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Abstract

In digital online advertising, advertisers procure
ad impressions simultaneously on multiple plat-
forms, or so-called channels, such as Google Ads,
Meta Ads Manager, etc., each of which consists
of numerous ad auctions. We study how an adver-
tiser maximizes total conversion (e.g. ad clicks)
while satisfying aggregate return-on-investment
(ROI) and budget constraints across all channels.
In practice, an advertiser does not have control
over, and thus cannot globally optimize, which
individual ad auctions she participates in for each
channel, and instead authorizes a channel to pro-
cure impressions on her behalf: the advertiser can
only utilize two levers on each channel, namely
setting a per-channel budget and per-channel tar-
get ROI. In this work, we first analyze the effec-
tiveness of each of these levers for solving the
advertiser’s global multi-channel problem. We
show that when an advertiser only optimizes over
per-channel ROIs, her total conversion can be ar-
bitrarily worse than what she could have obtained
in the global problem. Further, we show that the
advertiser can achieve the global optimal conver-
sion when she only optimizes over per-channel
budgets. In light of this finding, under a bandit
feedback setting that mimics real-world scenar-
ios where advertisers have limited information on
ad auctions in each channels and how channels
procure ads, we present an efficient learning algo-
rithm that produces per-channel budgets whose re-
sulting conversion approximates that of the global
optimal problem.

1. Introduction
In today’s online advertising world, advertisers (including
but not limited to small businesses, marketing practitioners,
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non-profits, etc.) have been embracing an expanding array
of advertising platforms such as search engines, social me-
dia platforms, web publisher display, etc., which present
a plenitude of channels for advertisers to procure ad im-
pressions and obtain traffic. In this growing multi-channel
environment, the booming online advertising activities have
fueled extensive research and technological advancements
in attribution analytics to answer questions like which chan-
nels are more effective in targeting certain users? Or, which
channels produce more user conversion (e.g. ad clicks) or
return-on-investment (ROI) with the same amount of in-
vestments? (see (Kannan et al., 2016) for a comprehensive
survey on attribution analytics). Yet, this area of research
has largely left out a crucial phase in the workflow of ad-
vertisers’ creation of a digital ad campaign, namely how
advertisers interact with advertising channels, which is the
physical starting point of a campaign.

To illustrate the significance of advertiser-channel interac-
tions, consider for example a small business who is relatively
well-informed through attribution research that Google Ads
and Meta ads are the two most effective channels for its
products. The business instantiates its ad campaigns through
interacting with the platforms’ ad management interfaces
(see Figure 1), on which the business utilizes levers such as
specifying budget and a target ROI1 to control campaigns.
Channels then inputs these specified parameters into their
autobidding procedures, where they procure impressions
on the advertiser’s behalf to procure ads through automated
blackbox algorithms. Eventually, channels report perfor-
mance metrics such as expenditure and conversion back to
the advertiser once the campaign ends. Therefore, one of the
most important decisions advertisers need to make involves
how to optimize over these levers provided by channels.
Unfortunately, this has rarely been addressed in attribution
analytics and relevant literature. Hence, this works con-
tributes to filling this vacancy by addressing two themes:

How effective are these channel levers for adver-
tisers to achieve their conversion goals? And how
should advertisers optimize over such levers?

To answer these questions, we study a setting where an ad-
vertiser simultaneously procures ads on multiple channels,

1Target ROI is the numerical inverse of CPA or cost per action
on Google Ads, and cost per result goal in Meta Ads.

1



Multi-channel Autobidding with Budget and ROI Constraints

Figure 1. Interfaces on Google Ads (left) and Meta Ads Manager (right) for creating ad campaigns that allow advertisers to set per-channel
budgets and ROIs. CPA, or cost per action on Google Ads, as well as cost per result goal on Meta Ads Manager, are effectively the inverse
value for an advertiser’s per-channel target ROI. Meta Ads Manager highlights its autobidding procedure maximizes total conversion while
respecting advertisers’ per-channel target ROI (see red box highlighted), supporting the GL-OPT and CH-OPT models in Eq. (1), (3).

each of which consists of multiple ad auctions that sell ad
impressions. The advertiser’s global optimization problem
is to maximize total conversion over all channels, while
respecting a global budget constraint that limits total spend,
and a global ROI constraint that ensures total conversion
is at least the target ROI times total spend. However, as
channels operate as independent entities and conduct auto-
bidding procurement on behalf of advertisers, there are no
realistic means for an advertiser to implement the global
optimization problem via optimizing over individual auc-
tions. Instead, advertisers can only use two levers, namely a
per-channel ROI and per-channel budget, to influence how
channels should autobid for impressions. Our goal is to
understand how effective are these levers by comparing the
total conversion via optimizing levers versus the globally
optimal conversion, and also present methodologies to help
advertisers optimize over the usage of these levers. We
summarize our contributions as followed:

Main contributions.
1. Modelling ad procurement through per-channel ROI
and budget levers. In Section 2 we develop a novel model
for online advertisers to optimize over the per-channel ROI
and budget levers to maximize total conversion over chan-
nels while respecting a global ROI and budget constraint.
This multi-channel optimization model closely imitates real-
world practices (see Figure 1 for evidence), and to the best
of our knowledge is the first of its kind to characterize ad-
vertisers’ interactions with channels to run ad campaigns.
2. Solely optimizing per-channel budgets are sufficient
to maximize conversion. In Theorem 3.2 of Section 3, we
show that solely optimizing for per-channel ROIs is inade-
quate to optimize conversion across all channels, possibly
resulting in arbitrarily worse total conversions compared
to the global optimal where advertisers can optimize over

individual auctions. In contrast, in Theorem 3.3 and Corol-
lary 3.4 we show solely optimizing for per-channel budgets
allows advertisers to achieve the global optimal.
3. Algorithm to optimize per-channel budget levers. Un-
der a realistic bandit feedback structure where advertisers
can only observe the total conversion and spend in each
channel after making a per-channel budget decision, in Sec-
tion 4 we develop an algorithm that augments stochastic
gradient descent (SGD) with the upper-confidence bound
(UCB) algorithm, and eventually outputs a per-channel bud-
get profile with which advertisers can achieve O(T−1/3)
approximation accuracy in total conversion compared to that
of the optimal per-channel budget profile within T iterations.
Our algorithm relates to constrained convex optimization
with uncertain constraints and bandit feedback under a “one
point estimation” regime, and to the best of our knowledge,
our proposed algorithm is the first to handle such a setting;
see discussions in Remark 4.9 of Section 4.

Related works. We review literature that relates to key
themes of this work: autobidding, budget and ROI manage-
ment, and constrained optimization with bandit feedback.
1. Autobidding. The autobidding model has been formally
developed in (Aggarwal et al., 2019), and has been analyzed
through the lens of welfare efficiency or price of anarchy
in (Deng et al., 2021; Balseiro et al., 2021a; Deng et al.,
2022b; Mehta, 2022), as well as individual advertiser fair-
ness in (Deng et al., 2022a). The autobidding model has
also been compared to classic quasi-linear utility models in
(Balseiro et al., 2021b). The autobidding model considered
in these papers assume advertisers can directly optimize
over individual auctions, whereas in this work we address a
more realistic setting that mimics practice where advertisers
can only use levers provided by channels, and let channels
procure ads on their behalf.
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2. Budget and ROI management. Budget and ROI man-
agement strategies have been widely studied in the context
of mechanism design and online learning. (Balseiro et al.,
2017) studies the “system equilibria” of a range of budget
management strategies in terms of the platforms’ profits
and advertisers’ utility; (Balseiro & Gur, 2019; Balseiro
et al., 2022) study online bidding algorithms (called pac-
ing) that help advertisers achieve high utility in repeated
second-price auctions while maintaining a budget constraint,
whereas (Feng et al., 2022) studies similar algorithms but
considers respecting a long term ROI constraint in addition
to a fixed budget. All of these works on budget and ROI
management focus on bidding strategies in a single repeated
auction where advertisers’ decisions are bid values submit-
ted directly to the auctions. In contrast, this work studies
advertisers making decisions on how to adjust per-channel
ROI and budget levers while leaving the bidding to channels’
blackbox algorithms.
3. Constrained optimization with bandit feedback.
Lemma 4.5 of Section 4 shows the advertiser’s optimization
problem for per-channel budgets is a constrained convex
problem with bandit feedback. Due to space limitations,
here we only review two very recent works (Usmanova et al.,
2019; Nguyen & Balasubramanian, 2022) that are most rel-
evant to this paper, and refer readers to other related works
in our extended literature review in Appendix A.1. Both
works consider a similar convex setting to ours where the
objective and constraints are only available through noisy
function value evaluations. Although the two works achieve
O(T−1) and O(T−1/2) respective approximation accuracy
to the optimal solution, which contrasts our O(T−1/3) ac-
curacy, these works impose several assumptions that are
stronger than the ones that we consider. First, the objec-
tive and constraint functions are smooth (i.e. the gradients
are Lipschitz continuous) and (Nguyen & Balasubramanian,
2022) further assume strong convexity. But in our work,
our objectives and constraints are piece-wise linear and do
not satisfy such salient properties. Second, and most im-
portantly, both works consider a setting with “two point
estimations” that allows the optimizer to access the objec-
tive and constraint function values twice in each iteration,
enabling more efficient estimations. This work, however,
lies in the one-point setting where we can only access func-
tion values once per iteration. Finally, we remark that the
optimal accuracy/oracle complexity for the one-point set-
ting for constrained (non-smooth) convex optimization with
bandit feedback and unknown constraints remains an open
question; see Remark 4.9 for more details.

See Appendix A.1 for an extended literature review.

2. Preliminaries
Advertisers’ global optimization problem. Consider an
advertiser running a digital ad campaign to procure ad im-
pressions on M ∈ N platforms such as Google Ads, Meta
Ads Manager etc., each of which we call a channel. Each
channel j consists of mj ∈ N parallel ad auctions, each
of which corresponds to the sale of an ad impression.2 An
ad auction n ∈ [mj ] is associated with a value vj,n ≥ 0
that represents the expected conversion (e.g. number of
clicks) of the impression on sale, and a cost dj,n ≥ 0 that is
required for the purchase of the impression. For example,
the cost in a single slot second-price auction is the highest
competing bid from competitors in the market, and in a
posted price auction the cost is simply the posted price by
the seller of the impression. Writing vj = (vj,n)n∈[mj ] and
dj = (dj,n)n∈[mj ], we assume that zj := (vj ,dj) is sam-
pled from some unknown discrete distribution pj supported
on unknown finite set Fj ⊆ Rmj

+ × Rmj

+ .

The advertiser’s goal is to maximize total conversion of
procured ad impressions, while subject to a return-on-
investment (ROI) constraint that states total conversion
across all channels is no less than γ times total spend for
some pre-specified target ROI 0 < γ < ∞, as well as a
budget constraint that states total spend over all channels is
no greater than the total budget ρ ≥ 0. Mathematically, the
advertiser’s global optimization problem is:

GL-OPT = max
xj∈[0,1]mj ,∀j∈[M ]

∑
j∈[M ]

E
[
v⊤
j xj

]
s.t.

∑
j∈[M ] E

[
v⊤
j xj − γd⊤

j xj

]
≥ 0∑

j∈[M ] E
[
d⊤
j xj

]
≤ ρ .

(1)

Here, the decision variable xj ∈ [0, 1]mj is a vector where
xj,n denotes whether the impression in auction n for channel
j is procured. We remark that x depends on the realization
of z = (vj ,dj)j∈[M ] and is also random. We note that the
ROI and budget constraints are taken in expectation because
an advertiser procures impressions from a very large number
of auctions in total, and thus the advertiser typically only
requires to satisfy constraints in an average sense. GL-OPT
is a widely adopted formulation for autobidding practices in
modern online advertising; see e.g. (Aggarwal et al., 2019;
Balseiro et al., 2021a; Deng et al., 2021; 2022b). In Section
5 we discuss more general advertiser objectives.

Our overarching goal is to develop methodologies that en-
able an advertiser to achieve total campaign conversion that
match GL-OPT. However, directly optimizing GL-OPT
may not be plausible as we discuss in the following.

Advertisers’ levers to solve their global problems. To

2Ad auctions for each channel may be run by the channel itself
or other external ad inventory suppliers such as web publishers.
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solve the global optimization problem GL-OPT, ideally
advertisers would like to optimize over individual auctions
across all channels. However, in reality channels operate
as independent entities, and typically do not provide means
for general advertisers to participate in specific individual
auctions at their discretion. Instead, channels provide ad-
vertisers with specific levers to express their ad campaign
goals on spend and conversion. In this work, we focus on
two of the most widely used levers, namely the per-channel
ROI target and per-channel budget (see illustration in Fig.
1). After an advertiser inputs these parameters to a channel,
the channel then procures ads on behalf of the advertiser
through autonomous programs (we call this programmatic
process autobidding) to help advertiser achieve procurement
results that match with the inputs. We elaborate on this later.

Formally, we consider the setting where for each channel
j, an advertiser is allowed to input a per-channel target
ROI 0 ≤ γj < ∞, and a per-channel budget ρj ∈ [0, ρ]
where we recall ρ > 0 is the total advertiser budget for
a certain campaign. Then, the channel uses these inputs
in its autobidding algorithm to procure ads, and returns
the total conversion Vj(γj , ρj ; zj) ≥ 0 , as well as total
spend Dj(γj , ρj ; zj) ≥ 0 to the advertiser, where we recall
zj = (vj ,dj) ∈ Fj is the realized vector of value-cost pairs
in channel j; Vj and Dj will be further specified later.

As the advertiser has the freedom of choice to input either
per-channel target ROI’s, budgets, or both, we consider three
options: 1. input only a per-channel target ROI; 2. input
only a per-channel budget; 3. input both per-channel target
ROI and budgets. Such options correspond to the following
decision sets for (γj , ρj)j∈[M ]:

Per-channel budget only option: IB =

{(γj , ρj)j∈[M ] ∈ R2×M
+ : γj = 0, ρj ∈ [0, ρ] for ∀j}.

Per-channel target ROI only option: IR =

{(γj , ρj)j∈[M ] ∈ R2×M
+ : γj ≥ 0, ρj = ∞ for ∀j}.

