
Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

Ziluo Ding * 1 Wanpeng Zhang * 1 Junpeng Yue 1 Xiangjun Wang 2 Tiejun Huang 1 3 Zongqing Lu 1 3

Abstract

We investigate the use of natural language to drive
the generalization of policies in multi-agent set-
tings. Unlike single-agent settings, the general-
ization of policies should also consider the influ-
ence of other agents. Besides, with the increasing
number of entities in multi-agent settings, more
agent-entity interactions are needed for language
grounding, and the enormous search space could
impede the learning process. Moreover, given a
simple general instruction, e.g., beating all en-
emies, agents are required to decompose it into
multiple subgoals and figure out the right one to
focus on. Inspired by previous work, we try to
address these issues at the entity level and pro-
pose a novel framework for language grounding
in multi-agent reinforcement learning, entity di-
vider (EnDi). EnDi enables agents to indepen-
dently learn subgoal division at the entity level
and act in the environment based on the associated
entities. The subgoal division is regularized by
agent modeling to avoid subgoal conflicts and pro-
mote coordinated strategies. Empirically, EnDi
demonstrates the strong generalization ability to
unseen games with new dynamics and expresses
the superiority over existing methods. The code
is available at https://github.com/PKU-RL/EnDi.

1. Introduction
The generalization of reinforcement learning (RL) agents
to new environments is challenging, even to environments
slightly different from those seen during training (Finn et al.,
2017). Recently, language grounding has been proven to be
an effective way to grant RL agents the generalization ability
(Zhong et al., 2019; Hanjie et al., 2021). By relating the dy-
namics of the environment with the text manual specifying

*Equal contribution 1School of Computer Science, Peking Uni-
versity 2inspir.ai 3Beijing Academy of Artificial Intelligence. Cor-
respondence to: Zongqing Lu <zongqing.lu@pku.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

the environment dynamics at the entity level, the language-
based agent can adapt to new settings with unseen entities
or dynamics. In addition, language-based RL provides a
framework for enabling agents to reach user-specified goal
states described by natural language (Küttler et al., 2020;
Tellex et al., 2020; Branavan et al., 2012). Language de-
scription can express abstract goals as sets of constraints on
the states and drive generalization.

However, in multi-agent settings, things could be differ-
ent. First, the policies of others also affect the dynamics
of the environment, while the text manual does not provide
such information. Therefore, the generalization of policies
needs to consider the influence of others apart from how
entities behave in a new environment. Second, with the
increasing number of entities in multi-agent settings, so is
the number of agent-entity interactions needed for language
grounding. The enormous search space could impede the
learning process. Third, sometimes it is unrealistic to give
detailed instructions to tell exactly what to do for each agent.
On the contrary, a simple goal instruction, e.g., beating all
enemies or collecting all the treasuries, is more convenient
and effective. Therefore, learning subgoal division and cul-
tivating coordinated strategies based on one single general
instruction is required.

The key to generalization in previous works (Zhong et al.,
2019; Hanjie et al., 2021) is grounding language to dynam-
ics at the entity level. By doing so, agents can reason over
the dynamic rules of all the entities in the environment.
Since the dynamic of the entity is the basic component of
the dynamics of the environment, such language ground-
ing is invariant to a new distribution of dynamics or tasks,
making the generalization more reliable. Inspired by this,
in multi-agent settings, the influence of policies of others
should also be reflected at the entity level for better general-
ization. In addition, after jointly grounding the text manual
and the language-based goal (goal instruction) to environ-
ment entities, each entity has been associated with explicit
dynamic rules and relationships with the goal state. Thus,
the entities with language grounding can also be utilized to
form a sub-goal division strategy.

We present two goal-based multi-agent environments based
on two previous single-agent settings, i.e., MESSENGER
(Hanjie et al., 2021) and RTFM (Zhong et al., 2019), which

1

https://github.com/PKU-RL/EnDi


Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

require generalization to new dynamics (i.e., how entities
behave), entity references, and partially observable envi-
ronments. Agents are given a document that specifies en-
vironment dynamics and a language-based goal. Note that
one goal may contain multiple subgoals. In more detail, in
multi-agent messenger, agents are required to bring all the
messages to the targets, while in multi-agent RTFM, the
general goal is to eliminate all monsters in a given team.
Thus, one single agent may struggle or be unable to finish
it. In particular, after identifying relevant information in
the language descriptions, agents need to decompose the
general goal into many subgoals and figure out the optimal
subgoal division strategy. Note that we focus on interactive
environments that are easily converted to symbolic repre-
sentations, instead of raw visual observations, for efficiency,
interpretability, and emphasis on abstractions over percep-
tion.

In this paper, we propose a novel framework for language
grounding in multi-agent reinforcement learning (MARL),
entity divider (EnDi), to enable agents independently learn
subgoal division strategies at the entity level. Specifically,
each EnDi agent first generates a language-based repre-
sentation for the environment and decomposes the goal
instruction into two subgoals: self and others. Note that the
subgoal can be described at the entity level since language
descriptions have given the explicit relationship between
the goal and all entities. Then, the EnDi agent acts in the
environment based on the associated entities of the self sub-
goal. To consider the influence of others, the EnDi agent
has two policy heads. One is to interact with the environ-
ment, and another is for agent modeling. The EnDi agent is
jointly trained end-to-end using reinforcement learning and
supervised learning for two policy heads, respectively. The
gradient signal of the supervised learning from the agent
modeling is used to regularize the subgoal division of others.

Our framework is the first attempt to address the challenges
of grounding language for generalization to unseen dynam-
ics in multi-agent settings. EnDi can be instantiated on many
existing language grounding modules and is currently built
and evaluated in two multi-agent environments mentioned
above. Empirically, we demonstrate that EnDi outperforms
existing language-based methods in all tasks by a large mar-
gin. Importantly, EnDi also expresses the best generalization
ability on unseen games, i.e., zero-shot transfer. By ablation
studies, we verify the effectiveness of each component, and
EnDi indeed can obtain coordinated subgoal division strate-
gies by agent modeling. We also argue that many language
grounding problems can be addressed at the entity level.

2. Related Work
Language grounded policy-learning. Language grounding
refers to learning the meaning of natural language units,

e.g., utterances, phrases, or words, by leveraging the non-
linguistic context. In many previous works (Wang et al.,
2019; Blukis et al., 2019; Janner et al., 2018; Küttler et al.,
2020; Tellex et al., 2020; Branavan et al., 2012), the text
conveys the goal or instruction to the agent, and the agent
produces behaviors in response after the language grounding.
Thus, it encourages a strong connection between the given
instruction and the policy.

More recently, many works have extensively explored the
generalization from many different perspectives. Hill et al.
(2020a; 2019; 2020b) investigated the generalization re-
garding novel entity combinations, from synthetic template
commands to natural instructions given by humans and the
number of objects. In addition, Co-Reyes et al. (2018) pro-
posed to guide policies by language to generalize on new
tasks by meta-learning. Huang et al. (2022) utilized the gen-
eralization of large language models to achieve zero-shot
planners.

However, all these works may not generalize to a new distri-
bution of dynamics or tasks since they encourage a strong
connection between the given instruction and the policy, not
the dynamics of the environment.

Language grounding to dynamics of environments. A
different line of research has focused on utilizing manuals as
auxiliary information to aid generalization. These text man-
uals provide descriptions of the entities in the environment
and their dynamics, e.g., how they interact with other enti-
ties. Agents can figure out the dynamics of the environment
based on the manual.

