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Abstract

Particle gradient descent, which uses particles to
represent a probability measure and performs gra-
dient descent on particles in parallel, is widely
used to optimize functions of probability mea-
sures. This paper considers particle gradient de-
scent with a finite number of particles and es-
tablishes its theoretical guarantees to optimize
functions that are displacement convex in mea-
sures. Concretely, for Lipschitz displacement
convex functions defined on probability over Rd,
we prove that O(1/ϵ2) particles and O(d/ϵ4) it-
erations are sufficient to find the ϵ-optimal so-
lutions. We further provide improved complex-
ity bounds for optimizing smooth displacement
convex functions. An application of our results
proves the conjecture of no optimization-barrier
up to permutation invariance, proposed by En-
tezari et al. (2022), for specific two-layer neural
networks with two-dimensional inputs uniformly
drawn from unit circle.

1. Introduction
Optimization in the space of probability measures has
wide applications across various domains, including
advanced generative models in machine learning (Ar-
jovsky et al., 2017), the training of two-layer neural net-
works (Chizat & Bach, 2019), variational inference using
Stein’s method (Liu & Wang, 2016), super-resolution in
signal processing (Bredies & Pikkarainen, 2013), and inter-
acting particles in physics (McCann, 1997).

Optimization in probability spaces goes beyond the con-
ventional optimization in Euclidean space. (Ambrosio

1 Laboratory for Information and Decision Systems, MIT
2Foundations of Data Science Institute (FODSI) 3Hariri Insti-
tute for Computing and Computational Science and Engineer-
ing, Boston University 4 Department of Electrical and Computer
Engineering at Princeton University. Correspondence to: Hadi
Daneshmand <hdanesh@mit.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

et al., 2005) extends the notion of steepest descent in Eu-
clidean space to the space of probability measures with
the Wasserstein metric. This notion traces back to studies
of the Fokker–Planck equation, a partial differential equa-
tion (PDE) describing the density evolution of Ito diffusion.
The Fokker–Planck equation can be interpreted as a gradi-
ent flow in the space of probability distributions with the
Wasserstein metric (Jordan et al., 1998). Gradient flows
have become general tools to go beyond optimization in
Euclidean space (Absil et al., 2009; Santambrogio, 2017;
Chizat, 2022; Carrillo et al., 2020; Carrillo & Shu, 2022;
Carrillo et al., 2021).

Gradient flows enjoy a fast global convergence on an im-
portant function class called displacement convex func-
tions (Ambrosio et al., 2005) which is introduced to analyze
equilibrium states of physical systems (McCann, 1997). De-
spite their fast convergence rate, gradient flows are hard to
implement. Specifically, there are numerical solvers only
for the limited class of linear functions with an entropy
regularizer.

We study a different method to optimize functions of prob-
ability measures called particle gradient descent (Chizat
& Bach, 2019; Chizat, 2022). This method restricts opti-
mization to sparse measures with finite support (Nitanda &
Suzuki, 2017; Chizat & Bach, 2019; Chizat, 2022; Li et al.,
2022) as

min
w1,...,wn

F

(
1

n

n∑
i=1

δwi

)
, (1)

where δwi
is the Dirac measure at wi ∈ Ω ⊂ Rd. Points

w1, . . . , wn are called particles. Particle gradient descent
is the standard gradient descent optimizing the particles (Ni-
tanda & Suzuki, 2017; Chizat & Bach, 2019; Chizat, 2022).
This method is widely used to optimize neural networks (Ni-
tanda & Suzuki, 2017; Chizat & Bach, 2019), take samples
from a broad family of distributions (Li et al., 2022), and
simulate gradient flows in physics (Carrillo & Shu, 2022).
As will be discussed, F is not convex in particles due to its
permutation-invariance to the particles. In that regard, the
convergence of particle gradient descent is not guaranteed
for general functions.

Gradient descent links to gradient flow as n → ∞. In this
asymptotic regime, (Chizat & Bach, 2019) proves that the
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empirical distribution over the particles w1, . . . , wn imple-
ments a (Wasserstein) gradient flow for F . Although the
associated gradient flow globally optimizes displacement
convex functions, the implication of such convergence has
remained unknown for a finite number of particles.

1.1. Main contributions.

We prove that particle gradient descent efficiently optimizes
displacement convex functions. Consider the sparse mea-
sure µn with support of size n. The error for µn can be
decomposed as

F (µn)− F ∗ :=

F (µn)−min
µn

F (µn)︸ ︷︷ ︸
optimization error

+min
µn

F (µn)− F ∗︸ ︷︷ ︸
approximation error

.

The optimization error in the above equation measures how
much the function value of µn can be reduced by particle
gradient descent. The approximation error is induced by
the sparsity constraint. While the optimization of particles
reduces the optimization error, the approximation error is
independent of the optimization and depends on n.

Optimization error. For displacement convex functions,
we establish the global convergence of variants of particle
gradient descent. Table 1 presents the computational com-
plexity of particle gradient descent optimizing smooth and
Lipschitz displacement convex functions. To demonstrate
the applications of these results, we provide examples of dis-
placement convex functions that have emerged in machine
learning, tensor decomposition, and physics.

Approximation error. Under a certain Lipschitz continu-
ity condition, we prove the approximation error is bounded
by O( 1√

n
) with a high probability. Furthermore, we prove

this bound can be improved to O(1/n) for convex and
smooth functions in measures.

Finally, we demonstrate the application of the established
results for a specific neural network with two-dimensional
inputs, and zero-one activations. When the inputs are drawn
uniformly from the unit circle, we prove that n-neurons
achieve O(1/n)-function approximation in polynomial time
for a specific function class.

2. Related works
There are alternatives to particle gradient descent for opti-
mization in the space of measures. For example, conditional
gradient descent optimizes smooth convex functions with
a sub-linear convergence rate (Frank & Wolfe, 1956). This
method constructs a sparse measure with support of size n
using an iterative approach. This sparse measure is O( 1n )-
accurate in F (Dunn, 1979; Jaggi, 2013). However, each

iteration of the conditional gradient method casts to a non-
convex optimization without efficient solvers. Instead, the
iterations of particle gradient descent are computationally
efficient.

(Chizat & Bach, 2019) establishes the link between Wasser-
stein gradient flows and particle gradient descent. This
study proves that particle gradient descent implements the
gradient flows in the limit of infinite particles for a rich
function class. The neurons in single-layer neural networks
can be interpreted as the particles whose density simulates
a gradient flow. The elegant connection between gradient
descent and gradient flows has provided valuable insights
into the optimization of neural networks (Chizat & Bach,
2019) and their statistical efficiency (Chizat & Bach, 2020).
In practice, particle gradient descent is limited to a finite
number of particles. Thus, it is essential to study particle
gradient descent in a non-asymptotic regime. In this paper,
we analyze optimization with a finite number of particles
for displacement convex functions.

Displacement convexity has been used in recent studies of
neural networks (Javanmard et al., 2019; Daneshmand &
Bach, 2022). (Javanmard et al., 2019) establishes the global
convergence of radial basis function networks using an ap-
proximate displacement convexity. (Daneshmand & Bach,
2022) proves the global convergence of gradient descent
for a single-layer network with two-dimensional inputs and
zero-one loss in realizable settings. Motivated by these ex-
amples, we analyze optimization for general (non-)smooth
displacement convex functions.

Displacement convexity relates to the rich literature on
geodesic convex optimization. Although the optimization
of geodesic convex functions is extensively analyzed by
(Zhang & Sra, 2016; Udriste, 2013; Absil et al., 2009)
for Riemannian manifolds, less is known for the non-
Riemannian manifold of probability measures with the
Wasserstein-2 metric (Jordan et al., 1998).

In machine learning, various objective functions do not
have any spurious local minima. This property was ob-
served in early studies of neural networks. (Baldi & Hornik,
1989) show that the training objective of two-layer neural
networks with linear activations does not have suboptimal
local minima. This proof is extended to a family of matrix
factorization problems, including matrix sensing, matrix
completion, and robust PCA (Ge et al., 2017). Smooth dis-
placement convex functions studied in this paper inherently
do not admit spurious local minima (Javanmard et al., 2020).