General option: IG =

{(γj , ρj)j∈[M ] : γj ≥ 0, ρj ∈ [0, ρ] for ∀j}.

(2)

The advertiser’s goal in practice is to maximize their to-
tal conversion of procured ad impressions through opti-
mizing over per-channel budgets and target ROIs, while
subject to the global ROI and budget constraint similar
to those in GL-OPT. Mathematically, for any option
I ∈ {IB , IR, IG}, the advertiser’s optimization problem
can be written as

CH-OPT(I) = max
(γj ,ρj)j∈I

∑
j∈M

E [Vj(γj , ρj ; zj)]

s.t.
∑

j∈M E [Vj(γj , ρj ; zj)− γDj(γj , ρj ; zj)] ≥ 0∑
j∈[M ] E [Dj(γj , ρj ; zj)] ≤ ρ ,

(3)

where the expectation is taken w.r.t. randomness in zj . We
remark that for any channel j ∈ [M ], the number of auctions
mj as well as the distribution pj are fixed and not a function
of the input parameters γj , ρj .

The functions (Vj , Dj) that map per-channel target ROI
and budgets γj , ρj to the total conversion and expenditure
are specified by various factors including but not limited
to channel j’s autobidding algorithms deployed to procure
ads on advertisers’ behalf, or the auction mechanisms that
sell impressions. In this work, we study a general setup that
closely mimics industry practices: we assume that on the
behalf of the advertiser, each channel aims to optimize their
conversion over all mj auctions while respecting the adver-
tiser’s input (i.e., per-channel target ROI and budgets). (See
e.g. Meta Ads Manager in Figure 1 specifically highlights
the channel’s autobidding procurement methodology which
supports this setup). Hence, each channel j’s optimization
problem can be written as

x∗
j (γj , ρj ; zj) = arg max

x∈[0,1]mj
v⊤
j x

s.t. v⊤
j x ≥ γjd

⊤
j x, d⊤

j x ≤ ρj ,
(4)

where x = (xn)n∈[Mj ] ∈ [0, 1]mj denotes the vector of
probabilities to win each of the parallel auctions, i.e. xn ∈
[0, 1] is the probability to win auction n ∈ [mj ] in channel j.
In light of this representation, the corresponding conversion
and spend functions are given by

Vj(γj , ρj ; zj) = v⊤
j x

∗
j (γj , ρj ; zj)

Vj(γj , ρj) = E[Vj(γj , ρj ; zj)]

Dj(γj , ρj ; zj) = d⊤
j x

∗
j (γj , ρj ; zj)

Dj(γj , ρj) = E[Dj(γj , ρj ; zj)] .

(5)

Here, the expectation is taken w.r.t. randomness in zj =
(vj ,dj). We assume that for any (γj , ρj) and realization zj ,
Vj(γj , ρj ; zj) is bounded above by some absolute constant
V ∈ (0,∞) almost surely. We remark that Eq.(5) assumes
channels are able to achieve optimal procurement perfor-
mance. Later in Section 5, we briefly discuss setups where
channels does not optimally solve for Eq.(4).
Key questions and organization of this paper.
1. (Section 3) How effective are the per-channel ROI
and budget levers to help advertisers achieve the globally
optimal conversion GL-OPT while respecting the global
ROI and budget constraints? In particular, for each option
I ∈ {IB , IR, IG} defined in Eq. (2), what is the discrep-
ancy between CH-OPT(I) versus the optimal GL-OPT?
2. (Section 4) How can advertisers optimize per-channel
target ROIs and budgets to solve for CH-OPT(I)?

3. On the Efficacy of Per-channel Levers
In this section, we examine the effectiveness of the per-
channel target ROI and per-channel budget levers in achiev-
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ing the global optimal GL-OPT. In particular, we study if
the optimal solution to the channel problem CH-OPT(I)
defined in Eq. (3) for I ∈ {IB , IR, IG} is equal to the
global optimal GL-OPT.

Our first result in this section is the following Lemma 3.1
which shows that GL-OPT serves as a theoretical upper
bound for an advertiser’s conversion through optimizing
CH-OPT(I) with any option I.

Lemma 3.1 (GL-OPT is the theoretical upper bound for
conversion). For any option I ∈ {IB , IR, IG}, we have
GL-OPT ≥ CH-OPT(I).

The proof of Lemma 3.1 is deferred to Appendix B.1. In
light of the theoretical upper bound GL-OPT, we are now
interested in the gap between GL-OPT and CH-OPT(I)
for option I ∈ {IB , IR, IG}. In the following Theorem 3.2,
we show that there exists a problem instance under which
the ratio CH-OPT(IR)

GL-OPT nears 0, implying the per-channel ROIs
alone fail to help advertisers optimize conversion.

Theorem 3.2 (Per-channel ROI only option fails to optimize
conversion). Consider an advertiser with a (global) target
ROI of γ = 1 procuring impressions from M = 2 channels
with 1 and 2 auctions, respectively. The advertiser has un-
limited budget ρ = ∞, and chooses the per-channel target
ROI only option IR defined in Eq. (2). Assume there is only
one realization of value-cost pairs z = (vj ,dj)j∈[M ] (i.e.
the support F = F1×F2 is a singleton), and the realization
is presented in the following table, where X > 0 is some
arbitrary parameter. Then, limX→∞

CH-OPT(IR)
GL-OPT = 0.

Channel 1 Channel 2

Auction 1 Auction 2 Auction 3

Value vj,n 1 X 2X

Spend dj,n 0 1 +X 2(1 +X)

See proof in Appendix B.2. In contrast, the budget only
option IB in fact allows an advertiser’s conversion to reach
the theoretical upper bound GL-OPT through solely opti-
mizing for per-channel budgets. This is formalized in the
following theorem (see proof in Appendix B.3).

Theorem 3.3 (Per-channel budget suffices to achieve opti-
mal conversion). For the budget only option IB defined in
Eq.(2), we have GL-OPT = CH-OPT(IB) for any global
target ROI γ > 0 and total budget ρ > 0, even for ρ = ∞.

As an immediate extension of Theorem 3.3, the following
Corollary 3.4 states per-channel ROI’s in fact become re-
dundant once advertisers optimize for per-channel budgets.

Corollary 3.4 (Redundancy of per-channel ROIs). For
the general option IG defined in Eq.(2) where an adver-
tiser sets both per-channel ROI and budgets, we have
GL-OPT = CH-OPT(IG) for any aggregate ROI γ > 0

and total budget ρ > 0, even for ρ = ∞. Further, there
exists an optimal solution (γj , ρj)j∈[M ] to CH-OPT(IG),
s.t. γj = 0 for all j ∈ [M ].

In light of the redundancy of per-channel ROIs as illustrated
in Corollary 3.4, in the rest of the paper we will fix γj =
0 for any channel j ∈ [M ], and omit γj in all relevant
notations; e.g. we will write Dj(ρj ; zj) and Dj(ρj), instead
of Dj(γj , ρj ; zj) and Dj(γj , ρj). Equivalently, we will
only consider the per-channel budget only option IB .

4. Optimization Algorithm for Per-channel
Budgets under Bandit Feedback

In this section, we develop an efficient algorithm to solve
for per-channel budgets that optimize CH-OPT(IB) de-
fined in Eq. (3), which achieves the theoretical optimal
conversion, namely GL-OPT, as illustrated in Theorem
3.3. In particular, we consider algorithms that run over
T > 0 periods, where each period for example corresponds
to the duration of 1 hour or 1 day. At the end of T periods,
the algorithm produces some per-channel budget profile
(ρj)j∈[M ] ∈ [0, ρ]M that approximates CH-OPT(IB), and
satisfies aggregate ROI and budget constraints, namely∑

j∈M Vj(ρj) ≥ γ
∑

j∈M Dj(ρj),
∑

j∈[M ] Dj(ρj) ≤ ρ ,

where we recall (Vj(ρj), Dj(ρj)) are defined in Eq. (5).

The algorithm proceeds as follows: at the beginning of
period t ∈ [T ], the advertiser sets per-channel budgets
(ρj,t)j∈[M ], while simultaneously values and costs zt =
(zj,t)j∈[M ] = (vj,t,dj,t)j∈[M ], where (vj,t,dj,t) ∈ Rmj

+ ×
Rmj

+ are sampled (independently in each period) from fi-
nite support F = F1 × . . . FM according to discrete dis-
tributions (pj)j∈[M ]. Each channel j then takes as input
ρj,t ∈ [0, ρ] and procures ads on behalf of the advertiser,
and reports the total realized conversion Vj(ρj,t; zj,t) as
well as total spend Dj(ρj,t; zj,t) to the advertiser (see defi-
nitions in Eq. (5)). For simplicity we assume any realization
zj = (vj ,dj) ∈ Fj admits an ordering vj,1

dj,1
> · · · > vj,mj

dj,mj

for all channels j ∈ [M ].

Bandit feedback: We highlight that the advertiser receives
bandit feedback from channels, i.e. the advertiser only ob-
serves the numerical values Vj(ρj,t; zj,t) and Dj(ρj,t; zj,t),
but does not get to observe Vj(ρ

′
j ; z

′
j) and Dj(ρ

′
j ; z

′
j) evalu-

ated at any other per-channel budget ρ′j ̸= ρj,t and realized
value-cost pairs z′

j ̸= zj,t.

We also make two mild assumptions: In Assumption 4.1,
we assume that any channel will deplete input per-channel
budgets. This is a natural assumption that mimics practical
scenarios, e.g. marketing for small businesses that have
moderate-sized budgets. In Assumption 4.2, we assume
for any realization of value-cost pairs zj = (vj ,dj) in a
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channel j ∈ [M ], there always exists an auction n ∈ [mj ]
in this channel whose value-to-cost ratio is at least γ, i.e.
vj,n > γdj,n.

Assumption 4.1 (Moderate budgets). Assume ρ < ∞,
and for any channel j ∈ [M ], value-cost realization zj =
(vj ,dj) ∈ Fj , and per-channel budget ρj ∈ [0, ρ], the opti-
mal solution x∗

j (ρj ; zj) defined in Eq. (4) is budget binding,
i.e. Dj(ρj ; zj) = d⊤

j x
∗
j (ρj ; zj) = ρj .

Assumption 4.2 (Strictly feasible global ROI constraints).
Fix any channel j ∈ [M ] and any realization of value-cost
pairs zj = (vj ,dj) ∈ Fj . Then, the channel’s optimiza-
tion problem in Eq. (4) is strictly feasible, i.e. the set{
xj ∈ [0, 1]mj : v⊤

j xj > γd⊤
j xj

}
is nonempty.

4.1. Optimize per-channel budgets with SGD-UCB

Here, we describe our algorithm to solve for optimal per-
channel budgets w.r.t. CH-OPT(IB). Similar to most algo-
rithms for constrained optimization, we take a dual stochas-
tic gradient descent (SGD) approach; see a comprehensive
survey on dual descent methods in (Bertsekas, 2014). First,
we consider the Lagrangian functions w.r.t. CH-OPT(IB)
where we let c = (λ, µ) ∈ R2

+ be the dual variables corre-
sponding to the ROI and budget constraints, respectively:

Lj(ρj , c; zj) = (1 + λ)Vj(ρj ; zj)− (λγ + µ)ρj

Lj(ρj , c) = E [Lj(ρj , c; zj)] .
(6)

Then, in each period t ∈ [T ] given dual variables ct =
(λt, γt), SGD decides on a primal decision, i.e. per-channel
budget (ρj,t)j∈[M ] by optimizing the following

ρj,t = argmaxρj∈[0,ρ] Lj(ρj , ct; zj,t) . (7)

Having observed the realized values (Vj(ρj,t; zj,t))j∈[M ]

(note that spend is (ρj,t)j∈[M ] under Assumption 4.1), we
calculate the current period violation in budget and ROI
constraints, namely g1,t :=

∑
j∈M (Vj(ρj,t; zj,t)− γρj,t)

and g2,t = ρ−
∑

j∈[M ] ρj,t. Next, we update dual variables
via Π[0,CF ] (λt − ηg1,t) and µt+1 = Π[0,CF ] (µt − ηg2,t),
where Π is the projection operator, η is some pre-specified
step size, and CF is some dual variable upper bound speci-
fied in Eq. (9).3

However, we cannot realistically find the primal decisions by
solving Eq. (7) since the function Lj(·, ct; zj,t) is unknown
due to the bandit feedback structure. Therefore, we provide
a modification to SGD to handle this issue. We briefly note
that although bandit feedback prevents naively applying
SGD to our problem, this may not be the case in other online
advertising scenarios that involve relevant learning tasks,
underlining the challenges of our problem; see Remark A.1
in Appendix A.2 for comparisons with related works.

3One can also employ more general mirror descent dual vari-
able updates; see e.g. (Balseiro et al., 2022).

To handle bandit feedback, we take a natural approach to
augment SGD with the celebrated upper-confidence bound
(UCB) algorithm; see intro to UCB and multi-arm bandits in
(Slivkins et al., 2019). In particular, we first discretize our
per-channel budget decision set [0, ρ] into granular “arms”
separated by distance δ > 0:

A(δ) = {ak}k∈[K] where ak = (k − 1)δ . (8)

for K := ⌈ρ/δ⌉+ 1. In the following we will use the terms
“per-channel budget” and “arm” interchangeably. In the
spirit of UCB, in each period t we maintain some estimate(
V j(ak)

)
j∈[M ]

of the conversions (Vj(ak))j∈[M ] as well
as an upper confidence bound UCBj,t(ak) for each arm ak
using historical payoffs from periods in which arm ak is
pulled. Finally, we update primal decisions for each channel
j ∈ [M ] using the “best arm” ρj,t = argmaxak∈A(δ) (1 +

λt)
(
V j,t(ak) + UCBj,t(ak)

)
− (λtγ + µt) ak.

Finally, to ensure aggregate ROI and budget constraint satis-
faction, we maintain variables that check ROI and budget
balances, namely S1,t and S2,t, to record the cumulative
ROI and spend across all channels up until period t. When
the ROI balance check S1,t is too negative, or the bud-
get balance check is too large, we “stop” the algorithm,
and naively set some pre-defined small per-channel budget
ρ ∈ (0, ρ) (later chosen in Theorem 4.8) during all periods
after the “stopping time” denoted as τA. We remark that
similar approaches to ensure constraint satisfaction has been
introduced in e.g. (Balseiro et al., 2022; Feng et al., 2022).

