
DSGD-CECA: Decentralized SGD with Communication-Optimal Exact
Consensus Algorithm

Lisang Ding 1 Kexin Jin 2 Bicheng Ying 3 Kun Yuan 4 5 6 Wotao Yin 7

Abstract
Decentralized Stochastic Gradient Descent (SGD)
is an emerging neural network training approach
that enables multiple agents to train a model col-
laboratively and simultaneously. Rather than
using a central parameter server to collect gra-
dients from all the agents, each agent keeps a
copy of the model parameters and communi-
cates with a small number of other agents to ex-
change model updates. Their communication,
governed by the communication topology and
gossip weight matrices, facilitates the exchange
of model updates. The state-of-the-art approach
uses the dynamic one-peer exponential-2 topol-
ogy, achieving faster training times and improved
scalability than the ring, grid, torus, and hy-
percube topologies. However, this approach re-
quires a power-of-2 number of agents, which is
impractical at scale. In this paper, we remove
this restriction and propose Decentralized SGD
with Communication-optimal Exact Consensus
Algorithm (DSGD-CECA), which works for any
number of agents while still achieving state-of-
the-art properties. In particular, DSGD-CECA
incurs a unit per-iteration communication over-
head and an Õ(n3) transient iteration complexity.
Our proof is based on newly discovered properties
of gossip weight matrices and a novel approach
to combine them with DSGD’s convergence anal-
ysis. Numerical experiments show the efficiency
of DSGD-CECA.

1Department of Mathematics, University of California, Los
Angeles, CA, USA 2Department of Mathematics, Princeton Uni-
versity, Princeton, NJ, USA 3Google Inc., Los Angeles, CA,
USA 4Center for Machine Learning Research, Peking Univer-
sity, Beijing, P. R. China. 5AI for Science Institute, Beijing, P.
R. China 6National Engineering Labratory for Big Data Analyt-
ics and Applications, Beijing, P. R. China 7Decision Intelligence
Lab, Alibaba US, Bellevue, WA, USA. Correspondence to: Lisang
Ding <lsding@math.ucla.edu>, Wotao Yin <wotao.yin@alibaba-
inc.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Decentralized computing (Tsitsiklis et al., 1986; Lopes &
Sayed, 2008; Nedic & Ozdaglar, 2009; Dimakis et al., 2010)
is an essential subclass of distributed computing with no
data fusion center. In scenarios where data and computa-
tional resources are distributed, decentralized computing
enables each agent to process its local data and communi-
cate with a selected group of other agents. This approach
helps avoid the formation of central-agent-induced com-
munication bottlenecks. Without a central agent, however,
the decentralized algorithm must achieve a global result
through peer-to-peer interactions of the agents. Hence, the
algorithm performance heavily depends on how effectively
and efficiently the agents exchange their information.

In scenarios where the global goal is to compute an average
across all agents, this challenge is identified as average con-
sensus or allreduce averaging. Various optimal methods are
established for a range of prevalent communication settings
to address this problem. The goal of this paper, however, is
to accelerate decentralized SGD (DSGD) (Chen & Sayed,
2012; Lian et al., 2017; Koloskova et al., 2020), which is
widely used in large-scale deep neural network training, by
applying average consensus methods judiciously.

When a distributed SGD algorithm relies on a parameter
server, the distributed agents have the same model param-
eters. However, when the scale of training requires us to
use a large number of distributed agents, the parameter
server becomes the bottleneck. Without a parameter server,
the agents in decentralized SGD algorithms maintain the
similarity among their copies of model parameters through
message passing. The cost to make them the same among
n agents is at least ⌈log2(n)⌉ rounds of message passing
with each agent sending and receiving one message at each
round, but this cost is unnecessary.

Performing only one round of message passing after each
mini-batch SGD step saves time though it causes the conver-
gence of SGD to take more steps. It is shown in (Lian et al.,
2017; Pu et al., 2019; Koloskova et al., 2020; Ying et al.,
2021a) that, for distributed smooth nonconvex objectives,
a decentralized approach with one communication round
per SGD step is slower than centralized SGD only during

1

Communication-Optimal Decentralized SGD

Table 1. Comparison between DSGD over different commonly-used topologies. “Static Exp.”: static exponential graph; “O.-P. Exp.”:
one-peer exponential graph; “DSGD-CECA-1P”: DSGD-CECA that supports 1-port communication model; “DSGD-CECA-2P”: DSGD-
CECA that supports 2-port communication model. Undirected graphs can admit symmetric gossip matrices. If some graph has a dynamic
pattern, its associated communication matrix will vary at each iteration. Notation Õ(·) ignores all polylogarithmic factors.

Topology Connection Pattern Per-iter Comm. Trans. Iters. size n

Ring (Nedić et al., 2018) undirected static Θ(1) O(n7) arbitrary
Grid (Nedić et al., 2018) undirected static Θ(1) Õ(n5) arbitrary

Torus (Nedić et al., 2018) undirected static Θ(1) O(n5) arbitrary
Hypercube (Trevisan, 2017) undirected static Θ(ln(n)) Õ(n3) power of 2

Static Exp.(Ying et al., 2021a) directed static Θ(ln(n)) Õ(n3) arbitrary
O.-P. Exp.(Ying et al., 2021a) directed dynamic (2-port) 1 Õ(n3) power of 2

DSGD-CECA-1P (Ours) undirected dynamic (1-port) 1 Õ(n3) even
DSGD-CECA-2P (Ours) directed dynamic (2-port) 1 Õ(n3) arbitrary

an initial period of iterations, called the transient period.
Afterward, SGDs with or without decentralization tend to
show similar performance. Given the expense and time-
intensive nature of large-scale training, a practical DSGD
should aim to minimize its transient period to enhance com-
petitiveness. Recent SGD methods based on various com-
munication topologies, each leading to different transient
iterations, are proposed. We provide a summary in Table 1.

Among different decentralized SGD algorithms, dynamic
exponential-2 (also known as one-peer exponential-2) mes-
sage passing (Assran et al., 2019; Ying et al., 2021a) is
currently state-of-the-art. For n that is a power of 2, every
agent sends messages to one single designated neighbor at
each SGD iteration according to a subgraph taken from a
cyclic sequence of log2(n) base subgraphs. This dynamic
exponential-2 message passing can reach exact global aver-
aging in log2(n) rounds of communication. Furthermore,
decentralized SGD based on dynamic exponential-2 graph
can obtain the state-of-the-art balance between per-iteration
communication and transient iteration complexity (Ying
et al., 2021a); it only incurs a unit communication overhead
per iteration and O(n3 log42(n)) transient iterations, both of
which are nearly the best among DSGDs implemented with
other commonly-used topologies.

Unfortunately, some excellent results of dynamic
exponential-2 message passing no longer hold when n is
not a power of 2, e.g., n = 10 or 100, including finite-time
convergence for average consensus and DSGD convergence
guarantees. As n increases, the number of instances where
n is a power of 2 becomes increasingly scarce. For example,
if one has a sizeable deep-learning training task that fits
well into 20 GPU nodes at hand, the current choice is to
either utilize a less-efficient DSGD algorithm or scale up to
32 nodes to run the most efficient DSGD algorithm.

Furthermore, dynamic exponential-2 message passing op-
erates exclusively within the 2-port communication model

over directed topologies. In this model, each agent sends
information to an agent and receives information from an-
other agent simultaneously in each round. Contrarily, it is
not applicable to 1-port model over undirected topologies
where each agent sends and receives information to/from
the same agent during each communication round. 1-port
model is typically more efficient in full-duplex communi-
cation systems, and it admits symmetric gossip commu-
nication matrices, which are required by many important
decentralized optimization algorithms such as decentralized
ADMM (Shi et al., 2014), EXTRA (Shi et al., 2015), and
Exact-Diffusion/D2 (Yuan et al., 2019; Li et al., 2019; Tang
et al., 2018).

Since dynamic exponential-2 suffers from the above limita-
tions, we ask the following question. Can we develop new
DSGD algorithms that work for any n (or at least any even
n), support both 1-port and 2-port communication models,
and inherit the nice properties of dynamic exponential-2?
This paper provides affirmative answers.

1.1. Contributions

This paper introduces a novel DSGD algorithm that works
for any n (or any even n under the 1-port communication
model) and achieves state-of-the-art balance between per-
iteration communication and transient iteration complexity.
Our main contributions are listed as follows.

• We revisit a less well-known but communication-optimal
exact consensus algorithm (CECA) proposed in (Bar-
Noy et al., 1993). CECA requires ⌈log2(n)⌉ rounds of
message passing (which is optimal and cannot be fur-
ther reduced) to achieve global averaging. The original
CECA is restricted to 2-port communication. We im-
prove this algorithm to 1-port communication for any
even n and show that it achieves exact average consensus
in ⌈log2(n)⌉ rounds of message passing.

2

Communication-Optimal Decentralized SGD

• We next judiciously apply CECA into decentralized learn-
ing and propose DSGD-CECA. To save communications,
our algorithm only conducts one single round of CECA
message passing after each mini-batch SGD step. To
guarantee convergence, our algorithm introduces a new
strategy that maintains copies of local models, thereby
inheriting the periodic global averaging property from
CECA. Besides, DSGD-CECA works for any n under the
2-port communication model and any even n under the
1-port model. Importantly, our DSGD-CECA supports
both directed graphs and undirected graphs.

• We further establish that DSGD-CECA incurs a Θ(1) per-
iteration communication overhead and Õ(n3) transient
iteration complexity; both of which are optimal compared
to the baselines; see Table 1. The convergence analysis
of DSGD-CECA is non-trivial because the gossip weight
matrix of CECA is not doubly-stochastic. However, our
analysis leverages newly discovered properties of this ma-
trix, which helps resolve analysis challenges significantly.

Notes. This paper considers deep neural network training
within high-performance data-center clusters, in which the
network topology can be fully controlled and any two GPUs
can communication (through network switches) when nec-
essary. The proposed algorithms may not work well in
scenarios (e.g., wireless sensor networks, internet of vehi-
cles, etc.) where connection constraints exist. In addition,
this paper studies deterministic message passing listed in
Table 1. There are recent works that study DSGD with
stochastic message passing (reviewed below). However,
stochastic message passing is less easy to control and imple-
ment. Moreover, it can cause DSGD to be arbitrarily slow
with non-zero probability.

2. Preliminary and Related Work
2.1. Preliminary

Problem. Consider n computing agents working collabora-
tively to solve the distributed optimization problem.

minx∈Rd f(x) =
1

n

n∑
i=1

fi(x), (1)

where fi(x) = Eξi∼DiF (x; ξi). In the above problem, ξi
denotes random local data kept at agent i, and it is sampled
from distribution Di. It is common that Di ̸= Dj when i ̸=
j, which causes the data heterogeneity issue in distributed
learning problems.

Network topology and communication matrix. Decen-
tralized optimization depends on partial averaging among
connected agents, the relationships of which are dictated by
the network topology—either directed or undirected—that

Figure 1. (a) The 2-port communication model. Each agent sends
information to one neighbor and receives information from another
different neighbor per communication round. (b) The 1-port com-
munication model. Each agent is paired with one single neighbor
and exchanges information with it.

links all the agents. We let P ∈ Rn×n denote a communica-
tion matrix that characterizes the sparsity and connectivity
of the network topology. To this end, we let Pi,j = 1 if
agent j can send information to agent i otherwise Pi,j = 0.

