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Abstract

The scaling of Transformers has driven break-
through capabilities for language models. At
present, the largest large language models (LLMs)
contain upwards of 100B parameters. Vision
Transformers (ViT) have introduced the same ar-
chitecture to image and video modelling, but these
have not yet been successfully scaled to nearly
the same degree; the largest dense ViT contains
4B parameters (Chen et al., 2022). We present
a recipe for highly efficient and stable training
of a 22B-parameter ViT (ViT-22B) and perform
a wide variety of experiments on the resulting
model. When evaluated on downstream tasks
(often with a lightweight linear model on frozen
features), ViT-22B demonstrates increasing per-
formance with scale. We further observe other in-
teresting benefits of scale, including an improved
tradeoff between fairness and performance, state-
of-the-art alignment to human visual perception
in terms of shape/texture bias, and improved ro-
bustness. ViT-22B demonstrates the potential for
“LLM-like” scaling in vision, and provides key
steps towards getting there.

1. Introduction
Similar to natural language processing, transfer of pre-
trained vision backbones has improved performance on a
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wide variety of vision tasks (Pan & Yang, 2010; Zhai et al.,
2019; Kolesnikov et al., 2020). Larger datasets, scalable
architectures, and new training methods (Mahajan et al.,
2018; Dosovitskiy et al., 2021; Radford et al., 2021; Zhai
et al., 2022a) have accelerated this growth. Despite this,
vision models have trailed far behind language models,
which have demonstrated emergent capabilities at massive
scales (Chowdhery et al., 2022; Wei et al., 2022). Specifi-
cally, the largest dense vision model to date is a mere 4B
parameter ViT (Chen et al., 2022), while a modestly pa-
rameterized model for an entry-level competitive language
model typically contains over 10B parameters (Raffel et al.,
2019; Tay et al., 2022; Chung et al., 2022; Anil et al., 2023),
and the largest dense language model has 540B parame-
ters (Chowdhery et al., 2022). Sparse models demonstrate
the same trend, where language models go beyond a tril-
lion parameters (Fedus et al., 2021) but the largest reported
sparse vision models are only 15B (Riquelme et al., 2021).

This paper presents ViT-22B, the largest dense ViT model
to date. En route to 22B parameters, we uncover patholog-
ical training instabilities which prevent scaling the default
recipe, and demonstrate architectural changes which make
it possible. Further, we carefully engineer the model to
enable model-parallel training at unprecedented efficiency.
ViT-22B’s quality is assessed via a comprehensive evalua-
tion suite of tasks, ranging from (few-shot) classification to
dense output tasks, where it reaches or advances the current
state-of-the-art. For example, even when used as a frozen
visual feature extractor, ViT-22B achieves an accuracy of
89.5% on ImageNet. With a text tower trained to match
these visual features (Zhai et al., 2022b), it achieves 85.9%
accuracy on ImageNet in the zero-shot setting. The model
is furthermore a great teacher — used as a distillation target,
we train a ViT-B student that achieves 88.6% on ImageNet,
state-of-the-art at this scale.
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This performance comes with improved out of distribution
behaviour, reliability, uncertainty estimation and fairness
tradeoffs. Finally, the model’s features are better aligned
with humans perception, achieving previously unseen shape
bias of 87%.

2. Model Architecture
ViT-22B is a Transformer-based encoder model that re-
sembles the architecture of the original Vision Trans-
former (Dosovitskiy et al., 2021) but incorporates the fol-
lowing three main modifications to improve efficiency and
training stability at scale: parallel layers, query/key (QK)
normalization, and omitted biases.
Parallel layers. ViT-22B applies the Attention and MLP
blocks in parallel (Zhao et al., 2019; Wang & Komatsuzaki,
2021), instead of sequentially as in the standard Trans-
former:

y′ = LayerNorm(x),

y = x+ MLP(y′) + Attention(y′).

This enables additional parallelization via combination of
linear projections from the MLP and attention blocks. In
particular, the matrix multiplication for query/key/value-
projections and the first linear layer of the MLP are fused
into a single operation, and the same is done for the attention
out-projection and second linear layer of the MLP. This
approach is also used by PaLM (Chowdhery et al., 2022),
where this technique sped up the largest model’s training by
15% without performance degradation.
QK Normalization. In scaling ViT beyond prior works,
we observed divergent training loss after a few thousand
steps. In particular, this instability was observed for mod-
els with around 8B parameters (see Appendix B). It was
caused by extremely large values in attention logits, which
lead to (almost one-hot) attention weights with near-zero
entropy. To solve this, we adopt the approach of Gilmer
et al. (2023), which applies LayerNorm (Ba et al., 2016) to
the queries and keys before the dot-product attention com-
putation. Specifically, the attention weights are computed
as

softmax
[

1√
d

LN(XWQ)(LN(XWK))T
]
,

where d is query/key dimension, X is the input, LN stands
for layer normalization, and WQ is the query weight matrix,
and WK is the key weight matrix. The effect on an 8B
parameter model is shown in Figure 1, where normaliza-
tion prevents divergence due to uncontrolled attention logit
growth.
Omitting biases on QKV projections and LayerNorms.
Following PaLM (Chowdhery et al., 2022), the bias terms
were removed from the QKV projections and all Layer-
Norms were applied without bias and centering (Zhang &
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Figure 1: Effect of query/key normalization on an 8B pa-
rameter model.

LayerNorm LayerNorm

LayerNorm

Attention
gelu

Inputs

An encoder layer with parallel Attention-MLP blocks

Bias

BiasBias

Q K V MLP-In

Att-out MLP-out

Figure 2: Parallel ViT-22B layer with QK normalization.

Sennrich, 2019). This improved accelerator utilization (by
3%), without quality degradation. However, unlike PaLM,
we use bias terms for the (in- and out-) MLP dense layers
as we have observed slight improved quality (downstream
by 0.4%) and no speed reduction.

Figure 2 illustrates a ViT-22B encoder block. The embed-
ding layer, which includes extracting patches, linear projec-
tion, and the addition of position embedding follow those
used in the original ViT. We use multi-head attention pool-
ing (Cordonnier et al., 2019; Zhai et al., 2022a) to aggregate
the per-token representations in the head.

ViT-22B is uses patch size of 14× 14 with images at resolu-
tion 224×224 (pre-processed by inception crop followed by
random horizontal flip). Similar to the original ViT (Dosovit-
skiy et al., 2021), ViT-22B employs a learned 1D positional
embedding. During fine-tuning on high-resolution images
(different number of visual tokens), we perform a 2D inter-
polation of the pre-trained position embeddings, according
to their location in the original image.

Other hyperparameters for the ViT-22B model architecture
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are presented in Table 1, compared to the previously re-
ported largest ViT models, ViT-G (Zhai et al., 2022a) and
ViT-e (Chen et al., 2022).

Table 1: ViT-22B model architecture details.

Name Width Depth MLP Heads Params(M)
ViT-G 1664 48 8192 16 1843
ViT-e 1792 56 15360 16 3926
ViT-22B 6144 48 24576 48 22165

Following the template in Mitchell et al. (2019), we provide
the model card in Table 9 (Appendix C).

3. Training Infrastructure and Efficiency
ViT-22B is implemented in JAX (Bradbury et al., 2018)
using the FLAX library (Heek et al., 2020) and built within
Scenic (Dehghani et al., 2022). It leverages both model and
data parallelism. In particular, we used the jax.xmap API,
which provides explicit control over both the sharding of
all intermediates (e.g. weights and activations) as well as
inter-chip communication. We organized the chips into a
2D logical mesh of size t × k, where t is the size of the
data-parallel axis and k is the size of the model axis. Then,
for each of the t groups, k devices get the same batch of
images, each device keeps only 1/k of the activations and
is responsible for computing 1/k of the output of all linear
layers (detailed below).
Asynchronous parallel linear operations. As we use ex-
plicit sharding, we built a wrapper around the dense layers
in FLAX that adapts them to the setting where their inputs
are split across k devices. To maximize throughput, two
aspects have to be considered — computation and commu-
nication. Namely, we want the operations to be analytically
equivalent to the unsharded case, to communicate as little
as possible, and ideally to have them overlap (Wang et al.,
2022a) so that we can keep the matrix multiply unit, where
most of the FLOP capacity is, busy at all times.

To illustrate the process, consider the problem of computing
y = Ax under the constraint that the i-th block of x and
y both reside on the i-th device. We denote the blocks of
A ∈ Rm×n by Ai,j ∈ Rm

k ×
n
k , and analogously xi ∈ Rn

k

and yj ∈ Rm
k , with i, j ∈ {1, . . . , k}. The first option is to

have device i hold the i-th block of rows, necessary for com-
putation of yi, so that to compute yi the chip needs to com-
municate k− 1 times to complete x, a total of (k− 1)(n/k)
floats. Alternatively, device i can hold the i-th block of
columns, all acting on xi. This way, the device computes
the vectors yji = Ajixi, which have to be communicated
(scatter-reduced) with the other devices. Note that here the
communicated vectors belong to the output space, a total of
(k − 1)(m/k) floats. This asymmetry is leveraged in com-
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(a) The matrix A is row-sharded across the devices.

D
ev

ic
e 

#2
D

ev
ic

e 
#1

Computation

D
ev

ic
e 

#3

!!

!"

!#

!$

!$!

!!"

!"#

!#$

!#!

!$"

!!#

!"$

!"!

!#"

!$#

!!$

!!!

!""

!##

!$$

M
od

el
 a

xi
s

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

!!

!"

!#

!$

!!

!"

!#

!$

!!

!"

!#

!$

Computation

Computation

Computation

Comunication

Time

Comunication

"!

""

"#

"$

Comunication

D
ev

ic
e 

#4

(b) The matrix A is column-sharded across the devices.

Figure 3: Asynchronized parallel linear operation (y =
Ax): model parallel matrix multiplication with overlapping
communication and computation across devices.

munication costs when n 6= m; column-sharding is used in
the computation of the output of the MLP in a Transformer,
where n = 4m, and row-sharding elsewhere.