For functions with no spurious minima, escaping the saddle
points is crucial, which is extensively studied for smooth
functions (Jin et al., 2017; Daneshmand et al., 2018). Al-
though gradient descent may converge to suboptimal saddle
points, random initialization effectively avoids the conver-
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Function class Regularity Complexity

λ-displacement convex ℓ-smooth nd
(

ℓ−λ
ℓ+λ

)
log(ℓ/ϵ)

star displacement convex ℓ-smooth ndℓ
(
1
ϵ

)
λ-displacement convex L-Lipschitz ndL2/(λϵ)

star displacement convex L-Lipschitz ndℓ
(
1
ϵ

)
Table 1. Computational complexity to reach an ϵ-optimization error. See Theorems 4.1 and 5.1 for formal statements.

gence of gradient descent to saddle points (Lee et al.). Yet,
gradient descent may need a long time to escape saddles (Du
et al., 2017). To speed up the escape, (Jin et al., 2017) lever-
ages noise that allows escaping saddles in polynomial time.
Building on these studies, we analyze the escaping of sad-
dles for displacement convex functions.

Particle-based algorithms are also widely used in the con-
text of Stein’s variational inference (Liu & Wang, 2016;
Yang et al., 2020; Li et al., 2022; Korba et al., 2021). We
comment that Stein’s variational gradient descent studied
in that line of works is different from particle gradient de-
scent considered in this paper in the following two important
perspectives: (1) the update equations are different—their
algorithms can be viewed as a discretization an infinite di-
mensional gradient descent on the relative entropy (Korba
et al., 2020), and their update can not be written as a gradi-
ent descent of an objective function of discrete measures;
(2) their results only apply to objective functions of specific
forms that are either derived from Stein’s identity or more
generally admit a variational form (Yang et al., 2020). Our
analysis does not rely on a variational form for the objective
function. To elaborate on our problem settings and assump-
tions, we provide examples for which our assumptions hold.

3. Displacement convex functions
Note that the objective function F is invariant to the permuta-
tion of the particles. This permutation invariance concludes
that F is not convex as the next Proposition states.

Proposition 3.1. Suppose that w∗
1 , . . . , w

∗
n is the unique

minimizer of an arbitrary function F ( 1n
∑n

i=1 δwi) such
that w∗

1 ̸= w∗
2 . If F is invariant to the permutation of

w1, . . . , wn, then it is non-convex.

The condition of having distinct optimal particles, required
in the last Proposition, ensures the minimizer is not a trivial
minimizer for which all the particles are equal. Since there is
no global optimization method for non-convex functions, we
study the optimization of the specific family of displacement
convex functions.

3.1. Optimal transport

To introduce displacement convexity, we need to review the
basics of optimal transport theory. Consider two probability

measures µ and ν over Rd. A transport map from µ to ν is
a function T : Rd → Rd such that∫

A

ν(x)dx =

∫
T−1(A)

µ(x)dx (2)

holds for any Borel subset A of Rd (Santambrogio, 2017).
The optimal transport T ∗ has the minimum transportation
cost:

T ∗ = argmin
T

∫
cost(T (x), x)dµ(x).

We use the standard squared Euclidean distance function
for the transportation cost (Santambrogio, 2017). Remark-
ably, the transport map between distributions may not exist.
For example, one can not transport a Dirac measure to a
continuous measure.

In this paper, we frequently use the optimal transport map
for two n-sparse measures in the following form

µ =
1

n

n∑
i=1

δwi
, ν =

1

n

n∑
i=1

δvi . (3)

For the sparse measures, a permutation of [1, . . . , n], de-
noted by σ, transports µ to ν. Consider the set Λ, containing
all permutations of [1, . . . , n] and define

σ∗ = argmin
σ∈Λ

n∑
i=1

∥wi − vσ(i)∥2. (4)

The optimal permutation in the above equation yields the
optimal transport map from µ to ν as T ∗(wi) = vσ∗

i
, and

the Wasserstein-2 distance between µ and ν:

W 2
2 (µ, ν) =

n∑
i=1

∥wi − vσ∗(i)∥22. (5)

Note that we omit the factor 1/n in W 2
2 for ease of notation.

3.2. Displacement convex functions

The displacement interpolation between µ and ν is defined
by the optimal transport map as (McCann, 1997)

µt = ((1− t)Identity + tT ∗)# µ, (6)
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where G#µ denotes the measure obtained by pushing µ
with G. Note that the above interpolation is different
from the convex combination of measures, i.e., (1− t)µ+
tν. For sparse measure, the displacement interpolation is
(1− t)wi − twσ∗(i) for the optimal permutation σ∗ defined
in Eq. (4).

λ-displacement convexity asserts Jensen’s inequality along
the displacement interpolation (McCann, 1997) as

F (µt) ≤ (1−t)F (µ)+tF (ν)− λ

2
(1−t)(t)W 2

2 (µ, ν).

A standard example of a displacement convex function is a
convex quadratic function of measures.

Example 3.1. Consider

Q(µ) =

∫
K(x− y)dµ(x)dµ(y)

where µ is a measure over Rd and K(∆) is convex in ∆ ∈
Rd; then, Q is 0-displacement convex (McCann, 1997).

The optimization of Q over a sparse measure is convex 1.
However, this is a very specific example of displacement
convex functions. Generally, displacement convex functions
are not necessarily convex.

Recall the sparse measures defined in Eq. (3). While con-
vexity asserts Jensen’s inequality for the interpolation of
{wi} with all n! permutations of {vj}, displacement con-
vexity only relies on a specific permutation. In that regard,
displacement convexity is weaker than convexity. In the
following example, we elaborate on this difference.

Example 3.2. The energy distance between measures over
R is defined as

E(µ, ν) = 2

∫
|x− y|dµ(x)dν(y)

−
∫

|x− y|dµ(x)dµ(x)−
∫

|x− y|dν(x)dν(y). (7)

E(µ, ν) is 0-displacement convex in µ (Carrillo et al.,
2020).

According to Proposition 3.1, E does not obey Jensen’s
inequality for interpolations with an arbitrary transport map.
In contrast, E obeys Jensen’s inequality for the optimal
transport map, since it is monotone in R (Carrillo et al.,
2020). This key property concludes E is displacement con-
vex.

Remarkably, the optimization of the energy distance has
applications in machine learning and physics. Daneshmand
& Bach (2022) show that the training of two-layer neural

1Q does not satisfy the condition of Proposition 3.1.

networks with two-dimensional inputs (uniformly drawn
from the unit sphere) casts to minimizing E(µ, ν) in a sparse
measure µ. The optimization of the energy distance has
been also used in clustering (Székely & Rizzo, 2017). In
physics, the gradient flow on the energy distance describes
interacting particles from two different species (Carrillo
et al., 2020).

3.3. Star displacement convex functions

Our convergence analysis extends to a broader family of
functions. Let µ̂ denote the optimal n-sparse solution for
the optimization in Eq. (1), and µt is obtained by the dis-
placement interpolation between µ and µ̂. Star displacement
convex function F obeys∑

i

⟨wi − T (wi), ∂wi
F (µ)⟩ ≥ F (µ)− F (µ̂),

where T is the optimal transport map from µ to µ̂. The above
definition is inspired by the notion of star-convexity (Nes-
terov & Polyak, 2006). It is easy to check that 0-
displacement convex functions are star displacement con-
vex.

Star displacement convex optimization is used for generative
models in machine learning. An important family of gener-
ative models optimizes the Wasserstein-2 metric (Arjovsky
et al., 2017). Although Wasserstein 2 is not displacement
convex (Santambrogio, 2017), it is star displacement con-
vex.

Example 3.3. Wp(µ, ν) is star displacement convex in µ
as long as µ and ν has sparse supports of the same size.

Star displacement convexity holds for complete orthogonal
tensor decomposition. Specifically, we consider the follow-
ing example of tensor decomposition.