Narasimhan et al. (2018) explored transfer methods by sim-
ply concatenating the text description of an entity and the
entity itself to facilitate policy generalization across tasks.
RTFM (Zhong et al., 2019) builds the codependent represen-
tations of text manual and observation of the environment,
denoted as txt2π, based on bidirectional feature-wise lin-
ear modulation (FiLM2). A key challenge in RTFM is
multi-modal multi-step reasoning with texts associated with
multiple entities. EMMA (Hanjie et al., 2021) uses an entity-
conditioned attention module that allows for selective focus
over relevant descriptions in the text manual for each entity
in the environment called MESSENGER. A key challenge
in MESSENGER is the adversarial train-evaluation split
without prior entity-text grounding. Recently, SILG (Zhong
et al., 2021) unifies a collection of diverse grounded lan-
guage learning environments under a common interface,
including RTFM and MESSENGER. All these works have
demonstrated the generalization of policies to a new envi-
ronment with unseen entities and text descriptions.

Compared with the previous works, our work moves one
step forward, investigating language grounding at the entity
level in multi-agent settings.

2



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

Manual

the essential goal is
held by the sphere.

Path 1 Path 2ItemAgent Target 
Monster

Distractor
Monster 

Wall Path 1 Path 2

Wiki
mysterious, soldiers beat cold.
arcane, gleaming beat fire.
fanatical, shimmering beat lightning.

blessed, grandmasters beat poison.
ghost, imp are order of the forest.
jaguar, wolf are rebel enclave.
bat, zombie are star alliance.

defeat the order of the forest.

Task

Agent Goal Message Enemy

the deadly enemy is
carried by the mage.

the blade possesses
the secret directive. 

grandmasters 
kanata 

poison
ghost

shimmering
sword

lightning 
imp 

beta 

alpha 

gleaming 
spear 

fire 
zombie 

Figure 1. Illustrations of two modified multi-agent environments, i.e., multi-agent RTFM (left) and multi-agent MESSENGER (right).

Subgoal Assignment. In the goal-based multi-agent setting,
in order to complete the goal more efficiently, agents need
to coordinate with each other, e.g., making a reasonable
subgoal division. There are many language-free MARL
models (Wang et al., 2020; 2019; Jeon et al., 2022; Tang
et al., 2018; Yang et al., 2019) focusing on task allocation
or behavioral diversity, which exhibit a similar effect as
subgoal assignment.

However, without the help of inherited generalization of
natural language, it is unlikely for the agent to perform well
in environments unseen during training, which is supported
by many previous works (Zhong et al., 2019; Hanjie et al.,
2021). In addition, it is hard to depict the goal state some-
times without natural language (Liu et al., 2022), which
makes the subgoal assignment even more challenging.

3. Preliminaries
Our objective is to ground language to environment dynam-
ics and entities for generalization to unseen multi-agent
environments. Note that an entity is an object represented
as a symbol in the observation, and dynamics refer to how
entities behave in the environment.

Multi-Agent RTFM is extended from Zhong et al. (2019),
where for each task all agents are given the same text in-
formation based on collected human-written language tem-
plates, including a document of environment dynamics and
an underspecified goal. Figure 1 illustrates an instance of the
game. Concretely, the dynamics consist of monsters (e.g.,
wolf, goblin), teams (e.g., order of the forest), element types
(e.g., fire, poison), item modifiers (e.g., fanatical, arcane),
and items (e.g., sword, hammer). When the agents encounter
a weapon/monster, they can pick up the weapon/engage in
combat with the monster. Moreover, a monster moves to-
wards the nearest observable agent with 60% probability,
otherwise moves randomly. The general goal is to eliminate
all monsters in a given team with the appropriate weapons.

The game environment is rendered as a matrix of texts where
each grid describes the entity occupying the grid.

Multi-Agent MESSENGER is built on Hanjie et al. (2021).
For each task, all agents are provided with the same text
manual. The manual contains descriptions of the entities,
the dynamics, and the goal, obtained through crowdsourced
human writers. In addition, each entity can take one of three
roles: an enemy, a message, or a target. There are three
possible movement types for each entity, i.e., stationary,
chasing, or fleeing. Agents are required to bring all the
messages to the targets while avoiding enemies. If agents
touch an enemy in the game or reach the target without first
obtaining the message, they lose the game. Unlike RTFM,
the game environment is rendered as a matrix of symbols
without any prior mapping between the entity symbols and
their descriptions.

POSG. We model the multi-agent environment as a partially
observable stochastic game (POSG). For n agents, at each
timestep t, agent i obtains its own partial observation oi,t
from the global state st, takes action ai,t following its policy
πθ(ai,t|oi,t), and receives a reward ri,t(st,at) where at

denotes the joint action of all agents. Then the environment
transitions to the next state st+1 given the current state
and joint action according to transition probability function
T (st+1|st,at). Agent i aims to maximize the expected
return Ri =

∑T
t=1 γ

t−1ri,t, where γ is the discount factor
and T is the episode time horizon.

4. Methodology
In goal-based MARL, it is critical for agents to coordinate
with each other. Otherwise, subgoal conflicts (multiple
agents focusing on the same subgoal) can impede the com-
pletion of the general goal. To this end, we introduce EnDi
for language grounding in MARL to enable agents inde-
pendently learn the subgoal division at the entity level for
better generalization. For each task, agents are given a text

3



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

Observation:

Text Manual and Language Goal:

G
ro

u
n
d
 1

G
ro

u
n
d
 1

G
ro

u
n
d
 1

G
ro

u
n
d
 1

CC

C
o
n
v
 N

ets

G
u
m

b
el–

S
o
ftm

ax

G
ro

u
n
d

 2
G

ro
u

n
d

 2
G

ro
u

n
d
 2

G
ro

u
n
d
 2

F
C

 L
ay

er
F

C
 L

ay
er

Concatenate im

im−1
z1: The red monsters are enemies.

z2: The white boys are moving.

Goal: The goal is to win the war. 

supsup

Forward
Back 

Propagation

Element-Wise

Multiplication

self

policyX

iO

il

i−l

iO

il

,g z

,g z

iO

i−l

,g z

iO

iO

ia

i−a

RLRL

,g z

,g z

Self

Agent

Others'
Agent

self

goalX

others

goalX
others

policyX othersπ

selfπ

Figure 2. Overview architecture of EnDi. Language grounding is first used to obtain language-based representation Xgoal. Then, the
subgoal division module generates a binary entity mask m to address important entities. The mask is applied directly to the observation
and a new language-based representation Xpolicy for decision-making is obtained. EnDi has two policy heads. One is to interact with the
environment, and another is for agent modeling. The gradients from supervised learning and reinforcement learning jointly influence the
formation of entity masks.

manual z ∈ Z describing the environment dynamics and a
language-based goal g ∈ G as language knowledge. Apart
from this, at each timestep t, each agent i obtains a h× w
grid observation oi,t and outputs a distribution over the ac-
tion π(ai,t|oi,t, z, g). Note that we omit the subscript t in
the following for convenience. Note that the parameters of
each module are not shared among agents.

4.1. Overall Framework

Language Grounding Module. Given a series of language
knowledge, the agent first grounds the language to the obser-
vation of the environment, adopting the existing language
grounding module to generate a language-based represen-
tation X = Ground(o, z, g) ∈ Rh×w×d,. It captures the
relationship between the goal, the manual, and observation.
Thus, agents are likely to understand the environment dy-
namics instead of memorizing any particular information,
which is verified by previous works (Zhong et al., 2019;
Hanjie et al., 2021). This type of representation is then used
to generate the subgoal division and policy.

Note that EnDi is compatible with any language ground-
ing module. In practice, we build our framework on the
backbone of txt2π (Zhong et al., 2019) and EMMA (Huang
et al., 2022) and adopt their grounding modules, i.e., FiLM2

and multi-modal attention, respectively.