Furthermore, matrix multiplications are overlapped with the
communication with the neighbours. This asynchronous ap-
proach allows for high matrix core utilization and increased
device efficiency, while minimizing waiting on incoming
communication. Figure 3 presents the overlapping commu-
nication and computation across 4 devices with the paral-
lel linear operation in row-sharding and column-sharding
modes. The general case of this technique is presented in
Wang et al. (2022a), who also introduce the XLA operations
we leverage here.
Parameter sharding. The model is data-parallel on the
first axis. Each parameter can be either fully replicated over
this axis, or have each device hold a chunk of it. We opted
to shard some large tensors from the model parameters to
be able to fit larger models and batch sizes. This means
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that the device would have to gather the parameters before
computing of the forward and scatter on the backward pass,
but again, note that this happens asynchronous with compu-
tation. In particular, while computing one layer the device
can start communicating the weights of the next one, thus
minimizing the communication overhead.

Using these techniques, ViT-22B processes 1.15k tokens
per second per core during training (forward and backward
pass) on TPUv4 (Jouppi et al., 2020). ViT-22B’s model
flops utilization (MFU) (Chowdhery et al., 2022; Dehghani
et al., 2021a) is 54.9%, indicating a very efficient use of the
hardware. Note that PaLM reports 46.2% MFU (Chowdhery
et al., 2022; Pope et al., 2022) and we measured 44.0% MFU
for ViT-e (data-parallel only) on the same hardware.

4. Experiments
4.1. Training details
Dataset. ViT-22B is trained on a version of JFT (Sun et al.,
2017), extended to around 4B images (Zhai et al., 2022a).
These images have been semi-automatically annotated with
a class-hierarchy of 30k labels. Following the original Vi-
sion Transformer, we flatten the hierarchical label structure
and use all the assigned labels in a multi-label classification
fashion employing the sigmoid cross-entropy loss.
Hyperparameters. ViT-22B was trained using 256 visual
tokens per image, where each token represents a 14 × 14
patch extracted from 224 × 224 sized images. ViT-22B is
trained for 177k steps with batch size of 65k: approximately
3 epochs. We use a reciprocal square-root learning rate
schedule with a peak of 10−3, and linear warmup (first 10k
steps) and cooldown (last 30k steps) phases. For better few-
shot adaptation, we use a higher weight decay on the head
(3.0) than body (0.03) for upstream training (Zhai et al.,
2022a; Abnar et al., 2021).

4.2. Transfer to image classification

Efficient transfer learning with large scale backbones is
often achieved by using them as frozen feature extractors.
This section presents the evaluation results of ViT-22B for
image classification using linear probing and locked-image
tuning as well as out-of-distribution transfer. Additional
results for Head2Toe transfer, few-shot transfer, and linear
probing with L-BFGS can be found in Appendix D.1.

4.2.1. LINEAR PROBING

We explored various ways of training a linear probe, our
final setup on ImageNet uses SGD with momentum for 10
epochs at 224px resolution, with mild random cropping and
horizontal flipping as the only data augmentations, and no
further regularizations.

Table 2: Linear evaluation on ImageNet-1k (Deng et al.,
2009) with varying scale. All models pre-trained on large
datasets. Performances of a few high-resolution fine-tuned
models from are provided for reference.

Model IN ReaL INv2 ObjectNet IN-R IN-A

224px linear probe (frozen)

B/32 80.18 86.00 69.56 46.03 75.03 31.2
B/16 84.20 88.79 75.07 56.01 82.50 52.67
ALIGN (360px) 85.5 - - - - -
L/16 86.66 90.05 78.57 63.84 89.92 67.96
g/14 88.51 90.50 81.10 68.84 92.33 77.51
G/14 88.98 90.60 81.32 69.55 91.74 78.79
e/14 89.26 90.74 82.51 71.54 94.33 81.56
22B 89.51 90.94 83.15 74.30 94.27 83.80

High-res fine-tuning

L/16 88.5 90.4 80.4 - - -
FixNoisy-L2 88.5 90.9 80.8 - - -
ALIGN-L2 88.64 - - - - -
MaxViT-XL 89.53 - - - - -
G/14 90.45 90.81 83.33 70.53 - -
e/14 90.9 91.1 84.3 72.0 - -
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Figure 4: Linear probing on iNaturalist 2017 with different
input resolutions. ViT-22B leads to significant accuracy
improvement especially when the input size is small.

The results presented in Table 2 show that while the returns
are diminishing, there is still a notable improvement at this
scale Furthermore, we show that linear probing of larger
models like ViT-22B can approach or exceed performance
of full fine-tuning of smaller models with high-resolution,
which can be often cheaper or easier to do.

We further test linear separability on the fine-grained clas-
sification dataset, iNaturalist 2017 (Cui et al., 2018). It
has 5,089 find-grained categories, belonging to 13 super-
categories. Unlike ImageNet, the image numbers in differ-
ent categories are not balanced. The long-tail distribution of
concepts is more challenging for classification. We compare
ViT-22B with the other ViT variants. Similar to the linear
probing on ImageNet, we use SGD with 0.001 starting learn-
ing rate and no weight decay to optimize the models and
train for 30 epochs with cosine learning rate schedule with 3
epochs of linear warm-up. We test both 224px and 384px in-
put resolutions. Figure 4 shows the results. We observe that
ViT-22B significantly improves over the other ViT variants,
especially with the standard 224px input resolution. This
suggests the large number of parameters in ViT-22B are
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Table 3: Zero-shot transfer results on ImageNet (variants).

Model IN IN-v2 IN-R IN-A ObjNet ReaL

CLIP 76.2 70.1 88.9 77.2 72.3 -
ALIGN 76.4 70.1 92.2 75.8 72.2 -
BASIC 85.7 80.6 95.7 85.6 78.9 -
CoCa 86.3 80.7 96.5 90.2 82.7 -

LiT-g/14 85.2 79.8 94.9 81.8 82.5 88.6
LiT-e/14 85.4 80.6 96.1 88.0 84.9 88.4
LiT-22B 85.9 80.9 96.0 90.1 87.6 88.6

useful for extracting detailed information from the images.

4.2.2. ZERO-SHOT VIA LOCKED-IMAGE TUNING

Experimental setup. Following the Locked-image Tuning
(LiT) (Zhai et al., 2022b) protocol, we train a text tower
contrastively to match the embeddings produced by the
frozen ViT-22B model. With this text tower, we can eas-
ily perform zero-shot classification and zero-shot retrieval
tasks. We train a text Transformer with the same size as ViT-
g (Zhai et al., 2022a) on the English subset of the WebLI
dataset (Chen et al., 2022) for 1M steps with a 32K batch
size. The images are resized to 288px, and the text is tok-
enized to 16 tokens using a SentencePiece (Kudo & Richard-
son, 2018) tokenizer trained on the English C4 dataset.
Results. Table 3 shows the zero-shot transfer results of
ViT-22B against CLIP (Radford et al., 2021), ALIGN (Jia
et al., 2021), BASIC (Pham et al., 2021), CoCa (Yu et al.,
2022a), LiT (Zhai et al., 2022b) with ViT-g (Zhai et al.,
2022a) and ViT-e (Chen et al., 2022) models. The bottom
part of Table 3 compares three ViT models using the LiT
recipe. On all the ImageNet test sets, ViT-22B achieves
either comparable or better results. Notably, zero-shot re-
sults on the ObjectNet test set is highly correlated with the
ViT model size. The largest ViT-22B sets the new SOTA
on the challenging ObjectNet test set. Appendix A shows
zero-shot classification examples on OOD images.

4.2.3. OUT-OF-DISTRIBUTION

Experimental setup. We construct a label-map from JFT
to ImageNet, and label-maps from ImageNet to differ-
ent out-of-distribution datasets, namely ObjectNet (Barbu
et al., 2019), ImageNet-v2 (Recht et al., 2019) ImageNet-
R (Hendrycks et al., 2020), and ImageNet-A (Hendrycks
et al., 2021). ImageNet-R and ImageNet-A use the same
200 label subspace of ImageNet (constructed in such
a way that misclassifications would be considered egre-
gious (Hendrycks et al., 2021)), while ObjectNet has 313
categories, of which we only consider the 113 ones over-
lapping with the ImageNet label space. For ObjectNet and
ImageNet-A we do an aspect-preserving crop of the central
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Figure 5: OOD classification performance. Axes are log-
scaled as proposed in (Taori et al., 2020). ViT-B and ViT-L
are trained on subsets of varying size and varying number
of steps on JFT (Zhai et al., 2022a). Fine-tuning boosts
both ImageNet and ObjectNet performance, but the increase
is more pronounced for in-domain data, which decreases
effective robustness (Andreassen et al., 2021), visible as a
rightwards shift on the plot. Same data as in Table 11.

75% of the image, for the other datasets we first resize them
to a square format and then take a 87.5% central crop. Image
input resolution is 224px for pre-trained checkpoints and
384px, 518px, 560px for models fine-tuned on ImageNet.
Results. We can confirm results from (Taori et al., 2020;
Djolonga et al., 2021; Kolesnikov et al., 2020) that scaling
the model increases out-of-distribution performance in line
with the improvements on ImageNet. This holds true for
models that have only seen JFT images, and for models
fine-tuned on ImageNet. In both cases, ViT-22B continues
the trend of better OOD performance with larger models
(Figure 5, Table 11). While fine-tuning boosts accuracy on
both ImageNet and out-of-distribution datasets, the effective
robustness (Andreassen et al., 2021) decreases (Figure 5).
Even though ImageNet accuracy saturates, we see a signifi-
cant increase on ObjectNet from ViT-e to ViT-22B.

4.3. Transfer to dense prediction

Transfer learning for dense prediction is critical especially
since obtaining pixel-level labels can be costly. In this sec-
tion, we investigate the quality of captured geometric and
spatial information by the ViT-22B model (trained using
image-level classification objective) on semantic segmenta-
tion and monocular depth estimation tasks.

4.3.1. SEMANTIC SEGMENTATION

Experimental setup. We evaluate ViT-22B as a back-
bone in semantic segmentation on three benchmarks:
ADE20K (Zhou et al., 2017b), Pascal Context (Mottaghi

5



Scaling Vision Transformers to 22 Billion Parameters

Table 4: Fewshot semantic segmentation on ADE20k, when
only a fraction of the training set is used. We report mean
IoU for semantic segmentation on the validation set. Trans-
fer is done with end-to-end fine-tuning and a linear decoder,
following Strudel et al. (2021). We average over 3 runs.

