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Abstract

We analyze Newton’s method with lazy Hessian
updates for solving general possibly non-convex
optimization problems. We propose to reuse a
previously seen Hessian for several iterations
while computing new gradients at each step of
the method. This significantly reduces the overall
arithmetic complexity of second-order optimiza-
tion schemes. By using the cubic regularization
technique, we establish fast global convergence
of our method to a second-order stationary point,
while the Hessian does not need to be updated
each iteration. For convex problems, we justify
global and local superlinear rates for lazy New-
ton steps with quadratic regularization, which is
easier to compute. The optimal frequency for
updating the Hessian is once every d iterations,
where d is the dimension of the problem. This
provably improves the total arithmetic complexity
of second-order algorithms by a factor v/d.

1. Introduction

Motivation. Second-order optimization algorithms are
being widely used for solving difficult ill-conditioned prob-
lems. The classical Newton method approximates the objec-
tive function by its second-order Taylor approximation at the
current point. A minimizer of this model serves as one step
of the algorithm. Locally, Newton’s method achieves very
fast quadratic rate (Kantorovich, 1948), when the iterates
are in a neighborhood of the solution. However, it may not
converge if the initial point is far away from the optimum.
For the global convergence of Newton’s method, we need to
use some of the various regularization techniques, that have
been intensively developed during recent decades (includ-
ing damped Newton steps with line search (Kantorovich,
1948; Ortega & Rheinboldt, 2000; Hanzely et al., 2022),
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trust-region methods (Conn et al., 2000), self-concordant
analysis (Nesterov & Nemirovski, 1994; Bach, 2010; Sun &
Tran-Dinh, 2019; Dvurechensky & Nesterov, 2018) or the
notion of Hessian stability (Karimireddy et al., 2018), cubic
regularization (Nesterov & Polyak, 20006), contracting-point
steps (Doikov & Nesterov, 2020; 2022), or gradient regular-
ization techniques (Mishchenko, 2021; Doikov & Nesterov,
2021a)). In all of these approaches, the arithmetic complex-
ity of each step remains costly, since it requires computing
both the gradient and Hessian of the objective function, and
then perform some factorization of the matrix. Hessian
computations are prohibitively expensive in any large-scale
setting.

In this work, we explore a simple possibility for a signifi-
cant acceleration of second-order schemes in terms of their
total arithmetic complexity. The idea is to keep a previ-
ously computed Hessian (a stale version of the Hessian)
for several iterations, while using fresh gradients in each
step of the method. Therefore, we can save a lot of com-
putational resources by reusing the old Hessians. We call
this lazy Hessian updates. We justify that this idea can
be successfully employed in most established second-order
schemes, resulting in a provable improvement of the overall
performance.

V2f(Xo) reusﬁ;sian sz(Xm)
Vf(xo) | Vf(x1) Vf&xm-1)| Vf(xm)

Lazy Hessian Updates: compute a new Hessian once per m
iterations.

For general problems', the optimal schedule is m := d
(update the Hessian every d iterations), where d is the di-
mension of the problem. In these cases, we gain a prov-
able computational acceleration of our methods by a factor
V/d. The key to our analysis is an increased value of the
regularization constant. In a general case, this should be
proportional to mL, where L is the Lipschitz constant of
the Hessian. Thus, for the lazy Newton steps, we should
regularize our model stronger to balance the possible errors

' Assuming that the cost of computing one Hessian and its
appropriate factorization is d times the cost of one gradient step.
See Examples 3.2, 3.3, and 3.4.
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Global Loc%al Non-convex Hessian
Method . superhnear . Reference
Complexity problems computations
convergence
Gradient Method 0(e™?) X v not used (Ghadimi & Lan, 2013)
Classical Newton X v X every step (Nesterov, 2018)
Shamanskii Newton X v X once per m steps (Shamanskii, 1967)
Cubic Newton O(e3?) v v every step (Nesterov & Polyak, 2006)

Cubic Newton with Lazy Hessians O(\/me’g/ ) v v once per m steps ours (Algorithm 1)
Reg. Newton with Lazy Hessians O (y/me~%/?) v X once per m steps ours (Algorithm 2)

Table 1: A comparison of our methods with the classical deterministic algorithms. The Global Complexity shows how much
gradient computations are needed for a method to find a point X with the small gradient norm: ||V f(X)]|. < e.

coming from the Hessian inexactness, and so the steps of the
method become shorter. Fortunately, we save much more
in terms of overall computational cost, which makes our
approach appealing.

Related Work. The idea of using an old Hessian for sev-
eral steps of Newton’s method probably appeared for the
first time in (Shamanskii, 1967), with the study of local con-
vergence of this process as applied to solving systems of non-
linear equations. The author proved a local quadratic rate for
the iterates when updating the Hessian, and a linear rate with
an improving factor for the iterates in between. Later on,
this idea has been successfully combined with Levenberg-
Marquardt (Levenberg, 1944; Marquardt, 1963) regulariza-
tion approach in (Fan, 2013), with damped Newton steps
in (Lampariello & Sciandrone, 2001; Wang et al., 2006),
and with the proximal Newton-type methods for convex
optimization in (Adler et al., 2020). In these papers, it was
established that the methods possess an asymptotic global
convergence to a solution, without explicit non-asymptotic
bounds on the actual rate. Compared with these works,
our new second-order algorithms with the lazy Hessian up-
dates use a different analysis that is based on the modern
globalization techniques (cubic regularization (Nesterov &
Polyak, 2006) and gradient regularization (Mishchenko,
2021; Doikov & Nesterov, 2021a)). It allows equipping our
methods with provably fast global rates for wide classes of
convex and non-convex optimization problems. Thus, we
prove a global complexity O(1/e3/2) of the lazy regularized
Newton steps for achieving a second-order stationary point
with the gradient norm bounded by ¢, while saving a lot
of computational resources by reusing the old Hessian (see
Table 1 for the comparison of the global complexities). An-
other interesting connection can be established to recently
developed distributed Newton-type methods (Islamov et al.,
2022), where the authors propose to use a probabilistic ag-
gregation and compression of the Hessians, as for example
in federated learning. In the particular case of the single

