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Abstract

Most prior results on differentially private stochas-
tic gradient descent (DP-SGD) are derived under
the simplistic assumption of uniform Lipschitz-
ness, i.e., the per-sample gradients are uniformly
bounded. We generalize uniform Lipschitzness
by assuming that the per-sample gradients have
sample-dependent upper bounds, i.e., per-sample
Lipschitz constants, which themselves may be
unbounded. We provide principled guidance on
choosing the clip norm in DP-SGD for convex
over-parameterized settings satisfying our general
version of Lipschitzness when the per-sample Lip-
schitz constants are bounded; specifically, we rec-
ommend tuning the clip norm only till values up to
the minimum per-sample Lipschitz constant. This
finds application in the private training of a soft-
max layer on top of a deep network pre-trained on
public data. We verify the efficacy of our recom-
mendation via experiments on 8 datasets. Further-
more, we provide new convergence results for DP-
SGD on convex and nonconvex functions when
the Lipschitz constants are unbounded but have
bounded moments, i.e., they are heavy-tailed.

1. Introduction
With the ever-increasing amount of data being used, there is
a growing need for the development of privacy-preserving
training schemes for machine learning (ML) models. Dif-
ferential privacy (DP) (Dwork et al., 2006) is a popular
privacy-preserving framework that is being incorporated in
the training of ML models. We formally define DP in Defini-
tion 3.3, but at a high level, DP can be guaranteed by adding
Gaussian noise, where the noise scale is determined by the
“sensitivity” to an individual’s data. There has been copious
research on private optimization for private training; in this
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paper, we focus on DP-SGD (Abadi et al., 2016) which is
the default algorithm for private optimization in practice.

We briefly introduce the problem setting and DP-SGD to
facilitate further discussion (see Section 3 for more de-
tails). We consider empirical risk minimization (ERM) of
f(w) = 1

n

∑n
i=1 fi(w), where each fi : Rd −→ R. In every

iteration of DP-SGD (stated in Algorithm 1), the optimizer
receives a noise-perturbed average of the clipped per-sample
gradients for performing the update; noise is added to guar-
antee differential privacy. Specifically, at iteration t, the opti-
mizer receives gt = 1

b

∑
i∈St

clip(∇fi(wt), τ)+ζt, where
St is a random batch of samples formed by picking each
sample in {1, . . . , n} with probability (b/n), clip(z, c) :=
zmin(1, c/∥z∥) for a vector z, τ is the clipping threshold
or clip norm, and ζt is an isotropic Gaussian random vector
whose variance is proportional to τ2 and also depends on
the amount of privacy required.

Clipping is employed in DP-SGD to bound the maximum
sensitivity of the average gradient to each sample’s indi-
vidual gradient, which is required to set the noise variance.
However, clipping can also make gt a biased estimator of
∇f(wt), and the amount of bias depends on the clip norm
τ – the higher we set τ , the lower is the bias, and vice-versa.
As the noise variance is proportional to τ2, there is an inher-
ent tension between the bias and variance of gt due to the
clip norm τ . This raises a natural question - how do we set

“good” clip norms to balance the bias-variance tradeoff?

In order to circumvent the analysis of the clipping bias, most
prior convergence results for private optimization (Bassily
et al., 2014; 2019; Wang et al., 2018; 2019) assume that
the loss function is uniformly Lipschitz for all samples and
model parameters, i.e., the per-sample gradients (w.r.t. the
model parameters) have a sample-independent upper bound
known as the Lipschitz constant. Under this assumption,
the clip norm is set equal to the Lipschitz constant result-
ing in zero bias as no clipping happens. But in practice,
such a choice of clip norm results in very poor performance;
see Figure 1 and its caption. Additionally, uniform Lips-
chitzness does not even hold for simple problems like linear
regression with Gaussian data, precluding the existence of a
trivial clip norm for analysis.

In this work, we generalize uniform Lipschitzness by in-
stead assuming that the per-sample gradients have sample-
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dependent upper bounds, i.e., per-sample Lipschitz con-
stants, which themselves may be unbounded. Under
this generalized assumption, we provide a theoretically-
motivated clip norm selection strategy for convex settings.
Our method finds direct application in the private training
of the softmax layer of pre-trained deep networks which
is a popular and effective scheme for private training (De
et al., 2022; Mehta et al., 2022). In practice, the clip norm is
tuned over multiple runs which is not only computationally
inefficient but also increases the privacy cost (Papernot &
Steinke, 2021). So it is desirable to have principled methods
for setting the clip norm to alleviate these two issues. Addi-
tionally, we provide novel convergence results for DP-SGD
when the per-sample Lipschitz constants are heavy-tailed.

Before we state our contributions in detail, we need to briefly
introduce the metric quantifying convergence, which we call
the “optimization risk”. Let wpriv be the output of DP-SGD
(Alg. 1). If f is convex, the optimization risk is the expected
suboptimality gap, i.e., E[f(wpriv)] −minw f(w). If f is
nonconvex, the optimization risk is the expected gradient-
norm squared, i.e. E[∥∇f(wpriv)∥2]. When DP-SGD is
(ε, δ)-DP (defined in Definition 3.3), our convergence results
are expressed in terms of the following key quantity:

φ :=
√
νd log(1/δ)/nε, (1)

where d is the dimension of the model parameters, n is
the number of samples, and ν is an absolute constant. We
assume that n is large enough so that φ < 1, and the num-
ber of iterations of DP-SGD is sufficiently large. We now
list our main contributions, and also summarize the main
theoretical results in Tables 1 and 2.

(a) Throughout this work, we generalize uniform Lipschitz-
ness by assuming that the per-sample gradients have sample-
dependent upper bounds, i.e., per-sample Lipschitz con-
stants, which themselves may be unbounded; we call this
generalized Lipschitzness (Assumption 4.1).

• In Section 5, we provide a principled clip norm tun-
ing strategy for DP-SGD under generalized Lipschitz-
ness. Specifically, we focus on convex settings with
near-interpolation like conditions (Asmp. 5.5), i.e.,
1
n

∑n
i=1(fi(w

∗) − minw fi(w)) ≈ 0 where w∗ =
arg minwf(w); over-parameterization is an example
of this. For such cases, we recommend tuning the clip
norm only till values up to the minimum per-sample
Lipschitz constant (Remark 5.6), say Gmin, based on
Theorem 5.4 where we show that the optimization risk
attains the best bound when the clip norm is ≤ Gmin.
This is in contrast to prior theoretical works which
set the clip norm equal to the maximum per-sample
Lipschitz constant, say Gmax, for ease of analysis.

• Our recommendation for convex settings is of rele-
vance to the private training of the softmax (i.e., last)

layer of deep networks pre-trained on public data. In
Section 5.2, we corroborate our recommendation with
experiments on four1 vision datasets, viz., Caltech-256
(Griffin et al., 2007), Food-101 (Bossard et al., 2014),
CIFAR-100 and CIFAR-10, and two language datasets,
viz., TweetEval Emoji (Barbieri et al., 2018) and Emo-
tion (Saravia et al., 2018). As an e.g., for Caltech-256
and Food-101 with ε = 2, the test accuracy obtained
by setting the clip norm τ = Gmin is better than that of
τ = Gmax by more than 23% and 11%, respectively.

(b) In Section 6, we provide optimization risk bounds for
DP-SGD under generalized Lipschitzness, without assum-
ing interpolation, when the per-sample Lipschitz constants
have bounded kth moment, i.e., they are heavy-tailed (Asmp.
6.1). For private unconstrained convex and smooth non-
convex optimization under this assumption, we derive risk
bounds of O(φ1− 2

k+1 ) and O(φ1− 1
2k−1 ), respectively2; see

Theorems 6.2 and 6.8. Under an additional mild assumption,
we improve the risk bound in the convex case to O(φ1− 1

k )
and also derive a matching lower bound, thereby establish-
ing the optimality of DP-SGD in this case; see Assump-
tion 6.4 and Theorems 6.5 and 6.6. These are the first
results for private unconstrained optimization under the
heavy-tailed assumption or anything similar. Our results
also imply the optimality of DP-SGD in the unconstrained
convex case under uniform Lipschitzness; see Cor. 6.7. To
our knowledge, this is the first matching lower bound for the
unconstrained convex case under uniform Lipschitzness.

Table 1. Summary of our clip norm selection result (Thm. 5.4)
for the convex case under generalized Lipschitzness (Asmp. 5.1)
and interpolation (Asmp. 5.5). G1 and Gn are the minimum and
maximum per-sample Lipschitz constants as per Asmp. 5.1. In the
table, α∗ = α(G1) ≥ 1, where α(G1) is defined in Definition 5.3,
and B = O(∥w0 −w∗∥Gnφ), where w0 is the initial point, w∗

is a minimizer of f and φ = O(
√

d log(1/δ)/nε).

Clip Norm τ
Risk Upper Bound when

Perfect Interpolation holds
(∆(w∗) = 0 in Asmp. 5.5)

∈ (0, G1] (this work) B/α∗ (α∗ ≥ 1)

∈ (G1, Gn) (this work) ≥ B/α∗ but ≤ B

Gn (default choice of prior theory) B

2. Related Work
DP-(S)GD with Clipping: Abadi et al. (2016) introduce the
famous DP-SGD algorithm with clipping for differentially
private training in practice. There are some papers analyzing

1We show results on two more datasets in Appendix A.
2The seemingly better result for the nonconvex setting is be-

cause of the difference in the risk metrics between the convex and
nonconvex cases.
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Table 2. Summary of optimization risk (OR) bounds. OR is defined in Definition 3.5 and φ = O(
√

d log(1/δ)/nε) < 1. In As-
sumption 6.1, we assume that the per-sample gradients have sample-dependent upper bounds with bounded kth moment (k > 1). In
Assumption 6.4, we assume a mild lower bound on function suboptimality of points far away from the optimum.

Reference Assumption(s) & Setting Risk Upper Bound Matching Lower Bound?

Bassily et al. (2014) Uniform Lipschitz & Convex Constrained O(φ) Yes

This work Uniform Lipschitz & Convex Unconstrained (W = Rd) O(φ) (Cor. 6.7) Yes, for δ < e−ε2 (Cor. 6.7)

Kamath et al. (2021),
Lowy & Razaviyayn (2023)1 Assumption 6.1 & Convex Constrained O(φ1− 1

k ) Yes

This work Assumption 6.1 & Convex Unconstrained O(φ1− 2
k+1 ) (Thm. 6.2) ?

This work Assumptions 6.1, 6.4 & Convex Unconstrained O(φ1− 1
k ) (Thm. 6.5) Yes, for δ < e−ε2 (Thm. 6.6)

Arora et al. (2022),
Tran & Cutkosky (2022)2 Uniform Lipschitz & Smooth Nonconvex Unconstrained O(φ4/3) ?

This work Assumption 6.1 & Smooth Nonconvex Unconstrained O(φ1− 1
2k−1 ) (Thm. 6.8) ?

1These two works consider the stochastic optimization setting with (0,O(ε2))-zCDP and derive bounds for the generalization error.
In Appendix I, we show that the same bounds hold for the training error (i.e., OR) in empirical risk minimization with (ε, δ)-DP.

2The O(φ4/3) bound is attained by algorithms very different from DP-SGD. For DP-SGD like algorithms, Wang et al. (2018) obtain
the best known bound of O(φ).

the effect of clipping in DP-(S)GD in different settings such
as Chen et al. (2020); Bu et al. (2021); Song et al. (2021).
However, these works do not provide any practical insights
into how to set the clip norm for DP-SGD, which is a key
focus of our work. Related to our focus, there are some
variants of DP-SGD such as Andrew et al. (2019); Du et al.
(2021); Wu et al. (2021) that adaptively change the clip norm
and/or noise variance to improve convergence. However,
practitioners typically use a constant clip norm which does
not change with the iteration number, and so we only focus
on how to set a constant clip norm used in vanilla DP-SGD
(Abadi et al., 2016).

Differentially Private Optimization under Uniform Lip-
schitzness: There are several papers on private empirical
risk minimization (ERM) (Chaudhuri & Monteleoni, 2008;
Chaudhuri et al., 2011; Kifer et al., 2012; Song et al., 2013;
Duchi et al., 2013; Bassily et al., 2014; Talwar et al., 2014;
2015; Wu et al., 2017; Iyengar et al., 2019) and private
stochastic optimization (Bassily et al., 2014; 2019; Feld-
man et al., 2020; Asi et al., 2021a;b; Kulkarni et al., 2021;
Bassily et al., 2021) for convex Lipschitz objectives within a
bounded set. The optimal risk bound for private constrained
convex ERM over a bounded set in the Lipschitz case is
O(φ) (Bassily et al., 2014). Zhang et al. (2017); Wang et al.
(2018; 2019); Arora et al. (2022); Tran & Cutkosky (2022)
derive convergence results for private unconstrained noncon-
vex ERM with Lipschitz and smooth objectives. Wang et al.
(2018; 2019) obtain a risk bound of O(φ) for DP-SGD like
algorithms. Arora et al. (2022); Tran & Cutkosky (2022)
obtain an improved bound of O(φ4/3) but with more ad-
vanced algorithms. These papers simply clip the gradients
up to the Lipschitz constant, and do not explore the effect

of clipping to smaller values. But as shown in Fig. 1, such a
choice of clip norm performs poorly in practice and besides,
uniform Lipschitzness may not always hold.

Bounded Gradient Moments: Our assumption of per-
sample Lipschitz constants having bounded kth moment, i.e.
Assumption 6.1, generalizes the “heavy-tailed” assumption
of Wang et al. (2020); Hu et al. (2021) for private stochastic
convex optimization (SCO) with bounded second moment.
The bounded kth moment assumption has been also ana-
lyzed in Kamath et al. (2021); Lowy & Razaviyayn (2023)
for private SCO. However, these papers focus only on con-
strained convex optimization. In practice, however, uncon-
strained minimization is usually performed while training
ML models. In this paper, we focus on the more practical
and harder (w.r.t. analysis) case of private unconstrained
convex as well as nonconvex optimization (which has not
been considered before) under this assumption. We discuss
the assumptions of these papers in more detail after Assump-
tion 6.1. Note that none of these papers have any result like
our theoretically-motivated clip norm selection method for
use in practice with our level of experimental verification.

3. Preliminaries
Notation: Vectors and matrices are in bold face. For any
n ∈ N, the set {1, . . . , n} is denoted by [n], and the uniform
distribution over {0, . . . , n} is denoted by unif[0, n]. ∥.∥
denotes the ℓ2 norm throughout this work. For a function h
and any point x ∈ X , the “suboptimality gap” (at x) over
X means h(x) −minx′∈X h(x′). The function clip(., .) :
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Rd × R+ −→ Rd is defined as:

clip(z, c) := zmin(1, c/∥z∥). (2)

Definition 3.1 (Lipschitz). h : T −→ R is to said to be
G-Lipschitz if supt∈T ∥∇h(t)∥ ≤ G.

Definition 3.2 (Smooth). h : T −→ R is to said to be L-
smooth if for all t, t′ ∈ T , ∥∇h(t)−∇h(t′)∥ ≤ L∥t− t′∥.
Definition 3.3 (Differential Privacy (Dwork et al., 2014)).
Suppose each sample ∈ S. Given a query function h :
Sn −→ X , a randomized mechanismM : X −→ Y is said to
be (ε, δ)-DP if for any two datasets D,D′ ∈ Sn differing
in exactly one sample and for any measurable R ∈ Y ,
P(M(h(D)) ∈ R) ≤ eεP(M(h(D′)) ∈ R) + δ.

The customary way to guarantee DP is to add zero-mean
Gaussian noise to the output of h(.) above; this is known as
the Gaussian mechanism (Dwork et al., 2014).