Communication models. This paper will develop decentral-
ized SGD algorithms based on the following communication
models.

• 1-port model. This model applies to undirected network
topologies. In this model, during each communication,
each agent communicates bidirectionally, both sending
and receiving information to and from the same agent,
as shown in Fig. 1(b). 1-port model admits symmetric
communication matrix which are required in many popu-
lar decentralized optimization methods, and it is typically
more efficient than 2-port model in full-duplex communi-
cation systems. OU-EquiDyn (Song et al., 2022) adheres
to the 1-port communication model.

• 2-port model. This model operates over directed network
topologies. Each agent in this model sends information
to an agent and receives information from another agent
simultaneously in each round, as illustrated in Fig. 1(a).
Both dynamic exponential-2 (Ying et al., 2021a) and OD-
EquiDyn (Song et al., 2022) follow the 2-port model.

It is worth noting that both 1-port and 2-port models are
efficient in communication. They only incur Θ(1) commu-
nication overhead per iteration since each agent in these
models only talks with one single neighbor.

Decenralized SGD. Decentralized SGD (DSGD), an emerg-
ing training technique for large-scale deep learning, relaxes
the global averaging step in traditional parallel SGD to
inexact partial averaging within neighborhood. It is char-
acterized by its substantially less (and thus faster) com-
munication every iteration. The less neighbors each agent
needs to talk with (i.e., the sparser the network topology
is), the faster the per-iteration communication is. However,

3

Communication-Optimal Decentralized SGD

0 2000 4000 6000 8000
Iterations

10 3

10 2

10 1

100

101

M
ea

n-
Sq

ur
e

Er
ro

r

Transient Iterations

Decentralized SGD
Parallel SGD

Figure 2. Illustration of the transient iterations (Ying et al., 2021a).

the communication efficiency in DSGD comes at a cost –
slower convergence since partial averaging is less effective
to aggregate information. It is found in (Lian et al., 2017; Pu
et al., 2019; Koloskova et al., 2020) that DSGD can achieve
the same convergence rate as parallel SGD after some tran-
sient iterations, see Fig. 2 for an illustration. The longer the
transient period is, the slower the algorithm converges. This
paper targets to develop new algorithms that attain mini-
mal transient iteration complexity with little communication
overhead per iteration.

Assumptions. We introduce several standard assumptions
for problem (1).

Assumption 2.1 (LIPSCHITZ SMOOTHNESS). Each local
function fi is L−smooth, i.e., ∥∇fi(x) − ∇fi(y)∥ ≤
L∥x− y∥ for any x,y ∈ Rd.

Assumption 2.2 (GRADIENT NOISE). Random data vari-
able ξ

(k)
i is independent of each other for any k and i.

The gradient noise satisfies Eξi∼Di
[∇F (x; ξi)] = ∇fi(x),

Eξi∼Di∥∇F (x; ξi)−∇fi(x)∥2 ≤ σ2, for any x ∈ Rd.

Assumption 2.3 (DATA HETEROGENEITY). The local func-
tions satisfies 1

n

∑n
i=1 ∥∇fi(x) − ∇f(x)∥2 ≤ b2 for any

x ∈ Rd and i.

Notations. Throughout the paper, we let [n] = {1, · · · , n}
and define a mod operation that returns a value in [n] as

i mod n =

{
ℓ if i = kn+ ℓ for some ℓ ∈ [n− 1],
n if i = kn.

where k is an integer. When i is the agent index, we will
simplify (i − ℓ) mod n as i − ℓ for any ℓ ∈ [n]. For
example, suppose n = 6 and i = 1, it holds that i− 1 = 6
and i− 2 = 5.

2.2. Related work

Decentralized deep training. Decentralized SGD algo-
rithms (Lopes & Sayed, 2008; Yuan et al., 2016; Lian et al.,
2017; Koloskova et al., 2019) are widely used to acceler-
ate large-scale deep training. These algorithms have been
extended to various practical settings, including those with

directed (Assran et al., 2019) and time-varying (Kong et al.,
2021; Ying et al., 2021a; Koloskova et al., 2020) network
topologies, asynchronous model updating (Lian et al., 2018;
Niwa et al., 2021), and momentum acceleration (Lin et al.,
2021; Yuan et al., 2021). However, DSGD suffers from data
heterogeneity issues (Koloskova et al., 2020; Yuan et al.,
2020) in the meanwhile. Various advanced techniques such
as EXTRA (Shi et al., 2015), Exact-Diffusion/D2 (Yuan
et al., 2019; Li et al., 2019; Yuan & Alghunaim, 2021; Tang
et al., 2018), and gradient-tracking (Di Lorenzo & Scutari,
2016; Xu et al., 2015; Nedic et al., 2017; Qu & Li, 2018;
Xin et al., 2020; Alghunaim & Yuan, 2021) are proposed
to mitigate the impact of data heterogeneity and thereby
accelerating the DSGD convergence.

Message passing with asymptotic consensus. Decentral-
ized learning methods are typically based on gossip averag-
ing. While gossip averaging allows for quick per-iteration
communication when running over topologies such as rings,
grids, and torus, the rate of convergence towards the average
consensus slows as n increases (Nedić et al., 2018). The
hypercube graph (Trevisan, 2017) maintains a nice balance
between communication efficiency and consensus rate. But
a hypercube cannot be formed when network size n is not
a power of 2. The static exponential graph (Ying et al.,
2021a), on the other hand, works for any n, but only ad-
mits directed weight matrices. Stochastic message passing
is also widely used in decentralized learning. The Erdos-
Renyi graph (Nachmias & Peres, 2008; Benjamini et al.,
2014; Nedić et al., 2018) and the geometric random graph
(Beveridge & Youngblood, 2016; Boyd et al., 2005) are
two representatives. A recent work (Song et al., 2022) pro-
poses a state-of-the-art family of EquiTopo graphs that incur
Θ(1) communication overhead per iteration and enjoy a
network-size independent consensus rate. However, these
stochastic message passing protocols can be difficult to con-
trol. Moreover, some realizations of these random protocols
can be arbitrarily slow to achieve asymptotic consensus with
non-zero probabilities.

Message passing with exact consensus. The concept
of exact consensus (also known as allreduce averaging) is
extensively studied within the high-performance computing
community. This approach can achieve exact global averag-
ing with a finite number of communication rounds. Well-
known methods include tree-allreduce (Ben-Nun & Hoefler,
2019), ring-allreduce (Patarasuk & Yuan, 2009) and BytePS
(Jiang et al., 2020). Recent works start integrating exact
consensus techniques to decentralized optimization to boost
performance. For example, (Ying et al., 2021a) utilizes dy-
namic exponential-2 to balance communication efficiency
and aggregation effectiveness in DSGD. Generally speak-
ing, it is non-trivial to develop new decentralized algorithms
with exact consensus techniques, mainly because they do
not contribute doubly stochastic weight matrices.

4

Communication-Optimal Decentralized SGD

3. Communication-Optimal Exact Consensus
3.1. 2-port optimal exact consensus

This section revisits the optimal message passing algorithm
CECA (Bar-Noy et al., 1993) for a 2-port communication
system with n agents, where n can be any positive integer.

Problem statement. Letting each agent i hold a local vari-
able ui, our target is to let each agent obtain ū = 1

n

∑n
i=1 ui

after τ = ⌈log2 n⌉ rounds of communication.

Auxiliary variables. We construct several auxiliary vari-
ables utilized in CECA.

• We convert n− 1 to a binary number as

n− 1 = (δ0 δ1 · · · δτ−1)2 (2)

where δ0 ̸= 0 is the most significant bit and δτ−1 is the
least significant bit, e.g., n− 1 = (101)2 when n = 6.

• We set n0 = 0 and calculate {nr+1}τ−1
r=0 by

nr+1 = 2nr + δr, r = 0, 1, 2, . . . , τ − 1. (3)

It is easy to verify that nτ = n−1. For example, if n = 6,
then τ = ⌈log2 6⌉ = 3 and n1 = 1, n2 = 2, n3 = 5.

• Let each agent i maintain variables I(r)i and J
(r)
i at itera-

tion r, and initialize them as I(0)i = ui and J
(0)
i = 0.

Main idea. For any r = 0, 1, · · · , τ −1, CECA will always
guarantee that

I
(r)
i =

1

nr + 1

nr∑
j=0

ui−j , J
(r)
i =

1

nr

nr∑
j=1

ui−j , r ≥ 1

0, r = 0

.

(4)
It is observed that I(r)i always keeps the average of agent i
and its nr previous neighbors, while J

(r)
i keeps the average

of agent i’s nr previous neighbors (but not including ui).
When r = τ − 1, it holds that I(r)i = 1

n

∑n
i=1 ui and hence

each agent will reach the average consensus.

Main recursions. To guarantee (4), CECA will conduct the
following recursions for each r = 0, 1, · · · , τ − 1.

If δr = 1 update

{
I
(r+1)
i = 1

2I
(r)
i + 1

2I
(r)
i−nr−1

J
(r+1)
i = nr

2nr+1J
(r)
i + nr+1

2nr+1I
(r)
i−nr−1

If δr = 0 update

{
I
(r+1)
i = nr+1

2nr+1I
(r)
i + nr

2nr+1J
(r)
i−nr

J
(r+1)
i = 1

2J
(r)
i + 1

2J
(r)
i−nr

More details on CECA as well as illustrating examples can
be referred to Appendix B.1.1.

1

6

5

4

2

3

1

6

5

4

2

3

1

6

5

4

2

3

I
()

I
()

I
()

I
()

I
()

I
()

J
()

J
()

J
()

J
()

J
()

J
()

I
()

I
()

I
()

I
()

I
()

I
()

Figure 3. An example of CECA for n = 6 agents. The method
conducts 3 communication rounds to reach average consensus.
The arrows and their labels indicate the information flows.

Communication patterns. From the main CECA recursion
listed above, it is observed that each agent will follow a
2-port communication model. To better capture the com-
munication pattern, we let Q(r) denote the communication
matrix employed at CECA round r. If agent j sends infor-
mation to agent i, we set Q(r)

i,j = 1; otherwise, Q(r)
i,j = 0.

If δr=1 then Q
(r)
i,j=

{
1, if i−j ≡ nr+1 (mod n)
0, otherwise (5)

If δr=0 then Q
(r)
i,j =

{
1, if i− j ≡ nr (mod n)
0, otherwise (6)

The matrix Q(r) is a permutation matrix that reflects the
dynamic topology for message exchanging, as illustrated in
Fig. 3 for the case when n = 6. Additionally, the matrix
Q(r) will facilitate the DSGD-CECA development.

3.2. 1-port optimal exact consensus

The vanilla CECA introduced in (Bar-Noy et al., 1993),
referred to here as CECA-2P, exclusively supports the 2-port
communication model. In this section, we will develop a
new variant, CECA-1P, that supports 1-port communication
model over undirected topology. CECA-1P enables each
agent to reach average consensus after τ = ⌈log2 n⌉ rounds
of communication when n is even.

Main recursions. To achieve average consensus, CECA-1P
introduces the same auxiliary variables as CECA-2P. The
main idea of CECA-1P is similar to CECA-2P. In round r,
agent i pairs with agent i+ 2nr + 1 if i is odd, otherwise,
it pairs with agent i − 2nr − 1. Following this, each pair
of agents exchanges information with each other. If δr = 1,
they exchange I(r); otherwise they exchange J (r) instead.
We let ω(r)

i denote the agent sending a message to agent i in
the rth round. CECA-1P conducts the following recursions
for each r = 0, · · · , τ − 1.