node setup, their algorithm also evaluates the Hessian rarely
which is similar in spirit to our approach but using different
aggregation strategies. In their technique, the node needs to
consider the Hessian each iteration. Then, using a certain
criterion, it decides whether to employ the new Hessian
for the next step or to keep using just the old information,
while in our approach the Hessian is computed only once
per m iterations. The authors proved local linear and super-
linear rates that are independent on the condition number.
At the same time, in our paper, we primarily focus on global
complexity guarantees and thus establish a provable com-
putational improvement by a factor v/d for our methods as
compared to updating the Hessian in every step. We also
justify local superlinear rates for our approach.

Contributions. We develop new efficient second-order
optimization algorithms and equip them with the global
complexity guarantees. More specifically,

* We propose the lazy Newton step with cubic regulariza-
tion (Section 2). It uses the gradient computed at the
current point and the Hessian at some different point
from the past trajectory. We quantify the error effect
coming from the inexactness in the second-order infor-
mation and formulate the progress for one method step
(Theorem 2.1). We show how to balance the errors for
m consecutive lazy Newton steps, by increasing the
regularization parameter proportionally.

* Based on that, we develop the Cubic Newton with Lazy
Hessians (Algorithm 1) and establish its fast global
convergence to a second-order stationary point (The-
orem 3.1 in Section 3). This avoids that our method
could get stuck in saddle points. In the case m := 1
(updating the Hessian each iteration), our rate recov-
ers the classical rate of full Cubic Newton (Nesterov
& Polyak, 2006). Then, we show that taking into ac-
count the actual arithmetic cost of the Hessian compu-
tations, the optimal choice for one phase of the method
is m := d, which improves the total complexity of
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Cubic Newton by a factor /d (see Corollary 3.6).

* We show how to improve our method when the prob-
lem is convex in Section 4. We develop the Regularized
Newton with Lazy Hessians (Algorithm 2), which re-
places the cubic regularizer in the model by quadratic
one. This makes the subproblem much easier to solve,
involving just one standard matrix inversion, while
keeping the fast rate of the original cubically regular-
ized method.

* We study the local convergence of our new algorithms
in Section 5 (see Theorem 5.1 and Theorem 5.3). We
prove that they both enjoy superlinear convergence
rates. As a particular case, we also justify the local
quadratic convergence for the classical Newton method
(without regularization) with the lazy Hessian updates.

e Illustrative numerical experiments are provided.

Notation. We consider the following optimization prob-
lem,
i b'¢
min f(x), (1)

where f is a several times differentiable function, not nec-
essarily convex, that we assume to be bounded from below:
inf f(x) > f*. We denote by V f(x) € R? its gradient and

by V2 f(x) € R%*4 its Hessian, computed at some x € R%.

Our analysis will apply both if optimization is over the stan-
dard Euclidean space, and also more generally if a different
norm is defined by an arbitrary fixed symmetric positive def-
inite matrix B = B " > 0. In that case the norm becomes

x| % Bx,x)/2, xeR< @)

Thus, the matrix B is responsible for fixing the coordinate
system in our problem. In the simplest case, we can choose
B := I (identity matrix), which recovers the classical Eu-
clidean geometry. A more advanced choice of B can take
into account a specific structure of the problem (see Exam-
ple 3.2). The norm for the dual objects (gradients) is defined
in the standard way,

def

lgll« = sup (g.x) = (g,B7'g)!/?, geR.

x: [xl| <1

The induced norm for a matrix A € R4*4 is defined by

def
Al = sup  (Ax,y) = sup

x: [lxl|<1

[Ax]...

e
Ix]<1,llyll<1

We assume that the Hessian of f is Lipschitz continuous,
with some constant L > 0:

IV2f(x) = V2 W)l < Llx -yl ¥x,y €eR%. ()

2. Lazy Newton Steps

Let us introduce the following lazy Newton steps, where we
allow the gradient and Hessian to be computed at different
points x, z € R?. Thus, we denote the following quadratic
model of the objective:

Qxz(y) € (VF(x),y — x)+1(V2f(2)(y — x),y — x).

We use cubic regularization of our model, for some M > 0:

Tu(x,2) € Argmin{Qx,z(y) + Hlly - XII3}- 4)
y€ERd

For z := x this is the iteration of Cubic Newton (Nesterov &
Polyak, 2006). Thus, in our scheme, we can reuse the Hes-
sian from a previous step z without recomputing it, which
significantly reduces the overall iteration cost.

Our definition implies that the point T = T);(x,2z) is a
global minimum of the cubically regularized model, which
is generally non-convex. However, it turns out that we can
compute this point efficiently by using standard techniques
developed initially for trust-region methods (Conn et al.,

2000). Let us denote r ' |IT —x||. The solution to the sub-
problem (4) satisfies the following stationarity conditions:

Vf(x)+ V2f(z)(T —x)+ 2B(T—x) = 0,
Vif(z)+ 4B = 0.