Fraction of ADE20k train data 1/16 1/8 1/4 1/2 1

ViT-L (Touvron et al., 2022) 36.1 41.3 45.6 48.4 51.9
ViT-G (Zhai et al., 2022a) 42.4 47.0 50.2 52.4 55.6
ViT-22B (Ours) 44.7 47.2 50.6 52.5 54.9

et al., 2014) and Pascal VOC (Everingham et al., 2010). We
analyze the performance in two scenarios: first, using a lim-
ited amount of data for transfer; second (in Appendix E.1),
comparing end-to-end fine-tuning versus a frozen backbone
with either a linear decoder (Strudel et al., 2021) or Uper-
Net (Xiao et al., 2018). The number of additional parameters
(≈ 1M for linear and ≈ 783M for UperNet) is negligible
compared to the size of the backbone. We use a fixed reso-
lution (504px) and report single scale evaluation.
Results. We compare ViT-22B to the ViT-L of DeiT-
III (Touvron et al., 2022) and ViT-G of Zhai et al. (2022a),
when only a fraction of the ADE20k semantic segmentation
data is available. We use the linear decoder and end-to-end
fine-tuning. From Table 4, we observe that our ViT-22B
backbone transfers better when seeing only few segmenta-
tion masks. For example, when fine-tuning with only 1200
images (i.e. 1/16) of ADE20k training data, we reach a per-
formance of 44.7 mIoU, an improvement of +8.6 mIoU over
DeiT-III Large (Touvron et al., 2022) and +2.3 mIoU over
ViT-G (Zhai et al., 2022a). When transferring with more
data, the performance of ViT-G and ViT-22B converge.

4.3.2. MONOCULAR DEPTH ESTIMATION

Experimental setup. We largely mirror the set-up explored
in Ranftl et al. (2021) and train their Dense Prediction
Transformer (DPT) on top of frozen ViT-22B backbone
features obtained from the Waymo Open real-world driving
dataset (Sun et al., 2020). Here we use only a single feature
map (of the last layer) to better manage the high-dimensional
ViT features. We also explore a much simpler “linear” de-
coder as a lightweight readout. In both cases we predict
log(1 + depth) obtained from sparse LiDAR as the target
and use Mean Squared Error (MSE) as the decoder training
loss. We quantify performance using standard depth estima-
tion metrics from the literature (Hermann et al., 2020; Eigen
et al., 2014) and also report MSE. We use a resolution of
224× 224. Remaining details are deferred to Appendix E.2.
Results. Table 5 summarizes our main findings. From the
top rows (DPT decoder), we observe that using ViT-22B fea-
tures yields the best performance (across all metrics) com-
pared to different backbones. By comparing the ViT-22B
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Figure 6: Dense prediction from frozen ViT-22B features.

Table 5: Monocular depth estimation from frozen ViT fea-
tures using different decoders on the Waymo Open dataset.

δ ↑

Model MSE ↓ AbsRel ↓ < 1.1 < 1.25 < 1.252
D

PT
ViT-L 0.027 0.121 0.594 0.871 0.972
ViT-e 0.024 0.112 0.631 0.888 0.975
ViT-22B 0.021 0.095 0.702 0.909 0.979

L
in

ea
r ViT-L 0.060 0.222 0.304 0.652 0.926

ViT-e 0.053 0.204 0.332 0.687 0.938
ViT-22B 0.039 0.166 0.412 0.779 0.960

backbone to ViT-e (a smaller model but trained on the same
data as ViT-22B) we find that scaling the architecture im-
proves performance. Further, comparing the ViT-e backbone
to ViT-L (a similar architecture to ViT-e but trained on less
data) we find that these improvements also come from scal-
ing the pre-training data. These findings demonstrate that
both the greater model size and the greater dataset size con-
tribute substantially to the improved performance. Using the
linear decoder, it can be observed again that using ViT-22B
features yields the best performance. The gap between DPT
and linear decoding suggests that while enough geometric
information is retained in the ViT features, only some of it is
available for a trivial readout. We report qualitative results
in Figure 6 and Figures 13 and 14 in Appendix E.2.

4.4. Transfer to video classification
Experimental setup. We evaluate the quality of the rep-
resentations learned by ViT-22B by adapting the model
pretrained on images for video classification. We follow
the “factorised encoder” architecture of Arnab et al. (2021):
Our video model consists of an initial “spatial transformer”,
which encodes each frame of the video independently of
each other. Thereafter, the representation from each frame is
pooled into a single token, which is then fed to a subsequent
“temporal transformer” that models the temporal relations
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Table 6: Video classification results. We evaluate the
ViT-22B representations by freezing the backbone, and train-
ing a small transformer to aggregate frozen, per-frame repre-
sentations. ViT-22B outperforms the largest previous vision
backbone, ViT-e (Chen et al., 2022) which contains 4 billion
parameters and is also pretrained on JFT.

Kinetics 400 Moments in Time

Frozen backbone
CoCA∗ 88.0 47.4
ViT-e 86.5 43.6
ViT-22B 88.0 44.9

Fully finetuned SOTA 91.1 49.0
∗Note that CoCA uses pre-pool spatial features and higher spatial

resolution for both datasets. More details in Appendix F.

between the representations of each frame.

Here, we initialize the “spatial transformer” with the pre-
trained weights from ViT-22B and freeze them, as this repre-
sents a computationally efficient method of adapting large-
scale models for video, and also because it allows us to
effectively evaluate the representations learned by pretrain-
ing ViT-22B. Exhaustive experimental details are included
in Appendix F. The temporal transformer is lightweight both
in terms of parameters (only 63.7M parameters compared to
the 22B frozen parameters in the spatial transformer), and
FLOPs as it operates on a single token per frame.
Results. Table 6 presents our results on video classifica-
tion on the Kinetics 400 (Kay et al., 2017) and Moments
in Time (Monfort et al., 2019) datasets, showing that we
can achieve competitive results with a frozen backbone. We
first compare to ViT-e (Chen et al., 2022), which has the
largest previous vision backbone model consisting of 4 bil-
lion parameters, and was also trained on the JFT dataset.
We observe that our larger ViT-22B model improves by 1.5
points on Kinetics 400, and 1.3 points on Moments in Time.
Our results with a frozen backbone are also competitive with
CoCA (Yu et al., 2022a), which performs a combination of
contrastive and generative caption pretraining in compari-
son to our supervised pretraining, and uses many tokens per
frame (vs. a single one produced by the pretrained frozen
pooling) as well as a higher testing resolution.

Finally, we note that there is headroom for further improve-
ment by full end-to-end fine-tuning. This is evidenced by
the current state-of-the-art on Kinetics 400 (Wang et al.,
2022b) and Moments in Time (Yu et al., 2022a) which lever-
age a combination of large-scale video pretraining and full
end-to-end fine-tuning on the target dataset.

4.5. Beyond accuracy on downstream tasks

When studying the impact of scaling, there are important
aspects to consider beyond downstream task performance.
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Figure 7: TOP: Accuracy (ACC) for ViT variants after de-
biasing for each DP level. MIDDLE: Accuracy for each
subgroup in CelebA prior to debiasing. BOTTOM: y-axis
is absolute difference in performance across the two sub-
groups: females and males. ViT-22B provides a more equi-
table performance, compared to smaller ViT architectures.

In this section, we probe ViT-22B’s fairness, alignment with
human perception, robustness, reliability, and calibration.
We find that favorable characteristics emerge when increas-
ing model size. Additional analysis on perceptual similarity
and feature attribution can be found in Appendix K and
Appendix L.

4.5.1. FAIRNESS

Machine learning models are susceptible to unintended bias.
For example, they can amplify spurious correlations in the
training data (Hendricks et al., 2018; Caliskan et al., 2017;
Zhao et al., 2017; Wang et al., 2020) and result in error
disparities (Zhao et al., 2017; Buolamwini & Gebru, 2018;
Deuschel et al., 2020). Here, we identify how scaling the
model size can help mitigate such issues, by evaluating
the bias of ViT-22B and ViT-{L, g, G, e} (Zhai et al.,
2022a; Chen et al., 2022) using demographic parity (DP)
as a measure of fairness (Dwork et al., 2012; Zafar et al.,
2017).
Experimental Setup. We use CelebA (Liu et al., 2015)
with binary gender as a sensitive attribute while the target
is “attractive” or “smiling”. We emphasize that such exper-
iments are carried out only to verify technical claims and
shall by no means be interpreted as an endorsement of such
vision-related tasks. We choose the latter attributes because
they exhibit gender related bias as shown in Figure 15.
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Figure 8: Shape bias: many vision models have a low shape / high texture bias, whereas ViT-22B fine-tuned on ImageNet
(red, green, blue trained on 4B images as indicated by brackets after model names, unless trained on ImageNet only) have
the highest shape bias recorded in a ML model to date, bringing them closer towards a human-like shape bias.

We train a logistic regression classifier on top of the ViT-22B
pretrained features for a total of 50 epochs and batch size
256, with a learning rate schedule of 0.01 (first 25 epochs)
and 0.001 (last 25 epochs). After that, we debias using the
randomized threshold optimizer (RTO) algorithm of Alab-
dulmohsin & Lucic (2021), which was shown to be near-
optimal and competitive with in-processing methods.
Results. We observe that scale by itself does not impact DP,
c.f. Figure 15. This is perhaps not surprising, as the model
is trained to reconstruct a chosen target so the level of DP
in accurate models is similar to that of the data itself.

However, scaling to ViT-22B offers benefits for fairness in
other aspects. First, scale offers a more favorable tradeoff —
performance improves with scale subject to any prescribed
level of bias constraint. This is consistent with earlier obser-
vations reported in the literature (Alabdulmohsin & Lucic,
2021). Second, all subgroups tend to benefit from the im-
provement in scale. Third, ViT-22B reduces disparities in
performance across subgroups. Figure 7 summarizes results
for classification accuracy and Appendix G for expected cal-
ibration error (ECE) (Naeini et al., 2015; Guo et al., 2017)
and OC-AUC (Kivlichan et al., 2021).

