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Abstract
Reliable application of machine learning is of
primary importance to the practical deployment
of deep learning methods. A fundamental chal-
lenge is that models are often unreliable due to
overconfidence (Hendrycks & Gimpel, 2017). In
this paper, we estimate a model’s reliability by
measuring the agreement between its latent space,
and the latent space of a foundation model. How-
ever, it is challenging to measure the agreement
between two different latent spaces due to their
incoherence, e.g., arbitrary rotations and differ-
ent dimensionality. To overcome this incoher-
ence issue, we design a neighborhood agreement
measure between latent spaces and find that this
agreement is surprisingly well-correlated with the
reliability of a model’s predictions. Further, we
show that fusing neighborhood agreement into a
model’s predictive confidence in a post-hoc way
significantly improves its reliability. Theoreti-
cal analysis and extensive experiments on failure
detection across various datasets verify the effec-
tiveness of our method on both in-distribution and
out-of-distribution settings.

1. Introduction
Model reliability is a critical and challenging issue in deep
neural networks for deploying neural network systems in
real-world applications, particularly in safety-critical do-
mains such as autonomous driving and medical diagnosis.
In particular, a key challenge is that models tend to be over-
confident (Guo et al., 2017; Hendrycks & Gimpel, 2017;
Ovadia et al., 2019), and it is hard to identify such overcon-
fidence purely based on the model’s own internal states, as
these internal states are themselves potentially unreliable.
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A possible answer to this dilemma comes from the recent
emergence of powerful general purpose (or ‘foundation’)
models (Brown et al., 2020; Bommasani et al., 2021; Rad-
ford et al., 2021), which provide rich “implicit knowledge”
while being freely available for use without additional train-
ing costs. This presents an opportunity to use them to assist
in evaluating the reliability of a newly trained model.

As encapsulated by the phrase “great minds think alike”, it
is intuitive that a model tends to be more reliable on some in-
put if its reasoning aligns well with that of other models. For
example, if we want to examine whether a human learner
has well-understood some input image (e.g. an animal), we
can ask them questions about it (e.g. what animals is it
similar to?): the more they agree with other human learners,
the more confident we can be that they have correctly under-
stood the image. Similarly, for models, we want to evaluate
the reliability of a model by estimating the extent to which
its reasoning agrees with that of a foundation model. This
further leads to the main challenge: how can we quantita-
tively measure how much two models agree on a concept?
In this work, we propose to measure this model agreement
via latent spaces. Intuitively, the two models agree if their
latent spaces “model the concept similarly”; however, this
is complicated by the fact that different models are typically
trained with different data distributions, model architectures
and optimization objectives, leading to incoherence between
different latent spaces: e.g. differing by an arbitrary rotation,
and different dimensionalities.

To solve this problem, we introduce inter-model latent agree-
ment - a framework for measuring of how much two models
agree on a sample while avoiding the incoherence issue, and
then show its utility for estimating and enhancing model reli-
ability. Our framework uses the similarity of neighborhoods
in the latent spaces of an input as a proxy task to measure
agreement between latent spaces of different models.

In particular, we present our main empirical observation that
the reliability (or probability of correctness) of a model on
a sample correlates well with its inter-model latent agree-
ment with foundation models on that sample. Motivated
by this, we propose our latent space agreement framework,
which exploits the inter-model agreement to improve pre-
diction reliability in a post-hoc way. Notably, our proposed
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inter-model latent agreement can be measured with only
unlabeled samples, making it more broadly applicable. We
further verify the effectiveness of our framework by conduct-
ing extensive experiments on failure detection over various
datasets and provide theoretical analysis for our method.

Overall, the contributions and benefits of our approach are
as follows 1:

• (Empirical Findings) We show that the inter-model
agreement highly correlates with classification accu-
racy, suggesting the value of latent space agreement to
improve a newly trained model’s reliability.

• (Generality) We propose a general framework that en-
ables using any foundation model via latent spaces in
a post-hoc way without any fine-tuning to improve the
predictive reliability of a newly trained model.

• (Effectiveness) We quantitatively verify the perfor-
mance of our framework on failure detection across
various datasets, including large-scale in-distribution
(ID) and out-of-distribution (OOD) datasets, and pro-
vide further exploration, empirical and theoretical jus-
tification of the framework.

2. Related Work
2.1. Failure Detection

The main goal of failure detection is to predict whether a
trained classifier will make an error on a test sample (Jaeger
et al., 2023). Hendrycks & Gimpel 2017 propose maxi-
mum softmax probabilty (MSP), which directly uses the
softmax predictions of the trained model. Follow-up works
propose other uncertainty measures from a trained model,
based on Monte Carlo Dropout or aggregated from multi-
ple trained models, e.g., predictive entropy or variants (Gal
& Ghahramani, 2016; Lakshminarayanan et al., 2017; Liu
et al., 2020). Jiang et al. 2018 propose a distance ratio in the
latent space of a classifier. In addition to detecting failures
in in-distribution data, detecting failures under distribution
shifts is a crucial problem to enhance model reliability in
real-world applications, and has received increasing atten-
tion (Hendrycks & Dietterich, 2019; Koh et al., 2021; Vaze
et al., 2022). Previous works have aimed to utilize internal
information from a trained classifier (Xiong et al., 2022;
Deng et al., 2022). However, a classifier itself can be po-
tentially unreliable (Guo et al., 2017; Hein et al., 2019),
which motivates us to use external information to validate
the reliability of a prediction and further enhance failure
detection.

1Our code is available via https://github.com/
d-ailin/latent-agreement

2.2. Foundation Models

The recent powerful foundation models (Radford et al.,
2021; Bommasani et al., 2021) are pretrained on large-scale
data and can provide rich “implicit knowledge” to validate
the prediction from a newly trained classifier. The prevalent
paradigm to use these foundation models is fine-tuning with
downstream data. However, traditional fine-tuning is often
computationally intensive and requires a large amount of
downstream labeled data, particularly as foundation models
continue to grow in size. To alleviate these issues, recent
methods propose to adapt the foundation models before use
for some applications by prompting, instead of fully fine-
tuning (Bommasani et al., 2021). Our method is different
from the previous works as we propose to use the agreement
between the latent space of a trained classifier and the latent
space of a foundation model to validate a prediction, which
requires no fine-tuning or adaptation.