Subgoal Division Module. Since the language-based goal
is highly relevant to the entities in the environment after
grounding, the subgoal division should also be done at the

entity level. To independently learn the good subgoal divi-
sion, the goal is decomposed by each agent into two sub-
goals, the self subgoal it will focus on and the others subgoal
which is exploited to avoid subgoal conflicts.

Taking agent i to illustrate, it first generates two representa-
tions, i.e., Xself

goal = Ground1([oi, li], z, g) and Xothers
goal =

Ground1([oi, l−i], z, g), where li is the positional feature
of agent i which is the Manhattan distance to all the grids
and l−i is the joint positional feature of all agents except
i. When grounding the general goal to entities e ∈ E, dif-
ferent agents have different perspectives of how to achieve
the goal, thus positional features are used to capture such
differences. The two representations are then concatenated
together and passed to a 2D convolution to extract a mixture
feature map. With the mixture feature map, we utilize a
Gumbel-Softmax (Jang et al., 2016) layer to output a sub-
goal division distribution over all the entities ρe(oi, l, z, g),
determining what entities should be addressed.

To guarantee the uniform entities coverage of subgoal divi-
sion module, we match the subgoal distribution ρe with a
target distribution p⋆e as a regularization term and aim to min-
imize DKL(ρe||p⋆e). As there is not any prior information
for the subgoal division, we assume the target distribution
has the mean of |e|/n with a relatively low variance in the
meantime, where n is the number of agents. Intuitively, we
are willing to observe that all agents make contributions to
the goal.

Policy Module. Agents try to understand the dynamics and

4



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

the general goal through interactions with the entities. It
means that, as the number of entities increases in MARL,
the grounding procedure could be complex since more in-
teractions are required during training.

Normally, unlike the general goal, agents only need to inter-
act with parts of the relevant entities to complete the subgoal.
Intuitively, if agents can ignore trivial entities, the grounding
procedure can be simplified and accelerated at its source,
and agents can make decisions without distractions.

To this end, we sample a binary entity mask mi based on the
subgoal division distribution. The mask is applied to the ob-
servation directly and indicates the necessity of considering
each entity when making decisions. Still, two representa-
tions are obtained as Xself

policy = Ground2(oi ⊙ mi, z, g)

and Xothers
policy = Ground2(oi ⊙ (1−mi), z, g), where ⊙ is

the element-wise multiplication. There are two different
policy heads in EnDi, πself and πothers. The former one
is to output actions for interacting with the environment
and takes Xself

policy as input. On the other side, Xothers
policy is

passed into another head for agent modeling, which will be
elaborated on later. Note that πself is trained using reinforce-
ment learning, and more training details can be found in
Appendix B. In addition, Gumbel-softmax enables the gra-
dients to flow through the binary entity mask to the subgoal
division module.

4.2. Agent Modeling

However, if EnDi does not consider the influence of others,
the subgoal division module is prone to converge to a sub-
optimum. In other words, agents may focus on individual
interests rather than the common interest. Moreover, we
want to capture the influence of others at the entity level for
better coordination.

To this end, we let each agent reason about others’ inten-
tions by agent modeling. Specifically, EnDi has a policy
head πothers based on Xothers

policy to predict the joint actions of
others a−i at each timestep and update the policy parameter
in a supervised manner,

L(oi, z, g) = −y log(πothers(a−i|oi, z, g))⊤, (1)

where y is the concatenation of actual actions (one-hot vec-
tor) of others. By agent modeling, each agent can infer the
entities that others plan to interact with since only accurate
1 − mi can guarantee the low supervised loss. In other
words, it would force the agent to avoid subgoal conflicts at
the entity level.

5. Experiments
We evaluate EnDi in multi-agent MESSENGER and multi-
agent RTFM environments, which we have extended from
two previous single-agent environments, see Section 3. For

a fair comparison, we build EnDi based on EMMA and
txt2π, which are the models in MESSENGER and RTFM,
respectively. More details about the environments can be
found in Appendix A.

5.1. Curriculum Learning

Language-based tasks are much more complex compared
with language-free tasks since agents must go through a
long process of exploration to learn to maximize the ex-
pected return and ground language in the meanwhile. To
solve multi-agent MESSENGER and RTFM tasks (movable
entities, complex game rules, multiple task goals), we de-
sign curricula to help policy learning. Note that millions
of training steps are required for each training stage. It
again demonstrates the complexity of such language-based
environments, even dealing with grid worlds.

In multi-agent MESSENGER, we have designed Stages 1,
2, and 3, following the settings of MESSENGER (Hanjie
et al., 2021).

• Stage 1 (S1): There are five entities (enemy, message1, mes-
sage2, goal1, goal2) that are initialized randomly in five
possible locations. Agents always begin in the center of the
grid. They start without messages with a probability 0.8 and
begin with messages otherwise. On S1, agents are required
to obtain different messages (start without messages)/goals
(start with messages) to win. If all agents interact with the
correct entities within a given number of steps, a reward of
+1 will be provided, and −1 otherwise.

• Stage 2 (S2): The five entities are initialized randomly in five
possible locations. The difference with S1 is that the entities
on S2 are mobile. In other words, they can change position
randomly at every timestep.

• Stage 3 (S3): The five entities are initialized randomly in
five possible locations. All agents begin without the message,
and the rule requires them to interact with the messages first
and then with the goals. Within a given number of steps, each
agent interacting successfully with the messages will be pro-
vided a reward of 0.2, and all agents interacting successfully
with the goals will obtain a reward of +1, otherwise −1.

In multi-agent RTFM, there are five stages for training.
Note that Stage 2 to Stage 5 follow settings of RTFM (Zhong
et al., 2019), while we empirically found introducing Stage
1 is beneficial for later training process in multi-agent set-
ting. During every episode, we subsample a set of groups,
monsters, modifiers, and elements to use. We randomly
generate group assignments of which monsters belong to
which team and which modifier is effective against which
element. Note that each assignment represents a different
dynamic.

• Stage 1 (S1): There are only four entities in the environment,
i.e., two correct items and two monsters. Note that there are
one-to-one group assignments, stationary monsters, and no
templated language descriptions. Agents need to pick up the
correct items and use them to beat all the monsters to win
within a given number of steps.

5



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

Table 1. The final mean win rate (± stddev.) over five random seeds. All methods adopt the same curriculum training strategy for a fair
comparison. txt2π, EMMA, and SILG are the single-agent baselines of previous works. Removing the supervised loss from the total
loss, denoted as EnDi-sup, and removing the regularization term, denoted as EnDi-reg. EnDi(num) and EnDi(dis) are our methods with
different forms of regularization terms.

Model S1 S2 S3 S4 S5

multi-agent
RTFM

txt2π 0.99± 0.01 0.11± 0.06 0.05± 0.05 0.05± 0.03 0.02± 0.01
txt2π(centralized) 0.98± 0.02 0.07± 0.07 0.06± 0.04 0.06± 0.00 0.03± 0.01

SILG 0.99± 0.01 0.05± 0.01 0.04± 0.01 0.04± 0.00 0.04± 0.01
EnDi-sup 0.99± 0.01 0.53± 0.08 0.36± 0.03 0.41± 0.12 0.41± 0.13
EnDi-reg 1.00± 0.00 0.61± 0.15 0.39± 0.01 0.39± 0.03 0.39± 0.03

EnDi(num) 1.00± 0.00 0.62± 0.07 0.52± 0.05 0.54± 0.03 0.56± 0.01
EnDi(dis) 1.00± 0.00 0.76 ± 0.14 0.59 ± 0.04 0.61 ± 0.04 0.63 ± 0.03

multi-agent
MESSENGER

EMMA 0.57± 0.03 0.04± 0.02 0.02± 0.01 — —
EMMA(centralized) 0.61± 0.02 0.04± 0.01 0.03± 0.01 — —

SILG 0.99± 0.01 0.32± 0.04 0.05± 0.02 — —
EnDi-sup 0.99± 0.01 0.52± 0.05 0.21± 0.03 — —
EnDi-reg 0.67± 0.03 0.07± 0.02 0.02± 0.01 — —

EnDi(num) 0.99± 0.01 0.75± 0.04 0.19± 0.02 — —
EnDi(dis) 0.99± 0.01 0.81 ± 0.03 0.25 ± 0.03 — —

• Stage 2 (S2): We add two distractor entities (sampled from
the group that is irrelevant to the goal). One is a distractor
weapon that cannot be used to beat the monsters. Another
is a distractor monster, with which agents will lose when
engaging.