4.5.2. HUMAN ALIGNMENT

How well do ViT-22B classification decisions align
with human classification decisions? Using the
model-vs-human toolbox (Geirhos et al., 2021), we
evaluate three ViT-22B models fine-tuned on ImageNet with
different resolutions (224, 384, 560). Accross all toolbox
metrics, ViT-22B is SOTA: ViT-22B-224 for highest OOD
robustness (Figure 19(a)), ViT-22B-384 for the closest align-
ment with human classification accuracies (Figure 19(b)),
and ViT-22B-560 for the largest error consistency (i.e. most
human-like error patterns, Figure 19(d)). The ViT-22B mod-
els have the highest ever recorded shape bias in vision mod-
els: while most models have a strong texture bias (approx.
20–30% shape bias / 70–80% texture bias) (Geirhos et al.,

Table 7: ViT-22B evaluated on some representative metrics
from the Plex reliability benchmark (Tran et al., 2022)∗.

IN-C (mean over shifts) IN vs. Places365

Metrics ACC ↑ NLL ↓ ECE ↓ OC-AUC ↑ AUROC ↑ AUPRC ↑
ViT-L/32∗ 70.1 1.28 0.05 0.91 0.83 0.96
Plex-L/32∗ 71.3 1.21 0.02 0.91 0.83 0.97
ViT-22B 83.7 0.63 0.01 0.97 0.88 0.98

2019); humans are at 96% shape / 4% texture bias and
ViT-22B-384 achieves a previously unseen 87% shape bias
/ 13% texture bias (Figure 8). Overall, ViT-22B measurably
improves alignment to human visual object recognition.

4.5.3. PLEX - PRETRAINED LARGE MODEL EXTENSIONS

Tran et al. (2022) comprehensively evaluate the reliability
of models through the lens of uncertainty, robustnes (see
Section 4.2.3) and adaptation (see Section 4.2.2). We fo-
cus here on the first aspect of that benchmark. To this end,
we consider (1) the OOD robustness under covariate shift
with ImageNet-C (Hendrycks & Dietterich, 2019), which
we evaluate not only with the accuracy but also uncertainty
metrics measuring the calibration (NLL, ECE) and the selec-
tive prediction (El-Yaniv & Wiener, 2010) (OC-AUC, see
Section 4.5.1), and (2) open-set recognition—also known
as OOD detection (Fort et al., 2021), which we evaluate
via the AUROC and AUPRC, with Places365 as the OOD
dataset (Hendrycks et al., 2019); for more details, see Ap-
pendix I.

In Table 7, we report the performance of ViT-L and ViT-22B
(both with resolution 384) fine-tuned on ImageNet. To put in
perspective the strong gains of ViT-22B, we also show Plex-
L, a ViT-L equipped with the two components advocated
by Tran et al. (2022), viz, efficient-ensemble (Wen et al.,
2019) and heteroscedastic layers (Collier et al., 2021). We
discuss the challenges and the results of the usage of those
components at the 22B scale (Plex-22B) in Appendix I.
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Figure 9: ViT-22B (light-blue circle) improves the Pareto
frontier of the accuracy vs. the calibration (ECE). Left/right
panels are without/with temperature scaling, respectively.

4.5.4. CALIBRATION

Along with the robustness of Section 4.2.3, it is also natural
to wonder how the calibration property of ViT evolves as
the scale increases. To this end, we focus on the study of
Minderer et al. (2021) that we extend with ViT-22B.

In Figure 9, we consider ViT-22B fine-tuned on ImageNet
(resolution 384) and report the error (i.e., one minus accu-
racy) versus the calibration, as measured by the expected
calibration error (ECE) (Naeini et al., 2015; Guo et al.,
2017). We see how ViT-22B remarkably improves the trade-
off between accuracy and calibration. The conclusion holds
both without (left) and with (right) a temperature-scaling of
the logits that was observed to better capture the calibration
trends across model families (Minderer et al., 2021). More
details can be found in Appendix H.

4.5.5. DISTILLATION

We perform model distillation (Hinton et al., 2015) to com-
press the ViT-22B into smaller, more widely usable ViTs.
We distill ViT-22B into ViT-B/16 and ViT-L/16 by follow-
ing the procedure of Beyer et al. (2022b). Using ImageNet-
finetuned (at 384px) ViT-22B, we annotated 500 random
augmentations and mixup transforms of each ImageNet
image with ViT-22B logits. Then, we minimize the KL
divergence between the student and the teacher predictive
distributions. We train for 1000 epochs after initializing the
student architecture from checkpoints pre-trained on JFT.
The results are shown in Table 8, and we see that we achieve
new SOTA on both the ViT-B and ViT-L sizes.

5. Conclusion
We presented ViT-22B, the currently largest vision trans-
former model at 22 billion parameters. We show that with
small, but critical changes to the original architecture, we
can achieve both excellent hardware utilization and train-
ing stability, yielding a model that advances the SOTA on

Table 8: Distillation results, finetuned at 384 resolution.

Model ImageNet1k

V
iT

-B
/1

6 (Dosovitskiy et al., 2021) (JFT ckpt.) 84.2
(Zhai et al., 2022a) (JFT ckpt.) 86.6
(Touvron et al., 2022) (INet21k ckpt.) 86.7
Distilled from ViT-22B (JFT ckpt.) 88.6

V
iT

-L
/1

6 (Dosovitskiy et al., 2021) (JFT ckpt.) 87.1
(Zhai et al., 2022a) (JFT ckpt.) 88.5
(Touvron et al., 2022) (INet21k ckpt.) 87.7
Distilled from ViT-22B (JFT ckpt.) 89.6

several benchmarks. In particular, great performance can
be achieved using the frozen model to produce embeddings,
and then training thin layers on top. Our evaluations fur-
ther show that ViT-22B is more aligned with humans when
it comes to shape and texture bias, and offers benefits in
fairness and robustness, when compared to existing models.
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A. Zero-shot Classification Examples
Figure 10 contains example zero-shot classifications of generated images. These images were provided by the Parti (Yu
et al., 2022b) and Imagen (Saharia et al., 2022) models. The training data for the ViT-22B vision backbone and the LiT text
backbone was created before these models were trained, therefore these images are not present in the training data. Further,
the objects and scenes contained in these images are highly out-of-distribution relative to the distribution of natural images
on the web.
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Figure 10: Examples of zero-shot classification results on images generated by the Parti (Yu et al., 2022b) and Imagen (Sa-
haria et al., 2022) models. These examples contain unusual objects/scenes that do not occur in the training distribution.
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B. Scalability
When scaling up the default ViT architecture, we encountered training instability in ViT at Adam 1e−3. Initially, the loss
would decrease as normal, but within 2000 steps the loss steadily increased. Figure 1 shows the behavior of attention logits
during training for an 8B parameter model. Without normalization, attention logits quickly grow to over 50000 in magnitude,
resulting in one-hot attention weights after the softmax, and subsequently unstable training losses and gradients.

To avoid instability, the learning rate of ViT was originally reduced with increasing model scale, from 1e-3 down to 4e-4 for
ViT-H (Dosovitskiy et al., 2021). We retrain models up to ViT-L, comparing models trained similar to ViT, to models which
have the normalization/reduced precision. For the latter, the learning rate is kept at 1e-3 and not reduced for larger models.
With the QK-normalization, the higher 1e-3 learning rate remains stable. The results, shown in Figure 11, demonstrate
increasing benefits with scale, likely due to enabling the larger learning rate.

Ti S B L
Architecture

0.5

0.6

0.7

0.8

Im
ag

eN
et

 1
0s

ho
t a

cc

Ti S B L
Architecture

0.45

0.50

0.55

JF
T 

va
l p

re
cis

io
n No norm

Norm

Figure 11: Training models with and without query/key normalization; those that do not have normalization are trained with
lower learning rates at larger scale, whereas those with normalization have a consistent learning rate of 1e-3.
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C. Model Card
Table 9 presents the model card (Mitchell et al., 2019) of the ViT-22B model.

Table 9: Model Card of ViT-22B model.

Model Summary
Model Architecture Dense encoder-only model with 22 billion parameters. Transformer model architecture

with variants to speed up and stabilize the training. For details, see Model Architec-
ture (Section 2).

Input(s) The model takes images as input.

Output(s) The model generates a class label as output during pretraining.
Usage

Application The primary use is research on computer vision applications as a feature extractor that
can be used in image recognition (finetuning, fewshot, linear-probing, zeroshot), dense
prediction (semantic segmentation, depth estimation), video action recognition and so
on. On top of that, ViT-22B is used in research that aim at understanding the impact of
scaling vision transformers.

Known Caveats When using ViT-22B, similar to any large scale model, it is difficult to understand how the
model arrived at a specific decision, which could lead to lack of trust and accountability.
Moreover, we demonstrated that ViT-22B is less prone to unintentional bias and enhances
current vision backbones by reducing spurious correlations. However, this was done
through limited studies and particular benchmarks. Besides, there is always a risk of
misuse in harmful or deceitful contexts when it comes to large scale machine learning
models.
ViT-22B should not be used for downstream applications without a prior assessment and
mitigation of the safety and fairness concerns specific to the downstream application. We
recommend spending enough time and energy on mitigation the risk at the downstream
application level.

System Type
System Description This is a standalone model.

Upstream Dependencies None.

Downstream Dependencies None.
Implementation Frameworks

Hardware & Software:
Training Hardware: TPU v4 (Jouppi et al., 2020). Software: JAX (Bradbury et al., 2018),

Flax (Heek et al., 2020), Scenic (Dehghani et al., 2022).

Hardware & Software:
Deployment Hardware: TPU v4 (Jouppi et al., 2020). Software: Scenic (Dehghani et al., 2022).

Compute Requirements ViT-22B was trained on 1024 TPU V4 chips for 177K steps.
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Model Characteristics
Model Initialization The model is trained from a random initialization.

Model Status This is a static model trained on an offline dataset.

Model Stats ViT-22B model has 22 billion parameters.
Data Overview

Training Dataset ViT-22B is trained on a version of JFT (Sun et al., 2017), extended to contain around 4B
images (Zhai et al., 2022a). See Section 4.1 for the description of datasets used to train
ViT-22B.