If δr = 1 update

 I
(r+1)
i = 1

2I
(r)
i + 1

2I
(r)

ω
(r)
i

J
(r+1)
i = nr

2nr+1J
(r)
i + nr+1

2nr+1I
(r)

ω
(r)
i

5

Communication-Optimal Decentralized SGD

1

6

5

4

2

3

1

6

5

4

2

3

1

6

5

4

2

3

I
()

I
()

I
() I

()

I
()

I
()

J
()

J
()

J
()

J
()

J
()

J
()

I
()

I
()

I
()

I
()

I
()

I
()

Figure 4. An example of CECA-1P for n = 6 agents. It is ob-
served that the resulting topology is undirected per iteration.

If δr = 0 update

 I
(r+1)
i = nr+1

2nr+1I
(r)
i + nr

2nr+1J
(r)

ω
(r)
i

J
(r+1)
i = 1

2J
(r)
i + 1

2J
(r)

ω
(r)
i

More details on CECA as well as illustrating examples can
be referred to Appendix B.1.2.

Communication patterns. The communication matrix
Q(r) in CECA-1P is given by

Q
(r)
i,j =

 1, i odd, j = i+ 2nr + 1
1, i even, j = i− 2nr − 1
0, otherwise

(7)

Note that Q(r) is a symmetric matrix. Fig. 4 illustrates the
communication pattern for CECA-1P when n = 6.

4. DSGD-CECA Algorithm
This section develops a novel DSGD algorithm based on
CECA, as discussed in §3.1. The resulting CECA-DSGD
works with any n in the 2-port communication model and
any even n in the 1-port model. In either scenario, DSGD-
CECA incurs Θ(1) per-iteration communication overhead
and Õ(n3) transient iteration complexity; both of which are
nearly the best compared to baselines, see Table 1.

Challenges. It is highly non-trivial to integrate CECA
to DSGD due to the following challenges. First, DSGD-
CECA splits CECA to a sequence of separate communica-
tion rounds, and it only performs one single CECA message
passing after each mini-batch SGD steps. It is unknown
whether this strategy will deteriorate the optimal commu-
nication efficiency of CECA. Second, CECA requires to
maintain two sets of variables, i.e., I(r) and J (r), to enforce
average consensus. It is unknown what auxiliary variables
shall be introduced to DSGD to facilitate the integration
with CECA. Third, the introduction of CECA to DSGD will
crash the doubly-stochastic property of the gossip weight
matrix in DSGD. For this reason, traditional theories in
(Koloskova et al., 2020; Alghunaim & Yuan, 2021; Ying
et al., 2021a) cannot be utilized to analyze DSGD-CECA.
This section will resolve all these challenges.

Algorithm 1 DSGD-CECA

Initialize: Randomly initialize x(0)
i ; set y(0)

i = x
(0)
i ; set

learning rate γ; compute τ = ⌈log2 n⌉; convert n− 1 =
(δ0 · · · δτ−1)2;
for k = 0, 1, 2, . . . , T do
r = k (mod τ);
if δr = 1 then

Compute g(k) = ∇F (x(k); ξ(k));
Let z(k) = x(k) and e(k) = g(k);
Sample communication matrix P(k) as Q(r) in (5);
Let a(k) = 1

2 and b(k) = nr

2nr+1 ;
else if δr = 0 then

Compute h(k) = ∇F (y(k); ξ(k));
Let z(k) = y(k) and e(k) = h(k);
Sample communication matrix P(k) as Q(r) in (6);
Let a(k) = nr+1

2nr+1 and b(k) = 1
2 ;

end if
Communicate z(k), e(k) among agents following P(k);
Update x(k+1) as in (8);
Update y(k+1) as in (9);

end for

4.1. Algorithm development

Algorithm description. We first introduce DSGD-CECA
that supports 2-port communication system. To this end, we
let each agent i maintain a local model xi and an additional
auxiliary model yi to facilitate the integration with CECA.
To better present the algorithm, we introduce the following
notations

x(k) = [(x
(k)
1)⊤; (x

(k)
2)⊤; · · · ; (x(k)

n)⊤],

y(k) = [(y
(k)
1)⊤; (y

(k)
2)⊤; · · · ; (y(k)

n)⊤],

∇F (x(k); ξ(k)) = [(∇f(x
(k)
1 ; ξ

(k)
1)⊤; · · · ; (∇f(x(k)

n ; ξ(k)n)⊤],

∇F (y(k); ξ(k)) = [(∇f(y
(k)
1 ; ξ

(k)
1)⊤; · · · ; (∇f(y(k)

n ; ξ(k)n)⊤].

With these notations, DSGD-CECA is listed in Algorithm 1.

DSGD-CECA follows a similar communication protocol as
CECA. The communicated information varies with itera-
tions, and it is determined by δr. Agent i sends information
(z

(k)
i − γe

(k)
i) to agent j when P

(k)
i,j = 1 and receives in-

formation (z
(k)
l − γe

(k)
l) from agent l where P

(k)
l,i = 1.

After the information communication, x and y will update
as follows

x(k+1) = a(k)(x(k) − γe(k))+

(1− a(k))P(k)(z(k) − γe(k)),
(8)

y(k+1) = b(k)(y(k) − γe(k))+

(1− b(k))P(k)(z(k) − γe(k)).
(9)

6

Communication-Optimal Decentralized SGD

Extension to 1-port system. DSGD-CECA listed in Algo-
rithm 1 is designed for 2-port communication system. But
it can be easily extended to 1-port system with even n. The
algorithm recursions are almost the same, except that in
each iteration, the communication matrix P(k) is sampled
as Q(r) in (7).

Implementation. The computation cost that incurs the high-
est expense in DSGD-CECA, primarily lies in the calcula-
tion of gradients. It is worth noting that, in each iteration,
every agent i simply needs to compute a single stochastic
gradient either at the current iterate x(k)

i or y(k)
i . Further-

more, the iteration updates given by equations (8) and (9)
involve only additions and scaling operations. Consequently,
the additional computational burden introduced by DSGD-
CECA is relatively minor when compared to vanilla DSGD.

4.2. Convergence analysis

CECA breaks double-stochasticity. To analyze DSGD-
CECA for both 1-port and 2-port communication models,
we introduce the following model mixing matrix W ∈
R2n×2n and gradient mixing matrix Wg ∈ R2n×2n. In
iteration k, we calculate r = k (mod τ). If δr = 1, we have

W(k) =

[
1
2In + 1

2P
(k) 0n

nr+1
2nr+1P

(k) nr

2nr+1In

]
,

W(k)
g =

[
1
2In + 1

2P
(k) 0n

nr

2nr+1In + nr+1
2nr+1P

(k) 0n

]
.

(10)

If δr = 0, we have

W(k) =

[nr+1
2nr+1In

nr

2nr+1P
(k)

0n
1
2In + 1

2P
(k)

]
,

W(k)
g =

[
0n

nr+1
2nr+1In + nr

2nr+1P
(k)

0n
1
2In + 1

2P
(k)

]
.

(11)

With mixing matrices W and Wg , the update in (8) and (9)
can be simply written as[

x(k+1)

y(k+1)

]
= W(k)

[
x(k)

y(k)

]
− γW(k)

g

[
g(k)

h(k)

]
. (12)

Vanilla DSGD typically requires mixing matrix be doubly
stochastic, i.e., each row and column sum equals 1. This
adorable property will enable the algorithm to converge to a
consensus and correct solution. However, it is observed in
(10) or (11) that neither W nor Wg is column-stochastic.
This will bring fundamental challenges to establish conver-
gence guarantees for DSGD-CECA.

Favorable properties of W and Wg. We next establish
several fundamental properties of W and Wg . To this end,
we introduce the mixing matrix family F as follows,

F =
{
W =

[
cW1,1 (1− c)W1,2

dW2,1 (1− d)W2,2

]
∈ R2n×2n,

where 0 ≤ c, d ≤ 1,Wi,j ∈ Rn×n doubly stochastic,

i, j ∈ {1, 2}
}

(13)

We summarize several properties for any W ∈ F . The
proofs are in Appendix B.2.
Lemma 4.1. The matrix family F satisfies the following
properties:

• The matrix family F is a convex subset of the row stochas-
tic matrices.

• For any W ∈ F , it holds that ∥W∥ ≤
√
2.

• For any W ∈ F , it holds that

W

[
1
n1n1

⊤
n 0n

0n
1
n1n1

⊤
n

]
=

[
1
n1n1

⊤
n 0n

0n
1
n1n1

⊤
n

]
W,

where 1n is the all-ones vector in Rn.

Lemma 4.2. In Algorithm 1, when the communication ma-
trix P(k) is sampled from (5) or (6) according to δr, and the
mixing matrix W(k) is sampled from (10) or (11) according
to δr. The product of matrices W(k) satisfies

t∏
k=0

W(k) =

[
1
n1n1

⊤
n 0n

1
n1n1

⊤
n 0n

]
, ∀t ≥ τ. (14)

Remark 4.3. Lemma 4.1 and Lemma 4.2 are fundamen-
tal to establish the convergence property of DSGD-CECA.
Lemma 4.1 implies that the gossip matrix in DSGD-CECA,
while not doubly stochastic, belongs to a family that shares
many similarities with the doubly stochastic matrix family.
These properties help break the doubly stochastic constraint
in the standard DSGD analysis framework. Lemma 4.2 es-
sentially states that, while not being column-stochastic, the
special structure of the gossip matrix as constructed in (10)
or (11) can still enable global average after multiplying with
more than (τ + 1) consecutive W(k). Both models x and
y can achieve the global average, which extends beyond the
findings of (Bar-Noy et al., 1993) that focused solely on the
consensus of the x model.

Convergence property. We finally establish the con-
vergence theorem of Algorithm 1. We let x̄(k) =
1
n

∑n
i=1 x

(k)
i ∈ Rd be the average of all local model.

Theorem 4.4 (CONVERGENCE PROPERTY). Suppose As-
sumptions 2.1-2.3 hold, and we conduct global averaging
in the first τ steps so that x(k)

i = x̄(k), y(k)
i = ȳ(k) for

0 ≤ k < τ . Starting from the (τ + 1)th step, we perform
DSGD-CECA iterations (8), (9). If γ satisfies

γ =
1(

2n∆
Lσ2(T+1)

)− 1
2

+
(

∆
24L2τ2(σ2+2b2)(T+1)

)− 1
3

+ 8τL

7

Communication-Optimal Decentralized SGD

where ∆ = Ef(x̄0)− f⋆, then DSGD-CECA converges at

1

T + 1

T∑
k=0

E∥∇f(x̄(k))∥2 ≤ 16

(
∆Lσ2

n(T + 1)

) 1
2

+24

(
∆2L2τ2(σ2 + 2b2)

(T + 1)2

) 1
3

+
32τ∆L

T + 1
. (15)

with any n when utilizing the 2-port communication model,
or with any even n when utilizing the 1-port model.

The proof of Theorem 4.4 can be referred to Appendix B.4.

Remark 4.5. Based on the convergence rate in (15), we can
derive that when T = O(n3 log42(n)), the linear speedup
term O(1/

√
nT) dominates the other two terms O(τ

2
3 /T

2
3)

and O(τ/T) up to a constant scalar. This linear speedup
term dominates the convergence rate. This implies DSGD-
CECA has O(n3 log42(n)) transient iterations.