We summarize our algorithm, called SGD-UCB, in Algo-
rithm 1.4

4.2. Analyzing the SGD-UCB algorithm

In this subsection, we analyze the performance of SGD-
UCB in Algorithm 1, and present accuracy guarantees
on the final output ρT =

(
1
T

∑
t∈[T ] ρj,t

)
j∈[M ]

. The

backbone of our analysis strategy is to show the cu-
mulative loss over T periods, namely T · GL-OPT −
E
[∑

t∈[T ]

∑
j∈[M ] Vj(ρj,t)

]
consists of three main parts,

namely the “stopping error” due to some condition for the
while loop being violated and naively setting a small per-
channel budget ρ after the “stopping time” τA (see step 10);
the error induced by UCB in our algorithm; and the error
due to SGD (or what is typically viewed as the deviations
from complementary slackness); see following Proposition
4.3. Then we further bound each part.

4There has been very recent works that combine SGD with
adversarial bandit type algorithms such as EXP3 (Castiglioni et al.,
2022), or with Thompson sampling which is another well-known
algorithm for stochastic bandit problems (e.g. (Ding et al., 2021)),
and works that employ SGD in bandit problems (e.g. (Han et al.,
2021)). Yet to the best of our knowledge, our approach to integrate
SGD with UCB is novel.
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Algorithm 1 SGD-UCB
1: Input: Budget discretization set of arms A(δ) defined in

Eq.(8). Step size η > 0. Initialize Nj,1(ak) = V j,1(ak) = 0
for all j ∈ [M ] and k ∈ [K], and dual variables λ1 = µ1 = 0.
Set ρ ∈ (0, ρ/M), β > 0 and dual variable upper bound

CF = MV max
{

1
βρ

, 1
ρ−Mρ

}
(9)

where V ≥ maxj∈[M ] maxρj∈[0,ρ] maxzj∈Fj Vj(ρj ,zj) is
the conversion upper bound.

2: Set initial constraint balance checks: S1,t = S2,t = 0 for
t = 1, and start period counter t = 1.

3: while t ≤ T and S1,t − γMρ + βρ(T − t) ≥ 0 and S2,t +

Mρ+Mρ(T − t) ≤ ρT do
4: Set per-channel budget. For each channel j ∈ [M ]: If

t ≤ K, set ρj,t = at. Else if t > K, set ρj,t =

argmaxak∈A(δ) V j,t(ak) + UCBj,t(ak)− (λtγ+µt)ak
1+λt

,

where UCBj,t(ak) =
√

2 log(T )
Nj,t(ak)

.

5: Observe realized conversion {Vj(ρj,t;zj,t)}j∈[M ], and up-
date for each arm k ∈ [K] and channel j ∈ [M ]

Nj,t+1(ak) = Nj,t(ak) + I{ρj,t = ak}

V j,t+1(ak) =
Nj,t(ak)V j,t(ak)+Vj(ρj,t;zj,t)I{ρj,t=ak}

Nj,t+1(ak)

6: Update dual variables. Calculate g1,t =∑
j∈M (Vj(ρj,t;zj,t)− γρj,t) and g2,t =

ρ−
∑

j∈[M ] ρj,t. Then, set

λt+1 = Π[0,CF ] (λt − ηg1,t) ,

µt+1 = Π[0,CF ] (µt − ηg2,t) .
(10)

7: Update balance check: S1,t+1 = S1,t + g1,t and S2,t+1 =
S2,t +

∑
j∈[M ] ρj,t.

8: Increment period counter t← t+ 1.
9: end while

10: Record τA = t− 1 and for all t = τA + 1 . . . T set ρj,t = ρ

for all j ∈ [M ].

11: Output ρT =
(

1
T

∑
t∈[T ] ρj,t

)
j∈[M ]

.

Proposition 4.3 (Regret decomposition). For any channel
j ∈ [M ] define ρ∗j (t) = argmaxρj∈[M]

Lj(ρj ; ct) to be
the optimal per-channel budget w.r.t. dual variables ct =
(λt, µt)t∈[T ]. Then T ·GL-OPT−

∑
t∈[T ]

∑
j∈[M ] Vj(ρj,t)

is bounded by

MV (T − τA)︸ ︷︷ ︸
Stopping error

+
∑

t∈[τA]

(λtg1,t + µtg2,t)︸ ︷︷ ︸
SGD complementary slackness deviations

+
∑

j∈[M ]

∑
t∈[τA]

Lj(ρ
∗
j (t), λt, µt)− Lj(ρj,t, λt, µt)︸ ︷︷ ︸

UCB error

.

where τA ∈ [T ] is defined in step 10 of Algorithm 1.

Recall the definitions of g1,t and g2,t in step 5 of Algorithm
1, and the fact that the conversion Vj(ρj ; zj) is bounded
above by absolute constant V ∈ (0,∞) almost surely.

We bound the stopping error together with SGD complemen-
tary slackness violations in the following Lemma 4.4, which
follows standard analyses for SGD; see proof in Appendix
C.2.

Lemma 4.4 (Bounding stopping error and complementary
slackness deviations). Assume Assumptions 4.1 and 4.2
hold. Recall η > 0 is the step size. Then we have MV (T −
τA) +

∑
t∈[τA](λtg1,t + µtg2,t) ≤ O

(
ηT + 1

η

)
.

Challenges in bounding UCB error due to adversarial
contexts and continuum-arm dicretization. Bounding our
UCB error is much more challenging than doing so in classic
stochastic multi-arm bandit settings: first, our setup involves
discretizing a continuum of arms i.e. our discretization in
Eq.(8) for [0, ρ]; second, and more importantly, the dual vari-
ables {ct}t∈[T ] are effectively adversarial contexts since
they are updated via SGD instead of being stochastically
sampled from some nice distribution, and correspondingly
the Lagrangian function Lj(ak, ct; zt) can be viewed as a
reward function that maps any arm-context pair (ak, ct) to
(stochastic) payoffs. Both continuum-arms and adversarial
contexts have been notorious in making reward function esti-
mations highly inefficient; see e.g. discussions in (Agrawal,
1995; Agarwal et al., 2014). We further elaborate on specific
challenges that adversarial contexts bring about:
1. Boundedness of rewards. In classic stochastic multi-
arm bandtis and UCB, losses in total rewards grow linearly
with the magnitude of rewards. In our setting, the reward
function, i.e. the Lagrangian function Lj(ak, ct; zt), scales
linearly with the magnitude of contexts (see Eq. (6), so large
contexts (i.e. large dual variables) may lead to large losses.
2. Context-dependent exploration-exploitation tradeoffs.
The typical trade-off for arm exploration and exploitation in
our setting depends on the particular values of the contexts
(i.e. the dual variables), which means there may exist “bad”
contexts that lead to poor tradeoffs that require significantly
more explorations to achieve accurate estimates of arm re-
wards than other “good” contexts. We elaborate more in
Lemma 4.7 and discussions thereof.

We first handle continuum arm discretization via showing
the specific form of conversion functions V (ρj ; z) in Eq.
(4) induces salient structures for the Lagrangian function,
namely it is continuous, piecewise linear, concave, and uni-
modal5; we present the proof in Appendix C.3

Lemma 4.5 (Structural properties). • For any channel j ∈
[M ] and per-channel budget ρj the conversion function
Vj(ρj) is continuous, piece-wise linear, strictly increasing,

5A function f : R → R is unimodal if ∃y∗ such that f(y)
strictly increases when y ≤ y∗ and strictly decreases when y ≥ y∗.
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and concave. In particular, Vj(ρj) takes the form

Vj(ρj) =
∑

n∈[Sj ]
(sj,nρj + bj,n) I{ρj ∈ [rj,n−1, rj,n]} ,

where Sj ∈ N and {(sj,n, bj,n, rj,n)}n∈[Sj ] only depend on
the support Fj and distribution pj from which value and
costs are sampled. These parameters satisfy sj,1 > · · · >
sj,Sj

> 0 and 0 = rj,0 < rj,1 < · · · < rj,Sj
= ρ, as

well as bj,n ≥ 0 s.t. sj,nrj,n + bj,n = sj,n+1rj,n + bj,n+1

for all n ∈ [Sj − 1], with bj,1 = 0. This implies Vj(ρj) is
continous in ρj .

• For any dual variables c = (λ, µ) ∈ R2
+, Lj(ρj , c) de-

fined in Eq. (6) is continuous, piece-wise linear, concave,
and unimodal in ρj . In particular,

Lj(ρj , c) =
∑Sj

n=1

(
σj,n(c)ρj + b′j,n

)
I{ρj ∈ [rj,n−1, rj,n]}

where the slope σj,n(c) = (1 + λ)sj,n − (µ + γλ) and
b′j,n = (1 + λ)bj,n. This implies argmaxρj≥0 Lj(ρj , c) =
max{rj,n : n = 0, 1 . . . , Sj , σj,n(c) ≥ 0}.

In fact, for any realized value-cost pairs z, the “realiza-
tion versions” of the conversion and Lagrangians functions,
namely Vj(ρj ; z) and Lj(ρj , c; z), also satisfy the same
properties as those of Vj(ρj) and Lj(ρj , c). We provide a
visual illustration for these properties in Figure 2.

Figure 2. Illustration of Lagrangian functions defined in Eq. (6)
with Mj = 2 auctions in channel j, and support Fj that con-
tains 3 elements, z(1) = ((8, 2), (2, 3)), z(2) = ((3, 4), (1, 4)),
z(3) = ((8, 1), (4, 2)), and context c = (λ, µ) = (4, 2). Under
Lemma 4.5, Sj = 5, where the “turning points” rj,0 . . . rj,Sj

are indicated on the x-axis, and the optimal budget w.r.t. c is
argmaxρj∈[0,ρ] Lj(ρj ; c) = rj,2. The adjacent slopes in Eq.
(11) are σ−

j (c) = σj,2(c), and σ+
j (c) = σj,3(c).

We now handle the reward boundedness issue for the La-
grangian functions that arise from adversarial contexts: in
Lemma 4.6 (proof in Appendix C.4), we show the La-
grangian functions are bounded by some absolute constants:
Lemma 4.6 (Bounding Lagrangian functions). For any
t ∈ [T ], j ∈ [M ] and ρj ∈ [0, ρ] we have
− (1 + γ) ρCF ≤ Lj(ρj , λt, µt) ≤ (1 + CF )V , where
the dual variables (λt, µt)t∈[T ] are generated from Algo-
rithm 1.

We now address the context-dependent exploration-
exploitation tradeoff. To illustrate (e.g. Figure 2), define the
slopes that are adjacent to the optimal per-channel budget
w.r.t. c = (λ, µ) as followed: assume the nth “turning point”
rj,n = argmaxρj∈[0,ρ] Lj(ρj , c), then

σ−
j (c) = σj,n(c) and σ+

j (c) = σj,n+1(c) (11)

Similar to standard exploration-exploitation tradeoffs in ban-
dits, the flatter the slope (e.g. σ−

j (c) is close to 0), the more
pulls required to accurately estimate rewards for sub-optimal
arms on the slope, but the lower the loss in conversion for
pulling sub-optimal arms. Our setting is challenging be-
cause the magnitude of this tradeoff, or equivalently adjacent
slopes σ−

j (c) and σ+
j (c), depend on the adversarial contexts.

In Lemma 4.7 we bound the UCB error by handling this
context-dependent tradeoff through separately analyzing pe-
riods when the adjacent slopes σ−

j (c) and σ+
j (c) are less

or greater than some parameter σ > 0 chosen later, and
characterize the context-dependent tradeoff using σ.

Lemma 4.7 (Bounding UCB error). Assume the discretiza-
tion width δ satisfies δ < rj := minn∈[Sj ] rj,n − rj,n−1,

where Sj and {rj,n}
Sj

n=0 are defined in Lemma 4.5. Then
the UCB error in Proposition 4.3 is upper bounded by
O
(
δT + σT + 1

σδ

)
, where σ > 0 is any positive number.

See Appendix C.5 for the proof. Finally, we put together
Proposition 4.3, Lemma 4.4 and 4.7, and obtain the main
result Theorem 4.8 whose proof we detail in Appendix C.6

Theorem 4.8 (Putting everything together). Assume as-
sumptions 4.1 and 4.2 hold. Take step size η = Θ(1/

√
T ),

discretization width δ = Θ(T−1/3) and β = ρ = 1
log(T )

in Algorithm 1, as well as σ = Θ(T−1/3) in Lemma
4.7. Then, for large enough T we have T · GL-OPT −
E
[∑

t∈[T ]

∑
j∈[M ] Vj(ρj,t)

]
≤ O(T 2/3). Further, recall-

ing ρT is the final output of Algorithm 1, we have

GL-OPT −
∑

j∈[M ] E
[
Vj(ρj,T )

]
≤ O(T−1/3) and

constraint satisfaction: ρ −
∑

j∈[M ] E[ρj,T ] ≥ 0, as well
as

∑
j∈[M ] E[Vj(ρj,T )− γρj,T ] ≥ 0.