3. Proposed Method
3.1. Preliminaries

Let D = {x(i), y(i)}ni=1, denote the training dataset con-
taining n samples, where x(i) ∈ Rm is the i-th input sample
and y(i) ∈ Y = {1, . . . , C} is the corresponding true class.
A classification model consists of two parts: a feature ex-
tractor B : X → Rd and a linear head fw : Rd → RC ,
parameterized by w. Given an input x, the model produces
a latent feature vector z = B(x) followed by the softmax
probability output and predictive label:

P̂ (Y | x, B,w) = softmax(fw(z)) (1)

ŷ = argmax
c∈Y

P̂ (Y = c | x, B,w). (2)

Given an input x, a foundation model can also produce a
latent feature vector h = H(x) ∈ Rh where H : X → Rh.
For example, H can be an image encoder from a multi-
modal foundation model (Radford et al., 2021).

3.2. Problem Definition

Failure Detection Also known as misclassification or er-
ror prediction (Hendrycks & Gimpel, 2017), failure detec-
tion aims to predict if a trained model makes an erroneous
prediction on a test sample. In general, it requires a score for
any given sample’s prediction, where a lower score implies
that the prediction is more likely to be wrong.

For a standard network, the baseline method is to use max-
imum softmax output as the confidence score for failure
detection (Hendrycks & Gimpel, 2017; Ovadia et al., 2019):

p̂ := P̂ (Y = ŷ | x, B,w) (3)

However, merely relying on the obtained confidence score
from a newly trained classifier can be unsafe due to the
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overconfidence issue (Hendrycks & Gimpel, 2017; Guo
et al., 2017) and this concern is even more pronounced
under distribution shifts (Ovadia et al., 2019; Hendrycks
& Dietterich, 2019; Taori et al., 2020). We thus propose
to employ information from foundation models to improve
model reliability, instead of only using the information from
the trained model.

3.3. Inter-Model Latent Agreement Framework

Overview We propose an inter-model latent agreement
framework to compute the agreement scores based on latent
spaces and use it as an auxiliary source of information to
boost the failure detection performance. The framework in-
volves two steps: 1) measuring agreement between a newly
trained model and a foundation model on samples; 2) fusing
the agreement information into the predictive confidence in
a post-hoc way via input-dependent temperature scaling.

Measuring Inter-Model Latent Agreement Neural net-
work models usually first project input data into latent space,
then perform classification or generation based on the latent
spaces. Thus, latent spaces are informative and can be taken
as the network’s capacity for capturing the information in
input samples. In this work, we aim to measure latent space
agreement between models to represent their agreement.

Given an encoder B from a trained classifier and a pre-
trained encoder H from a foundation model, to estimate
how reliable the trained classifier is on a sample x, we
aim to estimate the agreement between the models’ latent
spaces around x. Specifically, we compute feature vectors
z = B(x) and h = H(x) with the encoder B and pre-
trained encoder H , respectively. However, as these latent
spaces can be incoherent, e.g., differing by an unknown
rotation, or different dimensions of latent spaces (d ̸= h),
this makes explicit distance comparison between z ∈ Rd

and h ∈ Rh unsuitable.

To overcome this incompatibility, we compare neighbor-
hoods (e.g. nearest neighbors and distances to them) be-
tween two latent spaces around a sample as a surrogate task
to measure the agreement instead of a direct distance mea-
sure between z and h. For example, if two latent spaces
are identical after a rotation transformation, the neighbor-
hoods of a sample in the two latent spaces must be the same.
Conversely, if the neighborhoods of a sample in the two
latent spaces are similar, the two latent spaces around this
sample are expected to be similar through some unknown
transformation, due to the high level of agreement between
these two latent spaces.

Specifically, denote the test sample as xtest, the encoder
B from a classifier and the classifier’s training dataset
D = {x(i), y(i)}ni=1. We obtain the feature vectors ztest :=

B(xtest) and zi := B(x(i)) for 1 ≤ i ≤ n. We denote:

Z := (z1, z2, . . . , zn). (4)

Similarly, we repeat this process with the pretrained encoder
H to get the feature vectors htest := H(xtest) and hi :=
H(x(i)) for 1 ≤ i ≤ n. We denote:

H := (h1,h2, . . . ,hn). (5)

To represent the ranking of training samples based on their
similarity to the test sample in the latent space, we use a
permutation generation function G to produce a permutation
containing the indexes of feature vectors in the training
feature set Z, ordered from nearest to farthest distance from
the test feature vector ztest:

G(ztest,Z) :=(Π(1),Π(2), . . . ,Π(n))

s.t. s(ztest, zΠ(1)
) ≥s(ztest, zΠ(2)

) ≥ s(ztest, zΠ(n)
),

(6)

where we use the cosine similarity function as s. Similarly,
we get another permutation using htest and H for the same
test sample xtest based on the pretrained encoder H . We
use Π∗ := G(ztest,Z) and Π′ := G(htest,H) to represent
the permutations obtained from the encoder B from the
classifier and the pretrained encoder H , respectively.

Next, to measure the similarity between two permutations
Π∗ and Π′, we introduce Normalized Discounted Cumula-
tive Gain (NDCG), a ranking quality measure.

Definition 3.1. (Normalized Discounted Cumulative Gain
(NDCG) (Järvelin & Kekäläinen, 2002)). Given a ranking
Π∗ and another ranking Π′, let r denote our importance
scoring function, where r(i) outputs the importance score of
the i-th sample, and r(Π∗

(1)) ≥ r(Π∗
(2)) ≥ · · · ≥ r(Π∗

(n)):

NDCG(Π∗,Π′, r) :=

∑n
i

r(Π′
(i))

log (i+1)∑n
i

r(Π∗
(i)

)

log (i+1)

. (7)

The NDCG values range from 0 to 1 after normalization.
Intuitively, the NDCG metrics quantitatively evaluate the
ranking quality of Π′ compared to the ranking Π∗, consider-
ing the importance scoring function r and ranking position
penalty with logarithmic discounting function. Note that
any importance scoring function r which satisfies the re-
quirement of producing decreasing values according to the
perfect ranking is plausible. In particular, r can be a func-
tion outputting 0 and 1 depending on whether the training
sample is one of the k-nearest training samples or not:

r(i) := 1(zi ∈ NZ,k(z
test)). (8)

It means that we treat the nearest k samples as most im-
portant, and we can control the neighborhood size with k.
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Figure 1. Positive correlation between agreement score and classi-
fication accuracy. The agreement score is calculated based on the
ImageNet classifier (ViT-B/16) and CLIP ViT/L-14.

Wang et al. 2013 shows that this choice of importance scor-
ing function also provides certain consistency guarantees.