• Stage 3 (S3): All monsters, including the distractor monsters,
move towards the agents with 60% probability, otherwise
move randomly.

• Stage 4 (S4): We allow many-to-one group assignments to
make disambiguation more difficult. Note that the difference
between many-to-one and one-to-one groups is that the man-
ual would also describe the entities that are not presented in
the game.

• Stage 5 (S5): The manual would use templated language
descriptions.

5.2. Results

In the experiments, we compare EnDi with the following
methods: 1) txt2π (Zhong et al., 2019) which builds the
codependent representations of text manual and observation
of the environment based on bidirectional feature-wise linear
modulation (FiLM2) in RTFM. 2) EMMA (Hanjie et al.,
2021) which uses an entity-conditioned attention module
that allows for selective focus over relevant descriptions in
the text manual for each entity in MESSENGER. 3) SILG
(Zhong et al., 2021) that provides the first shared model
architecture for several symbolic interactive environments,
including RTFM and MESSENGER. Moreover, for txt2π
and EMMA, we also take the centralized training versions
of them as baselines, denoted as txt2π(centralized) and
EMMA(centralized), where the critic takes as input the
observations of all agents, to study the effects of multi-agent
backbones.

Performance. Table 1 shows the win rates in both multi-
agent RTFM and multi-agent MESSENGER environments.
In each environment, there are two agents. In the multi-
agent RTFM environment, we use EnDi with txt2π as the
backbone to compare with both txt2π and SILG baselines.
It is worth noting that as discussed in Section 4.1, to guar-
antee the uniform entities coverage of the subgoal division
module, we match the subgoal distribution ρe with a target
distribution p⋆e as a regularization term. Specifically, we de-
sign two patterns for the regularization term, 1) EnDi(num)
which minimizes ||ei| − |e−i|/(n− 1)| where |ei| is the en-
tity number of the entity mask for agent i, and 2) EnDi(dis)
which minimizes the distance to reach the divided enti-
ties, i.e.,

∑
k={i,−i}

∑
e∈ek

(|xe − xk|+ |ye − yk|) where
(x, y) denotes the coordinate of entity/agent in the mask. In
multi-agent RTFM, all models are able to succeed in the
simplest S1, achieving a 99% to 100% win rate. When grad-
ually transferring to S2–S5, both EnDi(dis) and EnDi(num)
consistently show significantly better win rates than base-
lines.

We also conduct similar experiments in multi-agent MES-
SENGER, where we use EnDi that builds on EMMA to
compare with both EMMA and SILG baselines. EnDi and
SILG both succeed in S1 while EMMA obtains a win rate
of 57%. Then, EMMA is only able to achieve a 4% win
rate in S2, while EnDi can obtain a win rate at most 81%,
much better than SILG and EMMA. In S3, the environment
is dynamically changing and the tasks are complex, mak-
ing it extremely difficult to win. Even in the single-agent
version, the best result is only a 22% win rate (Hanjie et al.,
2021). In the multi-agent version, the complex agent-entity
interactions make S3 even more difficult. All models exhibit
limited win rates due to the complexity of the environment

6



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

mysterious, soldiers beat cold.
arcane, gleaming beat fire.
fanatical, shimmering beat lightning.

blessed, grandmasters beat poison.
ghost, imp are order of the forest.
jaguar, wolf are rebel enclave.
bat, zombie are star alliance.

Manual
the essential goal is held by the sphere.

the deadly enemy is carried by the mage.

the blade possesses the secret directive.

Mask of Agent1 Mask of Agent2
1 3 6 11Agent 1

Agent 2

Agent 1

Agent 2

Agent 1

Agent 2
Agent 2

Agent 1Agent Goal Message Enemy

Wiki Task
defeat the

order of

the forest. 

Agent Mask of Agent1 Mask of Agent2 1 3 5 7

Agent 1 Agent 1 Agent 1 Agent 1

Agent 2 Agent 2 Agent 2 Agent 2

Grandmasters 
Kanata 

Shimmering 
Sword 

Gleaming 
Spear 

Poison Ghost Lightning Imp Fire Zombie 

Figure 3. Illustration of learned subgoal division in multi-agent RTFM (upper panel) and multi-agent MESSENGER (lower panel). The
dashed circle shows the chosen subgoal for each agent.

and tasks, but EnDi(num) and EnDi(dis) still show a sub-
stantial win rate lead over baselines.

The consistent results in both environments highlight the
importance and rationality of EnDi’s design of subgoal di-
vision, demonstrating its effective performance in multi-
agent settings. In addition, the poor performance of single-
agent methods indicates that without coordination behaviors
at the entity level, they cannot handle more challenging
multi-agent settings. Moreover, we find txt2π and EMMA
show similar performance as their centralized version. This
demonstrates that the key is still the language grounding
part in this line of research.

Policy Analysis. To verify the effect of EnDi on the sub-
goal division, we visualize the learned policies using EnDi.
Figure 3 shows key snapshots from the learned policies
on randomly sampled multi-agent RTFM and multi-agent
MESSENGER tasks.

The upper panel in Figure 3 shows an episode from a multi-
agent RTFM task. In this task, EnDi can reasonably factor
teamwork into the proper subgoal division and complete the
task quickly rather than simply finishing the subgoal nearby.
In frames 1–3, although Agent1 has a closer weapon in
the upper left corner, it ignores this weapon and chooses
another weapon at the top of the map. This decision helps
Agent2 to differentiate from Agent1 in its subgoal division
and also avoids the distractor monster on the left side of the
map. In frames 3–5, it can be seen that after Agent2 gets
the weapon, it chooses to go down to the target monster,
leaving the upper target monster to Agent1 and thus forming
a coordinated strategy between the two agents.

The lower panel in Figure 3 shows an episode from multi-
agent MESSENGER. We can observe similar subgoal di-
vision strategies as multi-agent RTFM. In more detail, the
message at the upper left is closer to Agent1 than the lower

left one in frame 1. However, to avoid subgoal conflicts,
Agent1 chooses another subgoal, which is the message at
the lower left. For the rest frames, two agents go to complete
their chosen subgoals so the general goal can be finished
more efficiently.

Ablations. Compared to txt2π or EMMA, EnDi has two
additional modules: the subgoal division module and the
agent modeling module. To investigate the effectiveness
of each module, we compare EnDi(dis) with two ablation
baselines. We remove the supervised loss from the total
loss, denoted as EnDi-sup, and remove the regularization
term, denoted as EnDi-reg. The results are shown in Table
1. Note that the model degrades to txt2π or EMMA if we
remove both modules.