Thus, in the non-degenerate case, one step can be repre-
sented in the following form:

T = x—(Vif(z)+XB) 'Vix),
and the value » > 0 can be found by solving the corre-
sponding univariate nonlinear equation (Nesterov & Polyak,
2006, Section 5). It can be done very efficiently from a
precomputed eigenvalue or the tridiagonal decomposition
of the Hessian. Typically, it is of similar cost as for ma-
trix inversion in the classical Newton step. We discuss the
computation of the iterate T s (x, z) in more details in Sec-
tion 6.1. Let us define the following quantity, for y € R%:
def

) [Aua(BAVEEBA)] @

where [t]+ o max{¢,0} denotes the positive part, and
Amin (+) 18 the smallest eigenvalue of a symmetric matrix. If
V2f(y) = 0 for a certain y € R?, then £(y) = 0. Other-
wise, £(y) shows how big (in absolute value) the smallest
eigenvalue of the Hessian is w.r.t. a fixed matrix B > 0.
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Theorem 2.1. Let M > L. Then, for one cubic
step (4), it holds

fx) = F(T)

M3 _ 11L°
+ &

2z = x|,

Theorem 2.1 shows how much progress we can expect from
one lazy Newton step with cubic regularization. The price
for using the lazy Hessian is the last term in the progress
bound (7), which vanishes if z := x (updating the Hessian
for the current iterate).

3. Global Convergence Rates

Let us consider one phase of the potential algorithm when
we compute the Hessian once at a current point z := x( and
then perform m cubic steps (4) in a row:

1=1

Xi:TM(Xi_hZ), g ooy M. (8)

We use some fixed regularization constant M > 0. From
(7), we see that the error from using the old Hessian is
proportional to the cube of the distance to the starting point:
llxi—1 — Xol|®, for each 1 < i < m. Hopefully, we can
balance off the accumulating error by aggregating as well
the positive terms from (7), and by choosing a sufficiently
big value of the regularization parameter M. Hence, our
aim would be to ensure:

M < 3 1L° 3
o 2 Ixi—xial® = G 20 X = %ol (9)

i=1 i=1

In fact, we show (see Appendix B) that it is enough to
choose to guarantee (9). Thus we deal with
the accumulating error for m consecutive lazy steps in (8).

After each inner phase of cubic steps (8) with stale Hessian,
we recompute the Hessian at a new snapshot point z in a
new outer round. The length of each inner phase m > 1 is
the key parameter of the algorithm. For convenient notation,
we denote by 7 (k) the highest multiple of m which is less
than or equal to k:

def

(k) k — kmodm, k>o0. (10)

The main algorithm is defined as follows:

As suggested by our previous analysis, we will use a simple
fixed rule for the regularization parameter:

M = 6mL an

Algorithm 1 Cubic Newton with Lazy Hessians

Input: xo € RY, m > 1, L > 0. Choose M > 0.
fork=0,1,... do

Set last snapshot point zx = X (z)

Compute lazy cubic step xx+1 = Tar(Xk, Zx)
end for

Theorem 3.1. Let M be fixed as in (11). Assume
that the gradients for previous iterations {x;}¥_, of
Algorithm 1 are higher than a desired error level £ >

0:
IV ()]« (12)

Then, the number of iterations to reach accuracy
|V f(xkt1)l« < € is at most

> e

13)

£3/2

P < O(\/ﬁ(f(m)*f*))’

The total number of Hessian updates during these iter-

ti .
anons is . S O(\/f(f(x())*f*))

L (14)

For the minimal eigenvalues of all Hessians, it holds

that 13
- N o< M2(f(xo)<f*>> '
EXCIECS

Let us assume that the desired accuracy level is small, i.e.

1/3
e < (flxo) = F(E)
which requires from the method to use several Hessians.

To choose the parameter m, we need to take into account
the actual computational efforts required in all iterations
of our method. We denote by GradCost the arithmetic
complexity of one gradient step, and by HessCost the cost
of computing the Hessian and its appropriate factorization.
In general, we have

HessCost = d-GradCost, (16)

where d is the dimension of our problem (1).

Example 3.2. Let f(x) = 1 Y ¢((a;,x)), where a; € RY,
i=1

1 <@ < n are given data and ¢ is a fixed univariate smooth
function. In this case,

Vfx) = ATs(x), and V?f(x) = ATQ(x)A,

where A € R 4 s the matrix with rows ay,...,ay;
s(x) € R" and Q(x) € R™*" is a diagonal matrix given

b
’ 5], < 20 ((aex),
[Q(X)](m) = %qﬁ//((ai,x)).



Second-order optimization with lazy Hessians

Because of the Hessian structure, it is convenient to use the
matrix B := AT A to define our primal norm (2). Indeed,
for this choice of the norm, we can show that the Lipschitz
constant of the Hessian depends only on the loss function
¢ (i.e. it is an absolute numerical constant which does not
depend on data). At the same time, when using the identity
matrix 1, the corresponding Lipschitz constant depends on
the size of the data matrix ||A||. Thus, in the latter case, the
value of the Lipschitz constant can be very big.

Let us assume that the cost of computing ¢'(-) and ¢ (-) is
O(1) which does not depend on the problem parameters.
We denote by nz (A) the number of nonzero elements of A.
Then,

HessCost = O(d-nz(A)+d?),
where the last cubic term comes from computing a matrix
factorization (see Section 6.1), and

GradCost = O(nz(A)+d?),
where the second term is from using the factorization. Thus,
relation (16) is satisfied.

Example 3.3. Let the representation of our objective be
given by the computational graph (e.g. a neural network).
In this case, we can compute the Hessian-vector product
V2f(x)h for any x,h € R? at the same cost as its gra-
dient V f (x) by using automatic differentiation technique
(Nocedal & Wright, 2006, Chapter 7.2). Thus, in general
we can compute the Hessian as d Hessian-vector products,

V() = [Vf(x)ei| ... |V2f(x)eq],

where e, . .., eq are the standard basis vectors. This satis-

fies (16).