As such, given the encoder B from the trained classifier and
pretrained encoders H1, . . . ,Hm from m different foun-
dation models, we formally define our inter-model latent
agreement score as follows:

Definition 3.2. (Inter-model Latent Agreement Score).
Given a test sample xtest, the training samples {x(i)}ni=1,
the encoder B from a trained classifier and pretrained
encoders H := {H1, . . . ,Hm} from m foundation
models, recall Z := (z1, z2, . . . , zn) and let Hi =
(Hi(x

(1)), Hi(x
(2)), . . . ,Hi(x

(n))), the inter-model latent
agreement score is:

AS(xtest, B,H) :=
1

m

m∑
i

NDCG(Π∗,Πi, r), (9)

where Π∗ := G(ztest,Z) and Πi := G(Hi(x
test),Hi).

The definition indicates that given a test sample, we average
the ranking agreement across different foundation models
as the inter-model latent agreement score.

3.4. Main Empirical Observation

From Figure 1, we observe that the agreement score has a
clear positive correlation with the classification accuracy.
This empirical evidence indicates that a prediction which has
a higher latent space agreement with a foundation model
tends to be predicted correctly in the classification task.
This validates our use of agreement scores for assessing the
reliability of a prediction and further improving the original
predictive confidence to detect failure.

3.5. Input-based Temperature Scaling

As we aim to adjust the predictive confidence to improve
failure detection performance but without altering the clas-
sifier’s final predicted label, an appealling way is input-
dependent temperature scaling, which is an extension of

temperature scaling (Guo et al., 2017; Deng et al., 2022).
Classical temperature scaling uses a single scalar tempera-
ture parameter t to rescale the softmax distribution. Using
our agreement score for each sample x as prior informa-
tion, we propose to obtain a scalar temperature τ(x) as a
learned function of the agreement score AS(x, B,H) based
on Definition 3.2:

τ(x) := t+ tsAS(x, B,H) (10)

P̃ (Y | x) := softmax

(
fw(z)

τ(x)

)
(11)

Here, P̃ (Y | x) contains our output calibrated probabilities.
t and ts are learnable parameters; they are optimized via
negative likelihood loss on the validation set, similarly to in
classical temperature scaling (Guo et al., 2017). For each
sample x, we obtain τ(x) as its input-dependent tempera-
ture. With τ(x) = 1, we recover the original predicted prob-
abilities p̂ for the sample. As all logit outputs of a sample
are divided by the same scalar, the predictive label is un-
changed. In this way, we calibrate the softmax distribution
based on the agreement score, without compromising the
model’s accuracy. Note that though temperature scaling was
mainly proposed for calibration, recent findings show tem-
perature scaling can also improve failure detection (Galil
et al., 2023) by recalibrating the predictive probability dis-
tribution with proper scoring rules, which encourages both
calibration and ranking for predictive confidence (Gneiting
et al., 2007; Kuleshov & Deshpande, 2022).

We summarize our framework in Algorithm 1 in Appendix.

4. Experiments
In this section, we conduct experiments to answer the fol-
lowing research questions:

• (Performance in ID: Section 4.2) How well does our
method perform on in-distribution failure prediction
compared to the baseline methods?

• (Exploration Study: Section 4.2) How do different
foundation models affect our failure detection perfor-
mance? How does this relate to the model family used?

• (Performance in OOD: Section 4.3) How does it per-
form under OOD, i.e. distribution shifts?

• (Case Study: Section 4.4) Can our method provide
plausible explanation/visualization for samples with
high/low agreement scores?

• (Ablation Study: Section 4.5) How sensitive is the
method to different hyperparameters? How does it
perform when using other similarity measures?

4.1. Experimental Setup

Baselines Our baseline methods include the Maximum
Softmax Probability (MSP) (Hendrycks & Gimpel, 2017),
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other uncertainty measure: Entropy and Energy (Lakshmi-
narayanan et al., 2017; Liu et al., 2020), a distance based
measure: TrustScore (Jiang et al., 2018), MaxLogit pro-
posed for distribution shift (Vaze et al., 2022) and vanilla
Temperature Scaling (T.S.) (Guo et al., 2017).

For details on datasets, classifiers, foundation/pretrained
models, and experimental protocols, see Appendix A.

4.2. Failure Detection in ID data

We first evaluate failure detection performance in in-
distribution (ID) data and further explore the effect of using
different pretrained models. We also study the correlation
between each pretrained model’s performance and its corre-
sponding KNN accuracy in the same dataset. We also find
strong correlation in performance within each model family.

Performance Evaluation The reported single-model re-
sult uses the model with the best ImageNet accuracy in
our model candidate pool, CLIP ViT/L-14. For multiple-
model settings, we adopt the models with top 2 ImageNet
accuracy: CLIP ViT/L-14 and ViT/L-16 (ImageNet-21K).
We conduct further analysis about the effect of different
pretrained models later.

As shown in Table 1, our method can outperform the base-
line methods over different datasets, including large-scale
dataset, ImageNet, for both CNN and ViT classifiers. Our
empirical result confirms the previous findings that ViT can
generally perform better than CNN classifiers in accuracy
on uncertainty estimation-related tasks (Fort et al., 2021;
Minderer et al., 2021; Galil et al., 2022).

Effect of Different Foundation Models Given the di-
versity of foundation models, which can vary in terms of
architecture, training data, and optimization losses, it is
important to further investigate the impact of different pre-
trained models on our proposed method.

We demonstrate the average performance over base mod-
els and datasets (excluding ImageNet2) for different pre-
trained models in Figure 2, which shows that every pre-
trained model in our model candidate pool can surpass
MSP on average. We compare the performance of mod-
els pretrained on datasets of increasing size: ImageNet-1K,
ImageNet-21K, and CLIP WebImageText dataset (400 mil-
lion image-text pairs). Echoing the previous findings in
transfer learning (Kolesnikov et al., 2020), we also observe
a performance boost of models of larger size pretrained on
larger datasets. With the similar model size and pretrained
on the same dataset, ViTs generally perform better than
CNNs, except for the cases where the dataset is in a smaller

2As some pretrained models are trained with ImageNet samples,
we exclude ImageNet dataset.
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Figure 2. Performance of single-model with each pretrained model
average over in-distribution datasets. x-axis: Inference GPU cost.
See Appendix C.2 for plots for different base models.
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Figure 3. Strong correlation between failure detection performance
and KNN accuracy for each pretrained model. See Figure 9 for
plots for other datasets.

scale, e.g., ImageNet-1K. The self-supervised pretrained
models, e.g. MoCov3 ViT/ResNet, achieve comparable re-
sults with models pretrained with supervision signals. Sim-
ilar to the previous findings in (Kornblith et al., 2019b),
which suggests that better performing models transfer bet-
ter to the downstream tasks, we find the failure detection
performance of pretrained models related to these models’
accuracy performance in ImagetNet-1K, as shown in Figure
8. Thus, we suggest to select the pretrained model with
the highest accuracy on ImageNet-1K for failure detection,
without any prior knowledge about the trained models, e.g.
the training datasets.