Evaluation Dataset We evaluate the ViT-22B on a wide variety of tasks and report the results on each
individual tasks and datasets (Dehghani et al., 2021b). Specifically, we evaluate the
models on: ADE20K (Zhou et al., 2017b), Berkeley Adobe Perceptual Patch Simi-
larity (BAPPS) (Zhang et al., 2018), Birds (Wah et al., 2011), Caltech101 (Li et al.,
2022), Cars (Krause et al., 2013), CelebA (Liu et al., 2015), Cifar-10 (Krizhevsky
et al., 2009), Cifar-100 (Krizhevsky et al., 2009), CLEVR/count (Johnson et al., 2017),
CLEVR/distance (Johnson et al., 2017), ColHist (Kather et al., 2016), DMLab (Beattie
et al., 2016), dSprites/location (Matthey et al., 2017), dSprites/orientation (Matthey et al.,
2017), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), Flowers102 (Nilsback &
Zisserman, 2008), ImageNet (Deng et al., 2009), Inaturalist (Cui et al., 2018), ImageNet-
v2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2020), ImageNet-A (Hendrycks
et al., 2021), ImageNet-C (Hendrycks & Dietterich, 2019), ImageNet-ReaL-H (Tran
et al., 2022), Kinetics 400 (Kay et al., 2017), KITTI (Geiger et al., 2013), Moments in
Time (Monfort et al., 2019), ObjectNet (Barbu et al., 2019), Pascal Context (Mottaghi
et al., 2014), Pascal VOC (Everingham et al., 2010), Patch Camelyon (Teh & Taylor, 2019),
Pets (Parkhi et al., 2012), Places365 (Zhou et al., 2017a), Resisc45 (Cheng et al., 2017),
Retinopathy (Kaggle & EyePacs, 2015), SmallNORB/azimuth (LeCun et al., 2004),
SmallNORB/elevation (LeCun et al., 2004), Sun397 (Xiao et al., 2010), SVHN (Netzer
et al., 2011), UC Merced (Yang & Newsam, 2010), Waymo Open real-world driving
dataset (Sun et al., 2020).
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Evaluation Results
Benchmark Information

• Quality of transfer to downstream tasks.

– Transfer to image classification (via linear probing, zero-shot transfer, OOD
transfer, fewshot transfer, Head2Toe transfer, and fine-tuning).

* Datasets Used: Birds (Wah et al., 2011), Caltech101 (Li et al., 2022),
Cars (Krause et al., 2013), CelebA (Liu et al., 2015), Cifar-10 (Krizhevsky
et al., 2009), Cifar-100 (Krizhevsky et al., 2009), CLEVR/count (Johnson
et al., 2017), CLEVR/distance (Johnson et al., 2017), ColHist (Kather
et al., 2016), DMLab (Beattie et al., 2016), dSprites/location (Matthey
et al., 2017), dSprites/orientation (Matthey et al., 2017), DTD (Cimpoi
et al., 2014), EuroSAT (Helber et al., 2019), Flowers102 (Nilsback &
Zisserman, 2008), ImageNet (Deng et al., 2009), iNaturalist (Cui et al.,
2018), ImageNet-v2 (Recht et al., 2019), ImageNet-R (Hendrycks et al.,
2020), ImageNet-A (Hendrycks et al., 2021), ImageNet-C (Hendrycks
& Dietterich, 2019), ImageNet-ReaL-H (Tran et al., 2022), Kinetics
400 (Kay et al., 2017), KITTI (Geiger et al., 2013), ObjectNet (Barbu et al.,
2019), Patch Camelyon (Teh & Taylor, 2019), Pets (Parkhi et al., 2012),
Places365 (Zhou et al., 2017a), Resisc45 (Cheng et al., 2017), Retinopathy
(Kaggle & EyePacs, 2015), SmallNORB/azimuth (LeCun et al., 2004),
SmallNORB/elevation (LeCun et al., 2004), Sun397 (Xiao et al., 2010),
SVHN (Netzer et al., 2011), UC Merced (Yang & Newsam, 2010).

– Transfer to video classification.
* Datasets Used: Kinetics 400 (Kay et al., 2017), Moments in Time (Monfort

et al., 2019).
– Transfer to dense prediction.

* Semantic segmentation
· Datasets Used: ADE20k (Zhou et al., 2017b), Pascal Context (Mottaghi

et al., 2014), Pascal VOC (Everingham et al., 2010).
* Depth estimation

· Dataset used: Waymo Open real-world driving dataset (Sun et al.,
2020).

• Quality of learned features.

– Fairness.
* Dataset used: CelebA (Liu et al., 2015).

– Human alignment.
* We used the model-vs-human toolbox (Geirhos et al., 2021).

– Calibration.
* We follow the setup of Minderer et al. (2021). We use ImageNet validation

set (Deng et al., 2009).
– Perceptual similarity.

* Dataset used: Berkeley Adobe Perceptual Patch Similarity (BAPPS)
dataset (Zhang et al., 2018)

– Feature attribution.
* Dataset used: ImageNet (Deng et al., 2009).

Evaluation Results All results are reported in Section 4.
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Model Usage & Limitations
Sensitive Use ViT-22B should not be used for any unacceptable vision model use cases. For example:

for detecting demographic human features for non-ethical purposes, as a feature extractor
used to condition on and generate toxic content, or for captcha-breaking. We also do not
approve use of ViT-22B in applications like surveillance, law enforcement, healthcare,
or hiring and employment, and self-driving cars without putting measures in place to
mitigate the ethical risks.

Known Limitations ViT-22B is designed for research. The model has not been tested in settings outside of
research that can affect performance, and it should not be used for downstream applications
without further analysis on factors in the proposed downstream application.

Ethical Considerations
& Risks In order to train ViT-22B, we conducted an analysis of sensitive category associations on

the JFT-4B dataset as described in Aka et al. (2021). This process involved measuring the
per label distribution of sensitive categories across the raw data, cleaned data, and models
trained on this data, as well as labels verified by human raters. To further enhance the data
quality, human raters also assisted in removing offensive content from the dataset. Our
analysis using standard fairness benchmarks shows that ViT-22B increases performance
for all subgroups while minimizing disparities among them. However, it is important to
note that there may be situations where utilizing ViT-22B could pose ethical concerns.
Therefore, we recommend conducting custom ethical evaluations for any new applications
of ViT-22B.
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D. Transfer to image classification: More results and addition details
D.1. Linear probing with L-BFGS

An alternative to doing linear probing with SGD is to use the convex optimization technique, L-BFGS (Byrd et al., 1995). It
is very effective and has strict convergence guarantees. We compare SGD and L-BFGS for a variety of ViT models using
the ImageNet-1k datasset. Specifically, we precompute image embeddings by resizing input images to 224px resolution
and then solve the multiclass logistic regression problem with L-BFGS. We also sweep the L2 regularization parameter
and select the optimal one using 20000 holdout images from the training data (approximately 2% of the training data). In
Table 10 we compare the resulting model with the SGD baseline from the main text. It demonstrates that L-BFGS matches
or lags behind SGD approach, so we selected the latter technique for our core experiments.

Table 10: Comparison of SGD and L-BFGS for linear probing on ImageNet-1k. The numbers indicate top-1 accuracy.

Linear Probing B/32 B/16 L/16 g/14 G/14 e/14 22B

L-BFGS 79.94 84.06 86.64 88.46 88.79 89.08 89.27
SGD 80.18 84.20 86.66 88.51 88.98 89.26 89.51

D.2. Out of distribution classification

Table 11: OOD Classification. Results from models fine-tuned on ImageNet (top half), and models that were only trained
on JFT and evaluated with a label-map (bottom half). Models with “ema” are fine-tuned with Polyak averaging, similar
to (Dosovitskiy et al., 2021). B/16, L/16, g/14, and G/14 are from (Zhai et al., 2022a), and e/14 is from (Chen et al., 2022).
IN† uses same resize without crop like in the original publication. See Figure 5 and Section 4.2.3 for discussion of the
results, and details about datasets and pre-processing.

Model Fine-tuned IN IN† INv2 ObjectNet IN-R IN-A

e/14 ema 560px 90.70 90.84 84.38 72.53 94.49 88.44
22B ema 560px 90.62 - 84.65 76.70 95.05 89.12
22B 560px 90.60 - 84.38 75.69 94.62 88.55
22B 384px 90.44 - 84.28 74.64 94.44 87.95
e/14 ema 384px 90.44 - 83.95 70.56 93.56 87.16
G/14 ema 518px 90.33 90.47 83.53 69.14 94.22 86.95
g/14 ema 518px 90.25 90.11 83.61 71.36 93.37 86.12
L/16 384px 88.60 - 80.74 65.73 90.32 78.65
B/16 384px 87.02 - 78.21 57.83 82.91 66.08

22B - 78.5 - 72.5 66.9 91.6 79.9
e/14 - 76.7 - 71.0 64.4 90.6 75.3
G/14 - 76.6 - 70.9 63.3 90.2 75.1
g/14 - 76.3 - 70.5 62.6 89.8 73.7
L/16 - 73.9 - 66.9 58.4 86.8 64.6
B/16 - 70.7 - 62.9 52.9 81.4 51.1

D.3. Head2Toe

The cost of fine-tuning a model during transfer learning goes up with increased model size and often requires the same level
of resources as training the model itself. Linear probing on the other hand is much cheaper to run, however it often performs
worse than fine-tuning. Recent work showed that training a linear classifier on top of the intermediate features can provide
significant gains compared to using the last-layer only, especially for target tasks that are significantly different from the
original pre-training task (Evci et al., 2022; Adler et al., 2020; Khalifa et al., 2022).

In Table 12 we compare Head2Toe (Evci et al., 2022) with Linear probe on common vision benchmarks and VTAB-1k (Zhai
et al., 2019). We include Finetuning results as a comparison point. We use a simplified version of Head2Toe with no feature
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selection. Experimental details are shared below. Head2Toe achieves 7% better results on VTAB-1k, however fails to match
the full finetuning performance (-6%). On other benchmarks (CIFARs, Flowers and Pets), all methods perform similarly
potentially. Head2Toe improves over Linear only for the Cifar-100 task. For the remaining tasks it either achieves the same
performance or worse (Pets).

All experiments presented here use images with the default resolution of 224. Head2Toe uses the following intermediate
features: (1) output of each of the 48 blocks, (2) features after the positional embedding, (3) features after the pooling head
(4) pre-logits and logits. We average each of these features among the token dimension and concatenate them; resulting in
a 349081 dimensional feature vector. In contrast, linear probe uses the 6144 dimensional prelogit features, which makes
Head2Toe training roughly 50 times more expensive. However, given the extraordinary size of the original model, Head2Toe
requires significantly less FLOPs and memory1 compared to fine-tuning. For all tasks (4 standard and 19 VTAB-1k), we
search over 2 learning rates (0.01, 0.001) and 2 training lengths (500 and 10000 (2500 for VTAB-1k) steps) using the
validation set.