Example 3.4. For any differentiable function, we can use an
approximation of its Hessian by finite differences. Namely,
for a fixed parameter § > 0, we can form H,, 5 € R¥*9 as

[Hm,é](i*j) = %[Vf(eréei)fvf(x)](j)7

where e1, . .., eq are the standard basis vectors, and use
the following symmetrization as an approximation of the
true Hessian (see (Nocedal & Wright, 2006, Cartis et al.,
2012; Grapiglia et al., 2022) for more details):

z {Hw + ng} ~ V2f(x).
Thus, forming the Hessian approximation requires d + 1
gradient computations, which is consistent with (16).

Hence, according to Theorem 3.1, the total arithmetic com-
plexity of Algorithm 1 can be estimated as

Arithmetic Complexity

= k X GradCost + t x HessCost

(13),(14),(16) a7
<

X GradCost.

Corollary 3.5. For we update Hessian at each
step. It corresponds to the full Cubic Newton (Nesterov &

Polyak, 2006), and Theorem 3.1 recovers its global iteration
complexity:

k=t <

o ( ﬁ(fi;c;)g—f )).

Consequently, the total arithmetic complexity of the method
is bounded by

O(d~ W) - GradCost. (18)

Corollary 3.6. For we obtain the optimal choice
for the length of one phase, which minimizes the right hand

side of (17). The total arithmetic complexity of Algorithm 1
becomes

O(\/& W) - GradCost.

This improves upon the full Cubic Newton by factor \/d.

Now, let us look at the minimal eigenvalue of all the Hes-
sians at points generated by our algorithm.

Corollary 3.7. Let us fix some € > 0 and perform

VmL(f(x0)—f")

2372

k = (19)
iterations of Algorithm 1. According to Theorem 3.1, we
thus ensure 1r<n_i£1k IV f(xi)]|« < O(e). At the same time,

(15)
. NG
in, £(xi) <

o\ 1/3
(B r) 1349 gs/392 ST
Therefore, the negative eigenvalues of the Hessians cannot

be big. For O(g) level of gradient norm we guarantee
O(v'mLe) level for the smallest eigenvalue (6).

4. Minimizing Convex Functions

In this section, we assume that the objective in our prob-
lem (1) is convex. Thus, all the Hessians are positive
semidefinite, i.e., V2 f(x) = 0, ¥x € R%

Then, we can apply the gradient regularization technique
(Mishchenko, 2021; Doikov & Nesterov, 2021a), which al-
lows using the square of the Euclidean norm as a regularizer
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Algorithm 2 Regularized Newton with Lazy Hessians
- Input: xo € R%, m > 1, L > 0. Choose M > 0.
:fork=0,1,... do

Set last snapshot point zg = Xr(x)

Set regularization parameter A\, =
Compute lazy Newton step:

-1
(V2f(zx) + MB) Vf(xx)
6: end for

M|V f (xk) [«
Xk —

AN e

Xk+1 =

for our model. Each step of the method becomes easier to
compute by employing just one matrix inversion. Thus, we
come to the following scheme:

The parameter M should have the same order and physical
interpretation as the one in Cubic Newton. We use

M = 3mL (20)

The global complexity bounds for Algorithm 2 are the same
(up to an additive logarithmic term) as those ones for Algo-
rithm 1. However, each iteration of Algorithm 2 is much
easier to implement since it involves solving just one linear
system.

Theorem 4.1. Let M be fixed as in (20). Assume
that the gradients for previous iterations {x;}¥_, of
Algorithm 2 are higher than a desired error level £ >
0:

IV £ (i)l

Then, the number of iterations to reach accuracy
|V f(xk+1)l« < € is at most

k S O(\/"lL(gS(j‘QO)_f*)_i_ln va(;(O)H*) (22)

> e 1)

The total number of Hessian updates t during these
iterations is bounded as

5. Local Superlinear Convergence

In this section, we discuss local convergence of our second-
order schemes with lazy Hessian updates. We show the
fast linear rate with a constant factor during each phase and
superlinear convergence taking into account the Hessian
updates.

Let us assume that our objective is strongly convex, thus
V2f(x) = puB, Vx € R%, with some parameter p > 0.
For simplicity, we require that for all points from our space,
while it is possible to analyze Newton steps assuming strong
convexity only in a neighborhood of the solution.

Theorem 5.1. Let M > 0. Assume that the initial
gradient is small enough: |V f(x0)||« < G, where

Gy = % Then Algorithm 1 has a superlinear
convergence for the gradient norm, for k > 0:

(1+m)™*) (14+k mod m)
IV« < Go-(5) ,

where (k) is defined by (10).

Corollary 5.2. Combining both Theorem 3.1 and 5.1, we
conclude that for minimizing a strongly convex function by
Algorithm 1 with regularization parameter M given by (11)
and starting from an arbitrary X, we need

m2L2fx 7f*
Bo< o mEUG |

Inln “—2>

mLe

lazy steps to achieve |V f(xi) ||« < e.

We show also that Algorithm 2 locally has a slightly worse
but still superlinear convergence rate, which is extremely
fast from the practical perspective. For example, for m = 1,
Algorithm 2 has a superlinear convergence rate of order 3/2
while Algorithm 1 has order 2.

Theorem 5.3. Let M > 0. Assume that the initial
gradient is small enough: ||V f(x0)||« < 55Go, where

Go = m. Then Algorithm 2 has a superlinear

convergence for the gradient norm, for k > 0:

)2(1 +m/2)" ") (14-(k mod m)/2)

IVl < Go (5
where (k) is defined by (10).