Correlation Between Performance and KNN Accuracy
We further investigate the failure detection performance for
each pretrained model in a particular dataset. Note that we
use KNN classifier (Wu et al., 2018; Caron et al., 2021),
a simple weighted nearest neighbor classifier, as a perfor-
mance proxy to evaluate the pretrained model’s performance
on the downstream task (Renggli et al., 2022). Figure 3
and 9 show the strong correlation between the failure de-
tection performance and the KNN classifier performance
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Table 1. AUROC (%) averaged over 6 runs. The base models are finetuned based on pretrained models: ResNet-50 or ViT-B/16. ViT
for ImagNet is fine-tuned on CLIP VIT-B/16 model. AS: inter-model latent agreement score in Eq(9). single: uses CLIP ViT/L-14 as
foundation model. multiple: uses CLIP ViT/L-14 and ViT/L-16 (ImageNet-21K) as foundation models. The best result is bolded.

CIFAR10 CIFAR100 STL BIRDS FOOD ImageNet
Model Method

CNN

MSP 94.15±0.06 88.42±0.21 95.73±0.35 85.97±0.76 88.79±0.19 86.19±0.07

Entropy 94.14±0.07 88.45±0.22 95.62±0.36 84.83±0.88 88.78±0.21 84.05±0.06

Energy 90.83±0.32 83.84±0.29 94.31±0.64 77.72±2.10 83.83±0.19 72.72±0.11

MaxLogit 91.00±0.32 84.20±0.30 94.44±0.63 79.82±1.76 84.59±0.20 76.49±0.11

TrustScore 95.84±0.24 89.13±0.20 97.70±0.20 84.45±1.27 85.71±0.26 75.44±1.19

T.S. 93.76±0.14 87.21±0.22 95.54±0.37 85.88±0.79 88.58±0.19 86.35±0.07

T.S. (w/ AS, single) 97.45±0.05 89.63±0.22 99.32±0.12 88.27±0.71 92.33±0.14 86.38±0.08

T.S. (w/ AS, multiple) 98.07±0.08 91.04±0.24 99.33±0.13 89.10±0.65 92.17±0.16 86.39±0.09

ViT

MSP 96.39±0.44 92.66±0.16 98.64±0.40 88.23±0.45 92.77±0.26 85.42±0.09

Entropy 96.36±0.44 92.52±0.17 98.60±0.40 87.58±0.45 92.83±0.27 81.92±0.09

Energy 91.56±0.76 83.67±0.52 93.52±1.24 76.73±0.72 87.00±0.32 65.81±0.11

MaxLogit 91.71±0.73 84.49±0.45 94.15±1.21 79.31±0.72 87.67±0.33 74.48±0.13

TrustScore 97.14±0.31 92.33±0.13 99.32±0.20 87.49±0.61 89.03±0.46 82.49±0.58

T.S. 96.11±0.50 92.31±0.12 98.63±0.40 88.11±0.46 92.83±0.25 86.44±0.09

T.S. (w/ AS, single) 96.84±0.31 92.83±0.17 99.46±0.18 88.78±0.47 93.81±0.24 86.97±0.10

T.S. (w/ AS, multiple) 97.36±0.25 93.14±0.15 99.34±0.28 88.98±0.47 93.64±0.24 87.36±0.10
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Figure 4. Pairwise correlation heatmap among any two pretrained
models on FOOD dataset. Pretrained models trained with the
same dataset tend to give similar information about neighborhood
agreement, regardless of the architecture. IM1K: ImageNet-1K,
IM21K: ImageNet-21K, indicating the pretraining dataset of the
pretrained model. See Figure 10 for plots for each dataset.

for each pretrained model, which implies that a pretrained
model with a potentially better performance in a downstream
dataset can be more useful to detect failures for a model
trained with this dataset.

Agreement Correlation Within and Between Model Fam-
ilies Beyond studying the effect of each pretrained model,
we further investigate when two pretrained models tend to
have similar agreement on the same sample. Specifically,
we compute neighbor agreement between a trained model

and a pretrained model for each sample. Hence, we obtain
the pairwise correlation, i.e. Pearson Correlation, between
any two pretrained models. Figure 4 and 10 display the
overall correlation map and show an interesting observation:
the models pretrained on the same datasets tend to give more
similar information and are less affected by the architectures.
This observation also implies that when pretrained models
can achieve comparable performance, we should select the
models that use different pre-training data to benefit from
the more diverse information.

4.3. Failure Detection in OOD

We further verify our method under distribution shifts,
which simulate the challenging tasks encountered in a real-
world deployment. Classifiers may produce more inaccurate
predictions when dealing with unseen data, highlighting the
need for failure detection for safety.

The results are shown in Table 2, where we treat CIFAR10
and CIFAR100 as ID data and train classifiers based on
these data, and test them on data distributions unseen during
training: CIFAR10.1, corrupted CIFAR10 and CIFAR100.
Similarly, we test on distribution shifts, ImageNetV2 and
ImageNet-Sketch for ImageNet as ID data. All evaluation
settings follow those used in ID data evaluation. The results
show that our method can generalize well in distribution
shift cases and generally outperform the baselines.
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Table 2. AUROC (%) Performance on distribution shift datasets averaged on 6 runs. All evaluation settings follow those used in Table 1.