Table 12: Frozen evaluation using linear and Head2Toe (H2T) probe on the VTAB-1k benchmark and four other image
classification tasks. We report mean accuracies averaged using 3 seeds.

Method VTAB-Average Natural Specialized Structured CIFAR-10 CIFAR-100 Flowers Pets

Finetuning 76.71 89.09 87.08 61.83 99.63 95.96 97.59 99.75
Linear 63.15 80.86 87.05 35.70 99.37 93.39 99.75 98.15
H2T 70.12 84.60 88.61 48.19 99.45 94.11 99.69 97.46

D.4. Few-shot

We replicate the experimental setup of (Abnar et al., 2021) to evaluate the ViT-22B model and baselines on 25 tasks
(Table 13) using few-shot transfer setups. The results of few-shot transfer of different models using 1, 5, 10, and 25 shots
are presented in Figure 12. Scaling up can improve performance in many tasks, but in some cases, downstream accuracy
does not improve with increased scale. This may be due to the higher dimension of the representation from the ViT-22B
model, which may require more regularization as the size of the head grows to prevent overfitting. Further study is needed
to investigate this.

1on the order of 1000x, the exact value depends on number of classes
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Figure 12: Few-shot transfer with 1, 5, 10, and 25 shots on 25 vision tasks (Abnar et al., 2021).
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Table 13: Summary of datasets used in our few-shot experiments in Figure 12

Dataset Description Reference
ImageNet 1.28M labelled natural images. (Deng et al., 2009)

Caltech101 The task consists in classifying pictures of objects (101 classes plus a background clutter class),
including animals, airplanes, chairs, or scissors. The image size varies, but it typically ranges
from 200-300 pixels per edge.

(Li et al., 2022)

CIFAR-10 The task consists in classifying natural images (10 classes, with 6000 training images each).
Some examples include apples, bottles, dinosaurs, and bicycles. The image size is 32x32.

https://www.cs.toronto.
edu/˜kriz/cifar.html

CIFAR-100 The task consists in classifying natural images (100 classes, with 500 training images each).
Some examples include apples, bottles, dinosaurs, and bicycles. The image size is 32x32.

https://www.cs.toronto.
edu/˜kriz/cifar.html

DTD The task consists in classifying images of textural patterns (47 classes, with 120 training images
each). Some of the textures are banded, bubbly, meshed, lined, or porous. The image size ranges
between 300x300 and 640x640 pixels.

(Cimpoi et al., 2014)

Pets The task consists in classifying pictures of cat and dog breeds (37 classes with around 200
images each), including Persian cat, Chihuahua dog, English Setter dog, or Bengal cat. Images
dimensions are typically 200 pixels or larger.

https://www.robots.ox.ac.
uk/˜vgg/data/pets/

Sun397 The Sun397 task is a scenery benchmark with 397 classes and, at least, 100 images per class.
Classes have a hierarchy structure and include cathedral, staircase, shelter, river, or archipelago.
The images are (colour) 200x200 pixels or larger.

https://vision.princeton.
edu/projects/2010/SUN/

Flowers102 The task consists in classifying images of flowers present in the UK (102 classes, with between
40 and 248 training images per class). Azalea, Californian Poppy, Sunflower, or Petunia are
some examples. Each image dimension has at least 500 pixels.

https://www.robots.ox.ac.
uk/˜vgg/data/flowers/102/

SVHN This task consists in classifying images of Google’s street-view house numbers (10 classes, with
more than 1000 training images each). The image size is 32x32 pixels.

http://ufldl.stanford.edu/
housenumbers/

CLEVR/count CLEVR is a visual question and answer dataset designed to evaluate algorithmic visual reasoning.
We use just the images from this dataset, and create a synthetic task by setting the label equal to
the number of objects in the images.

(Johnson et al., 2017)

CLEVR/distance Another synthetic task we create from CLEVR consists of predicting the depth of the closest
object in the image from the camera. The depths are bucketed into size bins.

(Johnson et al., 2017)

Retinopathy The Diabetic Retinopathy dataset consists of image-label pairs with high-resolution retina images,
and labels that indicate the presence of Diabetic Retinopathy (DR) in a 0-4 scale (No DR, Mild,
Moderate, Severe, or Proliferative DR).

https://www.kaggle.com/c/
diabetic-retinopathy-detection/
data

Birds Image dataset with photos of 200 bird species (mostly North American). (Wah et al., 2011)

Patch Camelyon The Patch Camelyon dataset contains 327,680 images of histopathologic scans of lymph node
sections. The classification task consists in predicting the presence of metastatic tissue in given
image (i.e., two classes). All images are 96x96 pixels.

(Teh & Taylor, 2019)

Resisc45 The Remote Sensing Image Scene Classification (RESISC) dataset is a scene classification task
from remote sensing images. There are 45 classes, containing 700 images each, including tennis
court, ship, island, lake, parking lot, sparse residential, or stadium. The image size is RGB
256x256 pixels.

(Cheng et al., 2017)

EuroSAT The task consists in classifying Sentinel-2 satellite images into 10 different types of land use
(Residential, Industrial, River, Highway, etc). The spatial resolution corresponds to 10 meters
per pixel, and the image size is 64x64 pixels.

(Helber et al., 2019)

dSprites/location The dSprites dataset was originally designed to assess disentanglement properties of unsupervised
learning algorithms. In particular, each image is a 2D shape where six factors are controlled:
color, shape, scale, rotation, and (x,y) center coordinates. Images have 64x64 black-and-white
pixels. This task consists in predicting the x (horizontal) coordinate of the object. The locations
are bucketed into 16 bins

https://github.com/
deepmind/dsprites-dataset/

dSprites/orientation We create another task from dSprites consisting in predicting the orientation of each object,
bucketed into 16 bins.

https://github.com/
deepmind/dsprites-dataset/
https://github.com/
deepmind/dsprites-dataset/

SmallNORB/azimuth The Small NORB dataset contains images of 3D-toys from 50 classes, including animals, human
figures, airplanes, trucks, and cars. The image size is 640x480 pixels. In this case, we define
labels depending on the azimuth (angle of horizontal deviation), in intervals of 20 degrees (18
classes).

(LeCun et al., 2004)

SmallNORB/elevation Another synthetic task we create from Small NORB consists in predicting the elevation in the
image. There are 9 classes, corresponding to 9 different elevations ranging from 30 to 70 degrees,
in intervals of 5 degrees

(LeCun et al., 2004)

DMLab The DMLab (DeepMind Lab) is a set of control environments focused on 3D navigation and
puzzle-solving tasks. The Dmlab dataset contains frames observed by the agent acting in the
DeepMind Lab environment, which are annotated by the distance between the agent and various
objects present in the environment. The goal is to evaluate the ability of a visual model to
reason about distances from the visual input in 3D environments. The Dmlab dataset consists of
360x480 color images in 6 classes. The classes are close, far, very far × positive reward, negative
reward respectively.

(Beattie et al., 2016)

KITTI The KITTI task consists in predicting the (binned) depth to the vehicle (car, van, or truck) in the
image. There are 4 bins / classes.

(Geiger et al., 2013)

ColHist Classification of textures in colorectal cancer histology. Each example is a 150 x 150 x 3 RGB
image of one of 8 classes.

https://www.tensorflow.
org/datasets/catalog/
colorectal_histology

UC Merced 21 class land use image dataset https://usdahsi.ucmerced.
edudatasets/landuse.html

Cars The Cars dataset contains 16,185 images of 196 classes of cars. The data is split into 8,144
training images and 8,041 testing images, where each class has been split roughly in a 50-50
split. Classes are typically at the level of Make, Model, Year, e.g. 2012 Tesla Model S or 2012
BMW M3 coupe.

http://ai.stanford.edu/
˜jkrause/cars/car_dataset.
html

24

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.robots.ox.ac.uk/~vgg/data/pets/
https://www.robots.ox.ac.uk/~vgg/data/pets/
https://vision.princeton.edu/projects/2010/SUN/
https://vision.princeton.edu/projects/2010/SUN/
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://github.com/deepmind/dsprites-dataset/
https://github.com/deepmind/dsprites-dataset/
https://github.com/deepmind/dsprites-dataset/https://github.com/deepmind/dsprites-dataset/
https://github.com/deepmind/dsprites-dataset/https://github.com/deepmind/dsprites-dataset/
https://github.com/deepmind/dsprites-dataset/https://github.com/deepmind/dsprites-dataset/
https://github.com/deepmind/dsprites-dataset/https://github.com/deepmind/dsprites-dataset/
https://www.tensorflow.org/datasets/catalog/colorectal_histology
https://www.tensorflow.org/datasets/catalog/colorectal_histology
https://www.tensorflow.org/datasets/catalog/colorectal_histology
https://usdahsi.ucmerced.edudatasets/landuse.html
https://usdahsi.ucmerced.edudatasets/landuse.html
http://ai.stanford.edu/~jkrause/cars/car_dataset.html
http://ai.stanford.edu/~jkrause/cars/car_dataset.html
http://ai.stanford.edu/~jkrause/cars/car_dataset.html


Scaling Vision Transformers to 22 Billion Parameters

E. Transfer to dense prediction: More results and addition details.
E.1. Semantic segmentation: frozen versus fine-tuning.

In this experiment, we evaluate the effect of fine-tuning versus freezing the ViT-22B backbone when transferring to semantic
segmentation. The results are shown in Table 14. We observe that for the linear decoder fine-tuning results in much better
performance than using frozen features. For the UperNet decoder, however, the gap between fine-tuning and freezing the
backbone is much smaller. This can be explained by the fact that UperNet has ∼ 870 times more parameters than the linear
model. Figure 6 shows qualitative results using Upernet.

Table 14: Frozen versus fine-tuning transfer of ViT-22B to semantic segmentation. We report mean IoU on the validation set
of 3 popular datasets, namely ADE20k (“A-150”) (Zhou et al., 2017b), Pascal Context (“P-60”) (Mottaghi et al., 2014),
Pascal VOC and (“P-20”) (Everingham et al., 2010), for different protocols: (i) frozen versus finetuned backbone; (ii)
linear (Strudel et al., 2021) versus UperNet (Xiao et al., 2018) decoder.