We make an important remark that distinguishes our result in
Theorem 4.8 with related literature on convex optimization:
Remark 4.9. In light of Lemma 4.5, the advertiser’s op-
timization problem CH-OPT(IB) in Eq. (3) effectively
becomes a convex problem (see Proposition C.5 in Ap-
pendix C.7). Hence it may be tempting for one to di-
rectly employ off-the-shelf convex optimization algorithms.
However, our problem involves stochastic bandit feed-
back, and more importantly, uncertain constraints, mean-
ing that we cannot analytically determine whether a pri-
mal decision satisfies the constraints of the problem. For
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example, in CH-OPT(IB), for some primal decision
(ρj)j∈[M ], we cannot determine whether the ROI constraint∑

j∈M E [Vj(γj , ρj ; zj)− γDj(γj , ρj ; zj)] ≥ 0 holds be-
cause the distribution (pj)j∈[M ] from which z is sampled
is unknown. To the best of our knowledge, there are only
two recent works that handle a similar stochastic bandit
feedback, and uncertain constraint setting, namely (Usman-
ova et al., 2019) and (Nguyen & Balasubramanian, 2022).
Nevertheless, our setting is more challenging because these
works consider a “two-point estimation” regime where one
can make function evaluations to the objective and con-
straints twice each period, whereas our setting involves
“one-point estimation” such that we can only make function
calls once per period. We note the optimal oracle com-
plexities for unknown constraint convex optimization with
one-point bandit feedback, remains an open problem.6

5. Additional Discussions
See more details on following discussions in Appendix A.3.
General advertiser objectives. In GL-OPT and
CH-OPT(I) we can consider more general ob-
jectives, namely

∑
j∈[M ] E

[
v⊤
j xj − αd⊤

j xj

]
and∑

j∈M E [Vj(γj , ρj ; zj)− αVj(γj , ρj ; zj)] for some
private cost α ∈ [0, γ]. Our results in Section 3 still hold,
and Algorithm 1 can still produce per-channel budgets
that are approximately optimal via introducing α into the
Lagrangian. Note α = 0 recovers models in the previous
section, whereas α = 1 yields classic quasi-linear utilities.
Ad auctions selling multiple impressions. In GL-OPT
and channels’ autobidding problem Eq.(4), a single
impression is sold per auction. Yet, our insights in Section
3 also hold for auctions that sell multiple impressions from
which advertisers can at most procure 1, e.g. position
auctions such as VCG or generalized second price (GSP).
To see this, use our original notation (vj ,dj) to represent
the concatenation of all value-cost pairs of individual
impressions across all auctions in channel j, while xj is
the vector of indicators for individual impressions. Further,
our SGD-UCB algorithm produces accurate lever estimates
for auctions whose induced conversion function Vj(ρj) still
possesses properties in Lemma 4.5. This holds for position
auctions whose marginal cost for winning a higher position
increases, e.g. VCG (but not GSP).
Non-optimal autobidding in channels. Eq. (4) assumes
channels adopt “optimal autobidding”, and natural questions
regarding non-optimal autobidding lead to interesting
future research. In such a scenario, an advertiser’s (bandit)
feedback in channel j is Vj(γj , ρj ; zj) − ϵj for some
loss ϵj > 0. One potential resolution is to treat such
loss as adversarial corruptions to bandit rewards, and

6See Table 4.1 in (Larson et al., 2019) for best known complex-
ity bounds for one-point bandit feedback setups.

augment SGD with bandit algorithms robust to adversarial
corruptions; e.g. (Lykouris et al., 2018; Gupta et al., 2019).
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Appendices for

Multi-channel Autobidding with Budget and ROI constraints

A. Additional material
A.1. Extended Literature Review

Generally speaking, our work focuses on advertisers’ impression procurement process or the interactions between advertisers
and impression sellers, which has been addressed in a vast amount of literature in mechanism design and online learning;
see e.g. (Braverman et al., 2018; Deng et al., 2019; Golrezaei et al., 2019b;a; Balseiro et al., 2019b; Golrezaei et al., 2021a)
to name a few. In addition to the literature review on constrained optimization under bandit feedback in the introduction
section, we also discuss additional related works in this area here.

Constrained optimization under bandit feedback. Section 4 where we develop an algorithm to optimize over per-channel
target budgets relates to the area of convex constrained optimization with bandit feedback (also referred to as zero-order or
gradient-less feedback) since in light of Lemma 4.5 in Section 4 our problem of interest is also constrained and convex.
First, there has been a plenitude of algorithms developed for deterministic constrained convex optimization under a bandit
feedback structures where function evaluations for the objective and constraints are non-stochastic. Such algorithms
include filter methods (Audet & Dennis Jr, 2004; Pourmohamad & Lee, 2020), barrier-type methods (Fasano et al., 2014;
Dzahini et al., 2022), as well as Nelder-Mead type algorithms (Bűrmen et al., 2006; Audet & Tribes, 2018); see (Nguyen &
Balasubramanian, 2022) and references therein for a comprehensive survey. In contrast to these works, our optimization
algorithm developed in Section 4 handles noisy bandit feedback. Regarding works that also address stochastic settings,
(Flaxman et al., 2004) presents online optimization algorithms under the known constraint regime, which assumes the
optimizer can evaluate whether all constraints are satisfied, i.e. constraints are analytically available. Further, the algorithm
achieves a O(T−1/4) accuracy. In this work, our setting is more complex as the optimizer (i.e. the advertiser) cannot tell
whether the ROI constrained is satisfied (due to unknown value and cost distributions in each channels’ auctions). Yet our
proposed algorithm can still achieve a more superior O(T−1/3) accuracy due to our specific problem structure.

A.2. Additional materials for Section 4

Remark A.1. Our problem of interest to apply SGD under bandit feedback is more difficult than similar problems in related
works that study online bidding strategies under budget and ROI constraints; see e.g. (Balseiro et al., 2017; 2022; Feng et al.,
2022). To illustrate, consider for instance (Balseiro et al., 2017) in which a budget constrained advertiser’s primal decision
at period t is to submit a bid value bt after observing her value vt. The advertiser competes with some unknown highest
competing bid dt in the market, and after submitting bid bt, does not observe dt if she does not win the competition, which
involves a semi-bandit feedback structure. Nevertheless, the corresponding Lagrangian under SGD takes the special form
Lj(b, µt; zt) = (vt − (1 + µt)dt) I{b ≥ dt} where µt is the dual variable w.r.t. the budget constraint. This simply allows
an advertiser to optimize for her primal decision by bidding argmaxb≥0 Lj(b, ct; zt) =

vt

1+µt
. So even though (Balseiro

et al., 2017; 2022; Feng et al., 2022) study dual SGD under bandit feedback, the special structures of their problem instances
permits SGD to effectively optimize for primal decisions in each period, as opposed to Eq. (7) in our setting in which we
cannot directly solve for the primal decision due to unknown conversion functions.

A.3. Additional materials for Section 5

A.3.1. MORE GENERAL ADVERTISER OBJECTIVES

In GL-OPT as well as CH-OPT(I) we can also consider more general objectives, namely
maxx1,...,xM

∑
j∈[M ] E

[
v⊤
j xj − αd⊤

j xj

]
and max(γj ,ρj)j∈[M]∈I

∑
j∈M E [Vj(γj , ρj ; zj)− αVj(γj , ρj ; zj)] for

some private cost α ∈ [0, γ]7 in GL-OPT and CH-OPT(I), respectively. When α = 0, we recover our considered models
in the previous section, whereas in when α = 1, we obtain the classic quasi-linear utility. We remark that this private cost
model has been introduced and studied in related literature; see (Balseiro et al., 2019b) and references therein. Nevertheless,
when each channel’s autobidding problem remains as is in Eq.(4), i.e. channels still aim to maximize conversion which

7If α > γ the ROI constraints in GL-OPT as well as CH-OPT(I) become redundant.
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causes a misalignment between advertiser objectives and channel behavior, it is not difficult to see in our proofs that all
our results still hold in Section 3, and our UCB-SGD algorithm still produces estimates of the same order of accuracy
via introducing α into the Lagrangian. In other words, even if channels aim to maximize total conversion for advertisers,
advertisers can optimize for GL-OPT with a private cost α through optimizing CH-OPT(I) that also incorporates the
same private cost.

A.3.2. AD AUCTIONS SELLING MULTIPLE IMPRESSIONS.

Recall in GL-OPT and each channel’s autobidding problem in Eq. (4) we implicitly assumed each auction sells of a single
impression. Interestingly, our results in Section 3 that states solely optimizing per-channel budgets would be sufficient for
the advertiser to achieve GL-OPT also holds in the scenario when each single auction corresponds to the sale of multiple
impressions in which an advertiser can at most procure 1, or in other words, the auctions are position auctions such as
VCG or generalized second price (GSP) auctions. To see this, we can use our original notation (vj ,dj) to represent the
concatenation of all value-cost pairs of all individual impressions across all auctions in channel j. Correspondingly the
decision xj is the vector of indicators that determine whether an individual impression is procured, but with the additional
linear constraint that says the sum of indicators within any auction sum up to less than 1 to represent an advertiser can win at
most 1 impression. A similar representation can also be used for each channel’s autobidding problem in Eq. (4). Then, it is
not difficult to see the results and proofs of Theorem 3.3 and Corollary 3.4 still hold valid.

Regarding the applicability of our proposed UCB-SGD algorithm in Algorithm 1, it suffices to check if the position auctions
induce a conversion function Vj(ρj) that satisfies properties illustrated in Lemma 4.5, in particular whether Vj(ρj ; zj)
is continuous, concave, piecewise linear, and strictly increasing. We claim that this is true for VCG auctions. Fix some
VCG auction n in channel j with L positions, each corresponding to a click through rate (CTR) θℓ that represents the
probability of a user viewing that position (so it is natural to assume θ1 > θ2 > . . . θL; see (Varian, 2007) for more details.
If an advertiser procures position ℓ, she acquires value v(ℓ) = θℓ · v where v represents her expected conversion due to
a user viewing her ad (i.e. the value of winning any position), and incurs expenditure p(ℓ) =

∑L
ℓ′=ℓ(θℓ′ − θℓ′+1)d

(ℓ′),
where d(ℓ

′) is the ℓ′th highest competing bid in the market, and we denote θL+1 = 0. Now, this single VCG auction
can be viewed as L separated impressions (each sold in a separate single-impression auction) with value-cost pairs(
v(1) − v(2), p(1) − p(2)

)
, . . .

(
v(L) − v(L+1), p(L) − p(L+1)

)
, where we denote v(L+1) = p(L+1) = 0. Correspondingly,

the indicator decision variables xn,j in GL-OPT and the channel’s autobidding problem Eq. (4) for the original multi-
impression auction n of channel j can be viewed as a vector of indicator decisions x ∈ {0, 1}L for each of these separated
impressions. Now, the proof of Lemma 4.5 still holds if we can show that procuring any separated impression ℓ also implies
procuring impression ℓ + 1, ℓ + 2 . . . L, or equivalently, v(ℓ)−v(ℓ+1)

p(ℓ)−p(ℓ+1)
>

v(ℓ′)−v(ℓ′+1)

p(ℓ′)−p(ℓ′+1)
for any ℓ′ > ℓ (since the advertiser’s

problem is the LP relaxation of the 0-1 knapsack problem as discussed in the proof of Lemma 4.5). It is thus easy to see this
holds because

v(ℓ) − v(ℓ+1)

p(ℓ) − p(ℓ+1)
=

(θℓ − θℓ+1) v

(θℓ − θℓ+1)d(ℓ)
=

v

d(ℓ)
(12)

which decreases in ℓ for any ℓ because d(ℓ) is the ℓth highest competing bid. In other words, marginal cost increases as
one procures higher positions. Hence, the proof of Lemma 4.5 holds w.r.t. these separated impressions, and thus for VCG
auctions, the induced conversion satisfies properties in Lemma 4.5. The insight here is that for any position auctions whose
marginal cost increases as the advertiser procures higher positions, properties in Lemma 4.5 hold. However, this is not true
for auctions like generalized second price (GSP).

A.3.3. NON-OPTIMAL AUTOBIDDING IN CHANNELS.

We recall in previous sections we assumed that each channel adopt “optimal autobidding” that solves Eq. (4) to optimality.
This raises the natural question that whether our findings will still hold when channels do not procure ads optimally, perhaps
because of non-stationary environments (Besbes et al., 2014; Luo et al., 2018; Cheung et al., 2019), or the presence of
strategic market participants who aim to manipulate the market (Golrezaei et al., 2019a; Drutsa, 2020; Golrezaei et al.,
2021b;a). In such a scenario, an advertiser’s (bandit) conversion feedback in a channel j would be V (γj , ρj ; zj) − ϵj
for some channel-specific and possibly adversarial loss ϵj > 0. One potential resolution is to treat such ϵj as adversarial
corruptions to bandit rewards, and instead of integrating vanilla UCB with SGD as in Algorithm 1, augment SGD with
bandit algorithms that are robust to corruptions; see e.g. (Lykouris et al., 2018; Gupta et al., 2019). Nevertheless, it remains
an open question to prove how such augmentation would perform in our specific bandit-feedback constrained optimization
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setup. This leads to potential research directions of both practical and theoretical significance.

B. Proofs for Section 3
B.1. Proof of Lemma 3.1

Fix any option I ∈ {IB , IR, IG} defined in Eq. (2), and let (γ̃, ρ̃) ∈ I be the optimal solution to CH-OPT(I). Note
that for the per-channel ROI only option IR, we have ρ̃j = ∞ and for the per-channel budget only we have γ̃j = 0 for all
j ∈ [M ]. Further, for any realization of value-cost pairs over all auctions z = (vj ,dj)j∈[M ], recall the optimal solution
x∗
j (γ̃j , ρ̃j ; zj) to Vj(γ̃j , ρ̃j ; zj) for each channel j ∈ [M ] as defined in Eq. (4).

Due to feasibility of (γ̃, ρ̃) ∈ I for CH-OPT(I), we have∑
j∈M

E [Vj(γ̃j , ρ̃j ; zj)] ≥ γ
∑
j∈M

E [Dj(γ̃j , ρ̃j ; zj)] =⇒
∑

j∈[M ]

E
[
v⊤
j x

∗
j (γ̃j , ρ̃j ; zj)

]
≥ γ

∑
j∈[M ]

E
[
d⊤
j x

∗
j (γ̃j , ρ̃j ; zj)

]
where we used the definitions Vj(γ̃j , ρ̃j ; zj) = v⊤

j x
∗
j (γ̃j , ρ̃j ; zj) and Dj(γ̃j , ρ̃j ; zj) = d⊤

j x
∗
j (γ̃j , ρ̃j ; zj) in Eq. (5). This

implies
(
x∗
j (γ̃j , ρ̃j ; zj)

)
j∈[M ]

satisfies the ROI constraint in GL-OPT. A similar analysis implies
(
x∗
j (γ̃j , ρ̃j ; zj)

)
j∈[M ]

also satisfies the budget constraint in GL-OPT. Therefore,
(
x∗
j (γ̃j , ρ̃j ; zj)

)
j∈[M ]

is feasible to GL-OPT. So

GL-OPT ≥
∑

j∈[M ]

E
[
v⊤
j x

∗
j (γ̃j , ρ̃j ; zj)

]
=

∑
j∈M

[Vj(γ̃j , ρ̃j ; zj)] = CH-OPT(I) . (13)

where the final equality follows from the assumption that (γ̃, ρ̃) ∈ I is the optimal solution to CH-OPT(I).