Example 3.4. Consider the orthogonal complete tensor
decomposition of order 3, namely

min
w1,...,wd∈Rd

G

(
1

n

d∑
i=1

δwi

)
= −

d∑
i=1

d∑
j=1

〈
wj

∥wj∥
, vi

〉3
 ,

where v1, . . . , vd are orthogonal vectors over the unit sphere
denoted by Sd−1.

Although orthogonal tensor decomposition is not con-
vex (Anandkumar et al., 2014), the next lemma proves that
it is star displacement convex.

Lemma 3.2. G is star displacement convex for
w1, . . . , wn ∈ Sd−1.

To prove the above lemma, we leverage the properties of the
optimal transport map used for displacement interpolation.
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There are more examples of displacement convex func-
tions in machine learning (Javanmard et al., 2020) and
physics (Carrillo & Slepčev, 2009). Motivated by these
examples, we analyze displacement convex optimization.

4. Optimization of smooth functions
Gradient descent is a powerful method to optimize smooth
functions (see Appendix A for the definition) that enjoy a
dimension-free convergence rate to a critical point (Nes-
terov, 2003). More interestingly, a variant of gradient de-
scent converges to local optimum (Daneshmand et al., 2018;
Jin et al., 2017; Ge et al., 2015; Xu et al., 2018; Zhang
et al., 2017). Here, we prove gradient descent globally op-
timizes the class of (star) displacement convex functions.
Our results are established for the standard gradient descent,
namely the following iterates

w
(k+1)
i = w

(k)
i − γ∂wi

F (µk), µk :=
1

n

n∑
i=1

δ
w

(k)
i

, (8)

where ∂wi
F denotes the gradient of F with respect to wi.

The next Theorem establishes the convergence of gradient
descent.

Theorem 4.1. Assume F is ℓ-smooth, and particle gradient
descent starts from distinct particles w

(0)
1 ̸= . . . ̸= w

(0)
n .

Let µ̂ denote the optimal solution of (1).

(a) For (λ > 0)-displacement functions,

F (µk+1)− F (µ̂) ≤ ℓ

(
1−

(
2λℓγ

ℓ+ λ

))k

W 2
2 (µ0, µ̂)

holds as long as γ ≤ 2/(λ+ ℓ).

(b) Under 0-displacement convexity,

F (µk+1)− F (µ̂)

≤ 2(F (µ0)− F (µ̂))W 2
2 (µ0, µ̂)

2W 2
2 (µ0, µ̂) + (F (µ0)− F (µ̂))γk

holds for γ ≤ 1/ℓ.

(c) Suppose that F is star displacement convex and
maxm∈{1,...,k} W

2
2 (µm, µ̂) ≤ r2; then

F (µk+1)− F (µ̂) ≤ 2(F (µ0)− F (µ̂))r2

2r2 + (F (µ0)− F (µ̂))γk

holds for γ ≤ 1/ℓ.

Table 2 compares convergence rates for convex and dis-
placement convex functions. We observe an analogy be-
tween the rates. The main difference is the replacement
of Euclidean distance by the Wasserstein distance in the

Function class Convergence rate

λ-disp. convex ℓ
(

ℓ−λ
ℓ+λ

)k
W 2

2 (µ0, µ̂)

λ-strongly convex ℓ
2

(
ℓ−λ
ℓ+λ

)k∑
i ∥wi − w∗

i ∥22
0-disp. convex 2LW 2

2 (µ0, µ̂)k
−1

convex 2L
(∑

i ∥wi − w∗
i ∥22
)
(k + 4)−1

Table 2. Convergence rates for the optimization of ℓ-smooth func-
tions. We use the optimal choice for the stepsize γ to achieve the
best possible rate. Recall µ̂ = 1

n

∑n
i=1 δw∗

i
denotes the optimal

solution for Eq. (1). Rates for convex functions: (Nesterov, 2003).
Rates for displacement convex functions: Theorem 4.1.

rates for displacement convex functions. This replace-
ment is due to the permutation invariance of F . The Eu-
clidean distance between (w∗

1 , . . . , w
∗
n) and permuted par-

ticles (w∗
σ(1), . . . , w

∗
σ(n)) can be arbitrary large, while F is

invariant to the permutation of particles w1, . . . , wn. Proven
by the last Theorem 4.1, Wasserstein distance effectively
replaces the Euclidean distance for permutation invariant
displacement convex functions.

Smooth displacement convex functions are non-convex,
hence have saddle points. However, displacement convex
functions do not have suboptimal local minima (Javanmard
et al., 2020). Such property has been frequently observed
for various objective functions in machine learning. To opti-
mize functions without suboptimal local minima, escaping
saddle points is crucial since saddle points may avoid the
convergence of gradient descent (Ge et al., 2015). (Lee
et al.) proves that random initialization effectively avoids
the convergence of gradient descent to saddle points. Sim-
ilarly, the established global convergence results rely on
a weak condition on initialization: The particles have to
be distinct. A regular random initialization satisfies this
condition.

Escaping saddles with random initialization may require
considerable time for general functions. (Du et al., 2017)
propose a smooth function on which escaping saddles may
take an exponential time with the dimension. Notably, the
result of the last theorem holds specifically for displacement
convex functions. For this function class, random initial-
ization not only enables escaping saddles but also leads to
global convergence.

Remarkably, the convergence bound for star displacement
convex functions requires W 2

2 (µm, µ̂) to be bounded by a
constant for all m = 1, . . . , k. We postulate this technical
assumption is not necessary and can be proven in future
research.

5



Efficient displacement convex optimization with particle gradient descent

5. Optimization of Lipschitz functions
The smoothness is a strong restriction. The training loss
of neural networks with the standard ReLU activation is
not smooth. In physics, energy functions often are not
smooth (McCann, 1997; Carrillo & Shu, 2022). Further-
more, recent sampling methods are developed based on
non-smooth optimization with particle gradient descent (Li
et al., 2022). Thus, it is important to study the optimization
of non-smooth. Here, we focus on non-smooth Lipschitz
functions (see Appendix A for more details) which obey
displacement convexity.

To optimize non-smooth functions, we add noise to gradient
iterations as

w
(k+1)
i = w

(k)
i − γk

(
∂wi

F (µk) +
1√
n
ξ
(k)
i

)
(PGD)

where ξ
(k)
1 , . . . ξ

(k)
n ∈ Rd are random vectors uniformly

drawn from the unit ball. ∂wi
F denotes the sub-gradient of

F with respect to wi. In the appendix D.1, we prove the
set of sub-gradients is not empty for displacement convex
functions.

The above perturbed gradient descent (PGD) is widely used
in smooth optimization to escape saddle points (Ge et al.,
2015). The next Theorem proves this random perturbation
can be leveraged for optimization of non-smooth functions,
which are (star) displacement convex.

Theorem 5.1. Consider the optimization of a L-Lipschitz
function with PGD starting from w

(0)
1 ̸= . . . ̸= w

(0)
n .

a. If F is λ-displacement convex, then

min
k∈{1,...,m}

{E [F (µk)− F (µ̂)]} ≤ 2(L2 + 1)

λ(m+ 1)

holds for γk = 2/(λ(k + 1)).

b. If F is star displacement convex, then

min
k∈{1,...,m}

{E [F (µk)− F (µ̂)]}

≤ 1√
m

(
W 2

2 (µ0, µ̂) + L+ 1
)

holds for γ1 = · · · = γm = 1/
√
m.

Notably, the above expectations are taken over random vec-
tors ξ(k)1 , . . . ξ

(k)
n .

Thus, PGD yields an ϵ-optimization error with O(1/ϵ2)
iterations to reach ϵ-suboptimal solution for Lipschitz dis-
placement convex functions. This rate holds for the opti-
mization of the energy distance since it is 2-Lipschitz and

0-displacement convex (Carrillo et al., 2020). Daneshmand
& Bach (2022) also establishes the convergence of gradi-
ent descent on the specific example of the energy distance.
The last Theorem extends this convergence to the general
function class of non-smooth Lipschitz displacement convex
functions.

6. Approximation error
Now, we turn our focus to the approximation error. We pro-
vide bounds on the approximation error for two important
function classes:

(i) Lipschitz functions in measures.