Problem Setting and DP-SGD: Suppose we are given a
dataset of n i.i.d. samples (features and corresponding la-
bels) Z := {(xi, yi)}ni=1 drawn from some distribution D.
We wish to train a model, parameterized by w ∈ W ⊆ Rd,
on the data via DP-SGD such that the whole training pro-
cess is (ε, δ)-DP. We use a loss function ℓ(w, .) (for e.g., the
squared loss or cross-entropy loss with some regularization
possibly) to learn the model. Let fi(w) := ℓ(w,xi, yi);
then, we are trying to privately minimize

f(w) =
1

n

n∑
i=1

fi(w). (3)

DP-SGD is summarized in Algorithm 1. Gradient clipping
is employed to bound the sensitivity of the average gradient
to each sample’s individual gradient. Gaussian noise is
added to guarantee DP. In Abadi et al. (2016), the last iterate
wT is returned; in contrast, we return a random iterate. We
now specify the value of σ2

n required to make Alg. 1 (ε, δ)-
DP using the moments accountant method of Abadi et al.
(2016); we provide a short proof in Appendix G.

Theorem 3.4 (Moments Accountant (Abadi et al., 2016)).
For ε < O

(
b2

n2T
)
, Algorithm 1 is (ε, δ)-DP for σ2

n =
νT log( 1

δ )τ
2

n2ε2 , where ν is an absolute constant.

Finally, we define our convergence metric for DP-SGD
which we call the optimization risk.

Definition 3.5 (Optimization Risk). Recall wpriv is the
output of DP-SGD (Alg. 1) after T iterations.
(i) Suppose f is convex. We define the convex optimization
risk as OR(T ) :=

(
E[f(wpriv)] − f(w∗)

)
, where w∗ ∈

argminw∈Wf(w).

(ii) Suppose f is nonconvex &W = Rd. We define the non-
convex optimization risk as OR(T ) := E[∥∇f(wpriv)∥2].

Algorithm 1 DP-SGD (Abadi et al., 2016)

1: Input: Domain of parameters W , initial point w0 ∈
W , number of iterations T , learning rates {ηt}T−1

t=0 ,
sample selection probability (b/n), clip norm τ and
noise variance σ2

n.
2: for t = 0, . . . , T − 1 do
3: Form a random mini-batch St by picking each sample

independently of the others with probability b/n.
4: Get the noisy mini-batch stochastic gradient gt =

1
b

∑
i∈St

clip(∇fi(wt), τ) + ζt, where ζt ∼
N (⃗0d, σ

2
nId) and clip() is defined in (2).

5: Let zt+1 ←− wt−ηtgt. Update wt+1 ←− ΠW(zt+1),
where ΠW(z) is the projection of z ontoW . (Note
that ΠRd(z) = z.)

6: end for
7: Return wpriv = wt̂, where t̂ ∼ unif[0, T − 1].

Note that the expectations above are w.r.t. the randomness
of Algorithm 1 (in particular, conditioned on the dataset Z).

Also recall the key quantity φ =

√
νd log(1/δ)

nε < 1 defined
in Equation (1). Our bounds on the optimization risk will
be in terms of φ. For brevity, we only present abridged
versions of our results in the main paper and provide the full
versions and proofs in the Appendix.

4. Generalized Lipschitzness
Here we introduce our proposed generalization to the com-
monly used uniform Lipschitzness assumption.

Assumption 4.1 (Generalized Lipschitzness). For any
w ∈ W and (x, y) ∼ D, the following holds for some
sample-dependent function G(x, y):

∥∇wℓ(w,x, y)∥ ≤ G(x, y),

where ℓ is our loss function (mentioned before Equation (3)).
We call G(x, y) the “per-sample Lipschitz constant”.3

Note that we are not imposing the condition that G(x, y) be
itself bounded for all (x, y). In fact, if we do impose that,
then we recover uniform Lipschitzness. We now provide an
important example where generalized Lipschitzness holds.

Logistic regression: Consider doing logistic regression for
multi-class classification with the cross-entropy loss, where
m is the number of classes. Suppose x ∼ F (with a ‘1’
appended to account for the bias term) is the feature and
y ∈ [m] is the corresponding class number. In Appendix D,
we show that ∥∇ℓw(w,x, y)∥ ≤

√
2∥x∥. Thus, Assump-

tion 4.1 holds with G(x, y) =
√
2∥x∥ for anyW .

3This assumption extends to non-differentiable functions by
replacing the gradient with sub-gradient.
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5. Clip Norm Selection for DP-SGD under
Generalized Lipschitzness

Here, we will provide a principled strategy to select the
constant clip norm τ (which does not change across itera-
tions) in DP-SGD (Algorithm 1) under generalized Lips-
chitzness when the maximum per-sample Lipschitz constant
is bounded, i.e., uniform Lipschitzness holds. To that end,
we assume the following.
Assumption 5.1. Assumption 4.1 holds for the dataset Z =
{(xi, yi)}ni=1 that we receive. Let Gi = G(xi, yi) for i ∈
[n]. Also, without loss of generality, the sample indices are
arranged so that 0 < G1 < . . . < Gn <∞4.

Thus, {Gi}ni=1 are the per-sample Lipschitz constants for
the dataset Z . For e.g., logistic regression with cross-
entropy loss satisfies Assumption 5.1 with Gi =

√
2∥xi∥

(see discussion on logistic regression after Assumption 4.1).

Under Assumption 5.1, if we follow the approach of prior
theoretical works such as Bassily et al. (2014), then we
would choose Gn as the clip norm τ – this is associated
with zero bias (as no actual clipping occurs) but high noise
variance, yielding a risk bound of O(Gnφ) in the convex
case. While the dependence on φ is tight (Bassily et al.,
2014), it is not clear if τ = Gn leads to the best constant
factors in the risk bound – which is what makes a differ-
ence in practice. Using Thm. 5.4 of this work, we show that
the best constant factors are obtained by choosing τ ≤ G1

in convex problems with near-interpolation like conditions
(i.e., the training data can be almost perfectly fitted) while
retaining the O(Gnφ) dependence. This is consistent with
experiments in Section 5.2, where clip norms≤ G1 perform
the best. Intuitively, this happens because the high noise
variance associated with large clip norms is more detrimen-
tal to convergence than the bias associated with small clip
norms. Let us now talk about this result in more detail.

5.1. Convex Case

The results here are for a general convex constraint set
W which can be Rd too. Before we can state our re-
sult, we need to introduce some definitions first. Let
Ψ := arg minw∈Wf(w) and f∗

i = minw∈W fi(w).
Definition 5.2. For any w∗ ∈ Ψ, define ∆(w∗) :=
1
n

∑
i∈[n](fi(w

∗)− f∗
i ).

Definition 5.3. Suppose Assumption 5.1 holds. For clip
norm τ ∈ (0, Gn], define:

α(τ) := inf
w∈W\Ψ

1
n

∑
i∈[n] min

(
1
τ ,

1
Gi

)(
fi(w)− f∗

i

)
1
n

∑
i∈[n]

fi(w)−f∗
i

Gn

.

4We assume strict inequalities here because the probability
measure of equality holding is zero. Also, we assume G1 > 0, as
otherwise f1 is a constant function which is trivially minimized
everywhere, and we can minimize 1

n−1

∑n
i=2 fi(w) instead.

Note that:
(i) α(τ) ≥ 1 for all τ ∈ (0, Gn] and α(Gn) = 1.
(ii) α(τ) is a non-increasing function of τ .
(iii) α(τ) = α(G1) for all τ ∈ (0, G1].
(iv) α(G1) is strictly greater than 1 unless there exists a w̃∗

such that w̃∗ is a minimizer of {fi}n−1
i=1 but not of fn.

(v) Gn

τα(τ) ≥ 1 for all τ ∈ (0, Gn].

(vi) Gn

τα(τ) is a non-increasing function of τ .

Let us see why α(τ) ≥ 1 in Definition 5.3. By definition,
fi(w)−f∗

i ≥ 0 for all w ∈ W . Now since G1 < . . . < Gn

(as per Assumption 5.1) and τ ≤ Gn, we have that:

min
(1
τ
,
1

Gi

)(
fi(w)− f∗

i

)
≥ fi(w)− f∗

i

Gn
∀i ∈ [n]. (4)

Thus, α(τ) ≥ 1 for all τ ≤ Gn. (ii) and (iii) are easy to
verify using properties of min(). Let us now discuss why
(iv) must be true. For τ = G1, the only way equality will
hold in Equation (4) for some w /∈ Ψ is if fi(w) = f∗

i ∀
i ∈ [n − 1] but fn(w) > f∗

n; (iv) follows from this. (v)
and (vi) can be checked by just writing out the expression
for Gn

τα(τ) and then using properties of min(). We are now
ready to present our result for the convex case.
Theorem 5.4 (Convex Case). Suppose each fi is convex,
W is a convex set (which can be Rd) and Assumption 5.1
holds. Fix some C > 0. In Alg. 1, set T = 1

3φ2 and ηt =
3Cφ
2τ ∀ t for clip norm τ . Then, DP-SGD has the following

optimization risk bound as a function of τ ∈ (0, Gn]:

OR(T ) ≤ 1

α(τ)

((
∥w0 −w∗∥2

C
+ 2C

)
Gnφ

)
︸ ︷︷ ︸

(A)

+

(
Gn

τα(τ)
− 1

)
∆(w∗)︸ ︷︷ ︸

(B)

, (5)

where ∆(w∗) ≥ 0 and α(τ) ≥ 1 are as defined in Defini-
tions 5.2 and 5.3, respectively.

In Equation (5), term (A) is a non-decreasing function of
τ ; this follows from (ii) in Definition 5.3. But term (B)
≥ 0 is a non-increasing function of τ ; this follows from (v)
and (vi) in Definition 5.3. Thus, increasing τ increases (A)
but reduces (B), and vice-versa. So in general, there is a
tradeoff between the values of (A) and (B) while setting τ .
To provide a recommendation for the choice of τ , we shall
focus on a commonly occurring scenario.

Interpolation: Modern over-parameterized ML models
are able to perfectly fit all the training data (Zhang et al.,
2021; Ma et al., 2018). In such cases, it is reasonable to
make the following relaxed interpolation assumption (based
on Assumption 1 of Ma et al. (2018)).
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Assumption 5.5 (Relaxed Interpolation). There exists
some w∗ ∈ argminw∈Wf(w) such that ∆(w∗) =
1
n

∑
i∈[n](fi(w

∗)− f∗
i ) ≈ 0.

Assumption 1 of Ma et al. (2018) would imply the existence
of some w∗ ∈ argminw∈Wf(w) such that ∆(w∗) = 0
(as w∗ ∈ argminw∈Wfi(w) ∀ i ∈ [n], per their assump-
tion). One can expect Assumption 5.5 to hold for separable
classification problems even without over-parameterization.

Under Assumption 5.5, the dominant term in the risk bound
of Theorem 5.4 (Eq. (5)) would be (A). As discussed pre-
viously, (A) is a non-decreasing function of τ . Thus, the
lowest risk bound in Equation (5) is obtained for τ ∈ (0, G1].
Also recall that α(τ) = α(G1) ∀ τ ∈ (0, G1] (see (iii) in
Definition 5.3). Since α(Gn) = 1, there is an α(G1)-fold
improvement in the risk bound with τ ≤ G1 compared to
the naive choice of τ = Gn when ∆(w∗) = 0.
Remark 5.6 (Recommendation). For settings where in-
terpolation holds (such as over-parameterization), we rec-
ommend tuning the clip norm only till values up to the
minimum per-sample Lipschitz constant.

We assume that we have some prior estimate of the mini-
mum Lipschitz constant, just like prior works on uniform
Lipschitzness assume that the maximum Lipschitz constant
is known. For e.g., it can be estimated privately by applying
the Report Noisy Max method (Dwork et al., 2014) on the
negative Lipschitz constants.

5.2. Empirical Results

We consider the base problem of private multinomial logis-
tic regression (a convex problem satisfying Asmp. 5.1) to
corroborate our theory and recommendation. But we focus
on the more powerful application of privately training (only)
the last (softmax) layer of deep networks pre-trained on pub-
lic data which is equivalent to performing logistic regression
with features being the previous layer’s outputs. Training
a softmax layer over pre-trained networks is a popular and
effective scheme for private training (De et al., 2022; Mehta
et al., 2022). This is because fine-tuning all the layers may
not significantly improve performance but the extra parame-
ters increase the privacy cost. In addition, training only the
last layer is computationally much cheaper than fine-tuning
all the layers with DP-SGD (due to per-sample clipping).

Our experiments here are conducted on four vision datasets
available in Torchvision, viz., Caltech-256 with 257 classes,
Food-101 with 101 classes, CIFAR-100 with 100 classes and
CIFAR-10 with 10 classes, and two language datasets avail-
able in Hugging Face, viz., TweetEval Emoji with 20 classes
and Emotion with 6 classes. For Caltech-256 and Food-101
(resp., CIFAR-100 and CIFAR-10), we use 512-dimensional
features obtained from the pre-softmax layer of a pre-trained
ResNet-34 (resp., ResNet-18) model on ImageNet for logis-

tic regression, which is equivalent to training the last (i.e.,
softmax) layer of a pre-trained ResNet-34 (resp., ResNet-18)
model. For the language datasets, we use 768-dimensional
features obtained from a pre-trained DistilBERT model
(Sanh et al., 2019) for logistic regression, which is the same
as training a linear layer on top of a pre-trained DistilBERT
model. As mentioned after Assumption 5.1, the per-sample
Lipschitz constant is equal to

√
2 times the norm of the sam-

ple’s feature vector (with a ‘1’ appended to incorporate the
bias term). We consider three privacy levels - (2, 10−5)-DP,
(4, 10−5)-DP and (6, 10−5)-DP, with batch size = 500. We
test several values of the clip norm τ , viz., the 0th, 10th,
20th, 40th, 80th and 100th percentile of the per-sample Lip-
schitz constants (as well as some values smaller than the
0th percentile). Note that G1 and Gn correspond to the 0th

and 100th percentiles, respectively. For each value of τ , we
tune over several values of the constant learning rate η, viz.,
{0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03,
0.06, 0.1, 0.3, 0.6, 1, 3, 6, 10}. PyTorch’s Opacus library
(Yousefpour et al., 2021) is used for private training.

In Figure 1, we plot the best test accuracy obtained for
different values of τ (by tuning over η) averaged over the
last 5 epochs and across 3 different runs. The figure caption
discusses the results. The exact accuracy values are listed
in Appendix B. Also, in Appendix A, we show empirical
results on two more datasets, viz., EMNIST and Fashion-
MNIST.

Now that we have corroborated our insight from Section 5.1
that clip norms ≤ G1 yield the best performance, we shall
show some results when G1 is first estimated privately using
the Report Noisy Max method (applied on the negative Lip-
schitz constants) and then used in DP-SGD as the clip norm.
We abbreviate the Report Noisy Max method as RNMM
subsequently. We show results for the first three datasets in
Figure 1, viz., Caltech-256, Food-101 and CIFAR-100. We
set ε = 0.3 for RNMM and ε = {1.7, 3.7, 5.7} for DP-SGD
so that the total privacy budget is ε = {2, 4, 6} for which
we showed results earlier without RNMM (where we did
not estimate G1 privately).5 Table 3 compares the results
with and without RNMM. The table caption discusses the
results.