B.2. Proof of Theorem 3.2

Recall the value and cost instance:

Channel 1 Channel 2
Auction 1 Auction 2 Auction 3

Value vj,n 1 X 2X
Spend dj,n 0 1 +X 2(1 +X)

Let γ̃ = (γ̃1, γ̃2) be the optimal solution to CH-OPT(IR) and recall under the option IR, we let per-channel budgets to
be infinity. It is easy to see that γ̃1 can be any arbitrary nonnegative number because the advertiser always wins auction 1,
and γ̃2 > X

1+X : if otherwise γ̃2 ≤ X
1+X , then the optimal outcome of channel 2 is to win both auctions 2 and 3. However,

in this case, the advertiser wins all auctions and acquires total value 1 + X + 2X = 1 + 3X , and incurs total spend
0+ (1+X) + 2(1 +X) = 3+ 3X , which violates the ROI constraint in CH-OPT(IR) because 1+3X

3+3X < 1. Therefore the
advertiser can only win auction 1, or in other words γ̃2 > X

1+X . This implies that the optimal objective to CH-OPT(IR) is
1. On the other hand, it is easy to see that the optimal solution to GL-OPT is to only win auctions 1 and 2, yielding an
optimal value of 1 +X . Therefore CH-OPT(IR)

GL-OPT = 1
1+X . Taking X → ∞ yeilds the desired result.

B.3. Proof of Theorem 3.3

In light of Lemma 3.1, we only need to show CH-OPT(IB) ≥ GL-OPT. Let x̃(z) = {x̃j(zj))}j∈[N ] be the optimal
solution to GL-OPT, and define γ̃j = 0 and ρ̃j = E

[
d⊤
j x̃j(zj))

]
to be the corresponding expected spend for each channel

j under the optimal solution x̃(z) to GL-OPT, respectively.

We first argue that (γ̃j , ρ̃j)j∈[M ] is feasible to CH-OPT(IB). Recall the optimal solution x∗
j (γ̃j , ρ̃j ; zj) to Vj(γ̃j , ρ̃j ; zj)

for each channel j ∈ [M ] as defined in Eq. (4), as well as the definitions Vj(γ̃j , ρ̃j ; zj) = v⊤
j x

∗
j (γ̃j , ρ̃j ; zj) and

Dj(γ̃j , ρ̃j ; zj) = d⊤
j x

∗
j (γ̃j , ρ̃j ; zj) in Eq. (5). Then, we have

E [Dj(γ̃j , ρ̃j ; zj)] = E
[
d⊤
j x

∗
j (γ̃j , ρ̃j); zj

] (i)

≤ ρ̃j = E
[
d⊤
j x̃j(zj)

]
, (14)
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where (i) follows from feasibility of x∗
j (γ̃j , ρ̃j ; zj) to Vj(γ̃j , ρ̃j ; zj). Summing over j ∈ [M ] we conclude that (γ̃j , ρ̃j)j∈[M ]

satisfies the budget constraint in CH-OPT(IB):∑
j∈[M ]

E [Dj(γ̃j , ρ̃j ; zj)] ≤
∑

j∈[M ]

E
[
d⊤
j x̃j(zj)

] (i)

≤ ρ . (15)

Here (i) follows from feasibility of x̃(z) = {x̃j(zj))}j∈[N ] to GL-OPT since it is the optimal solution.

On the other hand, we have

Vj(γ̃j , ρ̃j ; zj) = v⊤
j x

∗
j (γ̃j , ρ̃j ; zj)

(i)

≥ v⊤
j x̃j(zj) (16)

where (i) follows from optimality of x∗
j (γ̃j , ρ̃j ; zj) to Vj(γ̃j , ρ̃j ; zj). Hence, we have

∑
j∈M

E [Vj(γ̃j , ρ̃j ; zj)] ≥
∑
j∈M

E
[
v⊤
j x̃j(zj)

] (i)

≥ γ
∑
j∈M

E
[
d⊤
j x̃j(zj)

] (ii)

≥ γ
∑

j∈[M ]

E [Dj(γ̃j , ρ̃j ; zj)] (17)

where (i) follows from feasibility of x̃(z) = {x̃j(zj))}j∈[N ] to GL-OPT since it is the optimal solution; (ii) follows from
Eq. (14). Hence combining Eq. (15) (17) we can conclude that (γ̃j , ρ̃j)j∈[M ] is feasible to CH-OPT(IB).

Finally, we have CH-OPT(IB) ≥
∑

j∈M E [Vj(γ̃j , ρ̃j ; zj)] ≥
∑

j∈M E
[
v⊤
j x̃j(zj)

]
= GL-OPT, where the last inequal-

ity follows from Eq. (16), and the final equality is because we assumed x̃(z) = {x̃j(zj))}j∈[N ] is the optimal solution to
GL-OPT.

B.4. Proof of Corollary 3.4

In light of Lemma 3.1, we only need to show CH-OPT(IG) ≥ GL-OPT. Let (γ̃, ρ̃) ∈ IB be the optimal solution to
CH-OPT(IB), and by definition of IB in Eq. (2) we have γ̃j = 0 for all j ∈ [M ]. Since (γ̃, ρ̃) is feasible to CH-OPT(IB),
it is also feasible to CH-OPT(IG) since these two problems share the same ROI and budget constraints. Because they also
share the same objectives, we have

CH-OPT(IG) ≥ CH-OPT(IB) = GL-OPT (18)

where the final equality follows from Theorem 3.3.

C. Proofs for Section 4
C.1. Proof of Proposition 4.3

Let (ρ∗j )j∈[M ] be the optimal per-channel budgets to CH-OPT(IB), and define µ̄T = 1
τA

∑
t∈[τA] µt as well as λ̄T =

1
τA

∑
t∈[τA] λt . Then

T · GL-OPT −
∑
t∈[T ]

∑
j∈[M ]

Vj(ρj,t)

(i)

≤ MV (T − τA) + τACH-OPT(IB)−
∑

t∈[τA]

∑
j∈[M ]

Vj(ρj,t)

≤ MV (T − τA) + τA ·
(
Lj(ρ

∗
j , λ̄T , µ̄T ) + ρµ̄T

)
−

∑
t∈[τA]

∑
j∈[M ]

Vj(ρj,t)

(ii)

≤ MV (T − τA) + ρ
∑

t∈[τA]

µt +
∑

t∈[τA]

∑
j∈[M ]

Lj(ρ
∗
j , λt, µt)−

∑
t∈[τA]

∑
j∈[M ]

Lj(ρj,t, ct)− λt (Vj(ρj,t)− γρj,t) + µtρj,t

(iii)

≤ MV (T − τA) +
∑

j∈[M ]

∑
t∈[τA]

Lj(ρ
∗
j (t), ct)− Lj(ρj,t, ct) +

∑
t∈[τA]

(λtg1,t + µtg2,t) .

(19)
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Here, (i) follows from Theorem 3.3 that states GL-OPT = CH-OPT(IB) and CH-OPT(IB) is apparently upper bounded
by MV ; (ii) follows from the CH-OPT(IB) =

∑
j∈[M ] Vj(ρ

∗
j ) and the definition of the Lagrangian in Eq. (6); in (iii) we

define ρ∗j (t) = argmaxρj≥0 Lj(ρj , ct) to be the optimal budget that maximizes the Lagrangian w.r.t. the dual variables
ct = (λt, µt).

C.2. Proof for Lemma 4.4

Recall g1,t =
∑

j∈[M ] (Vj,t(ρj,t; zj,t)− γρj,t) and g2,t = ρ−
∑

j∈[M ] ρj,t defined in Algorithm 1. Also recall τA ∈ [T ]
defined in step 10 of Algorithm 1. In the following, we will show

MV (T − τA) +
∑

t∈[τA]

(λtg1,t + µtg2,t)

≤ CF max{MV , ρ}+M2V ρ ·max
{ 1

βρ
,

1

ρ−Mρ

}
+

(γM2V̄ 2 + ρ2)

2
· ηT +

1

2η
C2

F = O
(
ηT +

1

η

)
,

(20)

where we recall CF = MV max
{

1
βρ ,

1
ρ−Mρ

}
defined in Eq. (9).

From Lemma C.4, we have for any t ∈ [T ], and λ, µ ∈ [0, CF ],

∑
τ∈[t]

(λτ − λ) g1,τ ≤ ηM2V̄ 2

2
· t+ 1

2η
λ2

∑
τ∈[t]

(µτ − µ) g2,τ ≤ ηρ2

2
· t+ 1

2η
µ2 ,

(21)

where we used the fact that λ1 = µ1 = 0 in Algorithm 1.

Suppose that τA = T and thus MV (T − τA) = 0. Then, considering λ = µ = 0 in Eq. (21), we have

∑
t∈[τA]

λtg1,t ≤
ηM2V̄ 2

2
· T and

∑
t∈[τA]

µtg2,t ≤
ηρ2

2
· T . (22)

Thus, Eq. (20) holds.

If τA < T , then according to Algorithm 1, we either have S1,τA −γMρ+βρ(T −τA) < 0 or S2,τA +Mρ+Mρ(T −τA) >
ρT , where we recall S1,τA =

∑
t∈[τA−1] g1,t and S2,τA =

∑
t∈[τA−1]

∑
j∈[M ] ρj,t =

∑
t∈[τA−1](ρ− g2,t):

• If S1,τA − γMρ + βρ(T − τA) < 0, then we have
∑

t∈[τA−1] g1,t < γMρ − βρ(T − τA). Hence, considering

λ = MV
βρ ∈ [0, CF ] in Eq. (21), we have

MV (T − τA) +
∑

t∈[τA]

λtg1,t

≤ MV (T − τA) + λτAg1,τA +
∑

t∈[τA−1]

λg1,t +
ηM2V̄ 2

2
· (τA − 1) +

1

2η
λ2

< λτAg1,τA +MV (T − τA)−MV (T − τA) +
γM2V ρ

βρ
+

ηM2V̄ 2

2
· (τA − 1) +

1

2η
λ2

≤ CFMV +
γM2V ρ

βρ
+

ηM2V̄ 2

2
· T +

1

2η
C2

F ,

(23)

where the final inequality uses the fact that τA ≤ T , λ ≤ CF , and g1,t ≤ MV for any t ∈ [T ]. Hence, similar to Eq.
(22) by further taking µ = 0 in Eq.(21) we show that Eq. (20) holds.
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• If S2,τA +Mρ+Mρ(T − τA) > ρT , then we have
∑

t∈[τA−1](ρ− g2,t) > ρT −Mρ−Mρ(T − τA), or equivalently∑
t∈[τA−1] g2,t < Mρ(T − τA)+Mρ− ρ(T − τA) ≤ −(ρ−Mρ)(T − τA)+Mρ. Hence, considering µ = MV

ρ−Mρ ∈
[0, CF ] in Eq.(21) we have

MV (T − τA) +
∑

t∈[τA]

µtg1,t ≤ MV (T − τA) + µτAg2,τA +
∑

t∈[τA−1]

µg2,t +
ηρ2

2
· τA +

1

2η
µ2

< µτAg2,τA +MV (T − τA)−MV (T − τA) +
M2V ρ

ρ− ρ
+

ηρ2

2
· τA +

1

2η
µ2

≤ CF ρ+
M2V ρ

ρ− ρ
+

ηρ2

2
· T +

1

2η
C2

F ,

(24)

where the final inequality uses the fact that τA ≤ T , λ ≤ CF , and g2,t ≤ ρ for any t ∈ [T ]. Hence, similar to Eq. (22)
by further taking λ = 0 in Eq.(21) we show that Eq. (20) holds.

C.3. Proof of Lemma 4.5

We first show for any realization z = (zj)j∈[M ] = (vj ,dj)j∈[M ], the conversion function Vj(ρj ; zj) is piecewise linear,
strictly inreasing, and concave for any j ∈ [M ].

Fix any channel j which consists of mj parallel auctions, and recall that we assumed the orderding vj,1
dj,1

>
vj,2
dj,2

> · · · > vj,mj

dj,mj

for any realization zj . Then, with the option where the per-channel ROI is set to 0 (i.e. omitted) Vj(ρj ; zj) is exactly the LP
relaxation of a 0-1 knapsack, whose optimal solution x∗

j (ρj ; zj) is well known to be unique, and takes the form for any
auction index n ∈ [mj ]:

x∗
j,n(ρj ; zj) =


1 if

∑
n′∈[n] dj,n′ ≤ ρj

ρj−
∑

n′∈[n−1] dj,n′

dj,n
if

∑
n′∈[n] dj,n′ > ρj

0 otherwise

where we denote dj,0 = 0. With this form, it is easy to see

Vj(ρj ; zj) = v⊤
j x

∗
j (ρj ; zj) =

∑
n∈[mj ]

(
vj,n
dj,n

ρj + bj,n

)
I {dj,0 + · · ·+ dj,n−1 ≤ ρj ≤ dj,0 + · · ·+ dj,n} (25)

where we denote dj,0 = 0 and also bj,n =
∑

n′∈[n−1] vj,n′ − vj,n
dj,n

·
(∑

n′∈[n−1] dj,n′

)
and vj,0 = 0. It is easy to check

that any two line segments, say [Xn−1, Xn] and [Xn, Xn+1] where we write Xn = dj,0 + · · ·+ dj,n, intersect at ρj = Xn,
because vj,n

dj,n
ρj + bj,n =

vj,n+1

dj,n+1
ρj + bj,n+1 at ρj = Xn. Hence, from Eq. (25) we can conclude Vj(ρj ; zj) is continuous,

which further implies it is piecewise linear and strictly increasing. Further, the ordering vj,1
dj,1

>
vj,2
dj,2

> · · · > vj,mj

dj,mj
implies

that the slopes on each segment [Xn, Xn+1] decreases as n increases, which implies Vj(ρj ; zj) is concave.