CIFAR10.1 CIFAR10-C CIFAR100-C ImageNetV2 ImageNet-SK
Model Method

CNN

MSP 89.09±1.08 77.83±1.46 77.70±0.66 83.93±0.00 79.40±0.00

Entropy 89.11±1.12 78.03±1.53 78.41±0.71 81.63±0.00 80.01±0.00

Energy 86.94±1.37 77.20±1.84 79.18±0.72 71.24±0.00 75.77±0.00

MaxLogit 87.09±1.35 77.40±1.83 79.38±0.72 75.37±0.00 77.56±0.00

TrustScore 91.39±0.19 82.01±0.77 80.81±0.57 74.91±1.01 74.04±1.26

T.S. 88.83±1.18 78.14±1.58 78.57±0.81 84.07±0.00 79.05±0.02

T.S. (w/ AS, single) 95.20±0.71 88.96±1.20 80.64±0.78 84.11±0.03 79.16±0.06

T.S. (w/ AS, multiple) 96.09±0.65 92.76±0.53 83.54±0.60 84.11±0.04 79.16±0.10

ViT

MSP 96.46±0.27 92.42±0.62 87.61±0.53 82.87±0.00 81.81±0.00

Entropy 96.41±0.28 92.42±0.62 87.75±0.49 80.08±0.00 80.24±0.00

Energy 91.39±0.47 89.19±1.24 83.39±0.33 66.39±0.00 72.43±0.00

MaxLogit 91.69±0.43 89.42±1.23 83.96±0.35 73.61±0.00 77.05±0.00

TrustScore 96.08±0.36 92.21±0.77 88.00±0.47 81.71±0.43 80.31±0.31

T.S. 96.23±0.29 92.35±0.66 87.69±0.48 83.68±0.02 82.00±0.00

T.S. (w/ AS, single) 96.28±0.52 92.61±0.52 87.87±0.49 84.38±0.07 83.00±0.10

T.S. (w/ AS, multiple) 96.64±0.39 93.48±0.33 88.35±0.48 84.77±0.06 83.29±0.10

Figure 5. Four exemplar samples in ImageNet.top/bottom: sam-
ples with high/low agreement scores; left/right: failure/correct
predictions. The top and bottom row of each sample box shows
neighborhood samples under the trained model(fine-tuned ViT/B-
16) and foundation model (i.e., CLIP ViT/L-14), respectively. The
samples with lower agreement scores tend to have multiple objects
in the pictures, leading to intrinsic difficulties for the model in
correctly predicting and thus disagreement between models.

4.4. Case Study

What samples tend to get lower/higher agreement
scores? Besides the numeric results, we also take a closer
look at the samples that receive lower or higher agreement
scores. Notably, as our method is based on neighborhood
similarity, it enables some explanation ability by inspect-
ing the difference between the neighborhood samples ob-
tained from different models, especially when low agree-
ment scores occur. We would like to highlight this as it
enables human experts to further investigate the root cause
of failed predictions.

Figure 5 shows the erroneous and correct samples with high
and low agreement scores in ImageNet. We visualize the
nearest 5 samples under the trained classifier (fine-tuned

ViT/B-16) and a foundation model (CLIP ViT/L-14). We
observe that samples with low agreement scores tend to be
complex or contain multiple objects, leading to intrinsic
difficulties for the model in correctly predicting and thus
disagreement between models; while samples with high
agreement scores usually contain a single prominent object.

4.5. Ablation Study

Effect of k and neighbor candidate pool size n In Fig-
ure 6, we analyze the effect of k and the neighbor candi-
date pool size n on two different datasets: CIFAR10 and
CIFAR100 datasets, by varying the number of neighbors
k ∈ {10, 20, 50, 100, 200, 500, 1000} and neighbor candi-
date pool size n ∈ {2000, 5000, 10000, 20000, 50000}. It
shows that the average performance is better and less sen-
sitive to the choice k with increasing pool size n. In Ta-
ble 7, we can see that even using a small subset of train-
ing data (e.g. n = 2000, < 5% training data from CI-
FAR10/CIFAR100) can already perform better than the
baseline methods. Generally, the performance improves
with larger pool sizes but stabilizes around an n of 10000 to
20000 for CIFAR10/CIFAR100.

Other choices of agreement measure To further study
the impact of agreement measure, we replace NDCG with
other similarity measures: Spearman’s rank correlation coef-
ficient, Centered Kernel Alignment (CKA) (Kornblith et al.,
2019a) and Jaccard Similarity between k-hop neighborhood
sets. For fair comparison, we also use k-hop neighborhood
samples to compute CKA. The linear CKA and RBF-kernel
CKA report similar results in our experiments. As shown in
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N
0
20000

40000

K 0
500

1000

AUROC(%
) 94

95
96
97

CIFAR10

N
0
20000

40000

K 0
500

1000

AUROC(%
) 88

89
90

CIFAR100

Figure 6. Ablation study with different k and n for CIFAR10 and
CIFAR100. See the numeric results in Table 7.

Table 8, the results imply the importance of neighborhoods,
adaptivity to more general transformations, and ranking in-
formation, by the comparison with Spearman, CKA, and
Jaccard respectively. Note that, the adaptivity to more gen-
eral transformations is most important among these factors
as NDCG and Jaccard outperform CKA and Spearman,
which might be credited to the fact that NDCG is invariant
to more general transformations compared to CKA.

5. Theoretical Analysis
In this section, we discuss how foundation models correlate
with the reliability of a trained model prediction by latent
spaces agreement and justify the use of NDCG scores as
latent spaces agreement.

Setup For analysis, we discuss the cases under a regres-
sion problem. Let the training dataset contains N samples,
D′ = {x(i), y(i)}Ni=1, where x(i) ∈ Rd is the i-th input
sample and y(i) is the ground-truth scalar value. We can
denote the predictor fw,B(x) = w⊤B(x), which consists
of a feature extractor with normalization B : Rd → Rk,
and a weight vector w ∈ Rk×1. Thus, given the train-
ing dataset D′, one can obtain a well-trained predictor
fw0,B0

(x) by minimizing a loss function l, i.e. w0, B0 =
argminw,B l(x, y,w, B), where the loss function can be
squared loss, etc. We use ∥·∥ as ℓ2 norm. Let H : Rd → Rk

be the pretrained encoder for a foundation model.

5.1. Relation between Prediction Error and Latent
Space Agreement

We denote loss function l(x, y, B,w) := ∥w⊤B(x) − y∥.
Let w0 := argminw

1
n

∑
x

∥∥w⊤B0(x)− y
∥∥. We as-

sume there exists an isometric transformation Uh ∈ U ,
where U contains all possible isometric transformations and
Uh := argminU E ∥B0(X)− UH(X)∥. We assume that
there exists a head wh ∈ Rk×1, where

∥∥w⊤
h U

−1
h −w⊤

0

∥∥ =
∥∆∥ ≤ C . We use normalized features, i.e. ∥B0(x)∥ = 1.