6. Convergence of DP-SGD under
Heavy-Tailed Lipschitz Constants

When uniform Lipschitzness holds, the optimization risk is
O(φ) in the convex constrained case (Bassily et al., 2014)
as well as the smooth nonconvex unconstrained case (Wang
et al., 2018). In this section, we shall quantify the optimiza-

5We did not optimize the splitting of privacy budget between
RNMM and DP-SGD; this is something that can be investigated in
future work.
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Figure 1. Average test accuracy (depicted by the blobs) ± 1 standard deviation (depicted by the bars around the blobs) in the last 5
epochs for different values of clip norm τ . “%” in the x-axis stands for percentile. Observe that clip norms ≤ G1 (0th percentile or
minimum of per-sample Lipschitz constants) generally perform better than clip norms > G1. Specifically, the performance with τ = G1

is significantly better than that with τ = Gn (100th percentile or maximum). Concretely, for Caltech-256 and Food-101 (datasets with
the largest no. of classes), in the case of ε = 2, the mean accuracy with τ = G1 is better than that with τ = Gn by > 23% and 11%,
respectively; the corresponding improvement in the case of ε = 4 is > 15% and 7.5%, respectively. These observations are consistent
with our theory and recommendation in Section 5.1.

Table 3. Average test accuracy ± 1 standard deviation in the last 5 epochs (i) with and (ii) without RNMM as described in the last
paragraph of Section 5.2; the latter is the best accuracy (w.r.t. the clip norm) among the results in Figure 1 (which are without RNMM).
Note that the difference in accuracy with and without RNMM reduces as ε increases. Specifically, for ε = {4, 6}, RNMM does not harm
performance too much.

Dataset ε = 2
w/ RNMM

ε = 2
w/o RNMM

ε = 4
w/ RNMM

ε = 4
w/o RNMM

ε = 6
w/ RNMM

ε = 6
w/o RNMM

Caltech-256 70.03± 0.66 74.03± 0.47 78.27± 0.05 79.00± 0.04 79.53± 0.07 80.50± 0.04
Food-101 45.84± 2.00 49.26± 1.00 54.69± 0.14 54.85± 0.14 56.30± 0.12 56.67± 0.10

CIFAR-100 52.89± 1.02 55.10± 0.26 60.19± 0.09 60.35± 0.13 60.89± 0.04 61.16± 0.11

tion risk under generalized Lipschitzness (Assumption 4.1)
with the relaxation of the per-sample Lipschitz constants
being heavy-tailed, instead of being bounded; we do not
assume interpolation here. More specifically, we assume
that the per-sample Lipschitz constants have bounded kth

uncentered moment, for some k > 1, w.r.t. the distribution
D. This is formally stated next.

Assumption 6.1 (Bounded kth Moment). Suppose As-
sumption 4.1 holds. For some k > 1 and G > 0, we have:(

E(x,y)∼D

[(
G(x, y)

)k])1/k ≤ G.

Let us revisit the logistic regression example that we dis-
cussed after Assumption 4.1 to see why Assumption 6.1

is weaker than uniform Lipschitzness. We saw that As-
sumption 4.1 holds with G(x, y) =

√
2∥x∥ here. Now, if

the feature distribution F is such that its support includes
unbounded vectors but EF [∥x∥p] ≤ Gp

F < ∞ for some
p > 1, then Assumption 6.1 holds here for k = p and
G =

√
2GF but uniform Lipschitzness does not hold. How-

ever, if the support of F includes only bounded vectors,
then both Assumption 6.1 and uniform Lipschitzness hold.
Also note that uniform Lipschitzness is a special case of
Assumption 6.1 with k =∞ and a finite G.

Assumption 6.16 is similar to the bounded moment assump-

6This is of significance even in non-private optimization; for
e.g., Zhang et al. (2020) show that the gradients of Transformer
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tion made in Wang et al. (2020); Kamath et al. (2021); Lowy
& Razaviyayn (2023) for private stochastic convex optimiza-
tion (SCO). But Wang et al. (2020); Kamath et al. (2021)
assume coordinate-wise bounded moments which we do
not, Wang et al. (2020) only consider k = 2 and Kamath
et al. (2021) assume bounded centered (around the mean)
moment. All these papers provide results for the convex
case within a bounded convex set (i.e.,W is bounded); we
shall focus on the unconstrained (i.e.,W = Rd) convex
case here, which is more practical and harder (w.r.t. analy-
sis). For completeness, we include a result for ERM in the
constrained convex case in Appendix I which matches the
bound of Kamath et al. (2021) for SCO. Moreover, we also
present a result for the unconstrained smooth nonconvex
case; these works do not provide any results for the smooth
nonconvex case.

Before we present our results for the unconstrained con-
vex case, let us first discuss the main technical difficulty
compared to the constrained convex case. The overall op-
timization bias in the convex case depends on the bias in
mean gradient estimation induced due to clipping as well as
on the distance of the current point (wt) from the optimal
point (w∗), i.e., ∥wt−w∗∥ at iteration t. In the constrained
convex case, ∥wt −w∗∥ can be easily bounded by the di-
ameter of the constraint set. However, in the unconstrained
case, bounding ∥wt −w∗∥ needs extra work; surprisingly,
this has not been analyzed in prior work on DP-SGD. Now,
we present our result under Assumption 6.1 in the uncon-
strained convex case.

Theorem 6.2 (Unconstrained Convex Case). Suppose As-
sumption 6.1 holds, f is convex and W = Rd. Fix some
γ ∈ (0, 1) and C > 0. In Algorithm 1, set T = φ−2,
τ = O

(
Gγ− 1

kφ− 2
k+1
)

and ηt = O
(
Cγ

1
kG−1φ1+ 2

k+1
)

for
all t < T . Then with a probability of at least (1− γ) which
is w.r.t. the random dataset Z that we obtain, DP-SGD
(Algorithm 1) has the following guarantee:

OR(T ) ≤ O

(
G

γ1/k

(
∥w0 −w∗∥2

C
+ C

))
φ(1− 2

k+1 ).

Remark 6.3 (Comparison with prior results). As per Thm.
6.2, the optimization risk is O(φ1− 2

k+1 ) in the the bounded
kth moment unconstrained convex case. In comparison, the
risk is O(φ1− 1

k ) in the bounded kth moment constrained
convex case as per Thm. I.1 in Appendix I, and O(φ) in the
uniform Lipschitz convex case (Bassily et al., 2014).

The difference in the risk bound between the constrained
and unconstrained cases arises because ∥wt −w∗∥ = O(1)
(w.r.t. φ) in the constrained case but our bound for ∥wt −
w∗∥ in the unconstrained case depends on φ. If one is able
to improve this bound for the unconstrained case, then the

models such as BERT are heavy-tailed.

risk for the unconstrained case will also improve; but doing
so in the absence of any other assumption seems difficult.

Under a mild additional assumption, we are able to im-
prove the risk bound to O(φ1− 1

k ) in the unconstrained case,
thereby matching the result in the constrained case. We
present this extra assumption first, followed by the result.
Assumption 6.4. For any w s.t. ∥w −w∗∥ > D = O(1),
where w∗ ∈ arg minw∈Rdf(w):

f(w)− f(w∗) >
(
16φ1− 1

kG
)
∥w −w∗∥. (6)

For large n (our regime), φ is small; thus, 16φ(1−1/k)G is
also small in comparison to the average Lipschitz constant
= O(G) and so, assuming Equation (6) for points far away
from the optimum is reasonable. Besides, an assumption
similar to Assumption 6.4, known as sharpness (or the Ło-
jasiewicz inequality), has been used in prior optimization
literature (Polyak, 1979; Burke & Ferris, 1993; Bolte et al.,
2017; Roulet & d’Aspremont, 2017; Davis et al., 2018). We
provide an example for Assumption 6.4 in Appendix E.
Theorem 6.5 (Unconstrained Convex Case Under As-
sumption 6.4). Suppose Assumptions 6.1 and 6.4 hold, f is
convex andW = Rd. Fix some C > 0. In Algorithm 1, set
T = φ−2, τ = O

(
Gφ− 1

k

)
and ηt = O

(
CG−1φ1+ 1

k

)
for

all t < T . Then with a probability of at least 3/4 which is
w.r.t. the random dataset Z that we obtain, DP-SGD (Alg.
1) has the following improved guarantee:

OR(T ) ≤ O

(
G

(
∥w0 −w∗∥2

C
+ C +D

))
φ(1− 1

k ).

Thus, the risk bound under Assumption 6.4 improves to
O(φ1− 1

k ), which matches the bound in the constrained case.
One caveat of the above result is that unlike Theorem 6.2,
the confidence estimate of the high-probability result cannot
be controlled by us. Next, we provide a matching lower
bound showing the tightness of Theorem 6.5 w.r.t. φ.
Theorem 6.6 (Lower Bound for Unconstrained Convex
Case Under Assumption 6.4). Suppose δ < exp(−ε2).
There exists a convex loss function ℓ, such that for ev-
ery (ε, δ)-DP algorithm A which tries to solve for w∗ =
arg minw∈Rdf(w) where f is the average loss for a dataset
Z of n samples drawn from the data distribution D, there
exists a choice of D such that:

• f satisfies Assumptions 6.1 and 6.4 (the latter up to
constant terms and w.h.p. w.r.t. Z).

• EZ∼Dn,A

[
f(w

(A)
Z ) − f(w∗)

]
≥ Ω

(
φ1− 1

k

)
, where

w
(A)
Z is the output of algorithm A on the dataset Z .

Thus, DP-SGD is optimal in the unconstrained convex case
under Assumptions 6.1 & 6.4 (for δ < exp(−ε2)). We also
have the following corollary under uniform Lipschitzness.

8



Beyond Uniform Lipschitz Condition in Differentially Private Optimization

Corollary 6.7 (Uniform Lipschitz). For k →∞, i.e., un-
der uniform Lipschitzness, the risk in the unconstrained
convex case regardless of Assumption 6.4 is O(φ) as per
Thm. 6.2 and 6.5. Further, Thm. 6.6 is a lower bound even
w/o Assumption 6.4, and it yields Ω(φ) for k →∞. Thus,
DP-SGD is optimal in the unconstrained convex case under
uniform Lipschitzness (for δ < exp(−ε2)).

Regarding the proof of Theorem 6.6: Even though we
follow the proof outline of Theorem 6.4 of Kamath et al.
(2021), our proof is more involved. First, since we are in the
unconstrained setting, we had to use a non-obvious func-
tion (to obtain the lower bound on). Second, since we are
in the ERM setting, we have to lower bound the expected
training error which is harder than lower bounding the ex-
pected generalization error in the SCO setting of Kamath
et al. (2021). Finally, since we are dealing with (ε, δ)-DP
(whereas Kamath et al. (2021) deal with (0, ρ)-zCDP), we
had to re-derive an important tool in their analysis. That is
also the reason we had to impose δ < exp(−ε2); removing
this constraint is left for future work. Note that this is the
first lower bound for (ε, δ)-DP in the unconstrained case.
See Appendix L for details.

Finally, we present our result under Assumption 6.1 in the
unconstrained nonconvex case.

Theorem 6.8 (Unconstrained Nonconvex Case). Suppose
Assumption 6.1 holds, f is L-smooth and W = Rd. Fix
some γ ∈ (0, 1). In Algorithm 1, set T = φ−2, τ =

O
(
γ− 2

2k−1φ− 1
2k−1

)
and ηt = O

(
γ

2
2k−1φ1+ 1

2k−1
)

for all
t < T . Then with a probability of at least (1− γ) which is
w.r.t. the random dataset Z that we obtain, DP-SGD (Alg.
1) has the following guarantee:

OR(T ) ≤ O
(
γ

−2
2k−1φ(1− 1

2k−1 )
)
.

Remark 6.9 (Comparison with Prior Results). As per Thm.
6.8, the risk is O(φ1− 1

2k−1 ) in the bounded kth moment
nonconvex case. In comparison, Wang et al. (2018; 2019)
get a bound of O(φ) in the uniform Lipschitz nonconvex
case (equivalent to k =∞) with DP-SGD like algorithms.

7. Limitations
We now discuss some limitations of our work which render
interesting directions of future work. We do not have a lower
bound for the nonconvex case in Section 6. Our clip norm
selection strategy in Section 5 is only for the convex case.
Our iteration complexity (T ) is worse than some related
works because we consider the vanilla DP-SGD algorithm
of Abadi et al. (2016) without any acceleration, whereas
other works consider accelerated variants of DP-SGD. In
our case, we had to set T = O(1/φ2) in order to control the
clipping bias. But please note that the goal of this work is
to attain smaller optimization risk by properly choosing the

clip norm, and not accelerate convergence.

8. Conclusion
In this paper, we generalized uniform Lipschitzness by
assuming that the per-sample gradients have sample-
dependent upper bounds called per-sample Lipschitz con-
stants. Under our generalized Lipschitzness assumption, we
provided a theoretically-motivated clip norm tuning recom-
mendation for DP-SGD in the convex case. We showed
the effectiveness of our recommendation via extensive ex-
periments. Additionally, we derived novel convergence
results for unconstrained DP-SGD when the per-sample Lip-
schitz constants are heavy-tailed, i.e., they have bounded
moments.
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A. Empirical Results on EMNIST and Fashion-MNIST
Here, we show results for private multinomial logistic regression on two more datasets, viz., (balanced) EMNIST with 47
classes and Fashion-MNIST with 10 classes. For both these datasets, we just use the flattened images as features for logistic
regression. Other experimental details are the same as in Section 5.2.

In Figure 2, we plot the best test accuracy obtained for different values of the clip norm τ (by tuning over the learning rate η)
averaged over the last 5 epochs and across 3 independent runs (just like Figure 1). The figure caption discusses the results.
The exact accuracy values for these two datasets are tabulated in Table 6 in Appendix B.
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Figure 2. Average test accuracy (depicted by the blobs) ± 1 standard deviation (depicted by the bars around the blobs) in the last 5 epochs
for different values of clip norm τ . “%” in the x-axis stands for percentile. Just as in Figure 1, clip norms ≤ G1 (0th percentile of
per-sample Lipschitz constants) perform better than clip norms > G1, and the performance with τ = G1 is much better than that with
τ = Gn (100th percentile). These observations validate our theory and recommendation in Section 5.1.
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B. Tables of Results for Section 5.2 and Appendix A

Table 4. Caltech-256, Food-101 and CIFAR-100: Average test accuracy ± 1 standard deviation in the last 5 epochs for different values
of clip norm τ in the experiments of Section 5.2. Note that “pctl.” stands for percentile. “Non-private baseline” is the accuracy of vanilla
non-private SGD in the same setting.