Since Vj(ρj) = E [Vj(ρj ; zj)], where the expectation is taken w.r.t. randomness in zj , and since the zj is sampled from
some discrete distribution pj on finite support Fj , Vj(ρj) is simply a weighted average over all (Vj(ρj ; zj))zj∈Fj

with
weights in pj , so Vj(ρj) is also continuous, piecewise linear, strictly increasing, and concave, and thus can be written as in
Lemma 4.5 with parameters {(sj,n, bj,n, rj,n)}n∈[Sj ] that only depend on the support Fj and distribution pj .

Finally, according to the definition of Lj(ρj , c) = E [Lj(ρj , c; zj)] and Lj(ρj , c; zj) = (1 + λ)Vj(ρj ; zj)− (λγ + µ)ρj
as defined in Eq. (6), we have

Lj(ρj , c) = (1 + λ)Vj(ρj)− (λγ + µ)ρj (26)
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which implies Lj(ρj , c) is continuous, piecewise linear, and concave because Vj(ρj) is continuous, piecewise linear, and
concave as shown above. Combining Eq. (26) and the representation of Vj(ρj) in Lemma (4.5), we have

Lj(ρj , c) =
∑

n∈[Sj ]

(σj,n(c)ρj + (1 + λ)bj,n) I{rj,n−1 ≤ ρj ≤ rj,n} . (27)

where the slope σj,n(c) = (1 + λ)sj, n − (µ + γλ) decreases in n. Thus at the point rj,n∗ = max{rj,n : n =
0, 1 . . . , Sj , σj,n(c) ≥ 0} in which the slope to the right turns negative for the first time, Lj(ρj , c) takes its maximum value
maxρj≥0 Lj(ρj , c), because to the left of rj,n∗ , namely the region [0, rj,n∗ ], Lj(ρj , c) strictly increases because slopes are
positive; and to the right of rj,n∗ , namely the region [rj,n∗ , ρ], Lj(ρj , c) strictly decreases because slopes are negative.

C.4. Proof for Lemma 4.6

Recall the definition of the Lagrangian function Lj(ρj , c; zj) = (1 + λ)Vj(ρj ; zj) − (λγ + µ)ρj in Eq.(6). Then, since
Vj(ρj ; zj) ≤ V , and λt, µt ∈ [0, CF ] for any period t ∈ [T ] and per-channel budget ρj ∈ [0, ρ], we can conclude
− (1 + γ) ρCF ≤ Lj(ρj , λt, µt) ≤ (1 + CF )V .

C.5. Proof for Lemma 4.7

In the following, instead of bounding
∑

t∈[τA] Lj(ρ
∗
j,t, ct) − Lj(ρj,t, ct), we bound

∑
t∈[T ] Lj(ρ

∗
j,t, ct) − Lj(ρj,t, ct)

where we consider the hypothetical scenario in which we ignore the termination criteria for the while loop in Algorithm 1,
and continue to set per-channel budgets based on steps 4-6 in the algorithm until the end of period T . This is due to the fact
that

∑
t∈[T ] Lj(ρ

∗
j,t, ct)− Lj(ρj,t, ct) ≥

∑
t∈[τA] Lj(ρ

∗
j,t, ct)− Lj(ρj,t, ct).

We fix some channel j ∈ [M ] and omit the subscript j when the context is clear. Also, we first introduce some definitions
that will be used throughout our proof. Fix some positive constant σ > 0 whose value we choose later, and recall ak denotes
the kth arm in the discretized budget set A(δ) as we defined in Eq. (8). Then we define the following

∆k(c) = max
ρj∈[0,ρ]

Lj(ρj , c)− Lj(ak, c)

Cn =
{
c ∈ {ct}t∈[T ] : rj,n = argmax

ρj≥0
Lj(ρj , c)

}
for n = 0 . . . Sj

C(σ) =
{
c ∈ {ct}t∈[T ] : σ

−
j (c) > σ, |σ+

j (c)| > σ
}

for n = 0, . . . , Sj

mk(c) =
8 log(T )

∆2
k(c)

for ∀(k, c) s.t. ∆k(c) > 0 .

(28)

Here, the “adjacent slopes” σ−
j (c) and σ+

j (c), which are defined in Eq.(11), represent the slopes that are adjacent to the
optimal budget argmaxρj∈[0,ρ] Lj(ρj , c) for any context c = (λ, µ). Further, Sj and {rj,n}j∈[Sj ] are defined in Lemma
4.5. Here we state in words the meanings of ∆k(c), C(σ) and Cn, respectively.

• ∆k(c) denotes the loss in contextual bandit rewards when pulling arm ak under context c.

• Cn is the set including all context ct under which the optimal per-channel budget argmaxρj≥0 Lj(ρj , ct) is taken at
the nth “turning point” rj,n (see Lemma 4.5).

• C(σ) is the set of all contexts, in which the adjacent slopes to the optimal point w.r.t. the context c, namely
argmaxρj≥0 Lj(ρj , c), have magnitude greater than σ, or in other words, the adjacent slopes are steep.

On a related note, for any context c, we define the following “adjacent regions” that sandwich the optimal budget w.r.t.c

U−
j (c) = [rj,n−1, rj,n] and U+

j (c) = [rj,n, rj,n+1] if c ∈ Cn . (29)

In other words, if c ∈ Cn, per the definition of Cn above, argmaxρj∈[0,ρ] Lj(ρj , c) is located at the nth “turning point” rj,n,
then U−

j (c) and U−
j (c) are respectively the left and right regions surrounding rj,n.
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With the above definitions, we demonstrate how to bound the UCB-error. Define Nk,t =
∑

τ≤t−1 I{ρj,τ = ak} to be the
number of times arm k is pulled up to time t, then we can decompose the UCB error as followed

∑
t>K

Lj(ρ
∗
j (t), ct)− Lj(ρj,t, ct) = X1 +X2 +X3 where

X1 =
∑

t>K:ct /∈C(σ)

∑
k∈[K]

∆k(ct)I{ρj,t = ak, Nk,t ≤ mk(ct)}

X2 =
∑

t>K:ct∈C(σ)

∑
k∈[K]

∆k(ct)I{ρj,t = ak, Nk,t ≤ mk(ct)}

X3 =
∑

k∈[K]

∑
t>K

∆k(ct)I{ρj,t = ak, Nk,t > mk(ct)} .

(30)

In Section C.5.1, we show that X1 ≤ Õ(δT + σT + 1
δ ); in Section C.5.2 we show that X2 ≤ Õ(δT + 1

δσ ); in Section C.5.3

we show that X3 ≤ Õ( 1
δT ).

Remark C.1. In the following sections C.5.1, C.5.2 and C.5.3 where we bound X1, X2, and X3, respectively, we assume the
optimal per-channel ρ∗j (t) = argmaxρj∈[0,ρ] Lj(ρj , ct) lies in the arm set A(δ) for all t. This is because otherwise, we can
consider the following decomposition of the UCB error in period t as followed:

Lj(ρ
∗
j (t), ct)− Lj(ρj,t, ct) = Lj(ρ

∗
j (t), ct)− Lj(a

∗
t , ct) + Lj(a

∗
t , ct)− Lj(ρj,t, ct) where a∗t = arg max

ak∈A(δ)
Lj(ak, ct)

The first term will yield an error in the order of O(δ) due to the Lagrangian function being unimodal, piecewise linear
liner, which implies |a∗t − ρ∗j (t)| ≤ δ so that Lj(ρ

∗
j (t), ct) − Lj(a

∗
t , ct) = O(δ). Hence, this “discretization error” will

accumulate to a magnitude of O(δT ) over T periods, which leads to an additional error that is already accounted for in the
statement of the lemma.

C.5.1. BOUNDING X1.

Our strategy to bound X1 consists of 4 steps, namely bounding the loss of arm ak at each context c /∈ C(σ) when ak ∈ U−
j (c)

lies on the left adjacent region of the optimal budget; ak < min U−
j (c) lies to the left of the left adjacent region; ak ∈ U+

j (c)

lies on the right adjacent region of the optimal budget; and ak > max U+
j (c) lies to the right of the right adjacent region.

Here we recall the adjacent regions are defined in Eq.(29).

Step 1: ak ∈ U−
j (ct). For arm k such that ak ∈ U−

j (ct), recall Lemma 4.5 that Lj(a, ct) is linear in a for a ∈ U−
j (ct), so

∆k(ct) = σ−
j (ct) · (ρ∗j (t)− ak) ≤ σρ where we used the condition that ct /∈ C(σ) so the adjacent slopes have magnitude

at most σ, and ρ∗j (t) ≤ ρ. Thus, summing over all such k we get

∑
t>K:ct /∈C(σ)

∑
k∈[K]:ak∈U−

j (ct)

∆k(ct)I{ρj,t = ak, Nk,t ≤ mk(ct)}

≤
∑

t>K:ct /∈C(σ)

∑
k∈[K]:ak∈U−

j (ct)

σρ · I{ρj,t = ak, Nk,t ≤ mk(ct)} ≤ σρT = O(σT ) .
(31)

Step 2: ak < min U−
j (ct). For arm k such that ak < min U−

j (ct), we further split contexts into groups Cn for n = 0 . . . Sj

(defined in Eq. (28)) based on whether the corresponding optimal budget w.r.t. the Lagrangian at the context is taken at the
nth “turning point” (see Figure 2 of illustration). Then, for each context group n by defining k′ := max{k : ak < rj,n−1}

19



Multi-channel Autobidding with Budget and ROI Constraints

to be the arm closest to and less than rj,n−1, we have∑
t>K:ct∈Cn/C(σ)

∑
k∈[K]:ak<minU−

j (ct)

∆k(ct)I{ρj,t = ak, Nk,t ≤ mk(ct)}

(i)
=

∑
t>K:ct∈Cn/C(σ)

∑
k∈[K]:ak<rj,n−1

∆k(ct)I{ρj,t = ak, Nk,t ≤ mk(ct)}

=
∑
t>K

∑
c∈Cn/C(σ)

∑
k∈[K]:ak<rj,n−1

∆k(c)I{ct = c, ρj,t = ak, Nk,t ≤ mk(c)}

(ii)

≤
∑
t>K

∑
c∈Cn/C(σ)

∆k′(c)I{ct = c}+
∑

k∈[K]:ak<rj,n−1−δ

∆k(c)I{ct = c, ρj,t = ak, Nk,t ≤ mk(c)}


(iii)

≤ ((1 + CF )sj,n−1δ + ρσ)T +
∑

k∈[K]:ak<rj,n−1−δ

∑
c∈Cn/C(σ)

∆k(c)Yk(c)

(32)

where in the final equality we defined Yk(c) =
∑

t>K I{ct = c, ρj,t = ak, Nk,t ≤ mk(c)}. In (i) we used the fact that
the left end of the left adjacent region, i.e. minU−

j (ct) is exactly rj,n−1 because for context ct ∈ Cn the optimal budget
argmaxρj∈[0,ρ] Lj(ρj , ct) is at the nth turning point; in (ii) we used the definition k′ := max{k : ak < rj,n−1} where we
recall arms are indexed such that a1 < a2 < · · · < aK . Note that in (ii) we separate out the arm ak′ because its distance
to the optimal per-channel may be less than δ since it is the closest arm, and thus we ensure all other arms indexed by
k ∈ [K] : ak < rj,n−1 − δ, are at least δ away from the optimal per-channel budget; (iii) follows from the fact that under a
context c ∈ Cn/C(σ), we have argmaxρj∈[0,ρ] Lj(ρj , c) = rj,n so

∆k′(c) = Lj(rj,n, c)− Lj(rj,n−1, c) + Lj(rj,n−1, c)− Lj(ak′ , c)

= σ−
j (c)(rj,n − rj,n−1) + σj,n−1(c)(rj,n−1 − ak′)

(iv)

≤ σρ+ σj,n−1(c)δ

(v)

≤ σρ+ (1 + CF )sj,n−1δ ,

where in (iv) we used c ∈ Cn/C(σ) implies σ−
j (c) ≤ σ, as well as all rj,n ≤ ρ for any n and the fact that k′ lies on

the line segment between points rj,n−2 and rj,n−1 since δ < minn′∈[Sj ] rj,n′ − rj,n′−1; in (v) we recall σj,n−1(c) =
(1 + λ)sj,n−1 − (µ+ γλ) ≤ (1 + CF )sj,n−1 where CF is defined in Lemma 4.6.

We now bound
∑

c∈Cn/C(σ) ∆k(c)Yk(c) in Eq. (32). It is easy to see the following inequality for any sequence of context
c(1), . . . , c(ℓ) ∈ {ct}t∈[T ] (This is a slight generalization of an inequality result shown in (Balseiro et al., 2019a)):

Yk(c(1)) + · · ·+ Yk(c(ℓ)) ≤ max
ℓ′=1...ℓ

mk(c(ℓ′)) . (33)

This is because ∑
ℓ′∈[ℓ]

Yk(c(ℓ′)) =
∑
t>K

∑
ℓ′∈[ℓ]

I{ct = c(ℓ′), ρj,t = ak, Nk,t ≤ mk(c(ℓ′))}

≤
∑
t>K

∑
ℓ′∈[ℓ]

I{ct = c(ℓ′), ρj,t = ak, Nk,t ≤ max
ℓ′=1...ℓ

mk(c(ℓ′))}

=
∑
t>K

I{ct ∈ {c(ℓ′)}ℓ′∈[ℓ], ρj,t = ak, Nk,t ≤ max
ℓ′=1...ℓ

mk(c(ℓ′))}

≤ max
ℓ′=1...ℓ

mk(c(ℓ′)) .