As shown in Table 1, EnDi(dis) achieves a higher win rate
than EnDi-sup and EnDi-reg in both environments. These
results verify the importance of considering the influence of
others and regularizing the subgoal division distribution. In
more detail, we found that no subgoal division strategy can
be learned in EnDi-reg, where the entity mask converges to
a poor sub-optimum, i.e., covering almost all the entities.
As for EnDi-sup, we observed that conflicts of the chosen
subgoals between agents happen more often than the model
with agent modeling.

Table 2. The final mean win rates (± stddev.) over five random
seeds in three-agent RTFM.

S1/S2 S3 S4 S5

txt2π 0.97± 0.03 0.88± 0.02 0.87± 0.04 0.85± 0.05
EnDi(dis) 0.99± 0.01 0.89± 0.02 0.91± 0.03 0.92± 0.03

Extension. EnDi can also adapt to environments with more
than two agents. Specifically, the joint positional feature of
all other agents is the Manhattan distance of all the grids to

7



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

Table 3. The mean win rates (± stddev.) over five random seeds on evaluation in multi-agent RTFM. Note that the result of each seed is
obtained by running 1k episodes.

S5-Train S5-Eval S5-Eval(new) S5-Eval(10×10)

EnDi-sup 0.38± 0.11 0.39± 0.10 0.36± 0.10 0.44± 0.11
EnDi-reg 0.39± 0.02 0.38± 0.02 0.35± 0.02 0.41± 0.00
EnDi(dis) 0.59± 0.01 0.61± 0.01 0.56± 0.00 0.62± 0.02

Table 4. The mean win rates (± stddev.) over five random seeds on evaluation in multi-agent MESSENGER. Note that the result of each
seed is obtained by running 1k episodes.

S1-Train S1-Eval S2-Train S2-Eval S3-Train S3-Eval

EnDi-sup 0.99± 0.01 0.68± 0.07 0.52± 0.05 0.36± 0.06 0.21± 0.03 0.08± 0.03
EnDi-reg 0.67± 0.03 0.39± 0.04 0.07± 0.02 0.04± 0.01 0.02± 0.01 0.01± 0.01
EnDi(dis) 0.99± 0.01 0.79± 0.05 0.81± 0.03 0.52± 0.02 0.25± 0.03 0.11± 0.02

their closest agents. For agent modeling, we have multiple
policy heads for all other agents.

To verify this, we consider the three-agent RTFM. In more
detail, the number of target items, i.e., correct monsters
and weapons, is set to three. Besides, the distractors in
multi-agent RTFM are removed for fast convergence, which
makes S2 meaningless. The results are shown in Table 2.
The performance gap between EnDi(dis) and txt2π nar-
rows down because the settings are easier. However, it still
demonstrates that EnDi(dis) can adapt to more complex set-
tings, i.e., more agents. More thorough investigations are
left as future work.

5.3. Generalization

As mentioned before, the biggest advantage of language-
based MARL is that natural language drives the general-
ization of policies. To investigate the generalization ability
of EnDi, we zero-shot transfer the model learned from the
training tasks to new tasks. Note that we follow the evalua-
tion rules in RTFM (Zhong et al., 2019) and MESSENGER
(Hanjie et al., 2021).

To assess the importance of language, EMMA (Hanjie
et al., 2021) has done the ablation studies by replacing the
language descriptions with an auxiliary vector (Game ID)
where each dimension corresponds to a role. The results
show the Game ID fails in the complex environment. We
also test the generalization of the language-free method,
QMIX (Rashid et al., 2018). At the simplest S1 in multi-
agent RTFM, the mean win rates of QMIX are only 64%
and 41% in the training set and unseen tasks, respectively,
much worse than EnDi. These results distinguish EnDi from
language-free methods.

Multi-Agent RTFM. Importantly, no assignments of
monster-team-modifier-element are shared between the
training and evaluation set (denoted as Eval). Thus, even

with the same words, the new assignments still lead to new
dynamics. However, we also design another evaluation
set with the totally novel monsters and modifiers, denoted
as Eval(new). Moreover, since we train our model in the
8× 8 grid world, we also test the generalization to a bigger
10× 10 grid world in the original evaluation set, denoted as
Eval(10×10). Note that all results are obtained by models
from S5.

Table 3 shows that EnDi(dis) and its variants have demon-
strated an extremely promising generalization ability to new
dynamics unseen during training or a different size of grid
world. This benefits from grounding language to the dynam-
ics. In addition, we notice that EnDi-reg performs slightly
worse in Eval(new) compared with others. We speculate the
language grounding process may be slightly hard in EnDi-
reg since the entity mask of EnDi-reg covers more entities
than others.

Multi-Agent MESSENGER. For evaluation, we still keep
the same entity types, but we make new assignments of word
combinations for message, goal, and enemy to ensure that
these combinations are unseen during training. We also use
completely new description sentences in the text manuals.

The results are shown in Table 4. EnDi(dis) shows the
promising generalization ability in multi-agent MESSEN-
GER. EnDi(dis) can maintain 79% and 52% win rates on S1
and S2 respectively, playing with completely unseen entity
combinations and text manuals. Due to the difficulty of S3,
all models underperform but EnDi(dis) still maintains the
best generalization performance. In addition, the problem of
EnDi-reg handling language grounding is more magnified
in multi-agent MESSENGER, yielding a lower win rate in
both training and evaluation. This result demonstrates the
importance of focusing on relevant entities when making
decisions.

8



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

6. Conclusion
We attempt to address the challenges of grounding language
for generalization to unseen dynamics in multi-agent set-
tings. To this end, we have proposed a novel language-based
framework, EnDi, that enables agents independently learn
subgoal division strategies at the entity level. Empirically,
EnDi outperforms existing language-based methods in all
tasks by a large margin and demonstrates a promising gener-
alization ability. Moreover, we conclude that many language
grounding problems can be addressed at the entity level.

Acknowledgements
This work was supported in part by NSF China under grant
62250068. The authors would like to thank the anonymous
reviewers for their valuable comments.

References
Blukis, V., Terme, Y., Niklasson, E., Knepper, R. A., and

Artzi, Y. Learning to map natural language instructions to
physical quadcopter control using simulated flight. arXiv
preprint arXiv:1910.09664, 2019.

Branavan, S., Silver, D., and Barzilay, R. Learning to win
by reading manuals in a monte-carlo framework. Journal
of Artificial Intelligence Research, 43:661–704, 2012.

Co-Reyes, J. D., Gupta, A., Sanjeev, S., Altieri, N., An-
dreas, J., DeNero, J., Abbeel, P., and Levine, S. Guiding
policies with language via meta-learning. arXiv preprint
arXiv:1811.07882, 2018.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In Interna-
tional conference on machine learning, 2018.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, 2017.

Hanjie, A. W., Zhong, V. Y., and Narasimhan, K. Grounding
language to entities and dynamics for generalization in
reinforcement learning. In International Conference on
Machine Learning, 2021.

Hill, F., Lampinen, A., Schneider, R., Clark, S., Botvinick,
M., McClelland, J. L., and Santoro, A. Environmental
drivers of systematicity and generalization in a situated
agent. arXiv preprint arXiv:1910.00571, 2019.

Hill, F., Mokra, S., Wong, N., and Harley, T. Hu-
man instruction-following with deep reinforcement learn-
ing via transfer-learning from text. arXiv preprint
arXiv:2005.09382, 2020a.

Hill, F., Tieleman, O., Von Glehn, T., Wong, N., Merzic, H.,
and Clark, S. Grounded language learning fast and slow.
arXiv preprint arXiv:2009.01719, 2020b.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting action-
able knowledge for embodied agents. arXiv preprint
arXiv:2201.07207, 2022.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Janner, M., Narasimhan, K., and Barzilay, R. Representation
learning for grounded spatial reasoning. Transactions of
the Association for Computational Linguistics, 6:49–61,
2018.