Decoder Linear UperNet

Dataset A-150 P-60 P-20 A-150 P-60 P-20

ViT-22B frozen 34.6 38.6 65.0 52.7 58.7 78.7
ViT-22B fine-tuned 54.9 61.6 79.0 55.3 62.3 80.1

E.2. Monocular Depth Estimation

E.2.1. DATASET

We pre-process Waymo Open video and LiDAR data to obtain RGB frames and associated sparse depth images. The camera
frames are extracted from the front-facing camera mounted on the vehicle, while the sparse depth images are obtained by
projecting the LiDAR point cloud of a single time step onto the camera frame. We use the camera and LiDAR calibration
parameters to compute the distance of each LiDAR point to the camera. For training, we normalize the depth targets using a
log(1 + x) transformation; we undo this transformation for metric computation. As the signal is sparse, we mask out any
pixels in the depth image for which there is no signal during loss computation. We evaluate on the first 5120 validation set
frames from the front facing camera.

We sub-sample videos to 5 fps, and crop and resize frames to 224× 224 resolution (both RGB inputs and depth targets).
The LiDAR projection is done after cropping and resizing, to retain a high-quality signal. For ViT-L, we upscale the RGB
input frames to 256× 256 resolution to account for the larger patch size, while keeping the same information content as for
ViT-e and ViT-22B, which both use a patch size of 14. For evaluation frames, we use a simple center-crop. For training, we
use Inception-style (Szegedy et al., 2015) random-resized crops as our only form of data augmentation. We ensure that at
least 20% of the original frame is retained after cropping.

For efficiency reasons, we pre-compute ViT-22B feature maps for 1,024,000 randomly sampled and augmented frames from
the training set, which amounts to approx. 6.4 epochs of training data. When training the decoder, we iterate over these
pre-computed feature maps in random order, irrespective of the number of training steps used. We follow the same protocol
for all compared models.

E.2.2. DECODER ARCHITECTURES

Dense Prediction Transformer.

We largely follow the design of (Ranftl et al., 2021), using four reassemble and fusion blocks that processes the 16× 16
ViT feature map at (4 × 4), (8 × 8), (16 × 16), and (32 × 32) spatial resolutions. We use 64 features at each stage and
thus can omit the 1 × 1 projection convolution in the fusion block. The final fusion stage feeds into a monocular depth
estimation head, where we use the default 128 features and adjust the final re-sampling stage to yield the desired resolution
of 224× 224. Similar to (Ranftl et al., 2021), we do not consider dropout or batchnorm for depth estimation.

For efficiency purposes we reuse the same 16× 16 ViT feature map at each stage. We empirically verified that this did not
significantly impact results and our implementation of DPT using four ViT-22B feature maps (from layers 12, 24, 36, and
48) normalized using LayerNorm obtained similar scores to what was reported in Table 5: 0.021 MSE, 0.098 AbsRel, 0.686
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δ < 1.1, 0.906 δ < 1.25, 0.979 δ < 1.252. Directly feeding pre-norm feature maps led to instabilities.

(a) Input frame (b) Sparse depth target (c) DPT (ViT-L) (d) DPT (ViT-e) (e) DPT (ViT-22B)

Figure 13: Monocular depth estimation: (c, d, e) show estimated depth by a DPT head applied on ViT features, (a) shows
the input frame and (b) shows the sparse ground-truth depth maps. Notice how (eg. in the third row) the model manages
to go well beyond the available depth targets and makes what appear to be reasonable predictions for far-away cars, even
though they are well out of LiDAR range. Ground-truth depth and depth predictions are visualized in log(1 + depth) space.

Linear decoder.

The linear decoder processes 16× 16× 6144 ViT-22B feature maps using two transpose convolution layers of stride 2 and
kernel size 5, followed by a 1× 1 convolution that outputs a low resolution depth map. This is resized to 224× 224 using
bilinear interpolation and clipped at 0 to be valid predictions for log (1 + depth) The intermediate feature maps have 1536
and 768 dimensions each. Linear activations are used in between layers so that the whole decoder is end-to-end linear. This
performed marginally better than a single 11× 11 stride 4 transpose convolution layer, although the single layer decoder
should be equally powerful in theory. We suspect that this has to do with how hyper-parameters have been empirically
optimized for smaller kernel sizes.

For the ViT-e and ViT-L baselines, the linear decoder is exactly the same except for a much smaller input feature dimension
(1792 for ViT-e and 1024 for ViT-L). Thus the linear decoder on top of ViT-22B has more capacity than the same on top of
ViT-e or ViT-l. We controlled for this in two ways: (a) using a 1× 1 convolution on the ViT-22B features, we down-project
them to 1792 dimensions to match the feature map size of ViT-e, or (b) using a large hidden dimension (4096 in ViT-e’s
decoder and 6144 in ViT-L’s decoder) after the first convolution transpose layer, we approximately matched the number of
parameters across the three models. In control (a), performance stayed roughly the same at 0.165 relative absolute error
(AbsRel) for ViT-22B. In control (b) performance for baselines did not change substantially in terms of relative absolute
error, 0.208 for ViT-e and 0.222 for ViT-L. We therefore report results without these controls in Table 5.

E.2.3. TRAINING DETAILS

We train the decoder for 300k steps with a batch size of 64 using Adam (Kingma & Ba, 2015) and clip the gradients to a
global norm value of 0.05 to stabilize training. We linearly increase the learning rate for 2500 steps to 0.0002 (starting from
0) and then decay the learning rate with a cosine schedule (Loshchilov & Hutter, 2017) back to 0.
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(a) Input frame (b) Sparse depth target (c) DPT (ViT-L) (d) DPT (ViT-e) (e) DPT (ViT-22B)

Figure 14: Monocular depth estimation errors: (c, d, e) show absolute depth estimation errors by a DPT head applied on
ViT features (for points where the ground truth is available), (a) shows the input frame and (b) shows the sparse ground
truth depth maps. Notice how the outline of the car is clearly visible (light blue) from the sparse error maps in the third row
when using ViT-L or ViT-e, while using ViT-22B leads to fewer errors in this region (darker blue). Ground-truth depth and
absolute prediction errors are visualized in log(1 + depth) space.

E.2.4. METRICS

We quantify performance using the following standard depth estimation metrics from the literature (Hermann et al., 2020;
Eigen et al., 2014), and also report the MSE loss on the validation set: AbsRel measures the mean absolute error between
the ground truth and predicted depth relative to the ground truth, while the inlier fraction metrics (δ) measure the fraction of
valid pixels within a certain percentage from ground truth. All metrics were measured after undoing the log transformation.

E.2.5. QUALITATIVE RESULTS

We report qualitative depth predictions by DPT from different ViT backbones in Figure 13, and absolute prediction errors in
Figure 14.

F. Video Classification
We sample 128 and 32 frames with a stride of 2 frames from Kinetics 400 videos (Kay et al., 2017) and Moments in
Time (Monfort et al., 2019) videos, respectively. For both ViT-22B and ViT-e we rely in the frozen, pre-trained models and
use the pre-logit feature representation to extract a single embedding per frame, resulting in a token sequences of length 128
and 32, respectively, which are then processed by a shallow transformer model equipped with a class-token classifier.

This is in contrast to CoCa (Yu et al., 2022a), which uses one token per image patch for their video classification experiments
and a resolution of 576px (compared 224px in our experiments), resulting in much longer token sequences. We explored
using one token per image patch (i.e. unpooled features) in preliminary experiments, but found that this leads to inferior
performance. One potential reason for this could be that CoCa applies a contrastive loss to a pooled feature representation,
and additionally feeds the unpooled token sequences to a generative decoder, which might lead to a different structure in the
unpooled representation than the supervised classification loss used to pretrain ViT-22B and ViT-e.
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To facilitate experimentation, we pre-compute frozen features for the two ViT variants we consider, using the same
augmentations as (Arnab et al., 2021). To improve the robustness of our model and prevent overfitting we feed the entire
training set ten times, with different data augmentations for every pass. We train for 30 epochs on these precomputed features
with a batch size of 256 using SGD with momentum and with a cosine schedule including a linear warmup of 2.5 epochs.
We sweep the following hyperparameters and corresponding value ranges to train our video model: {1, 2} transformer layers
of width {1024, 2048, 4096}, using a learning rate in {10−1, 10−2} and a weight decay in {10−3, 10−2}.
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Figure 15: DP in the model often reflects DP in the data in the absence of bias mitigation. In this figure, binary sex is the
sensitive attribute and linear heads are trained to predict other attributes in CelebA using pretrained features.
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Figure 16: Performance, in terms of either accuracy (top), ECE (middle), or OC-AUC (bottom), is plotted for each ViT
variant after debiasing the model to meet the prescribed level of bias shown in the legends. Refer to Section 4.5.1 for details.

We report the full experimental results described in Section 4.5.1 for all three evaluation (1) classification accuracy (denoted
ACC), (2) expected calibration error (ECE) (Naeini et al., 2015; Guo et al., 2017), and (3) Oracle Collaborative AUC
(OC-AUC) (Kivlichan et al., 2021). ECE is used to measure calibration, while OC-AUC computes the four variables: binned
true/false positives/negatives, as a function of a linearly spaced set of thresholds and score bins. The full results are presented
in Figure 16, Figure 17, and Figure 18.
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Figure 17: Performance is plotted for each subgroup in CelebA prior to bias mitigation. ViT-22B offers better performance
overall across all three metrics, not just overall, but also within each subgroup separately. Refer to Section 4.5.1 for details.
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Figure 18: The y-axis is the absolute difference in performance across the two subgroups: females and males. ViT-22B
provides a more equitable performance, compared to earlier/smaller ViT architectures in all three metrics.
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H. Calibration
We precisely follow the setup of Minderer et al. (2021): Since temperature scaling (Guo et al., 2017) requires some held-out
data, we use 20% of the ImageNet validation set to learn the temperature parameter while we report the accuracy and
expected calibration error on the remaining 80%.

Moreover, since the expected calibration error is defined with respect to a probability distribution normalised over the
classes, we use a softmax loss function during fine tuning. The sigmoid loss function is defined independently across
the classes and does not yield the required normalisation. We use 20k steps together with a learning rate of 0.03.

We reuse the plotting tools provided at https://github.com/google-research/robustness_metrics/
tree/master/robustness_metrics/projects/revisiting_calibration.