Proposition 5.1. Given a test sample x and its ground-truth
value y, the trained encoder B0 and its linear head w0, we
have a pretrained encoder H from a foundation model. If

the pretrained encoder predicts correctly: l(x, y,H,wh) =
0, the prediction error l(x, y, B0,w0) ≤ (C + ∥w0∥) ·
∥B0(x)− UhH(x)∥+ C.

Proof. The detailed proof is relegated to Appendix D.

In summary, if two latent spaces highly agree on a sample x,
i.e. ∥B0(x)− UhH(x)∥ close to 0, the model is more likely
to predict accurately on x. However, measuring this latent
space agreement ∥B0(x)− UhH(x)∥ can be challenging
as there exists an unknown isometric transformation Uh.

5.2. Local Approximation Isometry and NDCG

Next, we show that NDCG provides an effective measure
of similarity between latent spaces irrespective of rotations
or distortion. To show this, we first define a transformation
f which approximately preserves distances around x, as a
δ-Local Approximation Isometry:
Assumption 5.2. (δ-Local Approximation Isometry). ∀z ∈
Nk(x),∃δ ≥ 1, ∥f(z)−f(x)∥

∥z−x∥ ∈
(
1
δ , δ

)
.

Intuitively, δ describes how ‘approximately’ the distances
are preserved by f . For example, when δ = 1, all the
samples around x are strictly distance-preserving, so the
neighborhood and ranking of neighborhood samples do not
change. As δ increases, the neighborhood after applying f
differs more from the original neighborhood, as does the
ranking of neighborhood samples.
Proposition 5.3. (Lower Bound of NDCG scores). Given
an input sample x, Π∗ and Π′ are permutations before and
after a δ-local approximation isometric transformation f ,
we have NDCG(Π∗,Π′, r) ≥ 1

δ2 , when r = 1/d(·,x) and
d is a distance scoring function.

Proof. The detailed proof is relegated to Appendix D.

This shows that if a local approximate isometry exists near
a point x, the NDCG is guaranteed to be high (≥ 1/δ2). As
δ approaches 1, the NDCG also approaches 1.

6. Conclusions
While powerful foundation models have received increasing
attention, their use in improving model reliability is still
underexplored due to the challenges of incompatible latent
spaces between foundation models and a trained classifier.
In this paper, we proposed a novel inter-model latent agree-
ment framework to overcome this incompatible issue and
improve the reliability of a trained classifier without any
fine-tuning. We first show the agreement correlates well
with classification accuracy. Motivated by this, our frame-
work enables incorporating the agreement score into predic-
tive confidence to improve failure detection performance.
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We conduct extensive experiments on failure detection to
verify the benefits of our framework to improve model reli-
ability and provide theoretical justification for our method.
We believe our proposed neighborhood agreement measure
between latent spaces can further benefit the study of the
interconnection between different models.
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A. Experimental Setup
A.1. Datasets

We run experiments on six in-distribution datasets and five distribution shifts to evaluate the failure detection performance.
For in-distribution, we use CIFAR10 (Krizhevsky et al.), CIFAR100, STL (Coates et al., 2011), BIRDS (Wah et al., 2011),
FOOD (Bossard et al., 2014) and a large-scale dataset, ImageNet (ImageNet-1K) (Deng et al., 2009). For distribution shifts,
we use CIFAR10.1 (Recht et al., 2018), Gaussian Blur Corrupted CIFAR10 samples (CIFAR10-C) (Hendrycks & Dietterich,
2019) with a severity level of 5 as natural and corruption distribution shift for CIFAR10. Similarly, we use Gaussian Blur
Corrupted CIFAR100 samples (CIFAR100-C) as corruption distribution shift for CIFAR100. For ImageNet, we fine-tune
on ImageNet and evaluate failure detection on distribution shifts: ImageNetV2 (Recht et al., 2019) and ImageNet-Sketch
(ImageNet-SK) (Wang et al., 2019). See details about datasets and split settings in Table 3.

Table 3. Number of images per data set and associated splits

Datasets Classes Train Size Val. Size Test Size Unlabeled Set Size

CIFAR10 10 50000 1000 9000 -
CIFAR100 100 50000 1000 9000 -
BIRDS 200 5994 2897 2897 -
STL 10 5000 4000 4000 100000
FOOD 102 75750 12625 12625 -
ImageNet 1000 1281167 10000 40000 -

CIFAR10-C 10 - - 10000 -
CIFAR100-C 10 - - 10000 -
CIFAR10.1 10 - - 2000 -
ImageNetV2 1000 - - 10000 -
ImageNet-Sketch 1000 - - 50000 -

A.2. Base Models

We consider two common architectures: CNN-base (ResNet-50) and ViT-base (ViT-B/16) models as base classifiers across
all datasets. To see if our method can still outperform on ”pretrained and fine-tuned” models, all our base classifiers
are initialized with a larger-scale data pretrained model and then fine-tuned. For all datasets except ImageNet, our base
classifiers are trained with initializing with ResNet-50 architecture pretrained on ImageNet-1K examples and ViT/B-16
model pretrained on ImageNet-21K examples. For ImageNet, we use public fine-tuned models from PyTorch Image
Models (Wightman, 2019), which are ImageNet-21K pretrained ResNetV2-50 model and CLIP pretrained ViT/B-16 model.
We use penultimate layer output as the encoding feature vectors for the trained models.

Model Architectures and pretraining source For all datasets except for ImageNet, our base models are trained with
initializing with ResNet-50 model pretrained on ImageNet-1K examples and ViT/B-16 model pretrained on ImageNet-21K
examples. For ImageNet, we use public fine-tuned models from TIMM (Wightman, 2019), which are fine-tuned on
ImageNet based on CLIP ViT/B-16 model.

Training Receipt For ResNet-50 models, we fine-tune with Adam optimizer with learning rate 1e− 4 and (β1, β2) =
(0.9, 0.99). For CIFAR10, CIFAR100, STL and BIRDS, we fine-tune for 50 epochs. For FOOD, we fine-tune for 20 epochs.
We use the public trained ImageNet classifier from (Wightman, 2019).

For ViT, we fine-tuned with cosine annealing scheduler. The detail is shown in Table 4.

Base Models Performance For sanity check of trained classifiers, we show the average classification accuracy of our
trained models used in this paper in Table 5.
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Table 4. Training parameters per data set for ViT. init-lr: Initial learning rate of the cosine annealing scheduler as selected. steps: Number
of batches that was trained on.

