3� , SGD outputs a network with generalization error at
most� .

For our second Theorem, we consider another loss function,
that is convenient for the analysis, namely thecovariance
loss, for which we give a de�nition here.

De�nition 3.2 (Covariance loss). Let f : X ! R be a
target function and let̂f : X ! R be an estimator. Let

cov(f; f̂ ; x; P X ) :=

:=
�

f (x) � Ex 0� PX [f (x0)]
�

�
�

f̂ (x) � Ex 0� PX [f̂ (x0)]
�

;

wherePX is an input distribution supported inX . We de�ne
the covariance loss as

L cov (f; f̂ ; x; P X ) := max f 0; 1 � cov(f; f̂ ; x; P X )g:

Remark3.3. We will consider optimization over the covari-
ance loss through SGD with large batch size (B = ~� (d2k3)).
At each step, we use the batch to estimate �rst the inner ex-
pectations (i.e.Ex [f (x)] andEx [NN(x; � t )]) and then the

3~� (dc) = � (dc � poly(log( d))) , for all c 2 R.
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