Jeon, J., Kim, W., Jung, W., and Sung, Y. Maser: Multi-
agent reinforcement learning with subgoals generated
from experience replay buffer. In International Confer-
ence on Machine Learning, 2022.

Küttler, H., Nardelli, N., Miller, A., Raileanu, R., Selvatici,
M., Grefenstette, E., and Rocktäschel, T. The nethack
learning environment. Advances in Neural Information
Processing Systems, 2020.

Liu, M., Zhu, M., and Zhang, W. Goal-conditioned re-
inforcement learning: Problems and solutions. arXiv
preprint arXiv:2201.08299, 2022.

Narasimhan, K., Barzilay, R., and Jaakkola, T. Ground-
ing language for transfer in deep reinforcement learning.
Journal of Artificial Intelligence Research, 63:849–874,
2018.

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G.,
Foerster, J., and Whiteson, S. Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement
learning. In International conference on machine learn-
ing, 2018.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Tang, H., Hao, J., Lv, T., Chen, Y., Zhang, Z., Jia, H., Ren,
C., Zheng, Y., Meng, Z., Fan, C., et al. Hierarchical
deep multiagent reinforcement learning with temporal
abstraction. arXiv preprint arXiv:1809.09332, 2018.

Tellex, S., Gopalan, N., Kress-Gazit, H., and Matuszek, C.
Robots that use language. Annual Review of Control,
Robotics, and Autonomous Systems, 3(1), 2020.

Wang, T., Dong, H., Lesser, V., and Zhang, C. Roma: Multi-
agent reinforcement learning with emergent roles. arXiv
preprint arXiv:2003.08039, 2020.

9



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

Wang, X., Huang, Q., Celikyilmaz, A., Gao, J., Shen, D.,
Wang, Y.-F., Wang, W. Y., and Zhang, L. Reinforced
cross-modal matching and self-supervised imitation learn-
ing for vision-language navigation. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2019.

Yang, J., Borovikov, I., and Zha, H. Hierarchical cooperative
multi-agent reinforcement learning with skill discovery.
arXiv preprint arXiv:1912.03558, 2019.

Zhong, V., Rocktäschel, T., and Grefenstette, E. Rtfm:
generalising to novel environment dynamics via reading.
arXiv preprint arXiv:1910.08210, 2019.

Zhong, V., Hanjie, A. W., Wang, S., Narasimhan, K., and
Zettlemoyer, L. Silg: The multi-domain symbolic interac-
tive language grounding benchmark. Advances in Neural
Information Processing Systems, 2021.

10



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

A. Environment Details
A.1. Multi-Agent RTFM

In multi-agent RTFM, the agents are given a document of environment dynamics, observations of the environment, and an
underspecified goal instruction. Concretely, we design a set of dynamics that consists of monsters e.g., wolf or goblin, teams,
e.g., Order of the Forest, element types, e.g., fire or poison, item modifiers, e.g., fanatical or arcane, and items, e.g., sword or
hammer. When the player is in the same grid with a monster or weapon, the player picks up the item or engages in combat
with the monster. The player can possess one item at a time, and drops existing weapons if they pick up a new weapon. A
monster moves towards the nearest observable agent with 60% probability, otherwise moves randomly. The dynamics, the
agents’ inventories, and the underspecified goal are rendered as text. The game world is rendered as a matrix of texts in
which each grid describes the entity occupying the grid. We use human-written templates for stating which monsters belong
to which team, which modifiers are effective against which element, and which team the agent should defeat.

For each episode, multi-agent RTFM subsamples a set of groups, monsters, modifiers, and elements to use. Multi-agent
RTFM randomly generates group assignments of which monsters belong to which team and which modifier is effective
against which element. A document that consists of randomly ordered statements corresponding to this group assignment is
presented to the agents. Multi-agent RTFM samples one element, one team, and a monster from that team, e.g., “fire goblin”
from “Order of the forest”, to be the target monster. Additionally, we sample one modifier that beats the element and an
item to be the item that defeats the target monster, e.g., “fanatical sword”. Similarly, we sample an element, a team, and a
monster from a different team to be the distractor monster, e.g., poison bat, as well as an item that defeats the distractor
monster, e.g., arcane hammer.

In the multi-agent setting, we set the number of correct items and the number of target monsters to be the same as the number
of agents. The number of the distractor item and the distractor monster is set to one. Under this setting, to achieve the goal
more efficiently, the agents need to coordinate with each other. One agent can solve the game alone, but need more steps.

Game Rules. Once agents kill all the correct monsters, they win the game. Any agent who kills a correct monster can get a
reward +1.

If any agent engages with the distractor monster, they lose the game and whoever engages gets a reward −1. Moreover, if
they exceed the steps given by the game or they kill the distractor monster with the distractor item, they still lose the game.
For each step, all agents get a penalty of −0.02. Note that the reward is not shared across all agents and this is different with
multi-agent MESSENGER.

In order to win the game, each agent needs to do the following things:

• Identify the target team from the goal.

• Identify the monsters that belong to that team.

• Identify which monster is in the world.

• Identify the modifiers that are effective against this element.

• Find which modifier is present and the item with the modifier.

• Figure out what item should be picked up among all the correct items in order to avoid miscoordination.

• Pick up the correct item.

• Figure out what monsters should be engaged among all the correct items in order to avoid miscoordination.

• Engage the correct monster in combat.

Entities and Modifiers. Below is a list of entities and modifiers contained in multi-agent RTFM:

• Monsters: wolf, jaguar, panther, goblin, bat, imp, shaman, ghost, zombie.

• Weapons: sword, axe, morningstar, polearm, knife, katana, cutlass, spear

11



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

• Elements: cold, fire, lightning, poison.

• Modifiers: Grandmaster, blessed, shimmering, gleaming, fanatical, mysterious, soldier, arcane.

• Teams: star alliance, order of the forest, rebel enclave.

For the Eval-new set, we have a new list of entities and modifiers:

• Monsters: tiger, bear, puma, elf, vampire, gremlin, witch, specter, robot.

• Weapons: sabre, tomahawk, sunglow.

• Modifiers: superstars, sacred, glittering, shiny, obsessive, bizarre, secret, esoteric.

Language Templates. Multi-agent RTFM collects human-written language templates for the goal and the dynamics (Zhong
et al., 2019). The goal statements in multi-agent RTFM describe which team the agent should defeat. Multi-agent RTFM
collects 12 language templates for goal statements. The document of environment dynamics consists of two types of
statements. The first type describes which monsters are assigned to which team. The second type describes which modifiers,
which describe items, are effective against which element types, which are associated with monsters. Multi-agent RTFM
collects 10 language templates for each type of statement. The entire document is composed of statements, which are
randomly shuffled. Multi-agent RTFM randomly samples a template for each statement, which multi-agent RTFM fills with
the monsters and team for the first type and modifiers and elements for the second type.

A.2. Multi-Agent MESSENGER

Multi-Agent MESSENGER is built on Hanjie et al. (2021). In order to transform single-agent MESSENGER into multi-agent
MESSENGER, we keep the same entity, role, and adjective as used in single-agent MESSENGER, and increase only the
number of entities. For each task, all agents are provided with the same text manual. The manual contains descriptions
of the entities, the dynamics, and the goal, obtained through crowdsourced human writers. Crucially, while prior work
assumes a ground truth mapping (e.g., the word ‘queen’ in the manual refers to the entity name ‘queen’ in the observation),
multi-agent MESSENGER does not contain priors that map between text and state observations. To succeed in multi-agent
MESSENGER, an agent must relate entities and dynamics of the environment to their references in the natural language
manual using only scalar reward signals from the environment. The overall game mechanics of multi-agent MESSENGER
involve obtaining a message and delivering it to a goal.