5. Numerical Experiments
In this section, we validate the previous theoretical results
via numerical experiments. First, we show CECA-1P indeed
achieves the global consensus in finite iterations over a
variety of choices of the number of nodes. Next, we examine
the performance of DSGD-CECA and compare it with many
other popular SOTA algorithms on a standard convex task.
Lastly, we apply the DSGD-CECA on the deep learning
setting to show it still achieves good performance in train
loss and test accuracy with respect to the iterations and
communicated data. The codes used to generate the figures
in this section are available in the github1.

Finite-time exact consensus convergence. We examine
the convergence rate of CECA-1P over different network
sizes n. In each experiment, we initialize a random vector
x
(0)
i ,y

(0)
i on each node i, and obtain x(k)

i ,y
(k)
i by applying

the communication topology. The residue
∑

i ∥x
(k)
i − x⋆∥

is calculated at each iteration k, where x⋆ is the global
average of all initial x(0)

i . From Fig. 5, we observe the
results coincide with the proved theorem. Especially, the
number of iterations of CECA-1P to achieve exact global
average is ⌈log2(n)⌉ as the theorem predicted.

Next, we compare CECA with other popular topologies. We
set the network size to n = 130 and n = 1026, respectively
(both are not the power of 2 but close to it). Results are
averaged over 3 independent random runs. In Fig. 6, we
observe CECA achieves global average with a finite number
of iterations, whereas the others do not.

DSGD: least-squares problem. We examine DSGD-CECA
by solving the distributed least square problem in which
each fi(x) := (1/2)∥Aix− bi∥2 where i ∈ {1, 2, . . . , n},

1https://github.com/kexinjinnn/DSGD-CECA

0 5 10 15 20 25
Iteration

10 13

10 10

10 7

10 4

10 1

102

||x
(k

)
x

||

CECA-1P

n = 50
n = 100
n = 500
n = 1000
n = 5000

Figure 5. The CECA-1P can achieve finite-time consensus conver-
gence for different network sizes.

0 5 10 15 20 25 30 35 40
Iteration

10 13

10 10

10 7

10 4

10 1

102

||x
(k

)
x

||

n = 130

Ring
Grid
O.-P. Exp.
OU-EquiDyn
OD-EquiDyn
CECA-2P
CECA-1P

0 5 10 15 20 25 30 35 40
Iteration

10 13

10 10

10 7

10 4

10 1

102

||x
(k

)
x

||

n = 1026

Ring
Grid
O.-P. Exp.
OU-EquiDyn
OD-EquiDyn
CECA-2P
CECA-1P

Figure 6. The consensus rates of CECA-2P and CECA-1P are
faster than those of the other Θ(1)-neighbor topologies.

x ∈ Rd and Ai ∈ RN×d. We generate Ai from N (0, I).
The measurement bi is generated by bi = Aix

⋆ + vi with
a given x⋆ ∈ Rd where vi ∼ N (0, σ2

sI). Each node will
generate a stochastic gradient via ∇̂f i(x) = ∇f i(x) + ϵi
at each iteration, where ϵi ∼ N (0, σ2

nI) is the noise level of
SGD. In the simulation, we set the size of the network n =
258, d = 10, N = 50, σs = 0.1, and σn = 5. We set the
initial learning rate to be 0.02 to all algorithms. Then, every
20 iterations the learning rate decays by a factor 1.5. The
results are averaged over 5 independent random experiments.
Fig. 7 depicts the performance of each algorithm. It is
observed that DSGD-CECA achieves the best convergence
performance.

DSGD: deep learning. We apply DSGD-CECA-2P to solve
the image classification task with CNN over MNIST dataset

8

https://github.com/kexinjinnn/DSGD-CECA

Communication-Optimal Decentralized SGD

0 200 400 600 800 1000
Iteration

10 3

10 2

10 1

100

||x
(k

)
x

||

OU-EquiDyn
OD-EquiDyn
O.-P. Exp
DSGD-CECA-2P
DSGD-CECA-1P
Centralized SGD
Ring SGD

Figure 7. Performance comparison between stochastic decentral-
ized algorithms using various effective topologies.

(LeCun et al., 2010). As for the implementation of decen-
tralized parallel training, we utilize BlueFog library (Ying
et al., 2021b) in a cluster of 17 NVIDIA GeForce RTX 2080
GPUs. The network contains two convolutional layers with
max pooling and ReLu and two feed-forward layers. The
local batch size is set to 64. The learning rate is 0.3 for
DSGD-CECA-2P with no momentum and 0.1 for other al-
gorithms with momentum 0.5. The results are obtained by
averaging over 3 independent random experiments. Fig. 8
illustrates the training loss and test accuracy curves, while
Table 2 provides the corresponding numerical values. The
results indicate that DSGD-CECA-2P outperforms other
decentralized algorithms, exhibiting slightly better training
loss and test accuracy. Fig. 9 depicts the performance of dif-
ferent algorithms in terms of data communicated. The data
communicated is calculated based on the total length of the
vectors that one node sends and receives. If different nodes
have different values, we choose the one with the largest
value since it is synchronized style algorithm. The figure
implies that one-peer decentralized algorithms, including
DSGD-CECA and O.-P.-Exp., outperform centralized SGD
significantly.

We also provide additional experiments on CIFAR-10
dataset (Krizhevsky & Hinton, 2009) in Appendix C.

Table 2. Comparison of train loss and test accuracy(%) with differ-
ent topologies over MNIST dataset.

Topology Train Loss Test Acc.

Centralized SGD 2.079 98.34
Ring 2.090 98.32

O.-P. Exp. 2.091 98.33
OD-EquiDyn 2.090 98.36
OU-EquiDyn 2.091 98.03

DSGD-CECA-2P 2.083 98.50

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Tr
ai

n
Lo

ss

Centralized SGD
Ring
O.-P. Exp.
OU-EquiDyn
OD-EquiDyn
DSGD-CECA-2P

16 18

2.08

2.10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.88

0.90

0.92

0.94

0.96

0.98

Te
st

 A
cc

ur
ac

y

Centralized SGD
Ring
O.-P. Exp.
OU-EquiDyn
OD-EquiDyn
DSGD-CECA-2P

16 18
0.97

0.98

Figure 8. Train loss and test accuracy of different DSGD algo-
rithms for CNN on MNIST. The solid curve indicates the average,
while the shaded area indicates the deviation.

0 20 40 60 80 100 120
Normalized Data Communicated

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Tr
ai

n
Lo

ss
Centralized SGD
Ring
O.-P. Exp.
OU-EquiDyn
OD-EquiDyn
DSGD-CECA-2P

Figure 9. Performance of different algorithms over MNIST dataset
in terms of data communicated.

6. Conclusion
In this paper, we propose a novel decentralized stochas-
tic gradient descent algorithm, named DSGD-CECA. This
algorithm consists of two versions: DSGD-CECA-1P
and DSGD-CECA-2P, designed for the 1-port and 2-port
message-passing models, respectively. The convergence
rates of both versions are theoretically analyzed for non-
convex stochastic optimization. The results demonstrate
that, even at the minimal communication cost per iteration,
the total number of iterations and the transient iterations are
comparable to the state-of-the-art methods. Notably, the
proposed methods are applicable to any number of agents,
significantly relaxing the previous restriction of the power
of two. Furthermore, empirical experiments validate the
efficiency of DSGD-CECA in comparison to other DSGD
algorithms.

9

Communication-Optimal Decentralized SGD

References
Alghunaim, S. A. and Yuan, K. A unified and refined con-

vergence analysis for non-convex decentralized learning.
arXiv preprint arXiv:2110.09993, 2021.

Assran, M., Loizou, N., Ballas, N., and Rabbat, M. Stochas-
tic gradient push for distributed deep learning. In Inter-
national Conference on Machine Learning (ICML), pp.
344–353, 2019.

Bar-Noy, A., Kipnis, S., and Schieber, B. An optimal algo-
rithm for computing census functions in message-passing
systems. Parallel Processing Letters, 3(01):19–23, 1993.

Ben-Nun, T. and Hoefler, T. Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis.
ACM Computing Surveys (CSUR), 52(4):1–43, 2019.

Benjamini, I., Kozma, G., and Wormald, N. The mixing
time of the giant component of a random graph. Random
Structures & Algorithms, 45(3):383–407, 2014.

Beveridge, A. and Youngblood, J. The best mixing time for
random walks on trees. Graphs and Combinatorics, 32
(6):2211–2239, 2016.

Boyd, S. P., Ghosh, A., Prabhakar, B., and Shah, D. Mixing
times for random walks on geometric random graphs. In
ALENEX/ANALCO, pp. 240–249, 2005.

Chen, J. and Sayed, A. H. Diffusion adaptation strategies
for distributed optimization and learning over networks.
IEEE Transactions on Signal Processing, 60(8):4289–
4305, 2012.

Di Lorenzo, P. and Scutari, G. Next: In-network nonconvex
optimization. IEEE Transactions on Signal and Informa-
tion Processing over Networks, 2(2):120–136, 2016.

Dimakis, A. G., Kar, S., Moura, J. M., Rabbat, M. G., and
Scaglione, A. Gossip algorithms for distributed signal
processing. Proceedings of the IEEE, 98(11):1847–1864,
2010.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Jiang, Y., Zhu, Y., Lan, C., Yi, B., Cui, Y., and Guo, C. A
unified architecture for accelerating distributed dnn train-
ing in heterogeneous gpu/cpu clusters. In Proceedings
of the 14th USENIX Conference on Operating Systems
Design and Implementation, pp. 463–479, 2020.

Koloskova, A., Stich, S., and Jaggi, M. Decentralized
stochastic optimization and gossip algorithms with com-
pressed communication. In International Conference on
Machine Learning, pp. 3478–3487, 2019.

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich,
S. U. A unified theory of decentralized sgd with changing
topology and local updates. In International Conference
on Machine Learning (ICML), pp. 1–12, 2020.

Kong, L., Lin, T., Koloskova, A., Jaggi, M., and Stich, S. U.
Consensus control for decentralized deep learning. In
International Conference on Machine Learning, 2021.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Master’s thesis, Department
of Computer Science, University of Toronto, 2009.

LeCun, Y., Cortes, C., and Burges, C. MNIST hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Li, Z., Shi, W., and Yan, M. A decentralized proximal-
gradient method with network independent step-sizes
and separated convergence rates. IEEE Transactions on
Signal Processing, July 2019. early acces. Also available
on arXiv:1704.07807.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and
Liu, J. Can decentralized algorithms outperform central-
ized algorithms? A case study for decentralized parallel
stochastic gradient descent. In Advances in Neural Infor-
mation Processing Systems, pp. 5330–5340, 2017.

Lian, X., Zhang, W., Zhang, C., and Liu, J. Asynchronous
decentralized parallel stochastic gradient descent. In In-
ternational Conference on Machine Learning, pp. 3043–
3052, 2018.

Lin, T., Karimireddy, S. P., Stich, S. U., and Jaggi, M. Quasi-
global momentum: Accelerating decentralized deep learn-
ing on heterogeneous data. In International Conference
on Machine Learning, 2021.

Liu, K. Train CIFAR10 with PyTorch. https://
github.com/kuangliu/pytorch-cifar, 2021.
Accessed: 2023-01.