Corollary 5.4. Combining both Theorem 4.1 and 5.3, we
conclude that for minimizing a strongly convex function by
Algorithm 2 with regularization parameter M given by (20)
and starting from an arbitrary xg, we need to do

ko< O(mQLQ(fégco)ff*) +1nmLHvF;f2<xo>||*

1 I
+ In(14+m/2) Inln ﬁ)

lazy steps to achieve |V f(xk) ||« < e.

6. Practical Implementation
6.1. Use of Matrix Factorization

Computing the Hessian once per m iterations, we want to
be able to solve efficiently the corresponding subproblem
with this Hessian in each iteration of the method.

For solving the subproblem in Cubic Newton (4), we need
to find parameter r > 0 that is, in a nondegenerate case, the
root of the following nonlinear equation (see also Section 5
in (Nesterov & Polyak, 2006)),

o) © s - = o, (24)
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where s(r) < (V2£(z) + MrB)~1V f(x), for r such that
the matrix is positive definite. Applying to (24) the standard
bisection method, or the univariate Newton’s method with
steps of the form r+ = r — ¢(r) /¢’ (r), the main operation
that we need to perform is solving a linear equation:

(V2f(z) + TB)h = -V f(x), (25)
for different values of 7 > 0. This is the same type of oper-
ation that we need to do once per each step in Algorithm 2.

Now, let us assume that we have the following factorization
of the Hessian:
V2f(z) = UAU', where UUT =B, (26)
and A € R¥? is a diagonal or tridiagonal matrix. Thus,
U is a set of vectors orthogonal with respect to B. In
case B = I (identity matrix) and A being diagonal, (26) is
called Eigendecomposition and implemented in most of the

standard Linear Algebra packages.

In general, factorization (26) can be computed in O(d?)
arithmetic operations. Namely, we can apply a standard
orthogonalizing decomposition for the following matrix:

B '/2V%f(z) B /2 = VAV, with VV' =1

and then set U := B/2V, which gives (26). Note that the
solution to (25) can expressed as

h = -U T(A+7D)""

U~ 'Vf(x),

and it is computable in O(d?) arithmetic operations for any
given 7 > 0 and V f(x). The use of tridiagonal decomposi-
tion can be more efficient in practice. Indeed, inversion of
the matrix A + 71 would still cost O(d) operations for tridi-
agonal A, while it requires less computational resources and
less floating point precision to compute such decomposition.
In practice, it is also important to leverage a structure of the
Hessian (e.g. when matrices are sparse), which can further
improve the arithmetic cost of each step.

6.2. Adaptive Search

To obtain our results we needed to pick the regularization pa-
rameter M proportional to m L, where m > 1 is the length
of one phase and L > 0 is the Lipschitz constant of the Hes-
sian. One drawback of this choice is that we actually need to
know the Lipschitz constant, which is not always the case in
practice. Moreover, with a constant regularization, the meth-
ods become conservative, preventing the possibility of big
steps. At the same time, from the local perspective, the best
quadratic approximation of the objective is the pure second-
order Taylor polynomial. So, being in a neighborhood of
the solution, the best strategy is to tend M to zero which
gives the fastest local superlinear rates (see Section 5).

The use of adaptive search in second-order schemes has
been studied for several years (Nesterov & Polyak, 2006;
Cartis et al., 2011a;b; Grapiglia & Nesterov, 2017; 2019;
Doikov & Nesterov, 2021b). It is well known that such
schemes have a very good practical performance, while the
adaptive search makes the methods to be also universal
(Grapiglia & Nesterov, 2017; Doikov & Nesterov, 2021b),
that is to adapt to the best Holder degree of the Hessian, or
even super-universal (Doikov et al., 2022) which chooses
automatically the Holder degree of either the second or
third derivative of the objective, working properly on a wide
range of problem classes with the best global complexity
guarantees.

We propose Algorithm 3 which changes the value of M
adaptively and checks the functional progress after m steps
to validate its choice. Importantly, the knowledge of the
Lipschitz constant L is not needed.

Algorithm 3 Adaptive Cubic Newton with Lazy Hessians

1: Input: xo € R% m > 1. Fix some My > 0.
2: fort=0,1,... do
3:  Compute snapshot Hessian V2 f(x¢,)

4 repeat

5 Update M; = 2 - M,

6: fori=1,...,mdo

7 Lazy cubic step X¢m+i = T, (Xemti—1, Xem )
8 end for

IV f (kema) |2

NE!

until f(xem)—f (Xemam) > \/11»7

t -
10:  Set Myy1 =1 M,
11: end for

1

My is an initial guess for the regularization constant, which
can be further both increased or decreased dynamically.

Theorem 6.1. Let the gradients for previous iterates
{x; }™ during t phases of Algorithm 3 are higher
than a desired error level € > 0:

Vi)l = e @7

Then, the number of phases to reach accuracy
IV f (Xtma1)||« < € is at most

t < Ofymax{e L} L9 28

The total number N of gradient calls during these
phases is bounded as

N < 2tm + max{1,log, Z5mLym.  (29)

Remark 6.2. According to Theorem 6.1, the global complex-
ity of the adaptive algorithm is the same as the one given by
Theorem 3.1 for the method with a fixed regularization con-
stant. Due to (29), the average number of tries of different
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M per one phase is only two.

Clearly, It is also possible to incorporate a similar adap-
tive search into Algorithm 2 for the convex case (see Ap-
pendix E.2).

7. Experiments

We demonstrate an illustrative numerical experiment on the
performance of the proposed second-order methods with
lazy Hessian updates. We consider the following convex
minimization problem with the Soft Maximum objective

(log-sum-exp):
pln ( 2 exp (7@“’2_“ ) )

max {(ahx) - bi]

1<i<n

mgl f(x) =
x€ER
(30)

Q

The problems of this type are important in applications with
minimax strategies for matrix games and for training /-
regression (Nesterov, 2005; Bullins, 2020).