Datasets init-lr batch size steps

CIFAR10 3e-4 64 15000
CIFAR100 3e-4 64 15000
BIRDS 3e-4 64 5000
STL 3e-4 64 4000
FOOD 3e-4 32 47000

Table 5. Average classification accuracy (%) of trained classifiers used in our paper.

Model CIFAR10 CIFAR100 STL BIRDS FOOD ImageNet

CNN 97.36 85.04 97.79 77.68 81.53 80.31
ViT 99.09 93.47 99.33 84.76 90.60 85.24

A.3. Foundation/Pretrained Models

In this work, we have included 23 public pretrained models of diverse architectures, training data and optimization losses.
For specific, these models can be categorized into 5 model families as: CLIP ViT/ResNet (Radford et al., 2021), ViT
(pretrained on ImageNet-21K or ImageNet-1K) (Dosovitskiy et al., 2020; Steiner et al., 2022), BiT-M (Kolesnikov et al.,
2020), ResNet (He et al., 2016) and MoCov3 (Chen et al., 2021). Among the candidate models, the model with best
fine-tune ImageNet accuracy is CLIP ViT/L-14 (87.85%) and the second best is ViT/L-16 (ImageNet-21K) (87.08%)3. We
use penultimate layer output as the encoding feature vectors for the pretrained models. Except for multi-modal foundation
model CLIP, we use the image encoders. We introduce the model families as follows:

• CLIP-RN/VIT We include four ResNet-based contrastive CLIP models (ResNet-50, ResNet-101, ResNet50x4,
ResNet50x64) and three ViT-based CLIP models (ViT/B-32, ViT/B-16, ViT/L-14).

• Vision Transformer (ViT) We include ViT models pretrained on ImageNet-1K (Steiner et al., 2022; Dosovitskiy et al.,
2020)(ViT/S-16, ViT/B-16, ViT/B-16@384px) and ImageNet-21K(ViT/T-16, ViT/S-16, ViT/B-16, ViT/L-16).

• BIT-M We use four ResNetv2-based model pretrained in ImageNet21K: ResNetv2-50, ResNetv2-50x3, ResNetv2-101,
RseNetv2-152x4.

• ResNet We use three ResNet models prerained in ImageNet-1K: ResNet-50, ResNet-101, ResNet-152.

• MoCov3 We include the self-supervised pretrained models with ResNet-50 and ViT/B-16 architectures.

A.4. Method Implementation

Hyperparameters We have training set size n and neighborhood size k as hyperparameters. For main results, except
for the ablation study, we use n = 10000 across all datasets, except for BIRDS with 5994 training samples in total. The
candidate pool is sampled from the training set except for STL, for which we sample from the unlabeled set. We select
k ∈ {10, 20, 50, 100, 200, 500, 1000} with optimal AUROC performance on validation split for each dataset. See Table 6.

we extract the features with different pretrained encoders and save for the later test stage. For feature extracting, we only
require one-pass inference cost on training sample set, which is low computational compared to fully fine-tuning or adapting.

A.5. Baselines

Our baseline methods include the Maximum Softmax Probability (MSP) (Hendrycks & Gimpel, 2017), other uncertainty
measure from the trained model: Entropy and Energy (Lakshminarayanan et al., 2017; Liu et al., 2020), the distance based
measure: TrustScore (Jiang et al., 2018), MaxLogit proposed for distribution shift (Vaze et al., 2022) and the vanilla
Temperature Scaling (T.S.) (Guo et al., 2017).

3as reported in (Wightman, 2019).
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Table 6. Hyperparameters used in each dataset. Source: the data source of neighborhood samples. As STL has unlabeled samples, we
sample from its unlabeled split as neighborhood sample sets. Evaluation in distribution shifts use the same setting as the corresponding ID.

Datasets Source n k

CIFAR10 train 10000 200
CIFAR100 train 10000 20
BIRDS train 5994 10
STL unlabeled 10000 200
FOOD train 10000 20
ImageNet train 10000 10

A.6. Evaluation Metrics

Following the evaluation in (Hendrycks & Gimpel, 2017), we treat success/error prediction as positive and negative
respectively, and use the area under the receiver operating characteristic curve (AUROC) as evaluation metric, with a bigger
value indicating a more accurate failure detection.

B. Framework

Algorithm 1 Inter-model Latent Agreement

Input: Training dataset Dtr, validation dataset Dval, the encoder B from a trained classifier, the pretrained encoders
H = {H1, . . . ,Hm} from m foundation models, test sample xtest

Output: the adjusted probabilities: P̃ (Y | xtest)
Collect feature vectors with encoders B and H1, . . . ,Hm based on Dtr as Z and H1, . . . ,Hm. ▷ Eq(4)(5)
Calibration:
For x in Dval, we compute AS(x, B,H) ▷ Eq(9)
Obtain τ∗(x) by minimizing the NLL loss on Dval ▷ Eq(10)(11)
Test Stage:
Given a test sample xtest, we compute AS(xtest, B,H) ▷ Eq(9)
Return: the adjusted probabilities: P̃ (Y | xtest) with τ∗(xtest) ▷ Eq(11)

C. Failure Detection Results
C.1. Ablation Study

We show the numeric results of ablation study on hyperparameters and choices of agreement measures in Table 7 and 8,
respectively.

Table 7. Ablation study on different k and N

MSP T.S. N=2000 N=5000 N=10000 N=20000 N=50000

CIFAR10 94.15 93.76 97.26 97.40 97.45 97.53 97.50
CIFAR100 88.42 87.21 89.08 89.58 89.63 90.16 90.38

We can see that even using a small subset of training data (e.g. N=2000, < 5% training data from CIFAR10/CIFAR100)
can already perform better than the baseline methods. The numeric results show that our method works well without a
large amount of training data as the pool. Generally, the performance improves with larger pool sizes but stabilizes around
an N of 10000 to 20000. Note that, with varying n, we select k ∈ {10, 20, 50, 100, 200, 500, 1000} with optimal AUROC
performance on validation split, which is following our main result experimental protocol.

We replace NDCG with other similarity measures: Spearman’s rank correlation coefficient, Centered Kernel Alignment
(CKA) (Kornblith et al., 2019a) and Jaccard Similarity between k-hop neighborhood sets. For fair comparison, we also
use k-hop neighborhood samples to compute CKA. The linear CKA and RBF-kernel CKA report similar results in our
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Table 8. Ablation study on different choices of agreement measures. The performance is averaged over all ID datasets.