Lopes, C. G. and Sayed, A. H. Diffusion least-mean squares
over adaptive networks: Formulation and performance
analysis. IEEE Transactions on Signal Processing, 56(7):
3122–3136, 2008.

Nachmias, A. and Peres, Y. Critical random graphs: diam-
eter and mixing time. The Annals of Probability, 36(4):
1267–1286, 2008.

Nedic, A. and Ozdaglar, A. Distributed subgradient meth-
ods for multi-agent optimization. IEEE Transactions on
Automatic Control, 54(1):48–61, 2009.

Nedic, A., Olshevsky, A., and Shi, W. Achieving geomet-
ric convergence for distributed optimization over time-
varying graphs. SIAM Journal on Optimization, 27(4):
2597–2633, 2017.

10

Communication-Optimal Decentralized SGD

Nedić, A., Olshevsky, A., and Rabbat, M. G. Network
topology and communication-computation tradeoffs in
decentralized optimization. Proceedings of the IEEE, 106
(5):953–976, 2018.

Niwa, K., Zhang, G., Kleijn, W. B., Harada, N., Sawada, H.,
and Fujino, A. Asynchronous decentralized optimization
with implicit stochastic variance reduction. In Interna-
tional Conference on Machine Learning, pp. 8195–8204.
PMLR, 2021.

Patarasuk, P. and Yuan, X. Bandwidth optimal all-reduce al-
gorithms for clusters of workstations. Journal of Parallel
and Distributed Computing, 69(2):117–124, 2009.

Pu, S., Olshevsky, A., and Paschalidis, I. C. A sharp estimate
on the transient time of distributed stochastic gradient
descent. arXiv preprint arXiv:1906.02702, 2019.

Qu, G. and Li, N. Harnessing smoothness to accelerate
distributed optimization. IEEE Transactions on Control
of Network Systems, 5(3):1245–1260, 2018.

Shi, W., Ling, Q., Yuan, K., Wu, G., and Yin, W. On the lin-
ear convergence of the admm in decentralized consensus
optimization. IEEE Transactions on Signal Processing,
62(7):1750–1761, 2014.

Shi, W., Ling, Q., Wu, G., and Yin, W. EXTRA: An exact
first-order algorithm for decentralized consensus opti-
mization. SIAM Journal on Optimization, 25(2):944–966,
2015.

Song, Z., Li, W., Jin, K., Shi, L., Yan, M., Yin, W., and
Yuan, K. Communication-efficient topologies for decen-
tralized learning with o(1) consensus rate. arXiv preprint
arXiv:2210.07881, 2022.

Tang, H., Lian, X., Yan, M., Zhang, C., and Liu, J. d2: De-
centralized training over decentralized data. In Interna-
tional Conference on Machine Learning, pp. 4848–4856,
2018.

Trevisan, L. Lecture notes on graph partitioning, expanders
and spectral methods. University of California, Berkeley,
https://people. eecs. berkeley. edu/˜ luca/books/expanders-
2016. pdf, 2017.

Tsitsiklis, J., Bertsekas, D., and Athans, M. Distributed
asynchronous deterministic and stochastic gradient op-
timization algorithms. IEEE transactions on automatic
control, 31(9):803–812, 1986.

Xin, R., Khan, U. A., and Kar, S. An improved convergence
analysis for decentralized online stochastic non-convex
optimization. arXiv preprint arXiv:2008.04195, 2020.

Xu, J., Zhu, S., Soh, Y. C., and Xie, L. Augmented dis-
tributed gradient methods for multi-agent optimization
under uncoordinated constant stepsizes. In IEEE Con-
ference on Decision and Control (CDC), pp. 2055–2060,
Osaka, Japan, 2015.

Ying, B., Yuan, K., Chen, Y., Hu, H., Pan, P., and Yin, W.
Exponential graph is provably efficient for decentralized
deep training. Advances in Neural Information Process-
ing Systems, 34:13975–13987, 2021a.

Ying, B., Yuan, K., Hu, H., Chen, Y., and Yin, W. Bluefog:
Make decentralized algorithms practical for optimization
and deep learning. arXiv preprint arXiv:2111.04287,
2021b.

Yuan, K. and Alghunaim, S. A. Removing data hetero-
geneity influence enhances network topology dependence
of decentralized sgd. arXiv preprint arXiv:2105.08023,
2021.

Yuan, K., Ling, Q., and Yin, W. On the convergence of
decentralized gradient descent. SIAM Journal on Opti-
mization, 26(3):1835–1854, 2016.

Yuan, K., Ying, B., Zhao, X., and Sayed, A. H. Exact
dffusion for distributed optimization and learning – Part
I: Algorithm development. IEEE Transactions on Signal
Processing, 67(3):708 – 723, 2019.

Yuan, K., Alghunaim, S. A., Ying, B., and Sayed, A. H. On
the influence of bias-correction on distributed stochastic
optimization. IEEE Transactions on Signal Processing,
2020.

Yuan, K., Chen, Y., Huang, X., Zhang, Y., Pan, P., Xu,
Y., and Yin, W. DecentLaM: Decentralized momen-
tum SGD for large-batch deep training. arXiv preprint
arXiv:2104.11981, 2021.

11

Communication-Optimal Decentralized SGD

A. Notations
We introduce the following notations to simplify analysis.

• x(k) = [(x
(k)
1)⊤; (x

(k)
2)⊤; · · · ; (x(k)

n)⊤] ∈ Rn×d and x̄(k) = 1
n

∑n
i=1 x

(k)
i ∈ Rd.

• y(k) = [(y
(k)
1)⊤; (y

(k)
2)⊤; · · · ; (y(k)

n)⊤] ∈ Rn×d and ȳ(k) = 1
n

∑n
i=1 y

(k)
i ∈ Rd.

• z(k) = [(z
(k)
1)⊤; (z

(k)
2)⊤; · · · ; (z(k)n)⊤] ∈ Rn×d and z̄(k) = 1

n

∑n
i=1 z

(k)
i ∈ Rd.

• W(k) = [w
(k)
i,j] ∈ R2n×2n.

• 1n = [1; 1; · · · ; 1] ∈ Rn.

• ∇F (x) = [(∇f1(x1))
⊤; (∇f2(x2))

⊤; · · · ; (∇fn(xn))
⊤] ∈ Rn×d for any x = [x⊤

1 ;x
⊤
2 ; · · · ;x⊤

n] ∈ Rn×d.

• ∇F (x; ξ) = [(∇F1(x1; ξ1))
⊤; (∇F2(x2; ξ2))

⊤; · · · ; (∇Fn(xn; ξn))
⊤] ∈ Rn×d.

• g(k) = ∇F (x(k); ξ(k)) and ḡ(k) = 1
n

∑n
i=1 ∇F (x

(k)
i ; ξ

(k)
i).

• h(k) = ∇F (y(k); ξ(k)) and h̄(k) = 1
n

∑n
i=1 ∇F (y

(k)
i ; ξ

(k)
i).

• e(k) = ∇F (z(k); ξ(k)) and ē(k) = 1
n

∑n
i=1 ∇F (z

(k)
i ; ξ

(k)
i).

• Given two matrices x,y ∈ Rn×d, we define the inner product ⟨x,y⟩ = tr(x⊤y), the Frobenius norm ∥x∥2F = ⟨x,x⟩.

• Given any vector x ∈ Rd, we let ∥x∥ be its ℓ2 norm.

• Given a sequence of matrices {A(k)}jk=i with j ≥ i, we let
∏j

k=i A
(k) = A(j)A(j−1) · · ·A(i+1)A(i). If j < i, we

let
∏j

k=i A
(k) = I.

B. Optimal dynamic topology DSGD
B.1. Supplementary materials on CECA

B.1.1. CECA FOR THE 2-PORT MESSAGE PASSING SYSTEM

In this section, we present the CECA in a detailed way. The pseudo code of the CECA as in Algorithm 2.

Before the iterations start, we calculate τ = ⌈log2 n⌉. We compute δr, nr, r = 0, 1, 2, . . . , τ − 1 as in (2) and (3).

The method is initialized before the round 0 with each agent i holding information I
(0)
i = ui, J

(0)
i = 0. We use I

(r)
i and

J
(r)
i to denote agent i’s information right before the rth round, r = 0, 1, . . . , τ − 1. In the rth round, if δr = 1, agent i sends

information I
(r)
i to agent i + nr + 1 and receives information I

(r)
i−nr−1 from agent i − nr − 1; if δr = 0, agent i sends

information J
(r)
i to agent i+ nr and receives information J

(r)
i−nr

from agent i− nr.

After receiving the information, each agent i updates information I(r) and J (r) with the received information. We switch
over cases where δr is either 0 or 1. If δr = 1,

I
(r+1)
i =

1

2
I
(r)
i +

1

2
I
(r)
i−nr−1,

J
(r+1)
i =

nr

2nr + 1
J
(r)
i +

nr + 1

2nr + 1
I
(r)
i−nr−1.

If δr = 0,

I
(r+1)
i =

nr + 1

2nr + 1
I
(r)
i +

nr

2nr + 1
J
(r)
i−nr

, J
(r+1)
i =

1

2
J
(r)
i +

1

2
J
(r)
i−nr

.

12

Communication-Optimal Decentralized SGD

Algorithm 2 CECA for the 2-port system
Input: n agents: each agent i has data ui, i = 1, 2, . . . , n.
Set τ = ⌈log2 n⌉ (total rounds of message passing);
Represent n− 1 with the binary sequence (δ0 δ1 · · · δτ−1)2;
Initialize n0 = 0 and, for i = 1, . . . , n, I(0)i = ui and J

(0)
i = 0;

for r = 0, 1, 2, . . . , τ − 1 do
if δr = 1 then

Agent i sends information I
(r)
i to agent i+ nr + 1 and receives information I

(r)
i−nr−1 from agent i− nr − 1;

I
(r+1)
i = 1

2I
(r)
i + 1

2I
(r)
i−nr−1;

J
(r+1)
i = nr

2nr+1J
(r)
i + nr+1

2nr+1I
(r)
i−nr−1;

else if δr = 0 then
Agent i sends information J

(r)
i to agent i+ nr and receives information J

(r)
i−nr

from agent i− nr;

I
(r+1)
i = nr+1

2nr+1I
(r)
i + nr

2nr+1J
(r)
i−nr

;

J
(r+1)
i = 1

2J
(r)
i + 1

2J
(r)
i−nr

;
end if
nr+1 = 2nr + δr;

end for
return I

(τ)
i , i = 1, 2, . . . , n, which equal 1

n (u1 + · · ·+ un).

In either case δr = 0 or δr = 1, we have

I
(r+1)
i =

1

nr+1 + 1

nr+1∑
j=0

ui−j , J
(r+1)
i =

1

nr+1

nr+1∑
j=1

ui−j .

by induction. After τ rounds of communication,

I
(τ)
i =

1

n

n∑
j=1

uj , J
(τ)
i =

1

n− 1

∑
j ̸=i

uj .

Example: We consider the case where the number of agents n = 6. To make consensus among agents, we need
τ = ⌈log2(6)⌉ = 3 rounds. The binary representation of n− 1 = 5 is

5 = (1 0 1)2.