In multi-agent MESSENGER, each entity can take one of three roles: an enemy, a message, or a target. There are three
possible movement types for each entity, i.e., stationary, chasing, or fleeing. Agents are required to bring all the messages to
the targets while avoiding enemies. If agents touch an enemy in the game or reach the target without first obtaining the
message, they lose the game. There are twelve different entities. Each set of entity-role assignments is initialized on a
10× 10 grid. The agent can navigate via up, down, left, right, and stay actions and interacts with another entity when both
occupy the same grid. The same set of entities with the same movements may be assigned different roles in different games.
Thus, two games may have identical observations but differ in the reward function (which is not available to the agents) and
the text manual (which is available). Thus, the agents must learn to extract information from the text manual to succeed
consistently.

Game Rules. In order to win the game, each agent needs to do the following things,

• Identify the entities that hold the message.

• Map descriptions to the correct symbols in the observation.

• Observe the movement patterns of entities to disambiguate which of the two entities holds the message.

• Pick up the messages from the entities that hold them.

• Follow a similar procedure to the third step to disambiguate which mages are the goals and which are the enemies.

• Bring the messages to the goals.

12



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

In different stages, the reward functions also have the following differences:

• S1 & S2: If all the agents interact with the correct entities (i.e., agents started with message obtain a goal and agents
started without message obtain a message) within a given number of steps, a reward of 1.0 will be provided, and −1.0
otherwise.

• S3: The agents are required to get the messages first and then the goals so that it can be considered a win. Within a
given number of steps, each agent interacting successfully with the messages will be provided a reward of 0.2, and all
the agents interacting successfully with the goals will receive a reward of 1.0, otherwise −1.0.

Entities. Below is a list of entities contained in multi-agent MESSENGER:

• Enemy: enemy, opponent, adversary (Adjectives: dangerous, deadly, lethal).

• Message: message, memo, report. (Adjectives: restricted, classified, secret)

• Goal: goal, target, aim. (Adjectives: crucial, vital, essential)

Language Templates. We use the same corpus of text manual as in the original EMMA paper (Hanjie et al., 2021), i.e., 82
templates with 2214 possible descriptions after filling in the blanks. We have three blanks per template, one each for the
entity, role, and adjective. For each role, we have three role words and three adjectives that are synonymous. Each entity is
also described in three synonymous ways. Thus, every entity-role assignment can be described in 27 different ways on the
same template. The raw templates are filtered for duplicates, converted to lowercase, and corrected for typos to prevent
confusion in specific tasks.

B. Implementation and Training Details
First, for both environments, we train 5 runs with different random seeds for each baseline to report the mean and standard
deviation. For generalization, we zero-shot transfer each of the 5 runs to the new task and once again report the mean and
standard deviation.

B.1. Multi-Agent RTFM

We train using an implementation of IMPALA (Espeholt et al., 2018). In particular, we use 10 actors and a batch size of 20.
When unrolling actors, we use a maximum unroll length of 80 steps. Each episode lasts for a maximum of 1000 steps. We
optimize using RMSProp with a learning rate of 0.005, which is annealed linearly for 100 million steps. We set α = 0.99
and ϵ = 0.01.

During training, we apply a small negative reward for each time step of −0.02 and a discount factor of 0.99 to facilitate
convergence. We additionally include an entropy regularization to encourage exploration. RTFM sets in the entropy loss
with a weight of 0.005 and the baseline loss with a weight of 0.5. The baseline loss is computed as the root mean square of
the advantages (Espeholt et al., 2018).

For S1, we train the model for 1.5× 107 steps. For the rest stages, i.e., S2–S5, we train the model for 5× 107 steps.

B.2. Multi-Agent MESSENGER

The models are end-to-end differentiable and we train them using proximal policy optimization (PPO) (Schulman et al.,
2017) with γ = 0.99, ϵ = 0.01 and the Adam optimizer with learning rate α = 5× 105. On S1, S2, and S3, we limit each
episode to 4, 32, and 64 steps respectively. We use the validation games to save the model parameters with the highest
validation win rate during training and use these parameters to evaluate the models on the test games. Note that the validation
procedure follows the same settings of previous work (Hanjie et al., 2021).

For S1, we train the models for 3× 107 steps. For S2 and S3, we train the model for 5× 107 steps.

C. Model Design
We have two versions of EnDi. One takes the txt2π as backbone. Another takes EMMA as backbone.

13



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

LinearLinear

LinearLinear

LinearLinear

Text

Features

Visual

Features

1

1

ReLUReLU

ConvConv

ConvConv

ConvConv ReLUReLU

Output

MaxPoolMaxPool Summary

Figure 4. Architecture of FiLM2. FiLM2 builds codependent rep-
resentations of text and visual inputs by modulating each kind of
input using representations of input in another modality.

Text Features

token
key vector

value vector

Visual Features Attention

token

token
Encode

Embed

Conv + FFN OutputReLU

Figure 5. Architecture of EMMA.

C.1. txt2π version

For the language grounding module, we utilize FiLM2 to capture the relationship between language knowledge and
environment observations. The architecture of FiLM2 is shown in Figure 4. Not that each FiLM2 layer uses 3 × 3
convolutions and padding and stride sizes of 1. In more detail, the grounding module that is used to generate Xself

goal and
Xothers

goal is shared and consists of two FiLM2 layers with channel of 16 and 4. The convolution layer that processes the
concatenation of Xself

goal and Xothers
goal uses kernel of 3× 3 and outputs 2 dimension features. Moreover, the grounding module

that is used to generate Xself
policy and Xothers

policy are shared and consists of one FiLM2 layer with channel of 16, 32, 64, 64, and
64, with residual connections from the 3rd layer to the 5th layer. The two representations need to get a polling operation
over spatial dimension before going through the corresponding policy head (one fully-connected layer).

For other text pre-processing modules, we strictly follow the RTFM setting (Zhong et al., 2019). The Bidirectional LSTM
(BiLSTM) that processes the inventory and the goal has a hidden dimension of size 10. The BiLSTM that processes the
document has a hidden dimension of size 100. Note that we use a word embedding dimension of 30.

For more details about the txt2π, please refer to the paper (Zhong et al., 2019).

C.2. EMMA version

We follow the EMMA settings to both capture the relationship between the language knowledge and the environment
observations, and pre-process the language manual in the MESSENGER environment. The architecture of EMMA is shown
in Figure 5. The EMMA model consists of 3 components including Text Encoder, Entity Representation Generator and
Action Module. In Text Encoder, the input consists of a h× w grid observation with a set of entity descriptions. EMMA
encodes each description using a BERT-base model whose parameters are fixed throughout training. Then the key and value
vectors are obtained from the encoder. In Entity Representation Generator, EMMA embeds each entity’s symbol into a query
vector to attend to the descriptions with their respective key and value vectors. For each entity e in the observation, EMMA
places its representation xe into a tensor X ∈ Rh×w×d at the same coordinates as the entity position in the observation
to maintain full spatial information. The representation for the agent is simply a learned embedding of dimension d. In
Action Module, to provide temporal information that assists with grounding movement dynamics, EMMA concatenates the
outputs of the representation generator from the three most recent observations to obtain a tensor X ′ ∈ Rh×w×3d. To get a
distribution over the actions, EMMA runs a 2D convolution on X ′ over the h,w dimensions. The flattened feature maps are
passed through a fully-connected FFN terminating in a softmax over the possible actions.

For more details about EMMA, please refer to the paper (Hanjie et al., 2021).