(ii) Convex and smooth functions in measures.

For (i), we provide the probabilistic bound O
(

1√
n

)
on the

approximation error; then, we improve the bound to O( 1n )
for (ii).

6.1. Lipschitz functions in measures

We introduce a specific notion of Lipschitz continuity for
functions of probability measures. This notion relies on
Maximum Mean Discrepancy (MMD) between probability
measures. Given a positive definite kernel K, MMDK is
defined as

(MMDK(µ, ν))
2
=

∫
K(w, v)dµ(w)dµ(v)

− 2

∫
K(w, v)dµ(w)dν(v) +

∫
K(w, v)dν(w)dν(v)

MMD is widely used for the two-sample test in machine
learning (Gretton et al., 2012). Leveraging MMD, we define
the following Lipschitz property.

Definition 6.1 (L-MMDK Lipschitz). F is L-MMDK Lip-
schitz, if there exists a positive definite Kernel K such that

|F (µ)− F (ν)| ≤ L× MMDK(µ, ν)

holds for all probability measures µ and ν.

Indeed, the above Lipschitz continuity is an extension of
the standard Lipschitz continuity to functions of probability
measures. A wide range of objective functions obeys the
above Lipschitz continuity. Particularly, (Chizat & Bach,
2019) introduces a unified formulation for training two-
layer neural networks, sparse deconvolution, and tensor
decomposition as

R

(∫
Φ(w)dµ(w)

)
(9)
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where Φ : Rd → H is a map whose range lies in the Hilbert
space H and R : H → R+. Under a weak assumption, R is
L-MMDK Lipschitz.
Proposition 6.2. If R is L-Lipschitz in its input, then it is
L-MMDK-Lipschitz for K(w, v) = ⟨Φ(w),Φ(v)⟩.

Thus, the class of Lipschitz functions is rich. For this func-
tion class, O( 1√

n
)-approximation error is achievable.

Proposition 6.3. Suppose that there exists a uniformly
bounded kernel ∥K∥∞ ≤ B such that F is L-MMDK Lips-
chitz; then,

min
µn

F (µn)− F ∗ ≤ 3
√
B√
n

holds with probability at least 1− exp(−1/n).

The last Proposition is a straightforward application of The-
orem 7 in (Gretton et al., 2012). Combining the above result
with Theorem 5.1 concludes the total complexity of O(d/ϵ4)
to find an ϵ-optimal solution for Lipschitz displacement
functions. The complexity can be improved to O(d/ϵ2) for
smooth functions according to Theorem 4.1.

The established bound O(1/
√
n) can be improved under

assumptions on the kernel K associated with the Lips-
chitz continuity. For d-differentiable shift-invariant kernels,
(Xu et al., 2022) establishes a considerably tighter bound
O( log(n)

d

n ) when the support of the optimal measure is a
subset of the unit hypercube.

6.2. Convex functions in measures

If F is convex and smooth in µ, we can get a tighter bound
on the approximation error.
Lemma 6.4. Suppose F is convex and smooth in µ. If the
probability measure µ is defined over a compact set, then

min
µn

F (µn)− F ∗ = O

(
1

n

)
holds for all n.

The proof of the last Lemma is based on the convergence rate
of the Frank-Wolfe algorithm (Jaggi, 2013). This algorithm
optimizes a smooth convex function by adding particles
one by one. After n iterates, the algorithm obtains an n-
sparse measure which is O(1/n)-suboptimal. Bach (2017)
leverages this proof technique to bound the approximation
error for neural networks. The last lemma extends this result
to a broader function class.

Remarkably, the energy distance is convex and smooth in µ,
hence enjoys O(1/n)-approximation error as stated in the
next lemma.
Lemma 6.5. E(µ, ν) is convex and smooth in µ when µ
and ν have a bounded support.

6.3. Applications for neural networks

The training loss of neural networks is non-convex due to
the invariance to the permutation of neurons. Based on
extensive experimental observations, Entezari et al. (2022)
postulate the optimization of neural networks has no barrier
up to this permutation invariance. An application of our
analysis proves this conjecture for a toy neural network with
two-dimensional inputs.

Consider the class of functions in the following form

f(x) =

∫
φ(x⊤w)dν(w) (10)

where x,w ∈ R2 lies on the unit circle and ν is a measure
with support contained in the upper-half unit circle. φ is the
standard zero-one ridge function:

φ(a) =

{
1 a > 0

0 a ≤ 0
. (11)

The above function is used in the original MacCulloch-
Pitts model for neural networks (McCulloch & Pitts, 1943).
To approximate function f , one may use a neural network
with a finite number of neurons implementing the following
output function:

fn(x) =
1

n

n∑
i=1

φ(x⊤wi), (12)

where w1, . . . , wn are points over the unit circle represent-
ing the parameters of the neurons. To optimize the loca-
tion of w1, . . . , wn, one may minimize the standard mean-
squares loss as

min
w1,...,wn

(
L(w) := E

x
(fn(x)− f(x))

2

)
. (13)

As is stated in the next corollary, PGD optimizes L up
to the approximation error when the input x is distributed
uniformly over the unit circle.

Corollary 6.6. Suppose that the input x is drawn uniformly
over the unit circle. After a specific transformation of the
coordinates for w1, . . . , wn, PGD with n particles with
stepsize γk = 1/

√
k obtains w(k) := [w

(k)
1 , . . . , w

(k)
n ] after

k iteration such that

min
i∈{1,...,k}

E
[
L(w(i))

]
= O(

n√
k
+

1

n
) (14)

holds where the expectation is taken over the algorithmic
randomness of PGD.

The last corollary is the consequence of part b of The-
orem 5.1, and the approximation error established in
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Figure 1. The convergence of PGD for the energy distance. Hori-
zontal: log(k); vertical: log(E(µk, ν)−E(µ̂, ν)). The red dashed
line is the theoretical convergence rate. The blue line is the con-
vergence observed in practice for the average of 10 independent
runs.

Lemma 6.4. For the proof, we use the connection between
L and the energy distance derived by (Daneshmand & Bach,
2022). While (Daneshmand & Bach, 2022) focuses on re-
alizable settings, the last corollary holds for non-realizable
settings when the measure ν is not an n-sparse measure.

A line of research investigates hidden convexity structure
in optimization of neural networks (Bartan & Pilanci, 2023;
Mishkin et al., 2022; Ergen & Pilanci, 2021). In particular,
these studies cast the training of two-layer neural networks
to a convex optimization. While these interesting results rely
on overparameterization, the result of the last lemma holds
for the population loss, hence in an under-parameterized
regime.

6.4. Applications for one-dimensional clustering

The energy distance is used for clustering (Székely & Rizzo,
2017). Clustering can be formulated as an optimization over
sparse measure measures as (Peyré et al., 2019)

min
w1,...,wn

dist

(
1

n

n∑
i=1

δwi
, µ

)

where dist denotes a proper distance metric for probability
distributions. For example, k-means relies on Wasserstein
distance (Peyré et al., 2019). An alternative to Wasserstein
distance is the energy distance (Székely & Rizzo, 2017).
The last theorem ensures O(1/

√
k) global-convergence-rate

for PGD optimizing the energy distance for one-dimensional
clustering. While k-means algorithms rely on expecta-
tion maximization, we leverage particle gradient descent
to achieve this global convergence. Thus, we call for future
research on clustering with particle gradient descent.

7. Experiments
We experimentally validate established bounds on the ap-
proximation and optimization error. Specifically, we vali-
date the results for the example of the energy distance, which

obeys the required conditions for our theoretical results2.

7.1. Optimization of the energy distance

As noted in Example 3.2, the energy distance is displace-
ment convex. Furthermore, it is easy to check that this
function is 2-Lipschitz. For the sparse measures in Eq. (3),
the energy distance has the following form

n2E(µ, ν) = 2

n∑
i,j=1

|wi − vj |

−
n∑

i,j=1

|vi − vj | −
n∑

i,j=1

|wi − wj |,

where n = 100 for this experiment. We draw v1, . . . , vn
at random from uniform[0, 1]. Since E is not a smooth
function, we use PGD to optimize w1, . . . , wn ∈ R. In
particular, we use ξ

(k)
1 i.i.d. from uniform[−0.05, 0.05].