To generate the data, we sample randomly the vectors
a1,...,a, € R?and b € R” with elements from the
uniform distribution on [—1, 1]. Then, we build an auxil-
iary objective f of the form (30) with these vectors and set
a; := a; — V f(0). This ensures the optimum is at the origin
since V f(0) = 0. The starting point is xo = (1,...,1).

For the primal norm (2), we use the matrix

B = Y aa] +6I = 0, (1)
i=1

where § > 0 is a small perturbation parameter to ensure
positive definiteness. Then, the corresponding Lipschitz
constant of the Hessian is bounded by (see, e.g. (Doikov,
2021, Example 1.3.5)): L = 2/u?, where p > 0 is a
smoothing parameter.

Since the problem is convex, we can apply Newton’s method
with gradient regularization (Algorithm 2). In Figure 1, we
compare different values of parameter m that is the fre-
quency of updating the Hessian. The regularization param-
eter is fixed as M := 1. We also show the performance of
the Gradient Method as a standard baseline.

We see that increasing the parameter m, thus reusing old
Hessians for more of the inner steps, we significantly im-
prove the overall performance of the method in terms of
the total computational time. The best frequency is m := d
which confirms our theory.

8. Discussion

Conclusions. In this work, we have developed new
second-order algorithms with lazy Hessian updates for solv-
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Figure 1: Gradient norm depending on the number of computed
gradients and on running time, when varying the frequency m of
updating the Hessian in Algorithm 2.

ing general possibly non-convex optimization problems. We
show that it can be very efficient to reuse the previously com-
puted Hessian for several iterations of the method, instead
of updating the Hessian each step.

Indeed, in general, the cost of computing the Hessian matrix
is d times more expensive than computing one gradient. At
the same time, it is intuitively clear that even inexact second-
order information from the past should significantly help
the method in dealing with ill-conditioning of the problem.
In our analysis, we show that this intuition truly works.

By using cubic regularization and gradient regularization
techniques, we establish fast global and local rates for our
second-order methods with lazy Hessian updates. We show
that the optimal strategy for updating the Hessian is once
per d iterations, which gives a provable improvement of
the total arithmetic complexity by a factor of v/d. Our
approach also works with classical Newton steps (without
regularization), achieving a local quadratic convergence.

Note that it is possible to extend our results onto the compos-
ite convex optimization problems, i.e. minimizing the sum
f(x) + 9(x), where f(-) is convex and smooth, while #(+)
is a simple closed convex proper function but not necessarily
differentiable (see Appendix F).

Directions for Future Work. One important direction
for further research can be a study of the problems with a
specific Hessian structure (e.g. sparsity or a certain spectral
clustering). Then, we may need to have different schedules
for updating the Hessian matrix, while it can also help in
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solving each step more efficiently.

Another interesting question is to make connections between
our approach and classical Quasi-Newton methods (Nocedal
& Wright, 2006), which gradually update the approximation
of the Hessian after each step. Recently discovered non-
asymptotic complexity bounds (Rodomanov & Nesterov,
2021; Rodomanov, 2022) for Quasi-Newton methods may
be especially useful for reaching this goal.

We also think that it is possible to generalize our analysis to
high-order optimization schemes (Nesterov, 2021) as well.
Note that the main advantage of our schemes is that we can
reuse the precomputed factorization of the Hessian and thus
we can perform several steps with the same Hessian in an
efficient manner. At the same time, it is not clear up to now,
how to compute the tensor step efficiently by reusing an old
high-order tensor. This would require using some advanced
tensor decomposition techniques.

Finally, it seems to be very important to study the effect of
lazy Hessian updates for convex optimization in more de-
tails. In our analysis, we studied only a general non-convex
convergence in terms of the gradient norm. Another com-
mon accuracy measure in the convex case is the functional
residual. Thus, it could be possible to prove some better
convergence rates using this measure, as well as considering
accelerated (Nesterov, 2018) and super-universal (Doikov
et al., 2022) second-order schemes.

We keep these questions for further investigation.
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Supplementary Material

We consider the problem (1) :
){rel]iRrg f(x), (32)
We assume that the Hessian of f is Lipschitz continuous, with some constant L > 0:
IV2f(x) - V)l < Lix-yl, Vx,yeR. (33)
The immediate consequences are the following inequalities, valid for all x,y € R%:
IVf(y) = Vi) -V )y -xll < 5lx-yl? (34)
[f¥) = f(x) = (Vf(x),y —x) = 3(Vf(x)(y = %),y =x)| < §lly —x]° (35)
In our analysis, we frequently use the standard Young’s inequality for product:

ab < L 4+B 0 Ve, b>0,

which is valid for any p, ¢ > 1 such that 1% + é =1.

A. Proofs for Section 2

Our lazy Newton steps, allow the gradient and Hessian to be computed at different points x,z € R? We use cubic
regularization of our model with a parameter M > 0:

Tu(x2) € Argmin{(V(x).y = %)+ (V2 f(@)(y — %),y = x) + L]y - x|*}. (36)
yERd

For z := x this is the iteration of Cubic Newton (Nesterov & Polyak, 2006). Thus, in our scheme, we can reuse the Hessian
from a previous step z without recomputing it, which significantly reduces the overall iteration cost.

Our definition implies that the point T = Tjs(x,z) is a global minimum of the cubically regularized model, which is
generally non-convex. However, it turns out that we can compute this point efficiently by using standard techniques
developed initially for trust-region methods (Conn et al., 2000).