Caltech-256 (a) (2, 10−5)-DP (b) (4, 10−5)-DP (c) (6, 10−5)-DP
τ = 0.1 73.70 ± 0.28 % 79.00 ± 0.03 % 80.50 ± 0.04 %
τ = 1.0 74.03 ± 0.47 % 79.00 ± 0.08 % 80.39 ± 0.07 %
τ = 5.0 73.80 ± 0.40 % 79.00 ± 0.04 % 80.00 ± 0.04 %
τ = 10.0 73.72 ± 0.28 % 78.79 ± 0.08 % 79.38 ± 0.05 %
τ = (0th pctl.) 73.54 ± 0.32 % 78.42 ± 0.05 % 79.41 ± 0.06 %
τ = (10th pctl.) 69.38 ± 0.45 % 75.32 ± 0.08 % 77.63 ± 0.05 %
τ = (20th pctl.) 68.73 ± 0.30 % 74.81 ± 0.02 % 77.37 ± 0.08 %
τ = (40th pctl.) 67.36 ± 0.29 % 73.43 ± 0.06 % 76.82 ± 0.09 %
τ = (80th pctl.) 65.25 ± 0.30 % 71.35 ± 0.05 % 75.38 ± 0.08 %
τ = (100th pctl.) 50.34 ± 0.57 % 63.98 ± 0.07 % 70.04 ± 0.10 %
Non-private baseline 83.97 ± 0.02 %

Food-101 (a) (2, 10−5)-DP (b) (4, 10−5)-DP (c) (6, 10−5)-DP
τ = 0.1 48.36 ± 1.08 % 54.30 ± 0.16 % 56.40 ± 0.12 %
τ = 1.0 48.57 ± 1.22 % 54.28 ± 0.21 % 56.62 ± 0.09 %
τ = 5.0 48.92 ± 1.14 % 54.85 ± 0.14 % 56.67 ± 0.10 %
τ = 10.0 49.26 ± 1.00 % 54.73 ± 0.15 % 56.49 ± 0.05 %
τ = (0th pctl.) 48.84 ± 0.89 % 54.31 ± 0.11 % 56.13 ± 0.08 %
τ = (10th pctl.) 45.54 ± 0.88 % 52.22 ± 0.24 % 54.29 ± 0.04 %
τ = (20th pctl.) 44.95 ± 0.94 % 51.91 ± 0.20 % 54.06 ± 0.09 %
τ = (40th pctl.) 43.69 ± 0.87 % 51.43 ± 0.22 % 53.88 ± 0.02 %
τ = (80th pctl.) 42.52 ± 0.96 % 50.60 ± 0.20 % 52.92 ± 0.09 %
τ = (100th pctl.) 37.36 ± 1.26 % 46.71 ± 0.18 % 49.73 ± 0.11 %
Non-private baseline 63.20 ± 0.06 %

CIFAR-100 (a) (2, 10−5)-DP (b) (4, 10−5)-DP (c) (6, 10−5)-DP
τ = 0.1 54.32 ± 0.64 % 60.35 ± 0.13 % 61.09 ± 0.07 %
τ = 1.0 54.49 ± 0.63 % 60.26 ± 0.10 % 61.15 ± 0.11 %
τ = 5.0 54.33 ± 0.42 % 60.17 ± 0.08 % 61.16 ± 0.11 %
τ = 10.0 55.10 ± 0.26 % 59.44 ± 0.12 % 60.36 ± 0.12 %
τ = 17.7(0th pctl.) 54.40 ± 0.36 % 58.93 ± 0.10 % 59.96 ± 0.09 %
τ = 29.2(10th pctl.) 52.16 ± 0.40 % 57.40 ± 0.17 % 59.89 ± 0.09 %
τ = 31.6(20th pctl.) 51.61 ± 0.47 % 57.57 ± 0.10 % 58.72 ± 0.08 %
τ = 34.7(40th pctl.) 49.98 ± 0.52 % 56.67 ± 0.16 % 58.15 ± 0.11 %
τ = 40.1(80th pctl.) 47.23 ± 0.48 % 55.15 ± 0.09 % 56.87 ± 0.08 %
τ = 55.7(100th pctl.) 45.40 ± 0.96 % 51.77 ± 0.09 % 54.46 ± 0.07 %
Non-private baseline 66.91 ± 0.05 %

14



Beyond Uniform Lipschitz Condition in Differentially Private Optimization

Table 5. CIFAR-10, TweetEval Emoji and Emotion: Average test accuracy ± 1 standard deviation in the last 5 epochs for different
values of clip norm τ in the experiments of Section 5.2. Note that “pctl.” stands for percentile. “Non-private baseline” is the accuracy of
vanilla non-private SGD in the same setting.

CIFAR-10 (a) (2, 10−5)-DP (b) (4, 10−5)-DP (c) (6, 10−5)-DP
τ = 0.1 83.61 ± 0.21 % 84.84 ± 0.04 % 85.41 ± 0.05 %
τ = 1.0 83.87 ± 0.15 % 84.83 ± 0.04 % 85.58 ± 0.06 %
τ = 5.0 83.90 ± 0.20 % 84.87 ± 0.10 % 85.45 ± 0.02 %
τ = 10.0 83.97 ± 0.15 % 85.15 ± 0.07 % 85.43 ± 0.06 %
τ = 19.8(0th pctl.) 83.79 ± 0.20 % 84.75 ± 0.06 % 85.31 ± 0.08 %
τ = 31.7(10th pctl.) 83.14 ± 0.18 % 84.67 ± 0.15 % 84.98 ± 0.10 %
τ = 33.6(20th pctl.) 82.75 ± 0.15 % 84.50 ± 0.09 % 85.05 ± 0.03 %
τ = 36.1(40th pctl.) 82.94 ± 0.23 % 84.51 ± 0.11 % 84.90 ± 0.07 %
τ = 40.8(80th pctl.) 82.56 ± 0.22 % 83.98 ± 0.10 % 84.73 ± 0.08 %
τ = 55.4(100th pctl.) 81.78 ± 0.16 % 83.21 ± 0.11 % 84.25 ± 0.06 %
Non-private baseline 86.78 ± 0.05 %

TweetEval Emoji (a) (2, 10−5)-DP (b) (4, 10−5)-DP (c) (6, 10−5)-DP
τ = 0.1 26.15 ± 0.26 % 28.13 ± 0.12 % 28.59 ± 0.21 %
τ = 1.0 26.21 ± 0.30 % 28.21 ± 0.10 % 28.68 ± 0.17 %
τ = 5.0 26.28 ± 0.33 % 28.14 ± 0.10 % 28.77 ± 0.23 %
τ = 10.0 26.34 ± 0.37 % 28.00 ± 0.15 % 28.57 ± 0.18 %
τ = 13.8(0th pctl.) 26.04 ± 0.29 % 27.86 ± 0.06 % 28.40 ± 0.13 %
τ = 15.9(10th pctl.) 25.92 ± 0.29 % 27.67 ± 0.10 % 28.06 ± 0.06 %
τ = 16.2(20th pctl.) 25.78 ± 0.32 % 27.63 ± 0.08 % 28.06 ± 0.05 %
τ = 16.7(40th pctl.) 25.83 ± 0.30 % 27.50 ± 0.07 % 28.01 ± 0.07 %
τ = 17.5(80th pctl.) 25.70 ± 0.31 % 27.46 ± 0.07 % 27.93 ± 0.07 %
τ = 20.8(100th pctl.) 25.55 ± 0.26 % 27.06 ± 0.11 % 27.73 ± 0.05 %
Non-private baseline 30.10 ± 0.03 %

Emotion (a) (2, 10−5)-DP (b) (4, 10−5)-DP (c) (6, 10−5)-DP
τ = 0.1 51.95 ± 0.42 % 54.88 ± 0.30 % 56.45 ± 0.25 %
τ = 1.0 52.39 ± 0.61 % 55.05 ± 0.26 % 56.10 ± 0.16 %
τ = 5.0 52.40 ± 0.57 % 55.25 ± 0.13 % 56.35 ± 0.20 %
τ = 10.0 52.24 ± 0.64 % 54.95 ± 0.22 % 55.82 ± 0.33 %
τ = 14.6(0th pctl.) 51.86 ± 0.70 % 54.52 ± 0.29 % 55.83 ± 0.16 %
τ = 16.4(10th pctl.) 51.59 ± 0.46 % 54.25 ± 0.29 % 55.03 ± 0.20 %
τ = 16.8(20th pctl.) 51.03 ± 0.42 % 54.16 ± 0.34 % 55.09 ± 0.19 %
τ = 17.2(40th pctl.) 50.84 ± 0.48 % 54.21 ± 0.35 % 55.04 ± 0.22 %
τ = 17.8(80th pctl.) 50.94 ± 0.50 % 53.78 ± 0.34 % 54.97 ± 0.09 %
τ = 20.2(100th pctl.) 50.34 ± 0.46 % 53.64 ± 0.22 % 54.21 ± 0.10 %
Non-private baseline 60.43 ± 0.22 %
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Table 6. EMNIST and Fashion-MNIST: Average test accuracy ± 1 standard deviation in the last 5 epochs for different values of clip
norm τ in the experiments of Appendix A. Note that “pctl.” stands for percentile. “Non-private baseline” is the accuracy of vanilla
non-private SGD in the same setting.

EMNIST (a) (2, 10−5)-DP (b) (4, 10−5)-DP (c) (6, 10−5)-DP
τ = 1.0 62.78 ± 0.98 % 65.90 ± 0.09 % 67.02 ± 0.11 %
τ = 3.0 63.17 ± 0.94 % 66.16 ± 0.10 % 66.94 ± 0.10 %
τ = 5.7(0th pctl.) 62.85 ± 0.89 % 65.55 ± 0.17 % 66.79 ± 0.04 %
τ = 11.6(10th pctl.) 61.11 ± 0.99 % 64.77 ± 0.25 % 65.41 ± 0.11 %
τ = 12.7(20th pctl.) 61.12 ± 0.98 % 64.30 ± 0.09 % 64.96 ± 0.10 %
τ = 14.1(40th pctl.) 60.42 ± 0.96 % 63.88 ± 0.13 % 64.67 ± 0.14 %
τ = 16.7(80th pctl.) 59.49 ± 0.83 % 63.07 ± 0.10 % 63.94 ± 0.08 %
τ = 26.1(100th pctl.) 56.36 ± 1.04 % 61.26 ± 0.16 % 62.06 ± 0.08 %
Non-private baseline 69.37 ± 0.04 %

Fashion-MNIST (a) (2, 10−5)-DP (b) (4, 10−5)-DP (c) (6, 10−5)-DP
τ = 1.0 82.99 ± 0.13 % 83.86 ± 0.11 % 84.06 ± 0.02 %
τ = 3.0(0th pctl.) 82.82 ± 0.18 % 83.85 ± 0.06 % 83.99 ± 0.11 %
τ = 10.0(10th pctl.) 82.24 ± 0.14 % 83.43 ± 0.08 % 83.56 ± 0.06 %
τ = 12.2(20th pctl.) 82.27 ± 0.07 % 83.36 ± 0.09 % 83.59 ± 0.09 %
τ = 15.6(40th pctl.) 82.05 ± 0.19 % 83.20 ± 0.07 % 83.31 ± 0.08 %
τ = 22.3(80th pctl.) 81.24 ± 0.14 % 82.43 ± 0.07 % 82.67 ± 0.10 %
τ = 32.4(100th pctl.) 79.99 ± 0.18 % 81.69 ± 0.12 % 82.14 ± 0.10 %
Non-private baseline 84.44 ± 0.05 %
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C. Some Empirical Results in the Non-Convex Case
Here we show some empirical results on a nonconvex neural network (NN) problem. Specifically, we consider a two-layer
feedforward NN having one hidden layer with tanh activation. We use tanh instead of ReLU activation due to two reasons:
(i) Papernot et al. (2020) show that tanh performs better than ReLU in private training of NNs (which we also observed), and
(ii) we expect Lipschitz constants to be smaller with tanh than ReLU. We run our experiments on CIFAR-100 and EMNIST;
we use pre-trained features for the former, while for the latter, we use the raw images. Specifically, for CIFAR-100, we use
512-dimensional features obtained from the pre-softmax layer of a pre-trained ResNet-18 model on ImageNet (same as in
Section 5.2). For EMNIST, we use the flattened images as features (just as mentioned in Appendix A). For both datasets, we
set the dimension of the hidden layer of the NN to be 256. Computing the per-sample Lipschitz constants is much harder
here so we just test several values of the clip norm τ , viz., {1, 3, 6, 12, 18, 24, 30, 36}, and show the performance trend as a
function of τ . All other experimental details are the same as in Section 5.2.

In Figure 3, we plot the best test accuracy obtained for different values of τ (by tuning over η) averaged over the last 5
epochs and across 3 independent runs. The figure caption discusses the results. The exact values are tabulated in Table 7.

So empirically, smaller clip norms perform better in two-layer nonconvex NNs, similar to the convex case.

A single NVIDIA TITAN Xp GPU was used for all the experiments in this paper.

Table 7. EMNIST and CIFAR-100 with two-layer NN: Average test accuracy ± 1 standard deviation in the last 5 epochs for different
values of clip norm τ in the experiments above. “Non-private baseline” is the accuracy of vanilla non-private SGD in the same setting.

EMNIST (a) (2, 10−5)-DP (b) (4, 10−5)-DP (c) (6, 10−5)-DP
τ = 1 65.32 ± 1.54 % 72.03 ± 0.17 % 73.59 ± 0.18 %
τ = 3 65.36 ± 1.54 % 71.74 ± 0.16 % 73.44 ± 0.06 %
τ = 6 63.72 ± 1.64 % 70.89 ± 0.37 % 73.28 ± 0.12 %
τ = 12 63.50 ± 1.60 % 70.42 ± 0.33 % 72.51 ± 0.14 %
τ = 18 62.87 ± 1.44 % 68.04 ± 0.29 % 70.65 ± 0.23 %
τ = 24 60.95 ± 1.19 % 66.82 ± 0.33 % 69.01 ± 0.11 %
τ = 30 58.43 ± 2.04 % 64.91 ± 0.12 % 66.30 ± 0.19 %
τ = 36 57.55 ± 1.83 % 62.36 ± 0.19 % 65.03 ± 0.20 %
Non-private baseline 84.24 ± 0.05 %

CIFAR-100 (a) (2, 10−5)-DP (b) (4, 10−5)-DP (c) (6, 10−5)-DP
τ = 1 54.92 ± 0.42 % 59.08 ± 0.08 % 61.33 ± 0.06 %
τ = 3 54.58 ± 0.40 % 59.28 ± 0.24 % 61.26 ± 0.04 %
τ = 6 54.54 ± 0.67 % 59.43 ± 0.17 % 61.33 ± 0.08 %
τ = 12 54.58 ± 0.55 % 59.48 ± 0.11 % 60.84 ± 0.10 %
τ = 18 53.28 ± 0.81 % 57.94 ± 0.09 % 59.41 ± 0.12 %
τ = 24 51.81 ± 0.65 % 55.83 ± 0.23 % 59.22 ± 0.09 %
τ = 30 50.01 ± 0.78 % 55.10 ± 0.24 % 58.09 ± 0.10 %
τ = 36 46.69 ± 0.46 % 54.16 ± 0.23 % 56.58 ± 0.16 %
Non-private baseline 67.31 ± 0.04 %
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Figure 3. EMNIST and CIFAR-100 with two-layer NN: Average test accuracy (depicted by the blobs) ± 1 standard deviation (depicted
by the bars above and below the blobs) in the last 5 epochs for different values of clip norm τ . The general trend above is that the accuracy
drops as the clip norm increases; this is similar to what we saw in the experiments on convex problems, and consistent with the main
message of Theorem 5.4 (even though it is for the convex case), viz., smaller clip norms should perform better as they attain a lower risk
bound.
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D. Logistic Regression Satisfies Assumption 4.1
Consider doing logistic regression for multi-class classification with the cross-entropy loss, where m is the number of classes.
Suppose x ∼ F (with a ‘1’ appended to account for the bias term) is the feature vector and y ∈ [m] is the corresponding
class number. Let the model parameter w be split as w = [w1, . . . ,wm], where each {wj}mj=1 ∈ Rd, d being the dimension
of x; so, wj denotes the parameter vector corresponding to class j. Then, our predicted probability of x belonging to class
j with the softmax predictor is:

pj =
exp(wT

j x)∑m
k=1 exp(w

T
k x)

.

We use the standard cross-entropy loss for logistic regression which gives us:

ℓ(w,x, y) = − log(py). (7)

Now, with some differentiation, it can be checked that:

∥∇ℓw(w,x, y)∥ =

(√∑
j ̸=y

p2j + (1− py)2

)
∥x∥ ≤

√
2∥x∥. (8)

Thus, logistic regression satisfies Assumption 4.1 with G(x, y) =
√
2∥x∥ in any parameter domainW .

E. Example for Assumption 6.4
Suppose fi(w) = ∥w −w∗

i ∥. Then, f(w) = 1
n

∑n
i=1 ∥w −w∗

i ∥ and w∗ = arg minw∈Rdf(w).