For the stepsize, we use γk = 1/
√
k required for the con-

vergence result in Theorem 5.1 (part b). In Figure 1, we
observe a match between the theoretical and experimental
convergence rate for PGD.

7.2. Approximation error for the energy distance

Lemma 6.4 establish O(1/n) approximation error for con-
vex functions of measures. Although the energy distance
E(µ, ν) is not convex in the support of µ, it is convex
and smooth in µ as stated in Lemma 6.5. Thus, O(1/n)-
approximation error holds for the energy distance. We ex-
perimentally validate this result. Consider the recover of
ν =uniform[−1, 1] by minimizing the energy distance as

E(µ, ν) =
2

n

n∑
i=1

|wi − v|dν(v)

− 1

n2

n∑
i,j=1

|wi − wj | −
∫

|v − v′|dν(v)dν(v′).

The above integrals can be computed in closed forms using∫ 1

−1
|w − v|dν(v) = w2 + 1. Hence, we can compute

the derivative of E with respect to wi. We run PGD with
stepsize determined in the part b of Theorem 5.1 for k = 3×
105 iterations and various n ∈ {22, . . . , 28}. Figure 2 shows
how the error decreases with n in the log-log scale. In this
plot, we observe that E enjoys a mildly better approximation
error compared to the established bound O(1/n).

7.3. Clustering in R

In Section 6.4, we discussed clustering using particle gradi-
ent descent. We illustrate the outputs of such clustering for

2The implementation is available on the GitHub repository
https://github.com/hadidaneshmand/icml23 pgd
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Figure 2. Approximation error for the energy distance. Hori-
zontal: n; vertical: E(µ̂n, ν) where µ̂n is obtained by 3 × 105

iterations of PGD with n particles. The red dashed line is the
theoretical O(1/n)-bound for the approximation error. The plot is
in the log-scale for both axes. The (blue) plot shows the average
of 10 independent runs.

a mixture of Gaussian over R. Specifically, we run particle
gradient descent with three particles to cluster a mixture of
three Gaussian distributions. Figure 3 shows particles be-
fore and after optimization, demonstrating the convergence
of particles to the means of mixtures.

3 2 1 0 1 2 3
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0.6

0.8

1.0

3 2 1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

Initialization After optimization

Figure 3. Clustering in R with PGD. Solid curves show the mix-
ture distribution. Vertical dashed lines marks the locations of
{w1, w2, w3} at initialization (left) and after 20000 iterations of
PGD (right). In this experiment, we use 100 samples from each
distribution.

8. Discussions
We establish a non-asymptotic convergence rate for parti-
cle gradient descent when optimizing displacement convex
functions of measures. Leveraging this convergence rate,
we prove the optimization of displacement convex functions
of (infinite-dimensional) measures can be solved in polyno-
mial time with input dimension, and the desired accuracy
rate. This finding will be of interest to various communi-
ties, including the communities of non-convex optimization,
optimal transport theory, particle-based sampling, and theo-
retical physics.

The established convergence rates are limited to particle
gradient descent. Yet, there may be other algorithms that

converge faster than this algorithm. There is ample research
on lower-bound complexities required to optimize convex
function (Nesterov, 2003). Given that displacement convex
functions do not obey the conventional notion of convexity,
it is not clear whether these lower bounds extend to this
specific class of non-convex functions. More research is
needed to establish (Oracle-based) lower-computational-
complexities for displacement convex optimization.

Nesterov’s accelerated gradient descent enjoys a consider-
ably faster convergence compared to gradient descent in
convex optimization. Indeed, this method attains the opti-
mal convergence rate using only first-order derivatives of
smooth convex functions (Nesterov, 2003). This motivates
future research to analyze the convergence of accelerated
gradient descent on displacement convex functions.

We provided examples of displacement convex functions,
including the energy distance. Displacement convex func-
tions are not limited to these examples. A progression of
this work is to assess the displacement convexity of various
non-convex functions. In particular, non-convex functions
invariant to permutation of the coordinates, including la-
tent variable models and matrix factorization (Anandkumar
et al., 2014), may obey displacement convexity under weak
assumptions.

A major limitation of our result is excluding displace-
ment convex functions with entropy regularizers that have
emerged frequently in physics (McCann, 1997). The en-
tropy is displacement convex. It is challenging to estimate
entropy using sparse measures. Thus, particle gradient de-
scent is not practical for the optimization of functions with
an entropy regularizer. To optimize such functions, the exist-
ing literature uses a system of interacting particles solving
a stochastic differential equation (Philipowski, 2007). In
asymptotic regimes, this algorithm implements a gradient
flow converging to the global optimal measure (Philipowski,
2007). To assess the complexity of these particle-based
algorithms, we need non-asymptotic analyses for a finite
number of particles.
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Carrillo, J. A. and Slepčev, D. Example of a displacement
convex functional of first order. Calculus of Variations
and Partial Differential Equations, 2009.

Carrillo, J. A., Francesco, M. D., Esposito, A., Fagioli, S.,
and Schmidtchen, M. Measure solutions to a system of
continuity equations driven by newtonian nonlocal inter-
actions. Discrete and Continuous Dynamical Systems, 40
(2):1191–1231, 2020.

Chizat, L. Sparse optimization on measures with over-
parameterized gradient descent. Mathematical Program-
ming, 2022.

Chizat, L. and Bach, F. On the global convergence of gradi-
ent descent for over-parameterized models using optimal
transport. Proceedings of Conference on Neural Informa-
tion Processing Systems, 2019.

Chizat, L. and Bach, F. Implicit bias of gradient descent for
wide two-layer neural networks trained with the logistic
loss. In Conference on Learning Theory, pp. 1305–1338.
PMLR, 2020.

Daneshmand, H. and Bach, F. Polynomial-time sparse mea-
sure recovery: From mean field theory to algorithm de-
sign, 2022.

Daneshmand, H., Kohler, J., Lucchi, A., and Hofmann, T.
Escaping saddles with stochastic gradients. In Interna-
tional Conference on Machine Learning, 2018.

Du, S. S., Jin, C., Lee, J. D., Jordan, M. I., Singh, A., and
Poczos, B. Gradient descent can take exponential time
to escape saddle points. Advances in neural information
processing systems, 2017.

Dunn, J. C. Rates of convergence for conditional gradient al-
gorithms near singular and nonsingular extremals. SIAM
Journal on Control and Optimization, 1979.

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B. The
role of permutation invariance in linear mode connectivity
of neural networks. ICLR, 2022.

Ergen, T. and Pilanci, M. Convex geometry and duality
of over-parameterized neural networks. The Journal of
Machine Learning Research, 22(1):9646–9708, 2021.

Frank, M. and Wolfe, P. An algorithm for quadratic pro-
gramming. Naval research logistics quarterly, 3(1-2):
95–110, 1956.

Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from
saddle points—online stochastic gradient for tensor de-
composition. In Conference on learning theory, 2015.

Ge, R., Jin, C., and Zheng, Y. No spurious local minima in
nonconvex low rank problems: A unified geometric anal-
ysis. In International Conference on Machine Learning,
pp. 1233–1242, 2017.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,
and Smola, A. A kernel two-sample test. The Journal of
Machine Learning Research, 2012.

Jaggi, M. Revisiting frank-wolfe: Projection-free sparse
convex optimization. In International Conference on
Machine Learning, pp. 427–435, 2013.

10



Efficient displacement convex optimization with particle gradient descent

Javanmard, A., Mondelli, M., and Montanari, A. Analysis
of a two-layer neural network via displacement convexity.
2019.

Javanmard, A., Mondelli, M., and Montanari, A. Analysis
of a two-layer neural network via displacement convexity.
The Annals of Statistics, 48(6):3619–3642, 2020.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,
M. I. How to escape saddle points efficiently. In Interna-
tional Conference on Machine Learning, pp. 1724–1732.
PMLR, 2017.