According to (2), we assign δ0 = 1 as the most significant (left most) digit of the binary representation. Besides, we
assign δ1 = 0, δ2 = 1. We calculate n0 = 0, n1 = 1, n2 = 2. Besides, we let I(r) = [I

(r)
1 ; I

(r)
2 ; · · · ; I(r)6],J(r) =

[J
(r)
1 ; J

(r)
2 ; · · · ; J (r)

6] be the formal column vectors of I
(r)
i and J

(r)
i . Both I

(r)
i and J

(r)
i are linear combinations of

u1, u2, . . . , u6. We formally use the matrix-vector product
a1,1 a1,2 · · · a1,6
a2,1 a2,2 · · · a2,6

...
...

. . .
...

a6,1 a6,2 · · · a6,6

u1

u2

...
u6

 =

∑6

j=1 a1,juj∑6
j=1 a2,juj

...∑6
j=1 a6,juj

to be the representation of I(r) or J(r). At the very beginning, agent i has information I

(0)
i = ui, J

(0)
i = 0. So,

I(0) =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

u1

u2

u3

u4

u5

u6

 , J(0) =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

u1

u2

u3

u4

u5

u6

 .

13

Communication-Optimal Decentralized SGD

In the 0th round, δ0 = 1, agent i sends I(0)i = ui to agent i+1 and receives I(0)i−1 = ui−1 from agent i− 1. Agent i averages

the received information with I
(0)
i , J

(0)
i , respectively, and get I(1)i , J

(1)
i as follows,

I(1) =

1
2 0 0 0 0 1

2
1
2

1
2 0 0 0 0

0 1
2

1
2 0 0 0

0 0 1
2

1
2 0 0

0 0 0 1
2

1
2 0

0 0 0 0 1
2

1
2

u1

u2

u3

u4

u5

u6

, J(1) =

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

u1

u2

u3

u4

u5

u6

.

In the 1st round, δ1 = 0, agent i sends J
(1)
i = ui−1 to agent i + 1 and receives J

(1)
i−1 = ui−2 from agent i − 1. After

averaging, we get

I(2) =

1
3 0 0 0 1

3
1
3

1
3

1
3 0 0 0 1

3
1
3

1
3

1
3 0 0 0

0 1
3

1
3

1
3 0 0

0 0 1
3

1
3

1
3 0

0 0 0 1
3

1
3

1
3

u1

u2

u3

u4

u5

u6

, J(2) =

0 0 0 0 1
2

1
2

1
2 0 0 0 0 1

2
1
2

1
2 0 0 0 0

0 1
2

1
2 0 0 0

0 0 1
2

1
2 0 0

0 0 0 1
2

1
2 0

u1

u2

u3

u4

u5

u6

.

In the 2nd round, δ2 = 1, agent i sends I(2)i = 1
3ui−2 +

1
3ui−1 +

1
3ui to agent i+ 3, and receives I(2)i−3 = 1

3ui−5 +
1
3ui−4 +

1
3ui−3 from agent i− 3. After averaging the information, we get

I(3) =

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

u1

u2

u3

u4

u5

u6

, J(3) =

0 1
5

1
5

1
5

1
5

1
5

1
5 0 1

5
1
5

1
5

1
5

1
5

1
5 0 1

5
1
5

1
5

1
5

1
5

1
5 0 1

5
1
5

1
5

1
5

1
5

1
5 0 1

5
1
5

1
5

1
5

1
5

1
5 0

u1

u2

u3

u4

u5

u6

.

In the upper part of Table B.1.1, we give the update process of I(r)i , J
(r)
i in the 3 rounds when the initial u1–u6 are assigned

to be values 1–6.

B.1.2. OPTIMAL ALLREDUCE ALGORITHM FOR THE 1-PORT MESSAGE PASSING SYSTEM

Here, we give a more detailed description of the optimal allreduce algorithm introduced in Section 3.2

We calculate that τ = ⌈log2 n⌉ rounds are needed to reach consensus. We compute the necessary parameters δr, nr, r =
0, 1, 2, . . . , τ − 1 as in (2) and (3).

Before the communication starts, we initialize I(0)i = ui, J
(0)
i = 0. In the rth round, r = 0, 1, 2, . . . , τ − 1, if i odd, we pair

up agents i and i+ 2nr + 1; if i even, we pair up agents i and i− 2nr − 1. Each agent exchanges information with its peer.
If δr = 1, the peers exchange I(r); if δr = 0, they exchange J (r) instead.

Let ω(r)
i denote the index of the agent who sends message to agent i in the rth round. If δr = 1,

I
(r+1)
i =

1

2
I
(r)
i +

1

2
I
(r)

ω
(r)
i

J
(r+1)
i =

nr

2nr + 1
J
(r)
i +

nr + 1

2nr + 1
I
(r)

ω
(r)
i

.

If δr = 0,

I
(r+1)
i =

nr + 1

2nr + 1
I
(r)
i +

nr

2nr + 1
J
(r)

ω
(r)
i

,

14

Communication-Optimal Decentralized SGD

2-port CECA
round r I

(r)
1 J

(r)
1 I

(r)
2 J

(r)
2 I

(r)
3 J

(r)
3 I

(r)
4 J

(r)
4 I

(r)
5 J

(r)
5 I

(r)
6 J

(r)
6

0 1 0 2 0 3 0 4 0 5 0 6 0
n0 = 0, δ0 = 1

1 3.5 6 1.5 1 2.5 2 3.5 3 4.5 4 5.5 5
n1 = 1, δ1 = 0

2 4 5.5 3 3.5 2 1.5 3 2.5 4 3.5 5 4.5
n2 = 2, δ2 = 1

3 3.5 4 3.5 3.8 3.5 3.6 3.5 3.4 3.5 3.2 3.5 3

New algorithm (1-port allreduce averaging)
round r I

(r)
1 J

(r)
1 I

(r)
2 J

(r)
2 I

(r)
3 J

(r)
3 I

(r)
4 J

(r)
4 I

(r)
5 J

(r)
5 I

(r)
6 J

(r)
6

0 1 0 2 0 3 0 4 0 5 0 6 0
n0 = 1, δ0 = 1, agents (1 2) (3 4) (5 6) exchange I

1 1.5 2 1.5 1 3.5 4 3.5 3 5.5 6 5.5 5
n1 = 1, δ1 = 0, agents (1 4) (2 5) (3 6) exchange J

2 2 2.5 3 3.5 4 4.5 3 2.5 4 3.5 5 4.5
n2 = 2, δ2 = 1, agents (1 6) (2 3) (4 5) exchange I

3 3.5 4 3.5 3.8 3.5 3.6 3.5 3.4 3.5 3.2 3.5 3

Table 3. Illustration of the two allreduce averaging algorithms applied to 6 agents with agents 1–6 having initial numbers 1–6. Both
algorithms take ⌈log2(6)⌉ = 3 rounds to achieve I

(r)
i ≡ 3.5 for all i = 1, . . . , 6.

J
(r+1)
i =

1

2
J
(r)
i +

1

2
J
(r)

ω
(r)
i

.

After the above averaging process, each odd agent i has information

I
(r+1)
i =

1

nr+1 + 1

nr+1∑
j=0

ui+j , J
(r+1)
i =

1

nr+1

nr+1∑
j=1

ui+j .

Each even agent i has information

I
(r+1)
i =

1

nr+1 + 1

nr+1∑
j=0

ui−j , J
(r+1)
i =

1

nr+1

nr+1∑
j=1

ui−j .

After τ rounds, each agent has the consensus information I
(τ)
i = 1

n

∑n
j=1 uj .

Example: We give an example when n = 6. The calculation of δr and nr is the same as in the example of Section 3.1.
Before the communications start, each agent i has information I

(0)
i = ui, J

(0)
i = 0. In the 0th round, we pair up agents as

follows: 1 with 2, 3 with 4, and 5 with 6, in a peer-to-peer manner. Each agent sends its I(0) information to its peer and
receives the same type of I(0) information in return. After averaging, Ii, Ji are updated as

I(1) =

1
2

1
2 0 0 0 0

1
2

1
2 0 0 0 0

0 0 1
2

1
2 0 0

0 0 1
2

1
2 0 0

0 0 0 0 1
2

1
2

0 0 0 0 1
2

1
2

u1

u2

u3

u4

u5

u6

, J(1) =

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

u1

u2

u3

u4

u5

u6

.

In the 1st round, δ1 = 0. We pair up agents (1, 4), (2, 5), (3, 6). Each agent sends J (1) information to its peer and also

15

Communication-Optimal Decentralized SGD

receives J (1) information in return. After averaging, we get

I(2) =

1
3

1
3

1
3 0 0 0

1
3

1
3 0 0 0 1

3

0 0 1
3

1
3

1
3 0

0 1
3

1
3

1
3 0 0

1
3 0 0 0 1

3
1
3

0 0 0 1
3

1
3

1
3

u1

u2

u3

u4

u5

u6

, J(2) =

0 1
2

1
2 0 0 0

1
2 0 0 0 0 1

2

0 0 0 1
2

1
2 0

0 1
2

1
2 0 0 0

1
2 0 0 0 0 1

2

0 0 0 1
2

1
2 0

u1

u2

u3

u4

u5

u6

.

In the 2nd round, δ2 = 1. The pairing mode for agents is (1, 6), (2, 3), (4, 5). Each agent exchanges J (2) information with
its peer. After merging the received information into the previous information, we have

I(3) =

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

u1

u2

u3

u4

u5

u6

, J(3) =

0 1
5

1
5

1
5

1
5

1
5

1
5 0 1

5
1
5

1
5

1
5

1
5

1
5 0 1

5
1
5

1
5

1
5

1
5

1
5 0 1

5
1
5

1
5

1
5

1
5

1
5 0 1

5
1
5

1
5

1
5

1
5

1
5 0

u1

u2

u3

u4

u5

u6

.

In the lower part of Table B.1.1, we give the changes of I(r)i , J
(r)
i when the initial values u1–u6 are set to be 1–6.

B.2. Transfer matrix family

In this section, we prove the properties of transfer matrix family F defined in (13). The transfer matrices W,Wg defined
in (10) and (11) are in this family. We show the useful properties of the matrix family in the following lemmas.
Lemma B.1. The matrix family F is closed under matrix multiplication. If W,V ∈ F , then WV ∈ F . Thus the family
F is a semigroup under matrix multiplication.

Proof. Let

W =

[
cwW1,1 (1− cw)W1,2

dwW2,1 (1− dw)W2,2

]
, V =

[
cvV1,1 (1− cv)V1,2

dvV2,1 (1− dv)V2,2

]
.

Here 0 ≤ cw, cv, dw, dv ≤ 1, Wi,j ,Vi,j are doubly stochastic, i, j ∈ {1, 2}.

WV =

[
cwcvW1,1V1,1 + (1− cw)dvW1,2V2,1 cw(1− cv)W1,1V1,2 + (1− cw)(1− dv)W1,2V2,2

dwcvW2,1V1,1 + (1− dw)dvW2,2V2,1 dw(1− cv)W2,1V1,2 + (1− dw)(1− dv)W2,2V2,2

]
Consider the first block, if cwcv + (1− cw)dw = 0,

cwcvW1,1V1,1 + (1− cw)dvW1,2V2,1 = 0n = (cwcv + (1− cw)dw)In

If cwcv + (1− cw)dw > 0,

cwcvW1,1V1,1 + (1− cw)dvW1,2V2,1 =

(cwcv + (1− cw)dv)

(
cwcv

cwcv + (1− cw)dv
W1,1V1,1 +

(1− cw)dv
cwcv + (1− cw)dv

W1,2V2,1

)
.