Let w∗ = 1
n

∑n
i=1 w

∗
i . For ∥w −w∗∥ ≥ D := max(2∥w∗ −w∗∥, 4

n

∑n
i=1 ∥w

∗ −w∗
i ∥), it can be shown that f(w) −

f(w∗) ≥ 1
4∥w−w∗∥. Noting that G = O(1) here (as the sub-gradient of fi is bounded by 1 in magnitude), Assumption 6.4

easily holds here for small φ.

Proof. Using the triangle inequality, we have for any w satisfying ∥w −w∗∥ ≥ D:

f(w) =
1

n

n∑
i=1

∥w −w∗
i ∥ (9)

≥
∥∥∥w − 1

n

n∑
i=1

w∗
i

∥∥∥ (10)

= ∥w −w∗∥ (11)
= ∥w −w∗ − (w∗ −w∗)∥ (12)

≥
∣∣∣∥w −w∗∥ − ∥w∗ −w∗∥

∣∣∣ (13)

=

∣∣∣∣∣∥w −w∗∥
2

+
∥w −w∗∥

2
− ∥w∗ −w∗∥

∣∣∣∣∣ (14)

≥ ∥w −w∗∥
2

. (15)

Equation (15) follows because ∥w−w∗∥
2 ≥ D

2 ≥ ∥w
∗ −w∗∥ (from the definition of D). Next, since w∗ is the minimizer of

f and using the definition of D, we have:

f(w∗) ≤ f(w∗) =
1

n

n∑
i=1

∥w∗ −w∗
i ∥ ≤

D

4
≤ ∥w −w∗∥

4
. (16)

Finally, subtracting Equation (16) from Equation (15) gives us the desired result. ■
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F. Some Useful Lemmas
Lemma F.1 (Clipping Bias). Suppose v(ζ) (where ζ denotes the source of randomness) is an unbiased estimator of v, i.e.
Eζ [v(ζ)] = v. Let b(τ) denote the clipping bias of clip(v(ζ), τ), i.e.

b(τ) =
∥∥∥v − Eζ

[
clip(v(ζ), τ)

]∥∥∥.
Then for any p > 1,

b(τ) ≤
(
E[∥v(ζ)∥p]

) 1
p
(
P(∥v(ζ)∥ ≥ τ)

)1− 1
p − τP(∥v(ζ)∥ ≥ τ).

Proof. We shall omit the subscript ζ in expectations henceforth, and it should be inferred from context. We can bound the
clipping bias b(τ) with a clip norm τ as:

b(τ) =
∥∥∥v − E

[
clip(v(ζ), τ)

]∥∥∥ (17)

=
∥∥∥v − E

[
v(ζ)min

(
1,

τ

∥v(ζ)∥

)]∥∥∥ (18)

=
∥∥∥E[v(ζ)(1− τ

∥v(ζ)∥

)
1(∥v(ζ)∥ ≥ τ)

]∥∥∥ (19)

≤ E
[
∥v(ζ)∥

(
1− τ

∥v(ζ)∥

)
1(∥v(ζ)∥ ≥ τ)

]
(20)

= E
[
∥v(ζ)∥1(∥v(ζ)∥ ≥ τ)

]
− τE[1(∥v(ζ)∥ ≥ τ)] (21)

≤
(
E[∥v(ζ)∥p]

) 1
p
(
E
[(
1(∥v(ζ)∥ ≥ τ)

)q]) 1
q − τP(∥v(ζ)∥ ≥ τ), (22)

for p, q ∈ (1,∞) such that 1
p + 1

q = 1; this follows from Hölder’s inequality. Now

E
[(
1(∥v(ζ)∥ ≥ τ)

)q]
= E[1(∥v(ζ)∥ ≥ τ)] = P(∥v(ζ)∥ ≥ τ). (23)

Plugging this back in Equation (22) and substituting 1
q = 1− 1

p , we get the desired result for b(τ). ■

Corollary F.2 (Clipping Bias). In the setting of Lemma F.1, we have the following simpler upper bound for any p > 1:

b(τ) ≤ E[∥v(ζ)∥p]
τp−1

.

Proof. From Lemma F.1, we have that:

b(τ) ≤
(
E[∥v(ζ)∥p]

) 1
p
(
P(∥v(ζ)∥ ≥ τ)

)1− 1
p

, (24)

for any p > 1. Using Markov’s inequality, we have:

P(∥v(ζ)∥ ≥ τ) ≤ E[∥v(ζ)∥p]
τp

. (25)

Plugging this in Equation (24), we get the desired result. ■

It is worth mentioning here that a result similar to Corollary F.2 has been established in Lemma 10 of Zhang et al. (2020).

G. Proof of Theorem 3.4
Using the result of Abadi et al. (2016), we know that any wt, where t ∈ {0, . . . , T − 1}, will be (ε, δ)-DP if we set
σ2
n = ν

T log( 1
δ )

n2ε2 τ2 for some absolute constant ν. Thus, wt̂ (where t̂ is chosen uniformly at random from {0, . . . , T − 1} as
defined in Algorithm 1) will also be (ε, δ)-DP.
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H. Full Version and Proof of Theorem 5.4
Theorem H.1 (Convex Case). Suppose each fi is convex and W is a convex set (which can be Rd). In Algorithm 1,

for all t < T , set ηt = η = C
Tτ

(
1
T + φ2

)−1/2

for clip norm τ , where C > 0 is a parameter of our choice. Recall

w∗ ∈ argminw∈Wf(w) and t̂ ∼ Unif[0, T − 1]. Then, DP-SGD (Algorithm 1) has the following convergence guarantee:

1

n

∑
i∈[n]

E
[
min

(
1,

τ

∥∇fi(wt̂)∥

)
(fi(wt̂)− fi(w

∗))
]
≤
(
∥w0 −w∗∥2

2C
+ C

)
τ

√
1

T
+ φ2.

Now suppose Assumption 5.1 holds. Then, DP-SGD has the following upper bound on the optimization risk as a function of
the clip norm τ ∈ (0, Gn]:

OR(T ) ≤ 1

α(τ)

((
∥w0 −w∗∥2

2C
+ C

)
Gn

√
1

T
+ φ2

)
+

(
Gn

τα(τ)
− 1

)
∆(w∗),

where ∆(w∗) ≥ 0 and α(τ) ≥ 1 are as defined in Definitions 5.2 and 5.3, respectively.

Theorem 5.4 can be obtained from the above theorem by plugging in T = 1
3φ2 . The proof of Theorem H.1 is below.

Proof:

Proof. Suppose we use a constant clip norm τ and constant learning rate η. For any w∗ ∈ argminw∈Wf(w), ∥wt+1 −
w∗∥ ≤ ∥zt+1 −w∗∥ as wt+1 is the projection of zt+1 onto the convex setW . Thus:

E[∥wt+1 −w∗∥2] ≤ E[∥zt+1 −w∗∥2] (26)

= E[∥wt −w∗∥2]− 2ηE[⟨gt,wt −w∗⟩] + η2E[∥gt∥2] (27)

= E[∥wt −w∗∥2]− 2ηE
[〈1

b

∑
i∈St

clip(∇fi(wt), τ),wt −w∗
〉]

+ η2E[∥gt∥2] (28)

= E[∥wt −w∗∥2]− 2η

n

∑
i∈[n]

E
[
min

(
1,

τ

∥∇fi(wt)∥

)
⟨∇fi(wt),wt −w∗⟩

]
+ η2E[∥gt∥2] (29)

≤ E[∥wt −w∗∥2]− 2η

n

∑
i∈[n]

E
[
min

(
1,

τ

∥∇fi(wt)∥

)
(fi(wt)− fi(w

∗))
]
+ η2E[∥gt∥2]. (30)

Equation (30) follows from the convexity of fi. Next, rearranging the above a bit, followed by summing for t = 0 through
to T − 1, and then dividing by 2ηT throughout, we get:

1

T

T−1∑
t=0

{ 1

n

∑
i∈[n]

E
[
min

(
1,

τ

∥∇fi(wt)∥

)
(fi(wt)− fi(w

∗))
]}

≤ ∥w0 −w∗∥2 − E[∥wT −w∗∥2]
2ηT

+
η

2T

T−1∑
t=0

E[∥gt∥2] (31)

≤ ∥w0 −w∗∥2

2ηT
+

η

2T

T−1∑
t=0

E[∥gt∥2]. (32)

Henceforth, we shall denote ∥w0 −w∗∥ by D0 for brevity.

Next:

E[∥gt∥2] = E
[∥∥∥1

b

∑
i∈St

clip(∇fi(wt), τ) + ζt

∥∥∥2] (33)

= E
[∥∥∥1

b

∑
i∈St

clip(∇fi(wt), τ)
∥∥∥2]︸ ︷︷ ︸

(I)

+dσ2
n. (34)
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Let zt,i = 1 if sample i ∈ St and 0 otherwise; note that P(zt,i = 1) = b
n . With this, we can rewrite (I) as:

(I) = E
[∥∥∥1

b

∑
i∈[n]

clip(∇fi(wt), τ)zt,i

∥∥∥2] (35)

=
1

b2

∑
i∈[n]

∥clip(∇fi(wt), τ)∥2E[z2t,i] +
1

b2

∑
i ̸=j

⟨clip(∇fi(wt), τ), clip(∇fj(wt), τ)⟩E[zt,izt,j ]. (36)

Note that E[z2t,i] = b
n ∀ i ∈ [n], E[zt,izt,j ] = b2

n2 ∀ i ̸= j, ∥clip(∇fi(wt), τ)∥2 ≤ τ2 ∀ i ∈ [n] and
⟨clip(∇fi(wt), τ), clip(∇fj(wt), τ)⟩ ≤ ∥clip(∇fi(wt), τ)∥∥clip(∇fj(wt), τ)∥ ≤ τ2 ∀ i ̸= j. Using all this above,
we get:

(I) ≤ τ2
(
1 +

1

b
− 1

n

)
. (37)

Plugging the above as well as the value of σ2
n back in Equation (34), we get:

E[∥gt∥2] ≤ τ2
(
1 +

1

b
− 1

n
+

νdT log(1/δ)

n2ε2

)
(38)

≤ τ2
(
2 +

νdT log(1/δ)

n2ε2

)
(39)

≤ 2τ2
(
1 +

νdT log(1/δ)

n2ε2

)
. (40)

Equation (39) follows because b ≥ 1.

Plugging Equation (40) in Equation (32), we get:

1

T

T−1∑
t=0

{ 1

n

∑
i∈[n]

E
[
min

(
1,

τ

∥∇fi(wt)∥

)
(fi(wt)− fi(w

∗))
]}
≤ D2

0

2ηT
+ ηTτ2

( 1

T
+

νd log( 1δ )

n2ε2

)
. (41)

Plugging in η = C

Tτ
√

1
T +

νd log(1/δ)

n2ε2

in the above equation, where C > 0 is a constant of our choice, we get:

1

T

T−1∑
t=0

{ 1

n

∑
i∈[n]

E
[
min

(
1,

τ

∥∇fi(wt)∥

)
(fi(wt)− fi(w

∗))
]}
≤
(D2

0

2C
+ C

)
τ

√
1

T
+

νd log(1/δ)

n2ε2
. (42)

Recalling that t̂ ∼ Unif[0, T − 1], we can rewrite the above as:

1

n

∑
i∈[n]

E
[
min

(
1,

τ

∥∇fi(wt̂)∥

)
(fi(wt̂)− fi(w

∗))
]
≤
(D2

0

2C
+ C

)
τ

√
1

T
+

νd log(1/δ)

n2ε2
. (43)

Next, Equation (43) can be further rewritten as:

1

n

∑
i∈[n]

E
[
min

(
1,

τ

∥∇fi(wt̂)∥

)
(fi(wt̂)− f∗

i )
]
≤
(D2

0

2C
+ C

)
τ

√
1

T
+

νd log(1/δ)

n2ε2

+
1

n

∑
i∈[n]

E
[
min

(
1,

τ

∥∇fi(wt̂)∥

)]
(fi(w

∗)− f∗
i ), (44)

where f∗
i = minw∈W fi(w).

From Assumption 5.1, ∥∇fi(wt̂)∥ ≤ Gi; thus, min
(
1, τ

∥∇fi(wt̂)∥

)
≥ min

(
1, τ

Gi

)
. Using this and the fact that fi(wt̂)−

f∗
i ≥ 0, we get:

min
(
1,

τ

∥∇fi(wt̂)∥

)
(fi(wt̂)− f∗

i ) ≥ min
(
1,

τ

Gi

)
(fi(wt̂)− f∗

i ).
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Using this in Equation (44) together with the fact that min
(
1, τ

∥∇fi(wt̂)∥
)
≤ 1 and then dividing by τ throughout, we get:

1

n

∑
i∈[n]

min
(1
τ
,
1

Gi

)
E[fi(wt̂)− f∗

i ] ≤
(D2

0

2C
+ C

)√ 1

T
+

νd log(1/δ)

n2ε2
+

1

n

∑
i∈[n]

(fi(w
∗)− f∗

i )

τ
. (45)

Next, from the definition of α(τ) in Definition 5.3, we have that:

1

n

∑
i∈[n]

min
(1
τ
,
1

Gi

)
E[fi(wt̂)− f∗

i ] ≥
α(τ)

n

∑
i∈[n]

E[fi(wt̂)− f∗
i ]

Gn
(46)

=
(α(τ)

Gn

)(
E[f(wt̂)]− f(w∗)

)
︸ ︷︷ ︸

=OR(T )

+
(α(τ)

Gn

)( 1
n

∑
i∈[n]

(fi(w
∗)− f∗

i )
)
. (47)

Next, using Equation (47) in Equation (45) and the definition of OR(T ), we get (after some rearrangement):

OR(T ) ≤ 1

α(τ)

((D2
0

2C
+ C

)
Gn

√
1

T
+

νd log(1/δ)

n2ε2

)
+
( Gn

τα(τ)
− 1
)( 1

n

∑
i∈[n]

(fi(w
∗)− f∗

i )

)
︸ ︷︷ ︸

∆(w∗)

. (48)

Recalling the definition of ∆(w∗), we get the desired result. ■

I. Result for the Constrained Convex Case under Assumption 6.1
As mentioned in the main paper, Kamath et al. (2021) consider stochastic convex optimization (SCO) and derive upper
and lower bounds of O(φ1− 1

k ) and Ω(φ1− 1
k ) for the generalization error (i.e., Ex∼D[ℓ(wpriv,x) − ℓ(w∗∗,x)], where

w∗∗ := arg minw∈RdEx∼D[ℓ(w,x)]) in the constrained convex case under an assumption similar to Assumption 6.17. We
shall now show that the same bounds hold for the training error (i.e., f(wpriv) − f(w∗)) in empirical risk minimization
(which is what we consider in this work) in the constrained convex case under Assumption 6.1.

Theorem I.1 (Constrained Convex Case). Suppose Assumption 6.1 holds, f is convex andW is a bounded convex set with

diameter DW < ∞. Fix some γ ∈ (0, 1). In Algorithm 1, set τ = G
γ1/k

(
1
T + φ2

)− 1
2k

and ηt = η = DW
Tτ

(
1
T + φ2

)− 1
2

for all t < T . Then with a probability of at least (1 − γ) which is w.r.t. the random dataset Z that we obtain, DP-SGD
(Algorithm 1) has the following guarantee:

OR(T ) ≤ 5DWG

2γ1/k

( 1

T
+ φ2

) 1
2 (1−

1
k )

.

So if we set T = 1
φ2 above, we get the following bound for the risk:

OR(T ) ≤ 5DWG

2
1
2 (1+

1
k )γ1/k

φ(1− 1
k ).