I. Plex
I.1. Details about the evaluation

We start by providing some details about the datasets and the different evaluation protocols based on Djolonga et al. (2020).
ImageNet-C (Hendrycks & Dietterich, 2019). This variant of the ImageNet dataset contains algorithmically generated
corruptions (e.g., blur and noise) applied to the ImageNet test-set. The results that we report in the paper are averaged over
the 16 corruptions and over their 5 different intensity levels.
OOD detection (Hendrycks et al., 2019; Fort et al., 2021). In this task, we try to classify whether a given test point
belongs to the in-distribution dataset (in our case, ImageNet) or an out-of-distribution dataset (following Hendrycks et al.
(2019); Tran et al. (2022), we take Places365 which consists of about 1.8 million images from 365 scene categories, where
there are at most 5000 images per category (Zhou et al., 2017a)).

To perform the detection, we use the maximum softmax probability (MSP) (Hendrycks et al., 2019; Tran et al., 2022). We
evaluate the performance of the resulting binary classification task thanks to the AUROC and AUPRC.
Selective prediction. In this task, a model may defer its predictions to human experts when it is not confident enough. In
particular, this task jointly assesses a model’s predictive performance and quality of uncertainty estimates (El-Yaniv &
Wiener, 2010). Following Tran et al. (2022), we measure the performance with the oracle collaborative AUC (Kivlichan
et al., 2021), with a review fraction of 0.5% of all predictions.
Label uncertainty. For this evaluation, we aim at demonstrating the ability of the model to capture the inherent ambiguity
of image labels assigned by humans. Following Tran et al. (2022), we focus on the ImageNet ReaL-H dataset that exploits
the human ratings from Beyer et al. (2020) to construct a label distribution representing rater uncertainty for each image.
The performance is measured by the negative log likelihood computed with respect to the soft labels (i.e., vectors in the
simplex as opposed to the usual one-hot vectors).

I.2. Details about the Plex architecture

Plex (Tran et al., 2022) calls for BatchEnsemble layers (Wen et al., 2019) to be added in the model architecture during
both pre-training and fine-tuning.2 Due to the high cost of training ViT-22B, we add the BatchEnsemble layers during the
fine-tuning stage only. We replace all Dense layers in the ViT-22B, except for the Dense layer in the MLP layer for the
pooling head with BatchEnsemble layers. Tran et al. (2022) further suggest to replace the final Dense layer of the network
with a heteroscedastic output head (Collier et al., 2021). We thus follow this approach and evaluate both a heteroscedastic
and BatchEnsemble final layer.

I.3. Details about the hyperparameters

All models were fine-tuned on ImageNet with a batch size 512. We swept over fine-tuning for 20k or 40k steps and learning
rates of 0.01 and 0.03, with Plex models performing better at 40k fine-tuning steps—as already observed by Tran et al.
(2022)—and learning rate of 0.03. Two BatchEnsemble members were used, with a random sign initialization in the
BatchEnsemble layer of -0.5.

2In Tran et al. (2022), the BatchEnsemble layers are added only to a few of the last layers of the encoder in order to reduce the
computational and memory cost. The efficient implementation of ViT-22B constrains us to apply BatchEnsemble layers throughout the
network.
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Table 15: Evaluation on some representative metrics from the Plex reliability benchmark (Tran et al., 2022).

IN-C (mean over shifts) IN vs. Places365 IN-ReaL-H

Metrics ACC ↑ NLL ↓ ECE ↓ OC-AUC ↑ AUROC ↑ AUPRC ↑ NLL ↓
ViT-L/32 (Tran et al., 2022) 70.1 1.28 0.05 0.91 0.83 0.96 1.09
Plex-L/32 (Tran et al., 2022) 71.3 1.21 0.02 0.91 0.83 0.97 1.03
ViT-22B 83.7 0.63 0.01 0.97 0.88 0.98 1.21
Plex-22B [BE] 81.0 0.98 0.18 0.95 0.86 0.98 0.94
Plex-22B [HET] 80.9 0.97 0.17 0.94 0.86 0.97 0.93

For the experiments with a heteroscedastic output layer, 1k MC samples were used and the low-rank component of
the covariance matrix employed 15 factors. Furthermore, we report results for a temperature parameter of 5 (after a
hyperparameter search over the [0.5, 10] range).

Unlike most of the models in the rest of the paper, the models of this section are fine tuned with a softmax loss function.
We do so to be consistent with the design choices of Tran et al. (2022) and because a distribution normalised across the
classes is required by several of the metrics employed (e.g., ECE).

I.4. Results of Plex-22B and challenges

In Table 15, we report the results of ViT-L/32, Plex-L/32, ViT-22B and the extensions of Plex to the 22B scale, Plex-22B,
with the BatchEnsemble (BE) and heteroscedastic (HET) heads. All the models are fine tuned with a resolution of 384.

The main observation is that the increased scale of ViT-22B comes with substantial improvements across all metrics, except
for the label uncertainty over ImageNet-ReaL-H.

More surprisingly, we can see that across all metrics (except for the label uncertainty over ImageNet-ReaL-H), the Plex-22B
variants perform worse than the vanilla ViT-22B model. This observation does not extend the findings from Tran et al.
(2022) where Plex consistently leads to improvement at the S, B and L scales.

We believe that this surprising observation may be related to specific challenges faced at the 22B scale:

• Pre-training vs. fine-tuning: While Tran et al. (2022) introduce BatchEnsemble layers already at pre-training time,
the high training cost of ViT-22B forces us to only operate at fine-tuning time. In this regime, it may not be possible to
properly learn the BatchEnsemble and heteroscedastic layers. Moreover, while fine-tuning with standard ViT backbones
enjoys a well-performing and robust recipe, namely initializing the final Dense layer kernel to all zeros, we do not
have an equivalent approach when adding the Plex components.

• Hyperparameter tuning: Even though we already covered a reasonable combination of hyperparameters (fine-tuning
duration, learning rate and temperature), it is possible that a finer-grained search is required to close the performance
gap.

• Numerical stability: As discussed in Section 2, it was required to use particular techniques to stabilize the training
of ViT-22B. We hypothesise that similar techniques may have to be developed specifically for the Plex components
(BatchEnsemble and heteroscedastic layers) to keep their efficiency at this scale.

J. Error Consistency & Human Alignment
In Section 4.5.2, we described results for testing ViT-22B fine-tuned on ImageNet on the model-vs-human benchmark.
In Figure 19(a), Figure 19(b), Figure 19(c), Figure 19(d), we provide additional benchmarking results.

K. Perceptual similarity
Kumar et al. (2022) show a trade-off between the accuracy of latest ImageNet classifiers and their inherent ability to capture
perceptual similarity. Here, we explore if large-scale classification on a more diverse training dataset than ImageNet can
break the observed trade-off. To compare the perceptual similarity of ViT-22B with prior ImageNet-trained models, we
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(b) Accuracy difference (lower = better).
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(c) Observed consistency (higher = better).
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(d) Error consistency (higher = better).

Figure 19: Model-vs-human (Geirhos et al., 2021) benchmarking results for ViT-22B models fine-tuned on ImageNet with
different resolutions (indicated by a red arrow). Results are aggregated over 17 challenging out-of-distribution (OOD)
datasets from (Geirhos et al., 2021). OOD accuracy in Figure 19(a) is simply the accuracy across those datasets; accuracy
difference in Figure 19(b) denotes the difference to human accuracies (either too low or too high is penalized); observed
consistency in Figure 19(c) shows unnormalized image-level consistency (see Geirhos et al., 2021, for details) while
Figure 19(d) shows error consistency (normalizes observed consistency by the consistency expected purely by change).
Error consistency is only above zero if models and humans systematically agree in terms of which images are easy/difficult
(correct/incorrect classification). Overall, while the three ViT-22B variants trained with different resolutions vary in their
performance, a ViT-22B variant leads the leaderboard in all four metrics. Comparison models include standard CNNs (grey),
adversarially trained models (blue), self-supervised models (orange) as well as other models evaluated by Geirhos et al.
(2021).

make minor changes to adapt ViT-22B on low resolution 64 × 64 ImageNet. ViT-22B fine-tuned on ImageNet 64 × 64
achieves 84.2 accuracy on ImageNet 64 × 64 which is 16% better than the best models trained directly on ImageNet.
As done in (Zhang et al., 2018), we assess the ability of ViT-22B to capture perceptual similarity using 48 intermediate
representations. The perceptual score of ViT-22B (64.9) is much lower than all other models, indicating that models trained
on large-scale classification also lie on the observed accuracy-perceptual similarity Pareto Frontier.

To make a fair comparison with the models in (Kumar et al., 2022), we make minor changes to adapt ViT-22B on low
resolution 64× 64 ImageNet. Directly finetuneing ViT-22B on 64× 64 images with the default patch-size of 14 leads to two
undesirable consequences a) A low sequence length of 16 and b) Cropping of 8 pixels on the right borders. So, as proposed
in (Beyer et al., 2022a), we resize the trained embedding layer from the default patch-size of 14 to a patch-size of 8 that
leads to a longer sequence length of 64. Then, we adapt standard finetuneing protocols.

We make three more observations: 1) Untrained ViT-22B gets a even lower Perceptual Score of 62.3, thus some amount of
training is desirable 2) ViT-e lies in the same ballpark as ViT-22B with slightly lower accuracy and Perceptual Scores 3)
ViT-22B with the newly proposed Mean Pool distance function (Kumar et al., 2022) can improve its Perceptual Score up to
66.2.
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Figure 20: ViT-22B lies on the bottom-right of the accuracy-perceptual similarity tradeoff. It achieves the best validation
accuracy on 64× 64 ImageNet with the worst perceptual scores.

L. Feature attribution analysis
To get a better understanding on how ViT-22B arrives at its predictions we make use of gradient-based feature attribution
methods (a.k.a. saliency maps). Figure 21 shows the result of applying Integrated Gradients (Sundararajan et al., 2017;
Abnar & Zuidema, 2020, IG) to three example datapoints before and after ViT-22B cooldown. We find that using a gray
(0.5) baseline and 1024 steps yields qualitatively the best results. The images show a subtle difference in how the two
model checkpoints process the example inputs, where more yellow indicates a higher sensitivity. We can also clearly see the
patches in which ViT-22B processes input images. This means that the model is less sensitive around the edges of each
patch, and suggests a path for future work to improve the model to better deal with patch edges.
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Figure 21: Saliency before and after model cooldown.
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