For simplicity denote L = |Cn/C(σ)|, and order contexts in c ∈ Cn/C(σ) as {c(ℓ)}ℓ∈[L] s.t. ∆k(c(1)) > ∆k(c(2)) > · · · >
∆k(c(L)), or equivalently mk(c(1)) < mk(c(2)) < · · · < mk(c(L)) according to Eq.(28). Then multiplying Eq. (33) by by
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∆k(c(ℓ))−∆k(c(ℓ+1)) (which is strictly positive due to the ordering of contexts), and summing ℓ = 1 . . . L we get∑
c∈Cn/C(σ)

∆k(c)Yk(c) =
∑
ℓ∈[L]

∆k(c(ℓ))Yk(c(ℓ)) ≤
∑
ℓ∈[L]

mk(c(ℓ))
(
∆k(c(ℓ))−∆k(c(ℓ+1))

)
(i)
= 8 log(T )

∑
ℓ∈[L−1]

∆k(c(ℓ))−∆k(c(ℓ+1))

∆2
k(c(ℓ))

(ii)

≤ 8 log(T )

∫ ∞

∆k(c(L))

dz

z2

=
8 log(T )

∆k(c(L))

(iii)
=

8 log(T )

minc∈Cn/C(σ) ∆k(c)
.

(34)

Here (i) follows from the definition of mk(c) in Eq. (28) where mk(c) = 8 log(T )
∆2

k(c)
; both (ii) and (iii) follow from the

ordering of contexts so that ∆k(c(1)) > ∆k(c(2)) > · · · > ∆k(c(L)). Note that for any c ∈ Cn/C(σ) and arm k such that
ak < rj,n−1, we have

∆k(c) = Lj(rj,n, c)− Lj(rj,n−1, c) + Lj(rj,n−1, c)− Lj(ak, c)

> Lj(rj,n−1, c)− Lj(ak, c)

(i)

≥ σj,n−1(c)(rj,n−1 − ak)

(ii)

≥ (σj,n−1(c)− σj,n(c)) (rj,n−1 − ak)

(iii)
= (1 + λ) (sj,n−1 − sj,n) (rj,n−1 − ak)

> (sj,n−1 − sj,n) (rj,n−1 − ak) ,

(35)

where in (i) we recall the slope σj,n−1(c) is defined in Lemma 4.5 and further (i) follows from concavity of Lj(ρj, c) in the
first argument ρj ; in (ii) we used the fact that σj,n(c) ≥ 0 since the optimal budget argmaxρj∈[0,ρ] Lj(ρj , c) is taken at the
nth turning point, and is the largest turning point whose left slope is non-negative from Lemma 4.5; (iii) follows from the
definition σj,n′(c) = (1 + λ)sj,n′ − (µ+ γλ) for any n′.

Finally combining Eqs. (32), (34) and (35), and summing over n = 1 . . . Sj we get∑
t>K:ct /∈C(σ)

∑
k∈[K]:ak<minU−

j (ct)

∆k(ct)I{ρj,t = ak, Nk,t ≤ mk(ct)}

=
∑

n∈[Sj ]

∑
t>K:ct∈Cn/C(σ)

∑
k∈[K]:ak<minU−

j (ct)

∆k(ct)I{ρj,t = ak, Nk,t ≤ mk(ct)}

≤
∑

n∈[Sj ]

((1 + CF )sj,n−1δ + ρσ)T +
∑

n∈[Sj ]

∑
k∈[K]:ak<rj,n−1−δ

8 log(T )

(sj,n−1 − sj,n) (rj,n−1 − ak)

(i)

≤
∑

n∈[Sj ]

((1 + CF )sj,n−1δ + ρσ)T +
∑

n∈[Sj ]

K∑
ℓ=1

8 log(T )

(sj,n−1 − sj,n) ℓδ

≤
∑

n∈[Sj ]

((1 + CF )sj,n−1δ + ρσ)T +
8 log(T ) log(K)

δ

∑
n∈[Sj ]

1

(sj,n−1 − sj,n)

= Õ(δT + σT +
1

δ
) .

(36)

Note that (i) follows because for all ak < rj,n−1 − δ, the ak’s distances from rj,n−1 are at least δ, 3δ, 2δ . . . . In the last
equation, we hide all logarithmic factors using the notation Õ, and note that the constants CF , (sj,n)n∈Sj

, Sj are all absolute
constants that depend only on the support Fj and corresponding sampling distribution pj for value-cost pairs; see definitions
of these absolute constants in Lemmas 4.5 and 4.6.

Step 3 and 4: ak ∈ U+
j (ct) or ak > max U+

j (ct). The cases where arm ak ∈ U+
j (ct) and ak > maxU+

j (ct) are
symmetric to ak ∈ U−

j (ct) and ak < minU+
j (ct), respectively, and we omit from this paper.
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Therefore, combining Eqs. (31) and (36) we can conclude

X1 ≤ Õ(δT + σT +
1

δ
) . (37)

C.5.2. BOUNDING X2.

We first rewrite X2 as followed

X2 =
∑

t>K:ct∈C(σ)

∑
k∈[K]

∆k(ct)I{ρj,t = ak, Nk,t ≤ mk(ct)}

=
∑
t>K

∑
n∈[Sj ]

∑
k∈[K]

∑
c∈Cn∩C(σ)

∆k(c)I{ct = c, ρj,t = ak, Nk,t ≤ mk(c)}

(i)
=

∑
n∈[Sj ]

∑
k∈[K]

∑
c∈Cn∩C(σ)

∆k(c)Yk(c)

(ii)
=

∑
n∈[Sj ]

∑
c∈Cn∩C(σ)

∑
k∈{k−

n ,k+
n }

∆k(c)Yk(c) +
∑

n∈[Sj ]

∑
c∈Cn∩C(σ)

∑
k∈[K]/{k−

n ,k+
n }

∆k(c)Yk(c)

(iii)

≤ Tδ(1 + CF )
∑

n∈[Sj ]

(sj,n + sj,n+1) +
∑

n∈[Sj ]

∑
c∈Cn∩C(σ)

∑
k∈[K]/{k−

n ,k+
n }

∆k(c)Yk(c) .

(38)

where in (i) we define Yk(c) =
∑

t>K I{ct = c, ρj,t = ak, Nk,t ≤ mk(c)}; in (ii) we separate out two arms k−n and k+n
defined as followed: recall for context c ∈ Cn ∩ C(σ), the optimal budget argmaxρj∈[0,ρ] Lj(ρj , c) = rj,n is taken at the
nth turning point per the definition of Cn in Eq. (28), and thereby we defined k−n := max{k ∈ [K] : ak < rj,n} to be the
arm closest to and no greater than rj,n, whereas k+n := min{k ∈ [K] : ak > rj,n} to be the arm closest to and no less than
rj,n; in (iii), for small enough δ < minn′∈[Sj ] rj,n′ − rj,n′−1, we know that k−n lies on the line segment between rj,n−1

and rj,n, so ∆k−
n
(c) = σ−

j (c)(rj,n − ak−
n
) ≤ σ−

j (c)δ ≤ (1 + CF )sj,n−1δ, where in the final inequality follows from the
definition of σ−

j (c) = σj,n(c) = (1 + λ)sj,n − (µ+ γλ) ≤ (1 + λ)sj,n ≤ (1 +CF )sj,n where CF is defined in Eq. (4.6).
A similar bound holds for ∆k+

n
(c).

Then, following the same logic as Eqs. (33), (34), (35) in Section C.5.1 where we bound X1, we can bound∑
c∈Cn∩C(σ) ∆k(c)Yk(c) as followed for any arm k ∈ [K]/{k−n , k+n }, i.e. arms who are at least δ away from the op-

timal per-channel budget w.r.t. c: ∑
c∈Cn∩C(σ)

∆k(c)Yk(c) ≤
8 log(T )

minc∈Cn∩C(σ) ∆k(c)
. (39)

Now, the set k ∈ [K]/{k−n , k+n } in Eq. (38) can be further split into two subsets, namely {k ∈ [K] : ak < rj,n − δ} and
{k ∈ [K] : ak > rj,n + δ} due to the definitions k−n := max{k ∈ [K] : ak < rj,n} and k+n := min{k ∈ [K] : ak > rj,n}.
Therefore, for any k s.t. ak < rj,n − δ and any c ∈ Cn ∩ C(σ),

∆k(c) = Lj(rj,n, c)− Lj(ak, c) ≥ σ−
j (c)(rj,n − ak) ≥ σ(rj,n − ak) ,

where the final inequality follows from the definition of C(σ) in Eq. (28) such that σ−
j (c) ≥ (σ) for c ∈ C(σ). Hence

combining this with Eq. (39) we have

∑
k∈[K]:ak<rj,n−δ

∑
c∈Cn∩C(σ)

∆k(c)Yk(c) ≤
∑

k∈[K]:ak<rj,n−δ

8 log(T )

σ(rj,n − ak)

(i)

≤
K∑
ℓ=1

8 log(T )

σℓδ
≤ 8 log(T ) log(K)

σδ
, (40)

where (i) follows because for all ak < rj,n − δ, the ak’s distances from rj,n−1 are at least δ, 3δ, 2δ . . . . Symmetrically, we
can show an identical bound for the set {k ∈ [K] : ak > rj,n + δ}. Hence, combining Eqs. (38) and (40) we can conclude

X2 ≤ Õ
(
δT +

1

δσ

)
. (41)
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Here, similar to our bound in Eq. (36) for bounding X1, we hide all logarithmic factors using the notation Õ, and note that
the constants CF , (sj,n)n∈Sj , Sj are all absolute constants that depend only on the support Fj and corresponding sampling
distribution pj for value-cost pairs; see definitions of these absolute constants in Lemma 4.5 and 4.6.

C.5.3. BOUNDING X3.

We first define

L̄ = (1 + γ) ρCF + (1 + CF )V̄ (42)

where CF is specified in Lemma 4.6. Recalling the definition ∆k(c) = maxρj∈[0,ρ] Lj(ρj , c)− Lj(ak, c) in Eq. (28), and
−(1 + γ)ρCF ≤ Lj(ρj , c) ≤ (1 + CF )V̄ for any ρj ∈ [0, ρ] and context c (see Lemma 4.6), it is easy to see

∆k(c) ≤ L̄ ∀k ∈ [K],∀c . (43)

Then we bound X3 as followed

X3 =
∑

k∈[K]

∑
t>K

E [∆k(c)I{ρj,t = ak, Nk,t > mk(c)}]

(i)

≤ L̄ ·
∑

k∈[K]

∑
t>K

P (ρj,t = ak, Nk,t > mk(ct))

(ii)

≤ L̄ ·
∑

k∈[K]

∑
t>K

P
(
V̂j,t(ak)−

λtγ + µt

1 + λt
ak + UCBj,t(ak) ≥ V̂j,t(ρ

∗
j (t))−

λtγ + µt

1 + λt
ρ∗j (t) + UCBj,t(ρ

∗
j (t)),

Nk,t > mk(ct)
)
,

(44)

where (i) follows from Eq. (43); in (ii), recall that we choose arm ρj,t = ak because the estimated UCB rewards of arm
ak is greater than that of any other arm including ρ∗j (t) according to the UCB-SGD (Algorithm 1), or mathematically,
V̂j,t(ak) − λtγ+µt

1+λt
ak + UCBj,t(ak) ≥ V̂j,t(ρ

∗
j (t)) −

λtγ+µt

1+λt
ρ∗j (t) + UCBj,t(ρ

∗
j (t)). Here we also used the fact that ρ∗j (t)

lies in the arm set A(δ) for all t (see Remark C.1).

Now let R̂n(ak) denote the average conversion of arm k over its first n pulls, i.e.

R̂n(ak) = V̂j,τ (ak) for τ = min{t ∈ [T ] : Nk,t = n} (45)

where we recall V̂j,τ (ak) is the estimated conversion for arm ak in channel j during period τ as defined in Algorithm 1. In
other words, τ is the period during which arm ak is pulled for the nth time so R̂n(ak) = V̂j,τ (ak).

Hence, we continue with Eq. (44) as followed:

P
(
V̂j,t(ak)−

λtγ + µt

1 + λt
ak + UCBj,t(ak) ≥ V̂j,t(ρ

∗
j (t))−

λtγ + µt

1 + λt
ρ∗j (t) + UCBj,t(ρ

∗
j (t)), Nk,t > mk(ct)

)
≤ P

(
max

n:mk(ct)<n≤t

{
R̂n(ak) + UCBn(ak)−

λtγ + µt

1 + λt
ak

}
≥ min

n′:1≤n′≤t

{
R̂n′(ρ∗j (t)) + UCBn′(ρ∗j (t))−

λtγ + µt

1 + λt
ρ∗j (t)

})
≤

t∑
n=⌈mk(ct)⌉+1

t∑
n′=1

P
(
R̂n(ak) + UCBn(ak)−

λtγ + µt

1 + λt
ak > R̂n′(ρ∗j (t)) + UCBn′(ρ∗j (t))−

λtγ + µt

1 + λt
ρ∗j (t)

)
(46)

Now, when the event
{
R̂n(ak) + UCBn(ak)− λtγ+µt

1+λt
ak > R̂n′(ρ∗j (t)) + UCBn′(ρ∗j (t))−

λtγ+µt

1+λt
ρ∗j (t)

}
occurs, it is easy

to see that one of the following events must also occur:

G1,n =
{
R̄n(ak) ≥ V (ak) + UCBn(ak)

}
for n s.t. mk(ct) < n ≤ t

G2,n′ =
{
R̄n′(ρ∗j (t)) ≤ V (ρ∗j (t))− UCBn(ρ

∗
j (t))

}
for n′ s.t. 1 ≤ n′ ≤ t

G3 =

{
Vj(ρ

∗
j (t))−

λtγ + µt

1 + λt
ρ∗j (t) < Vj(ak)−

λtγ + µt

1 + λt
ak + 2 · UCBn(ak)

} (47)
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Note that for n > mk(ct), we have UCBn(ak) =
√

2 log(T )
n <

√
2 log(T )
mk(ct)

= ∆k(ct)
2 since we defined mk(c) =

8 log(T )
∆2

k(c)
in

Eq. (28). Therefore

Vj(ak)−
λtγ + µt

1 + λt
ak + 2 · UCBn(ak) < Vj(ak)−

λtγ + µt

1 + λt
ak︸ ︷︷ ︸

=L(ak,ct)

+∆k(ct)
(i)
= Vj(ρ

∗
j (t))−

λtγ + µt

1 + λt
ρ∗j (t)︸ ︷︷ ︸

=L(ρ∗
j (t),ct)=maxa∈A(δ) L(a,ct)

where (i) follows from the definition of ∆k(c) = maxa∈A(δ) L(a, c)−L(ak, c) in Eq. (28) for any context c. This implies
that event G3 in Eq. (47) cannot hold for n > mk(ct). Therefore

P
(
R̂n(ak) + UCBn(ak)−

λtγ + µt

1 + λt
ak > R̂n′(ρ∗j (t)) + UCBn′(ρ∗j (t))−

λtγ + µt

1 + λt
ρ∗j (t)

)
≤ P (G1,n ∪ G2,n′) . (48)

From the standard UCB analysis and the Azuma Hoeffding’s inequality, we have P(G1,n) ≤ V̄
T 4 and P(G2,n′) ≤ V̄

T 4 . Hence
combining Eqs. (44) (46), (48) we can conclude

X3 ≤
∑

k∈[K]

∑
t>K

t∑
n=⌈mk(ct)⌉+1

t∑
n′=1

(P (G1,n) + P (G2,n′))

≤
∑

k∈[K]

∑
t>K

t∑
n=⌈mk(ct)⌉+1

t∑
n′=1

2V̄

T 4

≤ 2KV̄

T
= O

(
1

δT

)
.