Let us denote r IT — x||. The solution to the subproblem (36) satisfies the following stationarity conditions (see
(Nesterov & Polyak, 2006)):

Vf(x)+V2if(z)(T—x)+4°B(T-x) = 0, (37)

and

Vif(z)+ B = 0. (38)
Thus, in the non-degenerate case, one step can be represented in the following form:
o) —1
T = x—(V3f(z)+B) " Vf(x), (39)

and the value » > 0 can be found by solving the corresponding univariate nonlinear equation (see (Nesterov & Polyak,
2006)[Section 5]). It can be done very efficiently from a precomputed eigenvalue or the tridiagonal decomposition of
the Hessian. These decompositions typically require O(d®) arithmetic operations, which is of similar cost as for matrix
inversion in the classical Newton step. We discuss the computation of the new iterate T 57 (x, z) in more detail in Section 6.1.

11
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Now, let us express the progress achieved by the proposed step (36). Firstly, we can relate the length of the step and the
gradient at the new point as follows:

L Y VA(T) - V) - V(T - )]l

D IVAT) + BEB(T - x) + (V2f(2) = V2{(x))(T = x|

> IVAD) = 25= = rlIV2f(z2) = V2F ()]l
Rearranging terms and using Lipschitz continuity of the Hessian, we get
IVAD < MEr? 40|V f(z) - V2f(x)||

(33)
%7‘2 + Lr|z —x|.

Thus, we have established

Lemma A.1. For any M > 0, it holds that

VAT < 2MHr? 4 Lr|z —x]. (40)

Secondly, we have the following progress in terms of the objective function.
Lemma A.2. For any M > 0, it holds that

f(x) = f(T) > BMoALy3_ 32L0), o3, (41)

Proof. Indeed, multiplying (37) by the vector T — x, we get

(Vfx), T—x) = —(V2f(z)(T-x),T—-x)— %73
(42)
<8 1 /o2 M,.3
< —3(Vf(@)(T-x),T—x)— Fr.
Hence, using the global upper bound on the objective, we obtain
) 1 /o2 L.3
f(T) < fE)+VX),T-x)+5(VF(X)(T-x), T-x)+ gr
“2) M3, L3 1/o2 2
< S =G4 srt +3(VEf(x) = VAf(2))(T —x), T — x)
(33)
< S - MeS 4 LS 4 L2z - x]).
Applying Young’s inequality for the last term,
2/3 1/3 2073
Mz x| = (F5zar?) (Gpellz—x) < 5r°+ Sl - [P,
we obtain (41). O]

We can also bound the smallest eigenvalue of the new Hessian, which will be crucial to understand the behaviour for
non-convex objectives. Indeed, using Lipschitz continuity of the Hessian and the triangle inequality, we have:

V2H(T) = V?f(z)-L|z—T|B

= V?f(z) - (L|lz—x| + Lr)B (43)

(3%)
= —(¥r+L|z—x|+Lr)B.

12
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Let us denote the following quantity, for any y € R¢:

6) [ (BT2V2 ()BT (44)

def . . . . .
where [t], = max{t,0} denotes the positive part, and A, (+) is the smallest eigenvalue of a symmetric matrix.

If V2f(y) = 0 for a certain y € RY, then £(y) = 0. Otherwise, £(y) shows how big (in absolute value) the smallest
eigenvalue of the Hessian is with respect to a fixed matrix B > 0.

Thus, due to (43), we can control the quantity & as follows:
Lemma A.3. Forany M > 0, it holds
§T) < MPLr+ Lz —x|. (45)

Now, we can combine (40) and (45) with (41) to express the functional progress of one step using the new gradient norm
and the smallest eigenvalue of the new Hessian.

Theorem A.4. Let M > L. Then, for one cubic step (4), we have the one step progress bound (7), i.e.,

F6) = F(T) = max{ sbmé(T), e VAT + 458 - UE 2 — x| (46)

Proof. Indeed, using convexity of the function ¢ — ¢3 for t > 0, we obtain
s @ 3 3 27 7 73,.3 3 3
§T)P < (§MT+L||Z_X||) < TP 4 AL3 |z — x|P.

Hence,
3 3
MTT 2 2711\425(T)3 - 2%12 Iz — x||?,

which gives the first part of the maximum when substituting into (41).

Then, using convexity of the function ¢ — #3/2 for ¢ > 0 and Young’s inequality, we get

(40) 3/2
VDI < (Mt Ll —x]) < V2M 4 V2(Lrz - x|

< VEMS 4 SIS L g |8 = MRSy Ll

2M3/2
Therefore, s ) 5 L ,
2 2 3v2M |Vf(T)H* T 6M?2 HZ_XH :
Substituting this bound into (41) completes the proof. O

B. Proofs for Section 3

Let us denote the corresponding step lengths by 7441 := ||xx+1 — Xx||. Then, according to Theorem 2.1, for each
0 < k < m — 1, we have the following progress in terms of the objective function:

(7) 3/2 3
Fo) = foxkrn) = ma{ b€ Ooean)’s IV Goae) |27 + 3y — L o — el
Telescoping this bound for different &, and using triangle inequality for the last negative term,
k
Ixo =kl < >mi
i=1

we get

f(x0) = f(%m)
(47)

- 1 3 1 320 | M s 1t "G
> 3 max{ e 00’ i 3 IVAGE 4 k- B Y ()

k=1 k=1 “i=1

It remains to use the following simple technical lemma.

13
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Lemma B.1. For any sequence of positive numbers {ry },>1, it holds for any m > 1:

m—1 k 3 3 m—1
Y(Xn) = wxa (48)
k=1 =1 k=1

Proof. We prove (48) by induction. It is obviously true for m = 1, which is our base.