Method Avg AUROC(%)

MSP 91.11
T.S. 90.98
T.S. (w/ Spearmanr, single) 90.87
T.S. (w/ CKA, single) 90.99
T.S. (w/ Jaccard, single) 92.59
T.S. (w/ AS, single) 92.67

experiments. In Table 8, the results imply the importance of neighborhoods, adaptivity to more general transformations,
and ranking information, by the comparison with Spearman, CKA, and Jaccard respectively. Note that, the adaptivity to
more general transformations is most important among these factors as NDCG and Jaccard outperform CKA and Spearman,
which might be credited to the fact that NDCG is invariant to more general transformations compared to CKA.

C.2. Exploration Study

Note that, the exploration study about KNN Accuracy and Correlation heatmap is conducted on CNN-based trained
classifiers across different datasets.
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Figure 7. Failure detection performance AUROC(%) for each pretrained model average over all ID datasets (ImageNet excluded). x-axis:
inference GPU cost.
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Figure 8. Failure detection performance AUROC(%) for each pretrained model average over all ID datasets (ImageNet excluded). x-axis:
finetune ImageNet accuracy (%) of pretrained model.
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in each dataset.
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Figure 10. Correlation heatmap inter different pre-trained model families.
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D. Proof of Theoretical Analysis
Setup we discuss the cases under a regression problem. Let the training dataset contains N samples, D′ = {x(i), y(i)}Ni=1,
where x(i) ∈ Rd is the i-th input sample and y(i) is the ground-truth scalar value. We can denote the predictor fw,B(x) =
w⊤B(x), which consists of a feature extractor with normalization B : Rd → Rk, and a weight vector w ∈ Rk×1.
Thus, given the training dataset D′, one can obtain a well-trained predictor fw0,B0

(x) by minimizing a loss function l,
i.e. w0, B0 = argminw,B l(x, y,w, B), where the loss function can be squared loss, etc. We use ∥ · ∥ as ℓ2 norm. Let
H : Rd → Rk be the pretrained encoder for a foundation model.

We denote l(x, y, B,w) := ∥w⊤B(x) − y∥. Let w0 := argminw
1
n

∑
x

∥∥w⊤B0(x)− y
∥∥. We assume there

exists an rotation transformation Uh ∈ U , where U contains all possible rotation transformations and Uh :=
argminU E ∥B0(X)− UH(X)∥. We assume that there exists a head wh ∈ Rk×1, where

∥∥w⊤
h U

−1
h −w⊤

0

∥∥ = ∥∆∥ ≤ C .
We use normalized features, i.e. ∥B0(x)∥ = 1.
Proposition D.1. Given a test sample x and its ground-truth value y, the trained encoder B0 and its linear head w0, we
have a pretrained encoder H from a foundation model. If the pretrained encoder predicts correctly: l(x, y,H,wh) = 0, the
prediction error l(x, y, B0,w0) ≤ (C + ∥w0∥) · ∥B0(x)− UhH(x)∥+ C.

Proof.

l(x, y, B0,w0) =
∥∥w⊤

0 B0(x)− y
∥∥ (12)

=
∥∥(w⊤

h U
−1
h −∆)(UhH(x) +B0(x)− UhH(x))− y

∥∥ (13)

=
∥∥w⊤

h U
−1
h UhH(x)− y +w⊤

h U
−1
h (B0(x)− UhH(x)))−∆B0(x)

∥∥ (14)

=
∥∥w⊤

h U
−1
h (B0(x)− UhH(x))−∆B0(x)

∥∥ (15)
(a)

≤
∥∥w⊤

h

∥∥ · ∥B0(x)− UhH(x)∥+ C (16)
≤ (C + ∥w0∥) · ∥B0(x)− UhH(x)∥+ C, (17)

where (a) comes from ∥∆∥ ≤ C and ∥Uh∥ = 1.

In summary, that is if two latent spaces highly agree on a sample x, i.e. ∥B0(x)− UhH(x)∥ close to 0, the model is more
likely to predict accurately on x.

Recall that if a transformation f can approximately preserve the distance around x after the transformation, we call this
transformation δ-Local Approximation Isometry:

Assumption D.2. (δ-Local Approximation Isometry). ∀z ∈ Nk(x),∃δ ≥ 1, ∥f(z)−f(x)∥
∥z−x∥ ∈

(
1
δ , δ

)
.

Proposition D.3. (Lower Bound of NDCG scores). Given an input sample x, Π∗ and Π′ are permutations before and after
a δ-local approximation isometric transformation f , we have NDCG(Π∗,Π′, r) ≥ 1

δ2 , when r(·) = 1/d(·,x) and d is a
distance scoring function.

Proof.

NDCG(Π∗,Π′, r) =

∑n
i

r(Π′
(i))

log (i+1)∑n
i

r(Π∗
(i)

)

log (i+1)

=

∑n
i

1/d(xΠ′
(i)

,x)

log (i+1)∑n
i

1/d(xΠ∗
(i)

,x)

log (i+1)

(18)

(a)

≥
∑n

i

1/d(f(xΠ′
(i)

),f(x))

log (i+1) · 1
δ∑n

i

1/d(f(xΠ∗
(i)

),f(x))

log (i+1) · δ
(19)

(b)
=

∑n
i

r′(Π′
(i))

log (i+1) ·
1
δ∑n

i

r′(Π∗
(i)

)

log (i+1) · δ
(20)

(c)

≥ 1

δ2
, (21)
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where r′(·) = 1/d(f(·), f(x)), (a) comes from the definition of δ-local approximation isometry, (b) is substituting r′ and
(c) comes from the Rearrangement Inequality - note that in the numerator, the terms r′(Π′

(i)) are arranged in non-increasing
order with i, since Π′ is defined as the permutation which sorts samples based on their distances to x after applying the f
function, i.e. the distances defining the score r′. As such, in the numerator, both r′(Π′

(i)) and 1/ log(i+ 1) are arranged in
the same order: r′(Π′

(1)) ≥ · · · ≥ r′(Π′
(n)) and 1/ log(i+ 1) ≥ · · · ≥ 1/ log(n+ 1). In contrast, in the denominator, the

same r′ terms are present but in a (possibly) different order, so the denominator is smaller than or equal to the numerator by
the Rearrangement Inequality. Equality is achieved when the two permutations, Π∗ and Π′, are the same.

Intuitively, it shows that when the mapping between two spaces f is a δ-local approximation isometric transformation, if
δ approaches 1 (i.e. more distance-preserving / similar between the two spaces), the proposed metric based on NDCG is
guaranteed to be high (≥ 1/δ2), implying that our score function accurately reflects how similar the two latent spaces are.
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