Remark I.2 (Comparison with Lipschitz Case). As per the above theorem, the optimization risk is O(φ1− 1
k ) in the

bounded kth moment constrained convex case. In comparison, the risk is O(φ) in the Lipschitz convex case (equivalent to
k =∞); see Bassily et al. (2014).

We also have a matching lower bound in this case.

Theorem I.3 (Lower Bound for Constrained Convex Case). Suppose φ < o(1) and δ < exp(−ε2). There exists a
convex loss function ℓ and a bounded convex setW , such that for every (ε, δ)-DP algorithm A which tries to solve for
w∗ = arg minw∈Wf(w) where f is the average loss for a dataset Z of n samples drawn from the data distribution D,
there exists a choice of D such that:

7Specifically, Kamath et al. (2021) assume coordinate-wise bounded centered moments.
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• f satisfies Assumption 6.1.

• EZ∼Dn,A

[
f(w

(A)
Z )− f(w∗)

]
≥ Ω

(
φ1− 1

k

)
, where w

(A)
Z is the output of algorithm A on the dataset Z .

Remark I.4 (Tightness of Theorem I.1). The O(φ1− 1
k ) bound on the risk in Theorem I.1 is tight (for δ < exp(−ε2)).

We now prove Theorem I.1; the proof of Theorem I.3 is deferred to Appendix M.

Proof of Theorem I.1:

Proof. First, using Lemma I.5, we have that:∥∥∥ 1
n

∑
i∈[n]

clip(∇fi(w), τ)−∇f(w)
∥∥∥ ≤ Gk

Z
τk−1

, (49)

where Gk
Z = 1

n

∑n
i=1(G(xi, yi))

k.

For any w∗ ∈ argminw∈Wf(w), ∥wt+1 −w∗∥ ≤ ∥zt+1 −w∗∥ as wt+1 = ΠW(zt+1). So:

E[∥wt+1 −w∗∥2] ≤ E[∥zt+1 −w∗∥2] (50)

= E[∥wt −w∗∥2]− 2ηE[⟨gt,wt −w∗⟩] + η2E[∥gt∥2] (51)

= E[∥wt −w∗∥2]− 2ηE
[〈1

b

∑
i∈St

clip(∇fi(wt), τ),wt −w∗
〉]

+ η2E[∥gt∥2] (52)

= E[∥wt −w∗∥2]− 2ηE
[〈 1

n

∑
i∈[n]

clip(∇fi(wt), τ),wt −w∗
〉]

+ η2E[∥gt∥2] (53)

≤ E[∥wt −w∗∥2]− 2ηE[⟨∇f(wt),wt −w∗⟩] (54)

+ 2ηE
[∥∥∥ 1

n

∑
i∈[n]

clip(∇fi(wt), τ)−∇f(wt)
∥∥∥∥wt −w∗∥

]
+ η2E[∥gt∥2]

≤ E[∥wt −w∗∥2]− 2ηE[f(wt)− f(w∗)] (55)

+ 2ηDWE
[∥∥∥ 1

n

∑
i∈[n]

clip(∇fi(wt), τ)−∇f(wt)
∥∥∥]+ η2E[∥gt∥2].

Equation (55) follows from the convexity of f together with the fact that ∥wt −w∗∥ ≤ DW . Next, rearranging the above a
bit, followed by summing for t = 0 through to T − 1, and then dividing by 2ηT throughout, we get:

1

T

T−1∑
t=0

(
E[f(wt)]− f(w∗)

)
≤ D2

W
2ηT

+
η

2T

T−1∑
t=0

E[∥gt∥2] +
DW

T

T−1∑
t=0

E
[∥∥∥ 1

n

∑
i∈[n]

clip(∇fi(wt), τ)−∇f(wt)
∥∥∥] (56)

≤ D2
W

2ηT
+ ηTτ2

(
νd log(1/δ)

n2ε2
+

1

T

)
+

DWGk
Z

τk−1
, (57)

where the last step follows by using Equation (40) and Equation (49).

Plugging in η = DW

Tτ
√

1
T +

νd log(1/δ)

n2ε2

above, we get:

1

T

T−1∑
t=0

(
E[f(wt)]− f(w∗)

)
≤ 3DWτ

2

√
1

T
+

νd log(1/δ)

n2ε2
+

DWGk
Z

τk−1
. (58)

Let us choose τ = G
γ1/k

(
1
T + νd log(1/δ)

n2ε2

)− 1
2k

above, where γ ∈ (0, 1). With that, we get:

1

T

T−1∑
t=0

(
E[f(wt)]− f(w∗)

)
≤ DW

(
3G

2γ
1
k

+
Gk

Zγ
1− 1

k

Gk−1

)(
1

T
+

νd log(1/δ)

n2ε2

) 1
2 (1−

1
k )

. (59)
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Now, using Markov’s inequality, Gk
Z ≤ Gk

γ with a probability of at least 1− γ w.r.t. the random dataset Z . Plugging this
above, we get:

1

T

T−1∑
t=0

(
E[f(wt)]− f(w∗)

)
≤ 5DWG

2γ1/k

(
1

T
+

νd log(1/δ)

n2ε2

) 1
2 (1−

1
k )

, (60)

with a probability of at least 1− γ w.r.t. the random dataset Z .

Lastly, plugging in φ =

√
νd log(1/δ)

nε , noting that E[f(wt̂)] − f(w∗) = 1
T

∑T−1
t=0

(
E[f(wt)] − f(w∗)

)
and using the

definition of OR(T ), we get the final result. ■

Lemma I.5 (Clipping Bias under Assumption 4.1). Under Assumption 4.1, we have for any w ∈ W:∥∥∥ 1
n

∑
i∈[n]

clip(∇fi(w), τ)−∇f(w)
∥∥∥ ≤ Gk

Z
τk−1

,

where Gk
Z := 1

n

∑n
i=1(G(xi, yi))

k.

Proof. Using Corollary F.2 and Assumption 4.1, we have for any w ∈ W:∥∥∥ 1
n

∑
i∈[n]

clip(∇fi(w), τ)−∇f(w)
∥∥∥ = ∥Ei[clip(∇fi(w), τ)]−∇f(w)∥ (61)

≤ Ei[∥∇fi(w)∥k]
τk−1

(62)

≤ Gk
Z

τk−1
, (63)

where Gk
Z = 1

n

∑n
i=1(G(xi, yi))

k. ■

J. Full Version and Proof of Theorem 6.2
Theorem J.1 (Unconstrained Convex Case). Suppose Assumption 6.1 holds, f is convex andW = Rd. Fix some γ ∈ (0, 1)

and C > 0. In Algorithm 1, set τ = G
γ1/k

(
1
T + φ2

)− 1
k+1

and ηt = η = C
Tτ

(
1
T + φ2

)− 1
2

for all t < T . Then with a

probability of at least (1− γ) which is w.r.t. the random dataset Z that we obtain, DP-SGD (Algorithm 1) has the following
guarantee:

OR(T ) ≤ G

γ1/k

{
1

2

(
∥w0 −w∗∥2

C
+ 4C

)( 1

T
+ φ2

) 1
2 (1−

2
k+1 )

+ (∥w0 −w∗∥+ C)
( 1

T
+ φ2

)(1− 2
k+1 )

}
.

So if we set T = 1
φ2 above (which is what we do in Theorem 6.2), we get the following bound for the risk:

OR(T ) ≤ G

γ1/k

{
1

2
1
2+

1
k+1

(
∥w0 −w∗∥2

C
+ 4C

)
φ(1− 2

k+1 ) + 21−
2

k+1 (∥w0 −w∗∥+ C)φ2(1− 2
k+1 )

}
.

We prove this result now.

Proof:

Proof. Everything remains the same till Equation (54) in the proof of Theorem I.1. That is, we have:

E[∥wt+1 −w∗∥2] ≤ E[∥wt −w∗∥2]− 2ηE[⟨∇f(wt),wt −w∗⟩] (64)

+ 2ηE
[∥∥∥ 1

n

∑
i∈[n]

clip(∇fi(wt), τ)−∇f(wt)
∥∥∥∥wt −w∗∥

]
+ η2E[∥gt∥2],
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where w∗ = argminw∈Rdf(w).

Using Lemma I.5, we have:

E
[∥∥∥ 1

n

∑
i∈[n]

clip(∇fi(wt), τ)−∇f(wt)
∥∥∥∥wt −w∗∥

]
≤ Gk

Z
τk−1

E[∥wt −w∗∥], (65)

where Gk
Z = 1

n

∑n
i=1(G(xi, yi))

k.

Now using Lemma J.2 in Equation (65), we get:

E
[∥∥∥ 1

n

∑
i∈[n]

clip(∇fi(wt), τ)−∇f(wt)
∥∥∥∥wt −w∗∥

]
≤ Gk

Z
τk−1

(
∥w0 −w∗∥+ ηT

(
GZ + τ

√
νd log(1/δ)

n2ε2

))
. (66)

Using the above equation and Equation (40) in Equation (64) as well as the convexity of f , we get:

E[∥wt+1 −w∗∥2] ≤ E[∥wt −w∗∥2]− 2ηE[f(wt)− f(w∗)] (67)

+
2ηGk

Z
τk−1

(
∥w0 −w∗∥+ ηTGZ + ηTτ

√
νd log(1/δ)

n2ε2

)
+ 2η2τ2

(
1 +

νdT log(1/δ)

n2ε2

)
.

Next, summing the above for t = 0 through to T − 1, rearranging a bit and then dividing by 2ηT throughout, we get the
following:

1

T

T−1∑
t=0

(
E[f(wt)]− f(w∗)

)
≤ ∥w0 −w∗∥2

2ηT
+ ηTτ2

(
νd log(1/δ)

n2ε2
+

1

T

)

+
Gk

Z
τk−1

(
∥w0 −w∗∥+ ηTGZ + ηTτ

√
νd log(1/δ)

n2ε2

)
. (68)

Let us choose η = C

Tτ
√

1
T +

νd log(1/δ)

n2ε2

, where C > 0 is some constant of our choice. With that, we get after simplifying a bit:

1

T

T−1∑
t=0

(
E[f(wt)]− f(w∗)

)
≤
(∥w0 −w∗∥2

2C
+ C

)
τ

√
1

T
+

νd log(1/δ)

n2ε2
+

(∥w0 −w∗∥+ C)Gk
Z

τk−1

+
CGk+1

Z
τk

1√
1
T + νd log(1/δ)

n2ε2

.

Let us choose τ = G
γ1/k

(
1
T + νd log(1/δ)

n2ε2

)− 1
k+1

above, where γ ∈ (0, 1). With that, we get:

1

T

T−1∑
t=0

(
E[f(wt)]− f(w∗)

)
≤ G

γ1/k

{(
∥w0 −w∗∥2

2C
+ C +

CGk+1
Z(

G/γ1/k
)k+1

)(
1

T
+

νd log(1/δ)

n2ε2

) 1
2 (1−

2
k+1 )

+ (∥w0 −w∗∥+ C)

(
Gk

Z(
G/γ1/k

)k
)(

1

T
+

νd log(1/δ)

n2ε2

)(1− 2
k+1 )

}
. (69)

Let:

(I) :=

(
CGk+1

Z(
G/γ1/k

)k+1

)(
1

T
+

νd log(1/δ)

n2ε2

) 1
2
(1− 2

k+1
)

+ (∥w0 −w∗∥+ C)

(
Gk

Z(
G/γ1/k

)k
)(

1

T
+

νd log(1/δ)

n2ε2

)(1− 2
k+1

)

.

Now note that GZ ≤ G
γ1/k implies:

(I) ≤ C

(
1

T
+

νd log(1/δ)

n2ε2

) 1
2 (1−

2
k+1 )

+ (∥w0 −w∗∥+ C)

(
1

T
+

νd log(1/δ)

n2ε2

)(1− 2
k+1 )

︸ ︷︷ ︸
:=(II)

.
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Thus, PZ
(
(I) ≤ (II)

)
≥ PZ(GZ ≤ G/γ1/k). But using Markov’s inequality, Gk

Z ≤ Gk

γ with a probability of at least 1− γ
w.r.t. the random dataset Z . Thus, (I) ≤ (II) with a probability of at least 1− γ. Using this in Equation (69), we get:

1

T

T−1∑
t=0

(
E[f(wt)]− f(w∗)

)
≤ G

γ1/k

{(
∥w0 −w∗∥2

2C
+ 2C

)(
1

T
+

νd log(1/δ)

n2ε2

) 1
2 (1−

2
k+1 )

+

(∥w0 −w∗∥+ C)

(
1

T
+

νd log(1/δ)

n2ε2

)(1− 2
k+1 )

}
, (70)

with a probability of at least 1− γ w.r.t. the random dataset Z .

Lastly, plugging in φ =

√
νd log(1/δ)

nε , noting that E[f(wt̂)] − f(w∗) = 1
T

∑T−1
t=0

(
E[f(wt)] − f(w∗)

)
and using the

definition of OR(T ), we get the final result. ■

Lemma J.2. In the setting of the proof of Theorem J.1, for any 0 < t < T , we have:

E[∥wt −w∗∥] ≤ ∥w0 −w∗∥+ ηT

(
GZ + τ

√
νd log(1/δ)

n2ε2

)
, (71)

where Gk
Z := 1

n

∑n
i=1(G(xi, yi))

k.

Proof. Let us denote 1
b

∑
i∈St

clip(∇fi(wt), τ) by ut. Now:

ESt
[∥ut∥] ≤ ESt

[1
b

∑
i∈St

∥clip(∇fi(wt), τ)∥
]

(72)

=
1

n

∑
i∈[n]

∥clip(∇fi(wt), τ)∥ (73)

≤ 1

n

∑
i∈[n]

∥∇fi(wt)∥ (74)

≤
( 1
n

∑
i∈[n]

∥∇fi(wt)∥k
)1/k

(using Jensen’s inequality) (75)

≤ GZ , (76)

where Gk
Z := 1

n

∑n
i=1(G(xi, yi))

k.

Now for any t > 0:

E[∥wt −w∗∥] ≤ E[∥(wt −w0) + (w0 −w∗)∥] (77)
≤ E[∥wt −w0∥] + ∥w0 −w∗∥ (78)

≤ ηE
[∥∥∥ t−1∑

t′=0

(ut′ + ζt′)
∥∥∥]+ ∥w0 −w∗∥ (79)

≤ ηE
[∥∥∥ t−1∑

t′=0

ut′

∥∥∥]+ ηE
[∥∥∥ t−1∑

t′=0

ζt′
∥∥∥]+ ∥w0 −w∗∥ (80)

≤ η

t−1∑
t′=0

E[∥ut′∥] + η

√√√√E
[∥∥∥ t−1∑

t′=0

ζt′
∥∥∥2]+ ∥w0 −w∗∥ (81)

≤ ηtGZ + η
√
tσ2

nd+ ∥w0 −w∗∥, (82)

where Equation (82) follows by using Equation (76) and because
∑t−1

t′=0 ζt′ is N (⃗0, tσ2
nId). Plugging in the value of σ2

n and
using the fact that t < T , we get the desired result. ■
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K. Full Version and Proof of Theorem 6.5
Theorem K.1 (Unconstrained Convex Case Under Assumption 6.4). Suppose Assumptions 6.1 and 6.4 hold, f is convex

andW = Rd. Fix some C > 0. In Algorithm 1, set T ≥ 1
φ2 , τ = G

(
1
T + φ2

)− 1
2k

and ηt = η = C
Tτ

(
1
T + φ2

)− 1
2

for all

t < T . Then with a probability of at least 3/4 which is w.r.t. the random dataset Z that we obtain, DP-SGD (Algorithm 1)
has the following improved guarantee:

OR(T ) ≤ G

{(∥w0 −w∗∥2

C
+ 2C

)( 1

T
+ φ2

) 1
2 (1−

1
k )

+ 16φ(1− 1
k )D

}
.