(49)

C.6. Proof for Theorem 4.8

Starting from Proposition 4.3, we get

T · GL-OPT − E

∑
t∈[T ]

∑
j∈[M ]

Vj(ρj,t)


≤ MV (T − τA) +

∑
j∈[M ]

E

 ∑
t∈[τA]

Lj(ρ
∗
j (t), ct)− Lj(ρj,t, ct)

+ E
[ ∑
t∈[τA]

(λtg1,t + µtg2,t)
]

(i)

≤ MV (T − τA) +O
(
σT + δT +

1

σδ

)
+O

(
ηT +

1

η

)
(50)

where in (i) we applied Lemma 4.7 and 4.4. Taking η = 1/
√
T , δ = σ = T−1/3 (i.e. K = O(T 1/3) yields T · GL-OPT −

E
[∑

t∈[T ]

∑
j∈[M ] Vj(ρj,t)

]
≤ O(T 2/3). According to Lemma 4.5, Vj(ρj) is concave for all j ∈ [M ], so

O(T−1/3) ≥ GL-OPT − 1

T

∑
t∈[T ]

E

 ∑
j∈[M ]

Vj(ρj,t)


≥ GL-OPT − E

 ∑
j∈[M ]

Vj

 1

T

∑
t∈[T ]

ρj,t


≥ GL-OPT − E

 ∑
j∈[M ]

Vj(ρj,T )


(51)
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where in the final equality we used the definition ρ̄T as defined in Algorithm 1.

Regarding ROI constraint satisfaction, consider

0
(i)

≤ 1

T

∑
t∈[T ]

E [g1,t]

=
1

T

∑
t∈[T ]

∑
j∈[M ]

E [Vj(ρj,t; zj,t)− γρj,t]

=
1

T

∑
t∈[T ]

∑
j∈[M ]

E [Vj(ρj,t)− γρj,t]

(ii)

≤
∑

j∈[M ]

E

Vj

 1

T

∑
t∈[T ]

ρj,t

− γ · 1
T

∑
t∈[T ]

ρj,t


=

∑
j∈[M ]

E[Vj

(
ρj,T

)
− γρj,T ] .

(52)

where (i) follows from Lemma C.3; in (ii) we again applied concavity of Vj(ρj). We omit the analysis for the budget
constraint as it is similar to the above.

C.7. Additional Results for Section 4

Proposition C.2. Assume Assumption 4.2 holds, and recall zj = (vj ,dj) ∈ Fj is any realization of values and costs
for channel j ∈ [M ]. Then, for any channel j ∈ [M ], we have minzj∈Fj

vj,1
dj,1

> γ, where we recall the ordering
vj,1
dj,1

>
vj,2
dj,2

> · · · > vj,mj

dj,mj
for any element zj = (vj ,dj) ∈ Fj (see Section 4). Further, there exists some ρ̃ ∈ (0, ρ) s.t. for

any per-channel budget ρj ≤ ρ̃, we have Vj(ρj ; zj) =
vj,1
dj,1

ρj > γρj for any j ∈ [M ].

Proof. Under Assumption 4.2, it is easy to see for any realization of value-cost pairs zj = (vj ,dj) there always exists an
auction n ∈ [mj ] whose value-to-cost ratio is at least γ, i.e. vj,n > γdj,n. Hence we know that vj,1

dj,1
≥ vj,n

dj,n
> γ. Now, in

Eq. (25) within the proof of Lemma 4.5, we showed

Vj(ρj ; zj) = v⊤
j x

∗
j (ρj ; zj) =

∑
n∈[mj ]

(
vj,n
dj,n

ρj + bj,n

)
I {dj,0 + · · ·+ dj,n−1 ≤ ρj ≤ dj,0 + · · ·+ dj,n} ,

where dj,0 = vj,0 = bj,1 = 0. This implies that for any ρj < dj,1, we have Vj(ρj ; zj) =
vj,1
dj,1

ρj > γρj . Therefore, we
can take ρ̃ = minj∈[M ] minzj∈Fj

dj,1, which ensures that for any ρj ≤ ρ̃ and realization zj ∈ Fj we have Vj(ρj ; zj) =
vj,1
dj,1

ρj > γρj for any channel j ∈ [M ].

Lemma C.3 (Constraint satisfaction). Assume Assumption 4.2 holds, and consider β = ρ = 1
log(T ) in Algorithm 1. Then,

for large enough T we have

1

T

∑
t∈[T ]

g1,t ≥ 0 and
1

T

∑
t∈[T ]

∑
j∈[M ]

ρj,t ≤ ρ ,

where we recall g1,t =
∑

j∈[M ] (Vj(ρj,t; zj,t)− γρj,t).

Proof. Recall τA ∈ [T ] defined in step 10 of Algorithm 1.

If τA = T , then we know that Algorithm 1 does not exit the while loop, and therefore S1,t − γMρ+ βρ(T − t) ≥ 0 for
t = T , or equivalently S1,T ≥ γMρ > 0. Since we recall S1,T =

∑
t∈[T−1] g1,t, we can conclude that

∑
t∈[T ] g1,t =

S1,T + g1,T ≥ Mρ + g1,T ≥ 0 since g1,T ≥ −γMρ. Similarly, we also have S2,t +Mρ + ρ(T − t) ≤ ρT for t = T ,
or equivalently S2,T ≤ ρT − Mρ where we used the fact that ρ = 1/ log(T ) < ρ for large enough T and M ≥ 2.
Hence, recalling S2,T =

∑
t∈[T−1]

∑
j∈[M ] ρj,t, we can conclude that

∑
t∈[T ]

∑
j∈[M ] ρj,t = S2,T +

∑
j∈[M ] ρj,T ≤

ρT −Mρ+
∑

j∈[M ] ρj,T ≤ ρT since
∑

j∈[M ] ρj,T ≤ Mρ.
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If τA < T , then we know that at the “stopping time” τA, the while loop in Algorithm 1 has not yet exited, so we have

S1,τA − γMρ+ βρ(T − τA) ≥ 0 and S2,τA +Mρ+Mρ(T − τA) ≤ ρT (53)

Hence,

∑
t∈[T ]

g1,t =
∑

t∈[τA−1]

g1,t + g1,τA +

T∑
t=τA+1

g1,t

(i)

≥ γMρ− βρ(T − τA) + g1,τA +

T∑
t=τA+1

g1,t

≥ γMρ− βρ(T − τA)− γMρ+

T∑
t=τA+1

g1,t

(ii)
= − βρ(T − τA) +

T∑
t=τA+1

∑
j∈[M ]

(
Vj(ρ; zj,t)− γρ

)
(iii)

≥ − βρ(T − τA) +

T∑
t=τA+1

∑
j∈[M ]

(
ρ · min

zj∈Fj

vj,1
dj,1

− γρ

)

= − βρ(T − τA) + (T − τA)M

(
ρ · min

zj∈Fj

vj,1
dj,1

− γρ

)
(iv)

≥ 0

(54)

where (i) follows from S1,τA−1 =
∑

t∈[τA−2] g1,t and Eq. (53); (ii) follows from Algorithm 1 where we set ρj,t = ρ for all
j ∈ [M ] and t = τA+1 . . . T ; for (iii), assuming the jth channel’s realized value cost pairs zj,t is the element zj ∈ Fj , then
Proposition C.2 says Vj(ρ; zj,t) ≥ vj,1

dj,1
ρ since ρ = 1

log(T ) < ρ̃ for large enough T . Hence Vj(ρ; zj,t) ≥ minzj∈Fj

vj,1

dj,1
ρ;

(iv) follows from the fact that minzj∈Fj

vj,1
dj,1

> γ according to Proposition C.2, so M minzj∈Fj

vj,1
dj,1

≥ Mγ + β since
β = 1

log(T ) ≤ M minzj∈Fj

vj,1
dj,1

−Mγ for large enough T .

Similarly, we have

∑
t∈[T ]

∑
j∈[M ]

ρj,t =
∑

t∈[τA−1]

∑
j∈[M ]

ρj,t +
∑

j∈[M ]

ρj,τA +

T∑
t=τA+1

∑
j∈[M ]

ρj,t

(i)

≤ ρT −Mρ−Mρ(T − τA) +
∑

j∈[M ]

ρj,τA +M(T − τA)ρ

≤ ρT −Mρ−Mρ(T − τA) +Mρ+M(T − τA)ρ

= ρT

(55)

where (i) follows from S2,τA =
∑

t∈[τA−1]

∑
j∈[M ] ρj,t and Eq. (53), as well as in Algorithm 1 we set ρj,t = ρ for all

j ∈ [M ] and t = τA, τA + 1 . . . T .

Lemma C.4. Let (λt, µt)t∈[T ] be the dual variables generated by Algorithm 1. Then for any λ, µ ∈ [0, CF ] and t ∈ [T ] we
have ∑

τ∈[t]

(λτ − λ) g1,τ ≤ ηM2V̄ 2

2
· t+ 1

2η
(λ− λ1)

2

∑
τ∈[t]

(µτ − µ) g2,τ ≤ ηρ2

2
· t+ 1

2η
(µ− µ1)

2 .

(56)

where we recall g1,τ =
∑

j∈[M ] (Vj,τ (ρj,τ )− γρj,τ ) and g2,τ = ρ−
∑

j∈[M ] ρj,τ .
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Proof. We will show Eq. (56). Starting with the first inequality w.r.t. λτ ’s, we have

(λτ − λ) g1,τ = (λτ+1 − λ) g1,τ + (λτ − λτ+1) g1,τ (57)

Since λτ+1 = Π[0,CF ] (λτ − ηg1,τ )+ = argminλ∈[0,CF ] (λ− (λτ − ηg1,τ ))
2, we have

(λτ+1 − (λτ − ηg1,τ )) · (λ− λτ+1) ≥ 0 ∀λ ∈ [0, CF ] . (58)

So we have

(λτ+1 − λ) g1,τ ≤ 1

η
(λτ+1 − λτ ) · (λ− λτ+1)

=
1

2η

(
(λ− λτ )

2 − (λ− λτ+1)
2 − (λτ+1 − λτ )

2
)
.

(59)

Plugging the above back into Eq. (57) we get

(λτ − λ) g1,τ ≤ (λτ − λτ+1) g1,τ +
1

2η

(
(λ− λτ )

2 − (λ− λτ+1)
2 − (λτ+1 − λτ )

2
)

≤ η

2
g21,τ +

1

2η

(
(λ− λτ )

2 − (λ− λτ+1)
2
)

≤ ηM2V̄ 2

2
+

1

2η

(
(λ− λτ )

2 − (λ− λτ+1)
2
)
,

(60)

where the final inequality follows from the fact that Vj,τ (ρj,τ ) ≤ V̄ for any j ∈ [M ] and τ ∈ [t] so g1,τ ≤ MV̄ . Summing
the above over τ = 1 . . . t and telescoping we get∑

τ∈[t]

(λτ − λ) g1,τ ≤ ηM2V̄ 2

2
· t+ 1

2η
(λ− λ1)

2 for ∀λ ∈ [0, CF ] .

Following the same arguments above we can show∑
τ∈[t]

(µτ − µ) g2,τ ≤ ηρ2

2
· T +

1

2η
(µ− µ1)

2 for ∀µ ∈ [0, CF ] .

Proposition C.5. Under Assumption 4.2, the advertiser’s per-channel only budget optimization problem, namely
CH-OPT(IB) is a convex problem.

Proof. Recalling the CH-OPT(IB) in Eq. (3) and the definition of IB in Eq. (2), we can write CH-OPT(IB) as

CH-OPT(IB) = max
(γj)j∈[M]∈I

∑
j∈M

Vj(ρj)

s.t.
∑
j∈M

Vj(ρj) ≥ γ
∑
j∈M

ρj∑
j∈[M ]

ρj ≤ ρ ,

(61)

Here we used the definition Vj(ρj) = E [Vj(ρj ; zj)] in Eq. (5), and Dj(ρj ; zj) = ρj for any zj under Assumption 4.2.
According to Lemma 4.5, Vj(ρj) is concave in ρj for any j, so the objective of CH-OPT(IB) maximizes a concave function.
For the feasibility region, assume ρj and ρ′j are feasible, then defining ρ′′j = θρj + (1− θ)ρ′j for any θ ∈ [0, 1], we know
that ∑

j∈M

(
Vj(ρ

′′
j )− γρ′′j

) (i)

≥
∑
j∈M

(
θVj(ρj) + (1− θ)Vj(ρ

′
j)− γρ′′j

)
= θ

∑
j∈M

(Vj(ρj)− γρj) + (1− θ)
∑
j∈M

(
Vj(ρ

′
j)− γρ′j

)
(ii)

≥ 0
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where (i) follows from concavity of Vj(ρj) and (ii) follows from feasiblity of ρj and ρ′j . On the other hand it is apparent that∑
j∈[M ] ρ

′′
j ≤ ρ. Hence we conclude that for any ρj and ρ′j feasible, ρ′′j = θρj + (1− θ)ρ′j is also feasible, so the feasible

region of CH-OPT(IB) is convex. This concludes the statement of the proposition.
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