Jordan, R., Kinderlehrer, D., and Otto, F. The variational
formulation of the fokker–planck equation. SIAM journal
on mathematical analysis, 29(1):1–17, 1998.

Korba, A., Salim, A., Arbel, M., Luise, G., and Gretton, A.
A non-asymptotic analysis for stein variational gradient
descent. Advances in Neural Information Processing
Systems, 2020.

Korba, A., Aubin-Frankowski, P.-C., Majewski, S., and
Ablin, P. Kernel stein discrepancy descent. In Interna-
tional Conference on Machine Learning, pp. 5719–5730.
PMLR, 2021.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B.
Gradient descent only converges to minimizers. In Con-
ference on Learning Theory.

Li, L., Liu, Q., Korba, A., Yurochkin, M., and Solomon,
J. Sampling with mollified interaction energy descent.
arXiv preprint arXiv:2210.13400, 2022.

Liu, Q. and Wang, D. Stein variational gradient descent: A
general purpose bayesian inference algorithm. Advances
in neural information processing systems, 2016.

McCann, R. J. A convexity principle for interacting gases.
Advances in mathematics, 1997.

McCulloch, W. S. and Pitts, W. A logical calculus of the
ideas immanent in nervous activity. The bulletin of math-
ematical biophysics, 1943.

Mishkin, A., Sahiner, A., and Pilanci, M. Fast convex opti-
mization for two-layer relu networks: Equivalent model
classes and cone decompositions. In International Con-
ference on Machine Learning, pp. 15770–15816. PMLR,
2022.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course. Springer Science & Business Media,
2003.

Nesterov, Y. and Polyak, B. T. Cubic regularization of
newton method and its global performance. Mathematical
Programming, 2006.

Nitanda, A. and Suzuki, T. Stochastic particle gradi-
ent descent for infinite ensembles. arXiv preprint
arXiv:1712.05438, 2017.
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A. Function classes
Our focus is on four main function classes:

• F is ℓ-smooth when it is continuously differentiable w.r.t w1, . . . , wn and its gradient is ℓ-Lipschitz.

• F is L-Lipschitz if its subgradients are bounded by L.

• F is smooth in measure µ when its functional differentiable and its differential in µ is Lipschitz.

• The Lipschitzness in µ is defined in Definition 6.1.

B. Displacement convexity
B.1. Proof of Proposition 3.1

Suppose that w∗
1 , . . . , w

∗
n is the unique minimizer of F such that w∗

1 ̸= w∗
2 . Let σ is a non monotone permutation of

{1, . . . , n}. Interpolating the parameters {w∗
i } with the permuted {w∗

σ(i)} concludes F is not convex since

F

(
1

n

n∑
i=1

δ(1−t)w∗
i +tw∗

σ(i)

)
> tF

(
1

n

n∑
i=1

δw∗
i

)
+ (1− t)F

(
1

n

n∑
i=1

δwσ(i)∗

)
holds for the unique minimizer w∗

1 , . . . , w
∗
n. Thus, F is not convex.

B.2. Proof of Proposition 6.2

The range of Φ lies in a Hilbert space with a norm induced by an inner product. Thus,∥∥∥∥∫ Φdµ−
∫

Φdν

∥∥∥∥2 =

〈∫
Φdµ−

∫
Φdν,

∫
Φdµ−

∫
Φdν

〉
=

〈∫
Φdµ,

∫
Φdµ

〉
− 2

〈∫
Φdµ,

∫
Φdν

〉
+

〈∫
Φdν,

∫
Φdν

〉
= (MMDK(µ, ν))

2
.

The above result together with the Lipschitz property of R concludes the proof.

B.3. Example 3.3

Recall: µt =
1

n

n∑
i=1

δ(1−t)wi+tvσ∗(i)
.

According to the definition, we get

Wp(µt, ν) = (
1

n

∑
i

∥(1− t)wi + tT ∗(wi)− T ∗(wi)∥p)1/p = (
1

n

∑
i

(1− t)p∥wi − T ∗(wi)∥p)1/p = (1− t)Wp(µ, ν)

(15)

B.4. Example 3.4

Define: σ = argmin
σ′

∑
i

∥∥wi − vσ′(i)

∥∥2 .
Define: g(t) = G

(1− t)w1 + tvσ(1)︸ ︷︷ ︸
w1(t)

, . . . , (1− t)wn + tvσ(n)

 .
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To prove G is star displacement convex, we need to prove that −g′(0) ≥ (G−G∗) holds. To validate this inequality, we
take the derivative of g with respect to t:

1

3
g′(t) = −

∑
j

∑
i

( ⟨vi, wj(t)⟩2⟨vi, (vσ(j) − wj(t))⟩
∥wj(t)∥3

+
⟨vi, wj(t)⟩3⟨wj(t), wj − vσ(j)⟩

∥wj(t)∥3

)
.

For w1, . . . , wn ∈ Sd−1, we get

1

3
g′(0) =

∑
j

⟨wj , vσ(j)⟩

(∑
i

⟨vi, wj⟩3 − ⟨wj , vσ(j)⟩

)
, (16)

where we used the orthogonality of v1, . . . , vn. Since σ is an optimal permutation, we have

n
∑
j

⟨wj , vσ(j)⟩2 ≥
∑
i

∑
j

⟨wi, vj⟩2 = n, (17)

where we use the fact that v1, . . . , vn are orthogonal. Thus,

−1

3
g′(0) ≥ 1−

n∑
i,j=1

⟨vi, wj⟩3 = G−G∗. (18)

B.5. A characterization for λ-convex functions

Let T denote the optimal transport map from µ to ν which achieves

W 2
2 (µ, ν) =

n∑
i=1

∥wi − T (wi)∥22 (19)

Let g(t) = F (µt) where µt is obtained by the displacement interpolation of µ and ν. Taking the derivative of g with respect
to t leads to the following important inequality (Santambrogio, 2017):∑

i

⟨wi − T (wi), ∂wi
F (µ)⟩︸ ︷︷ ︸

g′(0)

≥ F (µ)− F (ν) +
λ

2
W 2

2 (µ, ν) (20)

B.6. Smooth and displacement convex functions

The next Theorem establishes properties of smooth and displacement convex functions, which will be repeatedly used in our
future analysis.

Theorem B.1. An ℓ-smooth F and (λ ≥ 0)-displacement convex function obeys

∑
i

∥∂wi
F (µ)− ∂T (wi)F (ν)∥ ≤ ℓ2W 2

2 (µ, ν) (i)

∥∂wiF (µ)− ∂wjF (µ)∥ ≤ ℓ∥wi − wj∥ (ii)

F (ν) ≥ F (µ) +
∑
i

⟨∂wiF (µ), T (wi)− wi⟩+
1

2ℓ

∑
i

∥∂T (wi)F (ν)− ∂wiF (µ)∥2 (iii)

∑
i

⟨∂T (wi)F (ν)− ∂wi
F (ν), T (wi)− wi⟩ ≥

1

ℓ

∑
i

∥∂T (wi)F (ν)− ∂wi
F (µ)∥2 (iv)

∑
i

⟨∂wi
F (µ) − ∂T (wi)F (ν), wi − T (wi)⟩ ≥ λℓ

ℓ+ λ

∑
i

∥wi − T (wi)∥2 +
1

λ+ ℓ
∥∂wi

F (µ) − ∂wi
F (ν)∥2 (v)

13



Efficient displacement convex optimization with particle gradient descent

Proof. (i) Since the smoothness holds for all permutation of particles, we get

n∑
i=1

∥∂wiF (µ)− ∂T (wi)F (ν)∥2 = ∥∂F (w)− ∂F (v)∥2 (21)

≤ ℓ2∥w − v∥2 = ℓ2W 2
2 (µ, ν), (22)

where use a permutation of particles to get the the last equality.
(ii) Suppose that v is obtained by swapping wi and wj for i ̸= j in w = (w1, . . . , wn). Then, the smoothness implies

∥∂wiF (w)− ∂wiF (v)∥ ≤ ℓ∥wi − wj∥ (23)