So if we set T = 1
φ2 above (which is what we do in Theorem 6.5), we get the following bound for the risk:

OR(T ) ≤ G

{
2

1
2 (1−

1
k )
(∥w0 −w∗∥2

C
+ 2C

)
+ 16D

}
φ(1− 1

k ).

We now prove this result.

Proof:

Proof. Similar to Equation (64) in the proof of Theorem J.1, taking expectation only w.r.t. the randomness in the current
iteration t, we have:

Et[∥wt+1 −w∗∥2] ≤ ∥wt −w∗∥2 − 2η⟨∇f(wt),wt −w∗⟩ (83)

+ 2η
∥∥∥ 1
n

∑
i∈[n]

clip(∇fi(wt), τ)−∇f(wt)
∥∥∥∥wt −w∗∥+ η2Et[∥gt∥2],

where w∗ = argminw∈Rdf(w).

Equation (65) in the proof of Theorem J.1 also holds here, i.e., we have:∥∥∥ 1
n

∑
i∈[n]

clip(∇fi(wt), τ)−∇f(wt)
∥∥∥∥wt −w∗∥ ≤ Gk

Z
τk−1

∥wt −w∗∥, (84)

where Gk
Z = 1

n

∑n
i=1(G(xi, yi))

k.

Plugging in Equation (84) into Equation (83), we get:

Et[∥wt+1 −w∗∥2] ≤ ∥wt −w∗∥2 − 2η⟨∇f(wt),wt −w∗⟩+ 2η
( Gk

Z
τk−1

∥wt −w∗∥
)
+ η2Et[∥gt∥2]. (85)

Further, using Equation (40) to bound Et[∥gt∥2] as well as the convexity of f above, we get:

Et[∥wt+1 −w∗∥2] ≤ ∥wt −w∗∥2−2η(f(wt)− f(w∗)) + 2η
( Gk

Z
τk−1

∥wt −w∗∥
)

︸ ︷︷ ︸
(I)

+2η2τ2
(
1 +

νdT log(1/δ)

n2ε2

)
. (86)

Now, plugging in our choice of τ = G
(

1
T + νd log(1/δ)

n2ε2

)− 1
2k

in (I) and using the fact that T ≥ n2ε2

νd log(1/δ) , we get:

(I) ≤ −2η(f(wt)− f(w∗)) + 4η
( Gk

Z
Gk−1

)(νd log(1/δ)
n2ε2

) 1
2 (1−

1
k )

∥wt −w∗∥. (87)

Now note that Gk
Z∥wt−w∗∥ depends on the random dataset Z . But Gk

Z ≤ 4Gk implies Gk
Z∥wt−w∗∥ ≤ 4Gk∥wt−w∗∥

for all t. Thus, PZ

(
Gk

Z∥wt −w∗∥ ≤ 4Gk∥wt −w∗∥, ∀t
)
≥ PZ

(
Gk

Z ≤ 4Gk
)
≥ 3

4 , where the last step follows from
Markov’s inequality. Thus, for all t, we have:

(I) ≤ −2η(f(wt)− f(w∗)) + 16ηG
(νd log(1/δ)

n2ε2

) 1
2 (1−

1
k )

∥wt −w∗∥, (88)
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with a probability of at least 3
4 w.r.t. the random dataset Z . Henceforth, we will not mention this and it should be inferred

directly.

Case 1: ∥wt −w∗∥ ≤ D.
In this case, we simply have:

(I) ≤ −2η(f(wt)− f(w∗)) + 16ηG
(νd log(1/δ)

n2ε2

) 1
2 (1−

1
k )

D. (89)

Case 2: ∥wt −w∗∥ > D.
In this case, we have:

(I) ≤ −η(f(wt)− f(w∗))− η
{
(f(wt)− f(w∗))− 16G

(νd log(1/δ)
n2ε2

) 1
2 (1−

1
k )

∥wt −w∗∥
}

︸ ︷︷ ︸
≥0 using Assumption 6.4

(90)

≤ −η(f(wt)− f(w∗)). (91)

Combining equations (89) and (90), we have:

(I) ≤ −η(f(wt)− f(w∗)) + 16ηG
(νd log(1/δ)

n2ε2

) 1
2 (1−

1
k )

D. (92)

Now plugging Equation (92) in Equation (86), we get:

Et[∥wt+1−w∗∥2] ≤ ∥wt−w∗∥2− η(f(wt)− f(w∗))+ 16ηG
(νd log(1/δ)

n2ε2

) 1
2 (1−

1
k )

D+2η2τ2
(
1+

νdT log(1/δ)

n2ε2

)
.

(93)
Next, summing the above for t = 0 through to T − 1 after taking expectation throughout, rearranging a bit and then dividing
by ηT throughout, we get the following:

1

T

T−1∑
t=0

(
E[f(wt)]− f(w∗)

)
≤ ∥w0 −w∗∥2

ηT
+ 2ηTτ2

(
νd log(1/δ)

n2ε2
+

1

T

)
+ 16G

(νd log(1/δ)
n2ε2

) 1
2 (1−

1
k )

D. (94)

Plugging in our choice of η = C

Tτ
√

1
T +

νd log(1/δ)

n2ε2

, where C > 0 is some constant of our choice, and τ = G
(

1
T +

νd log(1/δ)
n2ε2

)− 1
2k

, we get:

1

T

T−1∑
t=0

(
E[f(wt)]− f(w∗)

)
≤
(∥w0 −w∗∥2

C
+ 2C

)
G
( 1

T
+

νd log(1/δ)

n2ε2

) 1
2 (1−

1
k )

+ 16G
(νd log(1/δ)

n2ε2

) 1
2 (1−

1
k )

D. (95)

Lastly, plugging in φ =

√
νd log(1/δ)

nε , noting that E[f(wt̂)] − f(w∗) = 1
T

∑T−1
t=0

(
E[f(wt)] − f(w∗)

)
and using the

definition of OR(T ), we get the final result. ■

L. Full Version and Proof of Theorem 6.6
Theorem L.1 (Lower Bound for Unconstrained Convex Case Under Assumption 6.4). Suppose φ < o(1) and
δ < exp(−ε2). There exists a convex loss function ℓ, such that for every (ε, δ)-DP algorithm A which tries to solve for
w∗ = arg minw∈Rdf(w) where f is the average loss for a dataset Z of n samples drawn from the data distribution D,
there exists a choice of D such that:

• f satisfies Assumptions 6.1 and 6.4 (the latter up to constant terms and with a probability of at least 1 − exp
(
−

O
(√

d log(1/δ)/ε
))

w.r.t. Z).

29



Beyond Uniform Lipschitz Condition in Differentially Private Optimization

• EZ∼Dn,A

[
f(w

(A)
Z )− f(w∗)

]
≥ Ω

(
φ1− 1

k

)
, where w

(A)
Z is the output of algorithm A on the dataset Z .

As mentioned in the main text, even though we follow the proof outline of Theorem 6.4 of Kamath et al. (2021), our proof is
more involved. First, we had to use a non-obvious loss function ℓ (to obtain the lower bound on) for the unconstrained case.
Second, since we are in the ERM setting, we have to lower bound the expected training error which is harder than lower
bounding the expected generalization error in the SCO setting of Kamath et al. (2021); see the footnote in the line after
Equation (124) (i.e., footnote 10) for details. Finally, note that Kamath et al. (2021) derive a bound for (0, ρ)-zCDP while
our bound is for (ε, δ)-DP. To our knowledge, (ε, δ)-DP does not imply (0, ρ̃)-zCDP for some ρ̃ due to which we had to
re-derive an important tool in their analysis (specifically, Theorem 1.4 of Kamath et al. (2021)); see Lemma L.3. That is also
the reason we had to impose the constraint of δ < exp(−ε2).

Proof. We shall borrow some ideas from Acharya et al. (2021) and Kamath et al. (2021).

Let V be a set of d-dimensional points satisfying:

• For all v ∈ V , v ∈ {0, 1}d and the number of 1’s in v is d
2 .

• For all v,v′ ∈ V , dHam(v,v
′) ≥ d

8 .

By Lemma 6 of Acharya et al. (2021), there must exist such a V with cardinality at least 2
7d
128 . Note that ∥v∥ =

√
d/2 for

all v ∈ V .

Next, similar to Kamath et al. (2021), let Qv be a distribution whose support includes 0⃗d and p−1/kv for p =
2
√

d log(1/δ)

nε <
1
2 , such that Px∼Qv (x = 0⃗d) = 1− p and Px∼Qv (x = p−1/kv) = p. Note that:

Ex∼Qv [x] = p1−
1
k v and Ex∼Qv [∥x∥k] = ∥v∥k. (96)

Now, let ℓ : Rd × Rd −→ R be defined as:

ℓ(w,x) = −⟨w,x⟩+ 2∥x∥max
(
∥w∥ − 1, 0

)
. (97)

We have a dataset Zv of n i.i.d. samples {xi}ni=1 drawn from Qv . Then, we denote the ith sample’s loss in Zv by:

fv,i(w) = ℓ(w,xi) = −⟨w,xi⟩+ 2∥xi∥max
(
∥w∥ − 1, 0

)
. (98)

Here, the subscript v denotes that Zv is drawn from Qv . Next, the average loss is:

fv(w) =
1

n

n∑
i=1

fv,i(w) = −⟨w,x⟩+ 2∥x∥max
(
∥w∥ − 1, 0

)
, (99)

where x = 1
n

∑n
i=1 xi. Equation (99) follows because each xi = civ, where ci = 0 with a probability of 1 − p and

ci = p−1/k otherwise, due to which 1
n

∑n
i=1 ∥xi∥ =

∥∥∥ 1
n

∑n
i=1 xi

∥∥∥ = ∥x∥.

Note that q(w) = max
(
∥w∥ − 1, 0

)
is convex. This is because both q1(w) = ∥w∥ − 1 and q2(w) = 0 are convex and the

point-wise maximum of convex functions is also convex. Thus, fv(w) is convex.

Now, we shall show that Assumption 6.1 holds. It can be checked that ∥∇ℓ(w,x)∥ ≤ 3∥x∥ for all w ∈ Rd. Thus,

Ex∼Qv [∥∇ℓ(w,x)∥k] ≤ 3kEx∼Qv [∥x∥k] = (3∥v∥)k, (100)

where the last step follows from Equation (96). Thus, Assumption 6.1 holds here with G = 3∥v∥ = 3
√

d
2 .

Let us first obtain arg minw∈Rdfv(w). Note that if ∥x∥ = 0 (which happens when all the xi’s are 0⃗d), fv is identically 0
and so any point is a minimizer. So, let us focus on the case of ∥x∥ > 0; we claim that arg minw∈Rdfv(w) = x̂ := x/∥x∥.
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Clearly, x̂ = arg minw:∥w∥≤1fv(w). Also, for any w such that ∥w∥ > 1, we have:

fv(w)− fv(x̂) = −⟨w,x⟩+ 2∥x∥
(
∥w∥ − 1

)
+ ∥x∥ (101)

=
(
− ⟨w,x⟩+ ∥x∥∥w∥

)
+ ∥x∥∥w∥ − ∥x∥ (102)

≥ ∥x∥(∥w∥ − 1) (103)
> 0. (104)

Equation (106) follows from the Cauchy-Schwarz inequality while Equation (104) follows because ∥w∥ > 1. Thus,
fv(w) > fv(x̂) for all w such that ∥w∥ > 1. Hence, we must have arg minw∈Rdfv(w) = x̂. Also, note that since each

xi = civ where ci ∈ {0, p−1/k}, x =
(

1
n

∑n
i=1 ci

)
v with 1

n

∑n
i=1 ci > 0 and so,

x̂ = v/∥v∥ := w∗
v, (105)

which is independent of the dataset Zv that we receive; in fact, w∗
v = arg minw∈RdEx∼Qv [ℓ(w,x)]. We shall be using

these facts later.

Rewriting Equation (103) by replacing x̂ with w∗
v in the LHS, we get:

fv(w)− fv(w
∗
v) ≥ ∥x∥(∥w∥ − 1) ∀ w ∈ Rd. (106)

Also note that Equation (106) holds trivially for the case of ∥x∥ = 0.

Finally, let us show that Assumption 6.4 also holds up to constant factors with high-probability over the dataset Zv.

Specifically, we shall restrict our attention to ∥x∥ ≥ p1− 1
k

2 ∥v∥. Since E[∥x∥] = p1−
1
k ∥v∥, using the Chernoff bound for

Binomial random variables8, we have ∥x∥ ≥ p1− 1
k

2 ∥v∥ with a probability of at least

1− exp(−O(np)) = 1− exp
(
−O

(√d log(1/δ)

ε

))
, (107)

where the last step follows by plugging in p =
2
√

d log(1/δ)

nε .

Now, let us consider all w such that ∥w −w∗
v∥ ≥ 4 – in this case, since ∥w∗

v∥ = 1, we must have ∥w∥ ≥ 3. Further

∥w −w∗
v∥ ≤ ∥w∥+ 1 (108)
≤ 2(∥w∥ − 1), (109)

where the last step holds for ∥w∥ ≥ 3. Equation (108) follows by using the triangle inequality and the fact that ∥w∗
v∥ = 1.

Using Equation (109) in Equation (106), we get for ∥w −w∗
v∥ ≥ 4:

fv(w)− fv(w
∗
v) ≥ Ω

(
∥x∥∥w −w∗

v∥
)
. (110)

Recall that we are restricting our attention to ∥x∥ ≥ p1− 1
k

2 ∥v∥which occurs with probability≥ 1−exp
(
−O

(√
d log(1/δ)

ε

))
(w.r.t. the random dataset Zv). Using this as well as the fact that ∥w −w∗

v∥ is independent of Zv in Equation (110), and

then plugging in the value of p =
2
√

d log(1/δ)

nε and G = 3∥v∥ (as defined after Equation (100)), we get:

fv(w)− fv(w
∗
v) ≥ Ω

(
p1−

1
k ∥v∥∥w −w∗

v∥
)
= Ω

((√
d log(1/δ)/nε

)1− 1
kG∥w −w∗

v∥
)
, (111)

with probability≥ 1− exp
(
−O

(√
d log(1/δ)

ε

))
. Hence, Assumption 6.4 holds up to constant factors with high-probability

over the dataset Zv .