D. Learning Curves
In this section, we provide the learning curve of EnDi and baselines. All results are presented in terms of the mean and
standard deviation of five runs with different random seeds.

Figure 6 shows the results in multi-agent RTFM from Stage 2 to Stage 5. Note that Stage 1 is omitted since all baselines

14



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

0 1 2 3 4 5
step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

wi
n 

ra
te

EnDi(dis)
EnDi(num)
EnDi-sup
EnDi-reg
txt2
txt2 (cen)
SILG

(a) Stage 2

0 1 2 3 4 5
step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

wi
n 

ra
te

EnDi(dis)
EnDi(num)
EnDi-sup
EnDi-reg
txt2
txt2 (cen)
SILG

(b) Stage 3

0 1 2 3 4 5
step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

wi
n 

ra
te

EnDi(dis)
EnDi(num)
EnDi-sup
EnDi-reg
txt2
txt2 (cen)
SILG

(c) Stage 4

0 1 2 3 4 5
step 1e7

0.0

0.2

0.4

0.6

0.8

1.0

wi
n 

ra
te

EnDi(dis)
EnDi(num)
EnDi-sup
EnDi-reg
txt2
txt2 (cen)
SILG

(d) Stage 5

Figure 6. Learning curves in terms of the win rate of EnDi and baselines in multi-agent RTFM.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

wi
n 

ra
te

EnDi+dis
EnDi+num
EnDi-sup
EnDi-reg
EMMA
EMMA(cen)
SILG

(a) Stage 1

0 1 2 3 4 5
frames 1e7

0.00

0.05

0.10

0.15

0.20

0.25

0.30

wi
n 

ra
te

EnDi+dis
EnDi+num
EnDi-sup
EnDi-reg
EMMA
EMMA(cen)
SILG

(b) Stage 2

0 1 2 3 4 5
frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

wi
n 

ra
te

EnDi+dis
EnDi+num
EnDi-sup
EnDi-reg
EMMA
EMMA(cen)
SILG

(c) Stage 3

Figure 7. Learning curves in terms of the win rate of EnDi and baselines in multi-agent MESSENGER.

achieve nearly 100% win rate. Figure 7 shows the results in multi-agent MESSENGER from Stage 1 to Stage 3. The results
again demonstrate the superiority of our method over baselines.

E. Results without Validation
In order to make a fair comparison, we follow the original EMMA setting in the paper and add the validation procedure.
However, to verify the performance of EnDi more strictly, we conduct additional ablation experiments without the validation
procedure. As shown in Table 5 and 6, the performance of EnDi is only weakly affected by the removal of validation and
still outperforms the baselines. Therefore, validation does not affect the conclusions in the experimental results of the paper.

Table 5. The mean win rates (± stddev.) of EnDi(dis) without validation over five seeds on training in multi-agent MESSENGER. Note
that the result of each seed is obtained by running 1k episodes.

EnDi(dis) - train w/ validation w/o validation

S1 0.99± 0.01 0.99± 0.01
S2 0.81± 0.03 0.76± 0.02
S3 0.25± 0.03 0.20± 0.04

Table 6. The mean win rates (± stddev.) of EnDi(dis) without validation over five seeds on evaluation in multi-agent MESSENGER. Note
that the result of each seed is obtained by running 1k episodes.

EnDi(dis) - test w/ validation w/o validation

S1 0.79± 0.05 0.77± 0.02
S2 0.52± 0.02 0.48± 0.03
S3 0.11± 0.02 0.09± 0.02

15



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

grandmasters, blessed beat cold. 
shimmering, gleaming beat fire. 
fanatical, mysterious beat lightning.

soldiers, arcane beat poison. 
bat, jaguar are order of forest. 
zombie, wolf are rebel enclave. 
ghost, imp are star alliance. 

Wiki Task
slay the star

alliance. 

Agent Mask of Agent1 Mask of Agent2 1

Agent 1

Agent 2

Fanatical  
Kanata 

Shimmering 
Sword 

Blessed
Spear 

Lightning
Ghost 

Fire Imp 
Poison
Zombie 

2

Agent 1

Agent 2 3

Agent 1

Agent 2

mysterious, arcane beat cold. 
grandmasters, fanatical beat fire.
blessed, gleaming beat lightning.

shimmering, soldiers beat poison.
zombie, jaguar are order of forest.
imp, ghost are rebel enclave.
wolf, bat are star alliance.

Wiki Task
rebel

enclave

must be

defeated 

Agent Mask of Agent1 Mask of Agent2 1

Agent 1

Agent 2

Arcane 
Kanata 

Grandmasters 
Sword 

Gleaming 
Spear 

Fire Ghost Cold Imp 
Lightning
Zombie 

2

Agent 1

Agent 2 3

Agent 1

Agent 2

Figure 8. Error cases of EnDi in Multi-agent RTFM.

Manual
the bird is an important target. 

a princess is the deadly enemy.

the airplane holds the secret message.

Mask of Agent1 Mask of Agent2
1Agent 1

Agent 2

Agent Goal Message Enemy

3Agent 1

Agent 2

5Agent 1

Agent 2

Manual
the essential goal is held by the blade.

the deadly enemy is the robot.

the secret is in the mage's hand.

Mask of Agent1 Mask of Agent2
1

Agent 1

Agent 2

Agent Goal Message Enemy

3

Agent 1

Agent 2

5

Agent 1

Agent 2

Figure 9. Error cases of EnDi in Multi-agent MESSENGER.

F. Error Analysis
F.1. Error case in Multi-agent RTFM

Case 1 (Figure 8, upper panel): the entity division is reasonable in Multi-agent RTFM: Fire Imp (target monster), Shimmering
Sword (good weapon) and Poison Zombie (distractor monster) belong to the entity division of agent 1, while Fanatical
Kanata (good weapon), Lightning Ghost (target monster) and Blessed Spear (bad weapon) belong to the entity division
of agent 2. Each agent’s subgoal includes a good weapon and a target monster. However, agent 2 picks up the bad
weapon (Blessed Spear), resulting in it being killed by the monster (Lighting Ghost) that chased it on the way to the good
weapon(Fanatical Kanata), although Lighting Ghost is the target monster.

Case 2 (Figure 8, lower panel): the entity division is also rational: Cold Imp (target monster), Arcane Kanata (good weapon),
Lightning Zombie (distractor monster) and Gleaming Spear(bad weapon) belongs to the entity division of agent 1, while Fire
Ghost(target monster) and Grandmasters Sword (good weapon) belong to the entity division of agent 2. Agent 2 chooses to
pick up the good weapon (Grandmasters Sword), but at that point, it’s beaten by the distractor monster (Lightning Zombie)
that came after it.

16



Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

All in all, we can blame the error case on that agents recognize the wrong entities. In other words, the language grounding
procedure may suffer from multi-agent settings.

F.2. Error case in Multi-agent MESSENGER

In frame 1 of Case 1 (Figure 9, upper panel), the entity divider reasonably assigns the entities to both agents. But in frame 3,
the enemy is close to both agents but the entity divider can only assign the enemy to agent 1, resulting in agent 2 not paying
good attention to the enemy and being killed by the enemy in frame 5.

Another unexpected situation is shown in Case 2 (Figure 9, lower panel), where both agents are far away from the message
on the right side in frame 1, and the entity divider can only assign it to one agent. But in frame 3, due to the movements of
the message and the goal, the entity divider chooses to reassign the message, causing agent 1 to change its direction from
downward to upward after frame 3. Although the agents finally complete the task, the invalid movement in the first few
frames makes the agents less efficient.

In the future, we will consider adding some shared elements to the entity divider for a more reasonable assignment.

17