The product of two doubly stochastic matrix is doubly stochastic. The convex combination of doubly stochastic matrices is
still doubly stochastic. So, we can always find a doubly stochastic matrix U1,1 such that

cwcvW1,1V1,1 + (1− cw)dvW1,2V2,1 = (cwcv + (1− cw)dw)U1,1.

Similarly, we can find doubly stochastic matrices Ui,j , i, j ∈ {1, 2}, such that

WV =

[
(cwcv + (1− cw)dv)U1,1 (cw(1− cv) + (1− cw)(1− dv))U1,2

(dwcv + (1− dw)dv)U2,1 (dw(1− cv) + (1− dw)(1− dv))U2,2

]
∈ F .

16

Communication-Optimal Decentralized SGD

Lemma B.2. For any W ∈ F , ∥W∥ ≤
√
2.

Proof. Let

W =

[
cW1,1 (1− c)W1,2

dW2,1 (1− d)W2,2

]
.

Here 0 ≤ c, d ≤ 1, Wi,j ,Vi,j are doubly stochastic, i, j ∈ {1, 2}. For any x,y ∈ Rn,∥∥∥∥W [
x
y

]∥∥∥∥2 =

∥∥∥∥[cW1,1x+ (1− c)W1,2y
dW2,1x+ (1− d)W2,2y

]∥∥∥∥2
= ∥cW1,1x+ (1− c)W1,2y∥2 + ∥dW2,1x+ (1− d)W2,2y∥2

(a)

≤ c∥W1,1x∥2 + (1− c)∥W1,2y∥2 + d∥W2,1x∥2 + (1− d)∥W2,2y∥2

(b)

≤ c∥x∥2 + (1− c)∥y∥2 + d∥x∥2 + (1− d)∥y∥2

≤ 2(∥x∥2 + ∥y∥2).

In the above inequalities, (a) holds because of Jensen’s inequality; (b) holds because the norm of a doubly stochastic matrix
is bounded by 1.

Lemma B.3. For any W ∈ F ,

W

[
1
n1n1

⊤
n 0n

0n
1
n1n1

⊤
n

]
=

[
1
n1n1

⊤
n 0n

0n
1
n1n1

⊤
n

]
W.

Proof. Let

W =

[
cW1,1 (1− c)W1,2

dW2,1 (1− d)W2,2

]
.

Here 0 ≤ c, d ≤ 1, Wi,j ,Vi,j are doubly stochastic, i, j ∈ {1, 2}. We have

W

[
1
n1n1

⊤
n 0n

0n
1
n1n1

⊤
n

]
=

[
cW1,1

1
n1n1

⊤
n (1− c)W1,2

1
n1n1

⊤
n

dW2,1
1
n1n1

⊤
n (1− d)W2,2

1
n1n1

⊤
n

]
=

[
c 1
n1n1

⊤
n (1− c) 1n1n1

⊤
n

d 1
n1n1

⊤
n (1− d) 1n1n1

⊤
n

]
=

[
c 1
n1n1

⊤
nW1,1 (1− c) 1n1n1

⊤
nW1,2

d 1
n1n1

⊤
nW2,1 (1− d) 1n1n1

⊤
nW2,2

]
=

[
1
n1n1

⊤
n 0n

0n
1
n1n1

⊤
n

]
W.

Lemma B.4 (matrix consensus). In the 2-port system. When the communication matrix P(k) is sampled from (5) or (6)
according to δr, and the mixing matrix W(k) is sampled from (10) or (11) according to δr. The product of matrices W(k)

satisfies

τ−1∏
k=0

W(k) =

[
1
n1n1

⊤
n 0n

1
n−1 (1n1

⊤
n − In) 0n

]
, (16)

t∏
k=0

W(k) =

[
1
n1n1

⊤
n 0n

1
n1n1

⊤
n 0n

]
, ∀t ≥ τ. (17)

Proof. Since δ0 = 1, n0 = 0, we have

W(0) =

[
1
2In + 1

2P
(0) 0n

P(0) 0n

]
.

17

Communication-Optimal Decentralized SGD

So, for any s ≥ 0,
∏s

k=0 W
(k) is of the form [

∗ 0n

∗ 0n

]
.

Here ∗ stands for an undetermined n× n matrix block. By induction, for s ≤ τ ,

s∏
k=0

W(k) =

[
A 0n

B 0n

]
,

Ai,j =

{ 1
ns+1+1 , (i− j) ∈ {0, 1, 2, . . . , ns+1} (mod n)

0, otherwise
, Bi,j =

{ 1
ns+1

, (i− j) ∈ {1, 2, . . . , ns+1} (mod n)

0, otherwise
.

When s = τ − 1, we get (16). For t ≥ τ ,

t∏
k=0

W(k) =

(
t∏

k=τ+1

W(k)

)
·W(τ) ·

(
τ−1∏
k=0

W(k)

)

=

(
t∏

k=τ+1

W(k)

)
·
[

1
2In + 1

2P
(0) 0n

P(0) 0n

]
·
[

1
n1n1

⊤
n 0n

1
n−1 (1n1

⊤
n − In) 0n

]

=

(
t∏

k=τ+1

W(k)

)
·
[

1
n1n1

⊤
n 0n

1
n1n1

⊤
n 0n

]
(a)
=

[
1
n1n1

⊤
n 0n

1
n1n1

⊤
n 0n

]
.

Here,
(∏t

k=τ+1 W
(k)
)
∈ F because F is a semigroup according to Lemma B.1, any matrix in F is row stochastic, so (a)

holds. We get (17).

B.3. Convex analysis tools

In this section, we list some convex analysis concepts and inequalities useful in the algorithm convergence analysis.

Definition B.5 (L-smoothness). A differentiable function f : Rd → R is called L-smooth if for all x,y ∈ Rd, we have

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (18)

For an L-smooth function f , we have the following inequality,

f(x) ≤ f(y) + ⟨∇f(y),x− y⟩+ L

2
∥x− y∥2, ∀x,y ∈ Rd. (19)

Definition B.6 (Convexity). We call a function f : Rd → R convex if for all x,y ∈ Rd, we have

f(x) ≥ f(y) + ⟨∇f(y),x− y⟩. (20)

Given a function f , let x∗ be the minimizer of f . If f is both L-smooth and convex, we have

∥∇f(x)∥2 ≤ 2L(f(x)− f(x∗)), ∀x ∈ Rd. (21)

B.4. Convergence property of DSGD-CECA

In this section, we provide the convergence proof for DSGD-CECA-2P, as presented in Algorithm 1. DSGD-CECA-1P
differs from DSGD-CECA-2P only in the sampling of the communication matrix P(k). Their convergence proofs follow
a similar approach. For simplicity, we use DSGD-CECA to refer to DSGD-CECA-2P in this section. To establish the
convergence property of DSGD-CECA, we first present several supporting lemmas.

18

Communication-Optimal Decentralized SGD

Lemma B.7 (RELATION BETWEEN AVERAGED VARIABLES). Consider DSGD-CECA-2P recursions in Algorithm 1. It
holds for any k = 0, 1, 2, · · · that x̄(k) = ȳ(k) = z̄(k) and

x̄(k+1) = x̄(k) − γē(k),

where ē(k) = 1
n∇F (z(k); ξ(k))⊤1n.

Proof. Left-multiplying 1
n1

⊤
n to both sides of (8), (9), we get

x̄(k+1) = a(k)(x̄(k) − γē(k)) + (1− a(k))(z̄(k) − γē(k)), (22)

ȳ(k+1) = b(k)(ȳ(k) − γē(k)) + (1− b(k))(z̄(k) − γē(k)). (23)

The difference between (22) and (23) is

x̄(k+1) − ȳ(k+1) = θ(k)(x̄(k) − ȳ(k)),

where θ(k) = b(k) if z̄(k) = x̄(k) when δr = 1, and θ(k) = a(k) if z̄(k) = ȳ(k) when δr = 0. Since x(0) = y(0) in the initial
setting, we have x̄(0) = ȳ(0). Inductively, we have x̄(k) = ȳ(k) = z̄(k), for any k ≥ 0. Putting this result to (22), we have

x̄(k+1) = a(k)x̄(k) + (1− a(k))z̄(k) − γē(k) = x̄(k) − γē(k).

Lemma B.8 (DESCENT LEMMA). Under Assumptions 2.1–2.2 and step-size γ < 1
4L , it holds for k = 0, 1, · · · that

Ef(x̄(k+1)) ≤ Ef(x̄(k))− γ

4
E∥∇f(z̄(k))∥2 + γ2Lσ2

2n

+
3γL2

4n

(
E∥x(k) − 1n(x̄

(k))⊤∥2F + E∥y(k) − 1n(ȳ
(k))⊤∥2F

)
. (24)

Proof. We first introduce the following filtration to simplify the analysis

F (k) = σ{x(0), ξ(0), ξ(1), ξ(2), . . . , ξ(k−1)}. (25)

It is the σ algebra of all random variables before the kth iteration. With x̄(k+1) = x̄(k) − γē(k) and Assumption 2.1, it holds
that

E[f(x̄(k+1))|F (k−1)] ≤ f(x̄(k))− γE[⟨∇f(x̄(k)), ē(k)⟩|F (k−1)] +
Lγ2

2
E[∥ē(k)∥2|F (k−1)]

= f(x̄(k))− γ⟨∇f(x̄(k)),
1

n

n∑
i=1

∇fi(z
(k)
i)⟩+ Lγ2

2
∥ 1
n

n∑
i=1

∇fi(z
(k)
i)∥2 + γ2Lσ2

2n
(26)

Note that

−⟨∇f(x̄(k)),
γ

n

n∑
i=1

∇fi(z
(k)
i)⟩ = −⟨∇f(z̄(k)),

γ

n

n∑
i=1

[∇fi(z
(k)
i)−∇fi(z̄

(k)) +∇fi(z̄
(k))]⟩

≤ −γ∥∇f(z̄(k))∥2 + γ

2
∥∇f(z̄(k))∥2 + γ

2n

n∑
i=1

∥∇fi(z
(k)
i)−∇fi(z̄

(k))∥2

≤ −γ

2
∥∇f(z̄(k))∥2 + γL2

2n
∥z(k) − 1n(z̄

(k))⊤∥2F , (27)

where the first equality holds because z̄(k) = x̄(k) for any k = 0, 1, 2, · · · . Furthermore, it also holds that

∥ 1
n

n∑
i=1

∇fi(z
(k)
i)∥2 ≤ 2L2

n
∥z(k) − 1n(z̄

(k))⊤∥2F + 2∥∇f(z̄(k))∥2 (28)

and

∥z(k) − 1n(z̄
(k))⊤∥2F ≤ ∥x(k) − 1n(x̄

(k))⊤∥2F + ∥y(k) − 1n(ȳ
(k))⊤∥2F (29)

Substituting (27), (28) and (29) into (26), taking expectations over F (k), and using the fact that γ < 1
4L , we reach (24).

19

Communication-Optimal Decentralized SGD

To bound the term E∥x(k) − 1n(x̄
(k))⊤∥2F + E∥y(k) − 1n(ȳ

(k))⊤∥2F in (24), we introduce the auxiliary variables

φ(k) =

[
x(k) − 1n(x̄

(k))⊤

y(k) − 1n(ȳ
(k))⊤

]
∈ R2n×d, ψ(k) =

[
g(k) − 1n(ḡ

(k))⊤

h(k) − 1n(h̄
(k))⊤

]
∈ R2n×d.