8Specifically, for n i.i.d. binomial (∈ {0, 1}) random variables {Zi}ni=1 with P(Zi = 1) = µ ∀ i ∈ [n], we use P
(

1
n

∑n
i=1 Zi ≤

µ(1− β)
)
≤ exp(−nµβ2

3
) for β ∈ (0, 1).
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Now that we have shown that fv is convex and satisfies Assumptions 6.1 and 6.4, let us move onto the lower bound. Let us
denote the output of the (ε, δ)-DP algorithm A (on the dataset Zv) by w

(A)
v

9. We shall consider two cases.

Case 1, ∥w(A)
v ∥ ≥ 3: Using Equation (106), we get

fv(w
(A)
v )− fv(w

∗
v) ≥ 2∥x∥. (112)

Case 2, ∥w(A)
v ∥ < 3: First, let us consider ∥w(A)

v ∥ ∈ (1, 3). Rewriting Equation (101) for ∥x∥ > 0 by replacing x̂ with
w∗

v in the LHS, we get:

fv(w)− fv(w
∗
v) ≥ −⟨w,x⟩+ 2∥x∥

(
∥w∥ − 1

)
+ ∥x∥ ∀ w ∈ Rd. (113)

Also note that Equation (113) holds trivially for the case of ∥x∥ = 0. Using Equation (113), we get

fv(w
(A)
v )− fv(w

∗
v) ≥ −⟨w(A)

v ,x⟩+ 2∥x∥∥w(A)
v ∥ − ∥x∥ (114)

= ∥x∥

(
−
〈
w(A)

v ,
x

∥x∥︸︷︷︸
w∗

v

〉
+ 2∥w(A)

v ∥ − 1

)
(115)

=
∥x∥
2

(
1− 2⟨w(A)

v ,w∗
v⟩+ 4∥w(A)

v ∥ − 3
)
. (116)

Next, using the fact that ∥w∗
v∥2 = 1 and 4∥w(A)

v ∥ − 3 ≥ ∥w(A)
v ∥2 for ∥w(A)

v ∥ ∈ (1, 3) above, we get:

fv(w
(A)
v )− fv(w

∗
v) ≥

∥x∥
2

(
∥w∗

v∥2 − 2⟨w(A)
v ,w∗

v⟩+ ∥w(A)
v ∥2

)
=
∥x∥
2
∥w(A)

v −w∗
v∥2. (117)

Let us now consider ∥w(A)
v ∥ ≤ 1. In this case:

fv(w
(A)
v )− fv(w

∗
v) ≥ −⟨w(A)

v ,x⟩+ ∥x∥ (118)

= ∥x∥

(
−
〈
w(A)

v ,
x

∥x∥︸︷︷︸
w∗

v

〉
+ 1

)
(119)

=
∥x∥
2

(
1 + 1− 2⟨w(A)

v ,w∗
v⟩
)

(120)

≥ ∥x∥
2

(
∥w(A)

v ∥2 + ∥w∗
v∥2 − 2⟨w(A)

v ,w∗
v⟩
)

(121)

=
∥x∥
2
∥w(A)

v −w∗
v∥2. (122)

Equation (121) follows because ∥w∗
v∥ = 1 and ∥w(A)

v ∥ ≤ 1.

So for both ∥w(A)
v ∥ ∈ (1, 3) and ∥w(A)

v ∥ ≤ 1, we have:

fv(w
(A)
v )− fv(w

∗
v) ≥

∥x∥
2
∥w(A)

v −w∗
v∥2. (123)

Combining the results of both cases, i.e., Equation (112) and Equation (123), we get:

fv(w
(A)
v )− fv(w

∗
v) ≥ 2∥x∥min

(
1,

1

4
∥w(A)

v −w∗
v∥2
)
. (124)

9A better choice of notation would have been to put Zv instead of just v in the subscript; however, we do not do so to avoid overloading
notation going further.
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Now taking expectation w.r.t. Qv and A (henceforth, we shall omit these in the subscript of expectation for brevity), we
get10:

E
[
fv(w

(A)
v )− fv(w

∗
v)
]
≥ 2E

[
∥x∥min

(
1,

1

4
∥w(A)

v −w∗
v∥2
)]

(125)

≥ 2E

[
∥x∥min

(
1,

1

4
∥w(A)

v −w∗
v∥2
)∣∣∣∥x∥ ≥ p1−

1
k

2
∥v∥

]
P
(
∥x∥ ≥ p1−

1
k

2
∥v∥

)
︸ ︷︷ ︸

=Θ(1)

(126)

≥ Ω
(
p1−

1
k ∥v∥

)
E

[
min

(
1,

1

4
∥w(A)

v −w∗
v∥2
)∣∣∣∥x∥ ≥ p1−

1
k

2
∥v∥

]
. (127)

To obtain Equation (127), we have used the fact that P
(
∥x∥ ≥ p1− 1

k

2 ∥v∥
)
= Θ(1) from Equation (107). Next, letting

Mv,A = min
(
1, 1

4∥w
(A)
v −w∗

v∥2
)

, we have:

E[Mv,A] = E

[
Mv,A

∣∣∣∥x∥ ≥ p1−
1
k

2
∥v∥

]
P
(
∥x∥ ≥ p1−

1
k

2
∥v∥

)
+ E

[
Mv,A

∣∣∣∥x∥ < p1−
1
k

2
∥v∥

]
P
(
∥x∥ < p1−

1
k

2
∥v∥

)
.

(128)

Now note that E

[
Mv,A

∣∣∣∥x∥ < p1− 1
k

2 ∥v∥

]
≤ 1 (as Mv,A ≤ 1 by definition) and from Equation (107), P

(
∥x∥ <

p1− 1
k

2 ∥v∥
)
≤ exp

(
−O

(√
d log(1/δ)

ε

))
. Also, from Lemma L.2, there exists a v, say v̂, for which E[Mv̂,A] = Ω(1) for

δ < exp(−ε2). Thus, for v = v̂:

E

[
Mv̂,A

∣∣∣∥x∥ ≥ p1−
1
k

2
∥v̂∥

]
= Θ

(
E[Mv̂,A]

)
= Ω(1). (129)

Putting this back in Equation (127), we get for v = v̂:

E
[
fv̂(w

(A)
v̂ )− fv̂(w

∗
v̂)
]
≥ Ω

(
p1−

1
k ∥v̂∥

)
= Ω

((√d log(1/δ)

nε

)1− 1
k

G
)
, (130)

where the last step follows by plugging in the values of p and G.

This finishes the proof. ■

Lemma L.2. In the setting of the proof of Theorem L.1 and for δ < exp(−ε2), there exists some v̂ ∈ V such that:

EQv̂,A

[
min

(
1,

1

4
∥w(A)

v̂ −w∗
v̂∥2
)]
≥ Ω(1). (131)

Proof. From Lemma 22 of Bun & Steinke (2016), note that (ε, δ)-DP implies
(
5( ε2

log(1/δ) )
1/4− ε2

4 log(1/δ) ,
ε2

4 log(1/δ) )-zCDP;

this follows by setting ξ̂ = 0 & ρ̂ = ε2

log(1/δ) in that lemma. Since ρ̂ < 1 in that lemma, we impose the constraint of
δ < exp(−ε2).

10Lower bounding E
[
fv(w

(A)
v ) − fv(w

∗
v)
]
, i.e. the training error, is harder than lower bounding E

[
ℓ(w

(A)
v ) − ℓ(w∗

v)
]
, i.e. the

generalization error. This is because the lower bound for the training error includes ∥x∥ and w
(A)
v , both of which depend on the dataset

Z , making the expectation of the lower bound challenging to compute. In contrast, in the lower bound for the generalization error, ∥x∥ is
replaced by ∥Ex∼Qv [x]∥ and so, w(A)

v is the only quantity depending on Z , making the expectation of the corresponding lower bound
much simpler to compute.

33



Beyond Uniform Lipschitz Condition in Differentially Private Optimization

Now, we shall use Lemma L.3 (stated and proved after this proof). In Lemma L.3, let us use the loss function l̃(w,w′) =

min
(
1, 1

4∥w −w′∥2
)

. As mentioned after Equation (105), w∗
v = v

∥v∥ is the minimizer of the expected loss ℓ over the
distribution Qv . Now:

l̃(w∗
v,w

∗
v′) = min

(
1,

1

4
∥w∗

v −w∗
v′∥2

)
= min

(
1,

1

4

∥∥∥∥∥ v

∥v∥
− v′

∥v′∥

∥∥∥∥∥
2)

. (132)

Using the fact that ∥v∥ = ∥v′∥ =
√

d
2 and dHam(v,v

′) ≥ d
8 for all v ̸= v′, we have that l̃(w∗

v,w
∗
v′) ≥ Ω(1) for all v ̸= v′.

Also, dTV (Qv, Qv′) = p =
2
√

d log(1/δ)

nε by definition and log |V| = O(d). Using all of this in Lemma L.3, we get:

1

|V|
∑
v∈V

E
[
l̃(w(A)

v ,w∗
v)
]
≥ Ω(1). (133)

Since the average over all v is Ω(1), there must exist some v, say v̂, for which:

E
[
l̃(w

(A)
v̂ ,w∗

v̂)
]
≥ Ω(1). (134)

This completes the proof. ■

Lemma L.3 ((ξ, ρ)-zCDP Fano’s inequality: based on Thm. 1.4 of Kamath et al. (2021)). Let {p1, . . . , pM} ⊆ P be a
set of probability distributions, θ : P −→ Rd be a parameter of interest, and l̃ : Rd × Rd −→ R be a loss function. Suppose
for all i ̸= j, it satisfies (a) l̃(θ(pi),θ(pj)) ≥ r, (b) dTV (pi, pj) ≤ α, (c) dKL(pi, pj) ≤ β. Then for any (ξ, ρ)-zCDP
estimator θ̂:

1

M

∑
i∈M

EX∼pn
i

[
l̃
(
θ̂(X),θ(pi)

)]
≥

r

2
max

{
1− β + log 2

logM
, 1−

ρ(n2α2 + nα(1− α)) + ξ(unα log(eunα) + n log(en) exp(−nα(u−1)2

3 )) + log 2

logM

}
,

for any u > 1. (135)

Compared to Theorem 1.4 of Kamath et al. (2021) (who only consider the case of ξ = 0), note the extra term in red.

Proof. The proof is largely based on the proof of Theorem 1.4 of Kamath et al. (2021); we mention the changes required
(while following their notation).

The first change is that instead of dKL(p̂(x), p̂(x
′)) ≤ ρdHam(x, x

′)2 (in Kamath et al. (2021)), here we have
dKL(p̂(x), p̂(x

′)) ≤ ξdHam(x, x
′) log(e.dHam(x, x

′)) + ρdHam(x, x
′)2; this follows using Proposition 27 of Bun &

Steinke (2016) and the fact that
∑k

i=1
1
i ≤ log(e.k). Secondly, due to the extra term in blue, we need to bound

Ez∼Bin(n,α)[z log(e.z)] (this is because dHam(x, x
′) ∼ Bin(n, α) as discussed in the proof of Theorem 1.4 of Kamath

et al. (2021)). For any u > 1, we have:

E[z log(e.z)] ≤ E[z log(e.z)|z < unα] + E[z log(e.z)|z ≥ unα]P(z ≥ unα) (136)

≤ unα log(eunα) + n log(en) exp
(
− nα(u− 1)2

3

)
, (137)

where the last step uses the Chernoff bound. Combining all of this and following the rest of the steps in the proof of Theorem
1.4 of Kamath et al. (2021), we get the desired result. ■

M. Proof of Theorem I.3
The proof of Theorem I.3 follows from that of Theorem L.1 by just restricting ourselves to ∥w∥ ≤ 1 (as well as ∥w(A)

v ∥ ≤ 1).
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N. Full Version and Proof of Theorem 6.8
Theorem N.1 (Unconstrained Nonconvex Case). Suppose Assumption 6.1 holds, f is L-smooth andW = Rd. Fix some

γ ∈ (0, 1) and C > 0. In Algorithm 1, set τ = G
(

G
γ2C

√
L

) 1
2k−1

(
1
T + φ2

)− 1
2(2k−1)

and ηt = η = C
Tτ

√
L

(
1
T + φ2

)− 1
2

for all t < T . Then with a probability of at least (1 − γ) which is w.r.t. the random dataset Z that we obtain, DP-SGD
(Algorithm 1) has the following guarantee:

OR(T ) ≤ (
√
L)1−

1
2k−1G1+ 1

2k−1

γ
2

2k−1C
1

2k−1

(
3C +

2(f(w0)−minw∈Rd f(w))

C

)( 1

T
+ φ2

) 1
2 (1−

1
2k−1 )

.

So if we set T = 1
φ2 above (which is what we do in Theorem 6.8), we get the following bound for the risk:

OR(T ) ≤ (
√
2L)1−

1
2k−1G1+ 1

2k−1

γ
2

2k−1C
1

2k−1

(
3C +

2(f(w0)−minw∈Rd f(w))

C

)
φ(1− 1

2k−1 ).

We prove this below.

Proof:

Proof. From Lemma I.5, recall that ∥∥∥ 1
n

∑
i∈[n]

clip(∇fi(w), τ)−∇f(w)
∥∥∥ ≤ Gk

Z
τk−1

, (138)

where Gk
Z = 1

n

∑n
i=1(G(xi, yi))

k.

Using the L-smoothness of f and taking expectation only with respect to the randomness in the current iteration, we have:

E[f(wt+1)] ≤ f(wt)− ηE[⟨∇f(wt), gt⟩] +
η2L

2
E[∥gt∥2] (139)

= f(wt)− η
[〈
∇f(wt),

1

n

n∑
i=1

clip(∇fi(wt), τ)
〉]

+ η2Lτ2
(
1 +

νdT log( 1δ )

n2ε2

)
(140)

= f(wt)−
η

2

{∥∥∥ 1
n

n∑
i=1

clip(∇fi(wt), τ)
∥∥∥2 + ∥∇f(wt)∥2 −

∥∥∥ 1
n

n∑
i=1

clip(∇fi(wt), τ)−∇f(wt)
∥∥∥2}

(141)

+ η2Lτ2
(
1 +

νdT log( 1δ )

n2ε2

)
≤ f(wt)−

η

2
∥∇f(wt)∥2 +

η

2

( G2k
Z

τ2(k−1)

)
+ η2Lτ2

(
1 +

νdT log( 1δ )

n2ε2

)
. (142)

In Equation (140), we have used Equation (40). Equation (141) follows by using the fact for any two vectors a and b,
⟨a, b⟩ = 1

2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
. Equation (142) is obtained by using Equation (138).

Next, summing up the above for t = 0 through to T − 1, taking expectation throughout and then after rearranging a bit and
using the fact that E[f(wT )] ≥ f∗ = minw∈Rd f(w), we get:

1

T

T−1∑
t=0

E[∥∇f(wt)∥2] ≤
2(f(w0)− f∗)

ηT
+ 2ηTLτ2

( 1

T
+

νd log(1/δ)

n2ε2

)
+

G2k
Z

τ2(k−1)
. (143)

Let us plug in η = C

Tτ
√
L
√

1
T +

νd log(1/δ)

n2ε2

above, where C > 0 is a constant of our choice. With that, we get:

1

T

T−1∑
t=0

E[∥∇f(wt)∥2] ≤
(2(f(w0)− f∗)

C
+ 2C

)
︸ ︷︷ ︸

:=C′

√
Lτ

√
1

T
+

νd log(1/δ)

n2ε2
+

G2k
Z

τ2(k−1)
. (144)
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Let us now choose τ = G
(

G
γ2C

√
L

) 1
2k−1

(
1
T + νd log(1/δ)

n2ε2

)− 1
2(2k−1)

, where γ ∈ (0, 1). That gives us:

1

T

T−1∑
t=0

E[∥∇f(wt)∥2] ≤
(
√
L)1−

1
2k−1G1+ 1

2k−1

γ
2

2k−1

(
C ′

C
1

2k−1

+C1− 1
2k−1

( Gk
Z

Gk/γ

)2)( 1

T
+

νd log(1/δ)

n2ε2

) 1
2 (1−

1
2k−1 )

. (145)

Now, using Markov’s inequality, Gk
Z ≤ Gk

γ with a probability of at least 1− γ w.r.t. the random dataset Z . Plugging this
above, we get:

1

T

T−1∑
t=0

E[∥∇f(wt)∥2] ≤
(
√
L)1−

1
2k−1G1+ 1

2k−1

γ
2

2k−1

(
C ′

C
1

2k−1

+ C1− 1
2k−1

)( 1

T
+

νd log(1/δ)

n2ε2

) 1
2 (1−

1
2k−1 )

, (146)

with a probability of at least 1− γ w.r.t. the random dataset Z .

Lastly, plugging in φ =

√
νd log(1/δ)

nε and the value of C ′, noting that E[∥∇f(wt̂)∥2] =
1
T

∑T−1
t=0 E[∥∇f(wt)∥2] and using

the definition of OR(T ), we get the final result. ■
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