(iii) Akin to the proof of Theorem 2.1.5 in (Nesterov, 2003), we define

Q(ν) = F (ν)−
∑
i

⟨T (wi), ∂wiF (µ)⟩

Displacement convexity, more precisely Eq. (20), ensures that µ is the minimizer of the above functional since

F (ν)− F (µ)−
∑
i

⟨T (wi)− wi, ∂wi
F (µ)⟩ ≥ 0 (24)

ℓ-smoothness ensures (Nesterov, 2003)

Q(µ) ≤ Q

(
1

n

n∑
i=1

δvi− 1
ℓ ∂vi

Q(ν)

)
(25)

≤ Q(ν)− 1

2ℓ

n∑
i=1

∥∂viQ(ν)∥2︸ ︷︷ ︸
=
∑

i ∥∂T (wi)
F (ν)−∂wi

F (µ)∥2

(26)

(iv) Inequality (iii) ensures

F (ν) ≥ F (µ) +
∑
i

⟨∂wiF (µ), T (wi)− wi⟩+
1

2ℓ

∑
i

∥∂T (wi)F (ν)− ∂wiF (µ)∥2 (27)

F (µ) ≥ F (ν) +
∑
i

⟨∂T (wi)F (ν), wi − T (wi)⟩+
1

2ℓ

∑
i

∥∂T (wi)F (ν)− ∂wiF (µ)∥2 (28)

Summing up the above two inequalities concludes (iv).

(v) The proof is similar to the proof of Theorem 2.1.11 in (Nesterov, 2003). Let T denote the optimal transport map from µ
to ν and µt is the displacement interpolation between µ and ν. First, we define function ϕ(µ) = F (µ)− λ

2

∑n
i=1 ∥wi∥2.

We prove ϕ is 0-displacement convex.

ϕ(µt) ≤ (1− t)F (µ) + tF (ν)−
(
(1− t)tλ

2

)
W 2

2 (µ, ν) (29)

ϕ(µ) = F (µ)− λ

2

n∑
i=1

∥wi∥2 (30)

ϕ(ν) = F (ν)− λ

2

n∑
i=1

∥T (wi)∥2 (31)
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Putting the above three equations together yields

(1− t)ϕ(µ) + tϕ(ν)− ϕ(µt) ≥
(
λt(1− t)

2

)∑
i

∥wi − T (wi)∥2

− λ(1− t)

2

∑
i

∥wi∥2 −
λ

2

∑
i

∥T (wi)∥2

+
λ

2

∑
i

∥(1− t)wi + tT (wi)∥2 (32)

Expanding the last term concludes ϕ is 0-displacement convex. Thus, we can use (iv) to get∑
i

⟨∂wiϕ(µ)− ∂T (wi)ϕ(ν), wi − T (wi)⟩ ≥
1

ℓ− λ

∑
i

∥∂wiϕ(µ)− ∂T (wi)ϕ(ν)∥
2 (33)

A rearrangement of the terms concludes (v).

C. Smooth displacement convex optimization
C.1. Proof of Theorem 4.1.a

Contraction

We first prove that the particles contract in W2.

Lemma C.1 (Contraction). Suppose that µk is obtained by particle gradient descent starting from n-sparse measures with
distinct particles. If F is λ-displacement convex and ℓ-smooth, then

W 2
2 (µ(k+1), µ̂) ≤

(
1−

(
2λℓγ

ℓ+ λ

))
W 2

2 (µk, µ̂) (34)

holds for γ ≤ 2/(ℓ+ L).

Proof. In order to leverage displacement convexity, we need to ensure the optimal transport map exists from µ(k) to µ̂ for
all k. The next lemma proves that µk has distinct particles assuming µ0 has distinct particles, hence the optimal transport
map exists under weak conditions on µ0.

Lemma C.2. For ℓ-smooth F and γ < 1/ℓ, w(k+1)
i = w

(k+1)
j hold only if w(k)

i = w
(k)
j .

Therefore, the optimal transport from µ := µk to µ̂ is well defined and denoted by T . We leverage this transports to couple
µ+ := µk+1 with µ̂. The optimality of the transport implies that∑

i

∥wi − T (wi)∥2dµ(w) = W 2
2 (µ, µ̂) (35)

Using the recurrence of gradient descent, we get

W 2
2 (µ+, µ̂) ≤

∑
i

(
∥wi − T (wi)∥2 + 2γ⟨T (wi)− wi, ∂wi

F (µ)⟩
)
+ γ2

∑
i

∥∂wi
F (µ)− ∂T (wi)F (µ̂)︸ ︷︷ ︸

=0

∥2. (36)

According to Theorem B.1.v. we have∑
i

(⟨wi − T (wi), ∂wi
F (µ)⟩) ≥ λℓ

ℓ+ λ
W 2

2 (µ, µ̂) +
1

ℓ+ λ

∑
i

∥∂wi
F (µ)− ∂T (wi)F (µ̂)∥2

Combining the last two inequalities, we get

W 2
2 (µ+, µ̂) ≤ W 2

2 (µ, µ̂)−
(
2λℓγ

ℓ+ λ

)
W 2

2 (µ, µ̂) +

(
γ2 − 2γ

ℓ+ λ

)∑
i

∥∂wiF (µ)− ∂T (wi)F (µ̂)︸ ︷︷ ︸
=0

∥2
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For γ ≤ 2/(ℓ+ λ), we get

W 2
2 (µ+, µ̂) ≤

(
1−

(
2λℓγ

ℓ+ λ

))
W 2

2 (µ, µ̂). (37)

Convergence proof

A straight forward applications of Cauchy-Schwarz for Eq.20 yields

W2(µ, µ̂)

√∑
i

∥∂wi
F (µ)∥2 ≥ F (µ)− F (µ̂) (38)

holds for all µ with n particles. Invoking Theorem B.1.i, we get∑
i

∥∂wiF (µ)∥2 ≤ ℓ2W 2
2 (µ, µ̂) (39)

Combining the last two inequalities, we get

F (µ)− F (µ̂) ≤ ℓW 2
2 (µ, µ̂) (40)

Combining the above inequality with the contraction established in the last lemma, we get

|F (µk+1)− F (µ̂)| ≤ ℓ

(
1− 2λℓγ

ℓ+ λ

)k

W 2
2 (µ0, µ̂) (41)

C.2. Proof of Theorem 4.1.c.

It is known that gradient descent decreases smooth functions in each iteration as long as γ ≤ 1/ℓ (see Theorem 2.1.13 of
(Nesterov, 2003)):

F (µk+1) ≤ F (µk)− γ (1− ℓγ/2)
∑
i

∥∂wiF (µk)∥2 (42)

star displacement convexity ensures ∑
i

⟨wi − T (wi), ∂wiF (µ)⟩ ≥ F (µk)− F (µ̂). (43)

A straightforward application of Cauchy-Schwarz yields∑
i

⟨wi − T (wi), ∂wiF (µ)⟩ ≤
∑
i

∥wi − T (wi)∥∥∂wiF (µ)∥ (44)

≤ W2(µk, µ̂)

√∑
i

∥∂wiF (µ)∥2 (45)

where the last inequality holds since W 2
2 (µk, µ̂) is decreasing for γ < 1/ℓ. Combining the last two inequalities, we get∑

i

∥∂wiF (µ)∥2 ≥ (F (µk)− F (µ̂))
2

W 2
2 (µk, µ̂)

(46)

We introduce the compact notion ∆k = F (µk)− F (µ̂). Plugging the last inequality into Eq. 42 obtains

∆k+1 ≤ ∆k −
(

γ

W 2
2 (µk, µ̂)

)
︸ ︷︷ ︸

≥γ/r2

(1− ℓγ/2)∆2
k (47)

According to Theorem 2.1.13 of (Nesterov, 2003), the above inequality concludes the proof.