It holds that ∥φ(k)∥2F = ∥x(k) − 1n(x̄
(k))⊤∥2F + ∥y(k) − 1n(ȳ

(k))⊤∥2F .

Lemma B.9 (CONSENSUS LEMMA). Under Assumptions 2.1-2.3, if the learning rate γ ≤ 1
8τL , it holds that

1

T + 1

T∑
k=0

E∥φ(k)∥2F ≤ 2

T + 1

τ∑
k=0

E∥φ(k)∥2F + 32nτ2γ2(σ2 + 2b2) (30)

Proof. We prove (30) in three steps.

Step I. In this step, we will provide a rough upper bound to 1
T+1

∑T
k=0 E∥φ(k)∥2F . By left-multiplying both sides of (12) by

I2n −
[

1
n1n1

⊤
n 0n

0n
1
n1n1

⊤
n

]
and utilizing the commutativity property proved in Lemma B.3, we have

φ(k+1) = W(k)φ(k) − γW(k)
g ψ(k). (31)

For any k ≥ τ , we let m = ⌊k/τ⌋ − 1 and hence k −mτ ≥ τ . Keep iterating (31), we have for any k ≥ τ that

φ(k) = W(k−1)φ(k−1) − γW(k−1)
g ψ(k−1)

(a)
=

 k−1∏
j=mτ

W(j)

φ(mτ) − γ

k−mτ∑
l=1

 k−1∏
j=k−l+1

W(j)

W(k−l)
g ψ(k−l)

(b)
= −γ

k−mτ∑
l=1

 k−1∏
j=k−l+1

W(j)

W(k−l)
g ψ(k−l).

where in equality (a) we define
∏q

j=p W
(j) = I if p > q, and (b) holds by applying (17). The above equality leads to

∥φ(k)∥2F
(a)

≤ γ2(k −mτ)

k−mτ∑
l=1

∥∥∥∥∥∥
 k−1∏

j=k−l+1

W(j)

W(k−l)
g ψ(k−l)

∥∥∥∥∥∥
2

F

(b)

≤ 2τγ2
k−mτ∑
l=1

∥∥∥∥∥∥
 k−1∏

j=k−l+1

W(j)

W(k−l)
g ψ(k−l)

∥∥∥∥∥∥
2

F

(c)

≤ 4τγ2
k−mτ∑
l=1

∥∥∥ψ(k−l)
∥∥∥2
F
.

Here, inequality (a) holds due to Jensen’s inequality, (b) holds since k − mτ ≤ 2τ , and (c) holds due to the fact that(∏k−1
j=k−l+1 W

(j)
)
W

(k−l)
g ∈ F and Lemma B.2. Summing up the above inequality over k = τ, τ +1, . . . , T and dividing

it by T + 1, we get

1

T + 1

T∑
k=τ

∥φ(k)∥2F ≤ 4τγ2 1

T + 1

T∑
k=τ

k−mτ∑
l=1

∥∥∥ψ(k−l)
∥∥∥2
F
≤ 8τ2γ2 1

T + 1

T∑
k=0

∥∥∥ψ(k)
∥∥∥2
F
. (32)

Adding 1
T+1

∑τ−1
k=0 ∥φ(k)∥2F to the both sides of (32), then taking expectations to both sides of the above inequality, we

have
1

T + 1

T∑
k=0

E∥φ(k)∥2F ≤ 1

T + 1

τ∑
k=0

E∥φ(k)∥2F + 8τ2γ2 1

T + 1

T∑
k=0

E
∥∥∥ψ(k)

∥∥∥2
F

(33)

20

Communication-Optimal Decentralized SGD

Step II. In this step, we derive the bound on the term 1
T+1

∑T
k=0 ∥ψ(k)∥2F . Recall that ∥ψ(k)∥2F = ∥g(k) −1n(ḡ

(k))⊤∥2F +

∥h(k) − 1n(h̄
(k))⊤∥2F . With F (k−1) defined in (25), we have

E[∥g(k) − 1n(ḡ
(k))⊤∥2F |F (k−1)]

= E

[∥∥∥∥(In − 1

n
1n1

⊤
n)g

(k)

∥∥∥∥2
F

∣∣∣∣∣F (k−1)

]

= E

[∥∥∥∥(In − 1

n
1n1

⊤
n)(g

(k) −∇F (x(k)) +∇F (x(k)))

∥∥∥∥2
F

∣∣∣∣∣F (k−1)

]
(a)
= E

[
∥(In − 1

n
1n1

⊤
n)(g

(k) −∇F (x(k)))∥2F
∣∣∣∣F (k−1)

]
+ ∥(In − 1

n
1n1

⊤
n)∇F (x(k))∥2F

≤ E
[
∥g(k) −∇F (x(k))∥2F

∣∣∣F (k−1)
]
+ ∥(In − 1

n
1n1

⊤
n)(∇F (x(k))−∇F (x̄(k)) +∇F (x̄(k)))∥2F

(b)

≤ nσ2 + 2∥(In − 1

n
1n1

⊤
n)(∇F (x(k))−∇F (x̄(k)))∥2F + 2∥(In − 1

n
1n1

⊤
n)(∇F (x̄(k)))∥2F

≤ nσ2 + 2∥∇F (x(k))−∇F (x̄(k))∥2F + 2∥(In − 1

n
1n1

⊤
n)(∇F (x̄(k)))∥2F

(c)

≤ nσ2 + 2L2∥x(k) − 1n(x̄
(k))⊤∥2F + 2nb2.

In the above inequality, (a) holds because of Assumption 2.2, (b) holds because of Assumption 2.2 and Jensen’s inequality,
and (c) holds due to Assumption 2.1 and Assumption 2.3. By taking expectation over F (k−1), we have

E∥g(k) − 1n(ḡ
(k))⊤∥2F ≤ 2L2E∥x(k) − 1n(x̄

(k))⊤∥2F + nσ2 + 2nb2.

A similar bound can also be derived for E∥h(k) − 1n(h̄
(k))⊤∥2F . As a result, we achieve

E∥ψ(k)∥2F ≤ 2nσ2 + 4nb2 + 2L2E∥φ(k)∥2F .

Summing up the inequality for k = 0, 1, 2, . . . , T and then dividing the result by T + 1, we get

1

T + 1

T∑
k=0

E∥ψ(k)∥2F ≤ 2nσ2 + 4nb2 + 2L2 1

T + 1

T∑
k=0

E∥φ(k)∥2F . (34)

Step III. In this step, we will derive (30) based on (33) and (34). Substituting (34) to (33), we get

1

T + 1

T∑
k=0

E∥φ(k)∥2F ≤ 1

T + 1

τ∑
k=0

E∥φ(k)∥2F +
16τ2γ2L2

T + 1

T∑
k=0

E∥φ(k)∥2F + 16nτ2γ2(σ2 + 2b2) (35)

When γ ≤ 1
8τL , it holds that 16τ2L2γ2 ≤ 1

2 . Regrouping terms associated with 1
T+1

∑T
k=0 E∥φ(k)∥2F , we get (30).

With Lemmas B.8 and B.9, we can establish the following convergence property of DSGD-CECA.

Theorem B.10 (CONVERGENCE PROPERTY). Suppose Assumptions 2.1-2.3 hold and x(k)
i = x̄(k), y(k)

i = ȳ(k) for k < τ
by conducting global averaging in the first τ iterations. If learning rate γ satisfies

γ =
1(

2n∆
Lσ2(T+1)

)− 1
2

+
(

∆
24L2τ2(σ2+2b2)(T+1)

)− 1
3

+ 8τL

(36)

where ∆ = Ef(x̄0)− f⋆, then DSGD-CECA will converge as follows

1

T + 1

T∑
k=0

E∥∇f(x̄(k))∥2 ≤ 16

(
∆Lσ2

n(T + 1)

) 1
2

+ 24

(
∆2L2τ2(σ2 + 2b2)

(T + 1)2

) 1
3

+
32τ∆L

T + 1
(37)

21

Communication-Optimal Decentralized SGD

Proof. Recall that ∥φ(k)∥2F = ∥x(k) − 1n(x̄
(k))⊤∥2F + ∥y(k) − 1n(ȳ

(k))⊤∥2F . By averaging (24) over k = 0, 1, · · · , T ,
we have

1

T + 1

T∑
k=0

E∥∇f(z̄(k))∥2 ≤ 4(Ef(x̄0)− f⋆)

γ(T + 1)
+

3L2

n(T + 1)

T∑
k=0

E∥φ(k)∥2F +
2γLσ2

n

≤ 4(Ef(x̄0)− f⋆)

γ(T + 1)
+ 96L2τ2γ2(σ2 + 2b2) +

2γLσ2

n
, (38)

where the last inequality holds because of inequality (30) and the fact that x(k)
i = x̄(k), y(k)

i = ȳ(k) for k < τ due to the
global averaging in the first τ iterations. We next let ∆ := Ef(x̄0)− f⋆ and define

γ1 =

(
2n∆

Lσ2(T + 1)

) 1
2

, γ2 =

(
∆

24L2τ2(σ2 + 2b2)(T + 1)

) 1
3

. (39)

If we set
γ =

1

γ−1
1 + γ−1

2 + 8τL
,

it holds that γ ≤ min{γ1, γ2, 1
8τL ,

1
4L}. Substituting the above γ to (38), we achieve

1

T + 1

T∑
k=0

E∥∇f(z̄(k))∥2 ≤ 4∆

T + 1
(γ−1

1 + γ−1
2 + 8τL) + 96L2τ2γ2

2(σ
2 + 2b2) +

2γ1Lσ
2

n

= 16

(
∆Lσ2

n(T + 1)

) 1
2

+ 24

(
∆2L2τ2(σ2 + 2b2)

(T + 1)2

) 1
3

+
32τ∆L

T + 1
. (40)

Substituting x̄(k) = z̄(k) to the above inequality (see Lemma B.7), we achieve (37).

C. Additional experiments
CIFAR-10: We utilize the ResNet-18 model (He et al., 2016) implemented by (Liu, 2021). Similar to the MNIST
experiments, we employ BlueFog for decentralized training using 5 NVIDIA GeForce RTX 2080 GPUs. The training
process consists of 130 epochs without momentum, with a weight decay of 10−4. A local batch size of 64 is used, and the
base learning rate is set to 0.01. The learning rate is reduced by a factor of 10 at the 50th, 100th, and 120th epochs. Data
augmentation is performed similarly to the method described in the work (Liu, 2021). Please refer to Fig. 10 for a comparison
of the test accuracy between O.-P. Exp and DSGD-CECA-2P. It is noteworthy that DSGD-CECA-2P outperforms O.-P. Exp
in terms of test accuracy.

Table 4. Comparison of test accuracy(%) with O.-P. Exp and DSGD-CECA-2P over MNIST and CIFAR-10 datasets.

Topology MNIST Test Acc. CIFAR-10 Test Acc.

O.-P. Exp. 98.33 90.99
DSGD-CECA-2P 98.50 92.07

22

Communication-Optimal Decentralized SGD

0 20 40 60 80 100 120
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

O.-P. Exp.
DSGD-CECA-2P

Figure 10. Test accuracy of O.-P. Exp and DSGD-CECA-2P algorithms for ResNet-18 on CIFAR-10.

23