1

∆k+1
≥ 1

∆k(1− c∆k)
(48)
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C.3. Proof of Theorem 4.1.b

Suppose that T is the optimal transport map from µk to µ̂. Using ℓ-smoothness, we have

W 2
2 (µk+1, µ̂) ≤

∑
i

∥T (wi)− wi∥2 + 2γ⟨T (wi)− wi, ∂wi
F (µk)⟩+ γ2∥∂wi

F (µk)∥2 (49)

Replacing ν = µ̂ and µ = µk in Theorem B.1.iii yields∑
i

⟨wi − T (wi), ∂wi
F (µ)⟩ ≥ 1

2ℓ

∑
i

∥∂wi
F (µ)∥2 (50)

Incorporating the above inequality into the established bound for W2 leads to

W 2
2 (µk+1, µ̂) ≤ W 2

2 (µk, µ̂) + (γ2 − γ/ℓ)
∑
i

∥∂wiF (µk)∥2. (51)

Thus, W2(µk, µ̂) is non-increasing in k for γ ≤ 1/ℓ. Since a 0-displacement convex function is also weak displacement
convex, invoking part c. of Theorem 4.1 with r2 = W 2

2 (µ0, µ̂) concludes the proof.

C.4. Proof of Lemma C.2

The proof is similar to the analysis of smooth programs in (Lee et al.). According to the definition, w(k+1)
i = w

(k+1)
j if

w
(k)
i − γ∂wi

F (µk) = w
(k)
j − γ∂wi

F (µk) (52)

A rearrangement of terms together with Theorem B.1.II concludes the proof:

∥w(k)
i − w

(k)
j ∥ = γ∥∂wi

F (µk)− ∂wj
F (µk)∥ ≤ γℓ∥w(k)

i − w
(k)
j ∥ < ∥w(k)

i − w
(k)
j ∥. (53)

D. Lipschitz displacement convex optimization
D.1. The existence of sub-gradients

Although the subgradient may not exist for general non-convex non-smooth functions, the next Lemma proves it does exists
for displacement convex functions under a weak assumption.

Lemma D.1. The sub-gradient at w1 ̸= . . . ̸= wn does exist for displacement convex functions of n-sparse measures with a
support whose elements are bounded.

Proof. As a warm-up, we prove the statement for Fréchet differentiable functions using a straightforward application of
displacement convexity. Recall the definition of displacement convexity as

F

(
1

n

n∑
i=1

δ(1−t)wi+tT∗(wi)

)
≤ (1− t)F (µ) + tF (ν) (54)

Note that the above inequality turns into equality at t = 0 and t = 1. Thus, the derivative of left-side and the right side are
equal at t = 0 and t = 1, namely

d

dt
|t=0F

(
1

n

n∑
i=1

δ(1−t)wi+tT∗(wi)

)
≤ F (ν)− F (µ) (∗) (55)

When F is Fréchet differentiable, the above inequality coincides with∑
i

⟨∇wiF, T
∗(wi)− wi⟩ ≤ F (ν)− F (µ). (56)
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Thus, the gradients are also sub-gradient for differentiable functions. To extend the proof to non-differentiable functions, we
need to establish a bound on

lim inf
t→0+

t−1

(
F

(
1

n

n∑
i=1

δwi+t(T∗(wi)−wi)

)
− F (µ)

)
(57)

where t → 0+ denotes any decreasing sequence of positive real numbers. Since the optimal transport between µ and µt

remains constant for a small t, F is convex in a small neighborhood of µ. This local convexity structure ensures the existence
of subgradients g1(µ), . . . , gn(µ) ∈ Rd such that

lim inf
t→0+

t−1

(
F

(
1

n

n∑
i=1

δwi+t(T∗(wi)−wi)

)
− F (µ)

)
≥
∑
i

⟨gi(µ), T ∗(wi)− wi⟩

Plugging the above inequality into (*) concludes the proof.

D.2. Proof of Theorem 5.1.a

The proof is inspired by the convergence analysis of gradient descent for non-smooth convex functions (Theorem 3.9
of (Bubeck et al., 2015)). The injection with noise ensures that the particles remain distinct with probability one, hence
the optimal transport from µk to µ̂ denoted by T exists with probability one. Leveraging the optimal transport T and
inequality (20) obtained by λ-diplacement convexity, we get

E
[
W 2

2 (µk+1, µ̂)
]
≤ E


∑
i

∥T (wi)− wi∥2 + γk 2
∑
i

⟨T (wi)− wi, ∂wi
F ′(µk)⟩︸ ︷︷ ︸

≤−λW 2
2 (µk,µ̂)+2F (µ̂)−2F (µk))


+ γ2

k

∑
i

E ∥∂wi
F (µk)∥2︸ ︷︷ ︸

≤L2

+
γ2
k

n

n∑
i=1

E
[
∥ξ(k)i ∥2

]
(58)

A rearrangement of terms yields

kE [F (µk)− F (µ̂)] ≤ λk(k − 1)E
[
W 2

2 (µk, µ̂)
]
− λk(k + 1)E

[
W 2

2 (µk+1, µ̂)
]
+

(L2 + 1)

λ
(59)

Summing over k = 1, . . . ,m concludes the proof as(
m(m+ 1)

2

)
min
k≤m

(E [F (µk)− F (µ̂)]) ≤
m∑

k=1

k (E [F (µk)− F (µ̂)]) ≤ m(L2 + 1)

λ
. (60)

D.3. Proof of Theorem 5.1.b

The proof is inspired by Theorem 3.2.2 of (Nesterov, 2003). Suppose µ̂ the minimizer and let T denotes the optimal mapping
from µk to µ̂. The injection with noise ensure that particles of µk are distinct, hence T does exists.

E
[
W 2

2 (µk+1, µ∗)
]
≤ E

[∑
i

(
∥T (wi)− wi∥2 + 2γ⟨T (wi)− wi, ∂wi

F (µk)⟩
)]

+ γ2
∑
i

E ∥∂wi
F (µ)∥2︸ ︷︷ ︸

≤L2

+
γ2

n

n∑
i=1

E ∥ξ(k)i ∥2 (61)
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Using Eq. (20), we conclude that

−
∫
⟨T (w)− w, ∂wF (µ)⟩dµk(w) ≥ F (µk)− F (µ̂)︸ ︷︷ ︸

∆k

≥ 0 (62)

Therefore,

E
[
W 2

2 (µk+1, µ̂)
]
≤ E

[
W 2

2 (µk, µ̂)
]
− 2γ E [∆k] + γ2(L2 + 1) (63)

Summing over k concludes the proof

(mγ) min
k∈{1,...,m}

E [∆k] ≤
m∑

k=1

γ E [∆k] ≤ W 2
2 (µ0, µ̂) +mγ2(L2 + 1) (64)

E. Approximation error
E.1. Proof of Lemma 6.4

The proof is based on the convergence of Frank-Wolf algorithm. This proof technique is previously used for specific
functions in neural networks (Bach, 2017). Since this algorithm uses a (infinite-dimensional) non-convex optimization
in each step, it is not implementable. Yet, we can use its convergence properties to bound the approximation error. To
introduce the algorithm, we first need to formulate the optimization over a compact domain in Banach space. We optimize
F over L2 Hilbert spaces of functions. Let D is the set of probability measures over a compact set, which is a subset of L2.
Frank-Wolfe method optimizes F through the following iterations (Jaggi, 2013)

µ(k+1) = (1− γ)µ(k) + γs, s = argmax
ν∈D

∫
F ′(µ(k))(x)dν(x), (65)

where F ′ is the functional derivative of F with respect to µ (Santambrogio, 2017). It is easy to check that s is always a Dirac
measure at maxx F

′(µ(k))(x). Hence, µ(n−1) is a sparse measure over n particles as long as µ(0) = δw0
. The compactness

of D, convexity and smoothness of F ensures the rate O(1/n) for the convergence of Frank-Wolfe method (Jaggi, 2013).

E.2. Proof of Lemma 6.5

The proof is a straightforward application of the key observation in (Daneshmand & Bach, 2022). Daneshmand & Bach
(2022) show the energy distance can be written alternatively as an MMDK distance with a positive definite kernel K, which
is quadratic convex function in µ. Since the kernel K is Lipschitz, L is smooth in the measure.

E.3. Proof of Corollary 6.6

Daneshmand & Bach (2022) prove that L is equivalent to the E in polar coordinates. Invoking part b of Theorem 5.1
concludes the rate.

19