Assume that it holds for some arbitrary m > 1. Then
m k 3 m—1, k 3 m 3 48 3 m—1 m 3
k=1 Vi=1 k=1 Vi=1 i=1 k=1 i=1
Applying Jensen’s inequality for convex function ¢ + 3, ¢ > 0, we have a bound for the second term:
m 3 m 3 m
Therefore,

m k 3 (49),(50) 3 m 3

2 3 m—+1 3
Z(Zﬁ) < (T?‘a l ) > < : 3 : > Tk -
k=1 Vi=1 k=1 k=1

Using this bound, we ensure the right-hand side of (47) to be positive. For that, we need to use an increased value of the
regularization parameter. Thus, we prove the following guarantee.

Corollary B.2. Let M > 6mL. Then,
Fow) = F0em) 2 X max{ gin€0an)®s IV Gl (51)

Theorem B.3. Let the objective function be bounded from below: inf f(x) > f*. Let the regularization parameter M be
X

fixed as in (11). Assume that the gradients for previous iterations {xi}le are higher than a desired error level € > 0:
IVl = e (52)
Then, the number of iterations of Algorithm 1 to reach accuracy ||V f(Xp+1)|l« < € is at most
Bo< o(YmiE=s), (53)

where O(-) hides some absolute numerical constants. The total number of Hessian updates t during these iterations is

bounded as (14), i.e.,
to< o(¥YEUES), (54)
For the minimal eigenvalues of all Hessians, it holds that

min {—Amin(B—1/2v2f(xi)}3—1/2)} < (w)% (55)

1<i<k +

Proof. Without loss of generality, we assume that % is a multiple of m: k = tm. Then, for the ith (1 < ¢ < t) phase of the
method, we have

(51),(52)
m _ vm
f(Xm(ifl)) — [(Xms) > m53 2 = 144\/3783/2. (56)

Telescoping this bound for all phases, we obtain
(56) s
flxo) = f* > flxo) = f(xk) > EAe/2

This gives the claimed bound (14) for ¢. Taking into account that k = tm, (53) follows immediately. Telescoping the
bound (51) for the smallest Hessian eigenvalue £(-), we obtain

Flxo) = f* = f(x0) = f(xr) = gy min £0x:)* (57)
Hence, &7 1/3
in =\ (B-1/2V2f(x,)B~1/2 } —  mi A (M)
1r§nz'1£k |: Amin (B \4 f(xz)B ) N 1211'1;11« E(Xz) > A )
which completes the proof. O

14



Second-order optimization with lazy Hessians

C. Proofs for Section 4
Here we assume all the Hessians are positive semidefinite:
Vif(x) = 0, vx € RY, (58)
For a fixed z € R?, let us denote one regularized lazy Newton step from point x € R? by
xt Y x(V2f(2) + AB) 'Vf(x), A>0. (59)

We choose parameter A as in Algorithm 2:

A = VMV (60)

where M > 0 is fixed. The Newton step with gradient regularization can be seen as an approximation of the Cubic Newton
step (39), which utilizes convexity of the objective. Indeed, we have by convexity:

4 (58)
Ixt* —x|| = [(V?f(z)+AB) Vi) < s3IV, (61)
and so we can ensure our main bound:

(1) (60)
Mlxt —x|| < H[Vi)I. = A (62)

which justifies the actual choice of \.

Now, we need to have analogues of Lemma A.1 and Lemma A.2 that we established for the cubically regularized lazy
Newton step. We can prove the following.

Lemma C.1. For any M > 0, it holds
IV < (Flxt —x||+ A+ Lz —x]]) - [lx* - x]|. (63)
Consequently, for M > 3L, we get

(63),(62)
<

IV (§A+Llz—x|) - x* —x. ©4)

Proof. Indeed, we have
(34)
LixT—x[? > [[Vf(xT) = Vf(x) = V2f(x)(xT —x)|.

> VI = IVF(x) + V2 (2)(x" —x). — L]z — x| - [|x* —x],

where we used triangle inequality and Lipschitz continuity of the Hessian in the last bound. It remains to note that

39
[Vf(x)+V?f(z)(xt —x)[l. = AlxT —x]. O
Lemma C.2. For M > 3L, it holds
3
f) = f(xT) > glxT —x|? - ez — x| (65)

Proof. Combining the method step with Lipschitz continuity of the Hessian, we obtain

(35),(62)
f=") < F&) +(VF(x),xt —x) + 5(V2f(x)(x" —x),x" —x) + {gllx* — x|

D) = Axt = x|2 = (V2 () (xt —x),xt —x) + M|xt — x|

+ 3{(V2f(x)(x* - x),x* —x)

(33).(58).(62)
< F) = At = x[? + 5lxF = x|* + Flz — x|| - [|xF - x]|*.
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Applying Young’s inequality for the last term,

3M)2/3
Lz —x||- [x* —x|* = (B —|x* —x|?) - (G2 —xI)

(62)
< %HXJ’_ _XH3 27Mz ||Z_XH3 %HXJ’_ _X||2 27M2||Z_X||3

we obtain (65). O
Combining these two lemmas, we get the functional progress of one step in terms of the new gradient norm.

Theorem C.3. Let M > 3L. Then, for one lazy Newton step (59) with gradient regularization (60), it holds:

3
F) = fxY) = Gl VA + Flxt — x| - 37z llz — x| (66)
Proof. Using convexity of the function ¢ + 2 for t > 0 and Young’s inequality, we get
e @ . 2
IVFaeh)I2 < (SAlxE = xl + Lilz =] - [x+ —x]))

< RAxT —x)?+ 2Lz - x|? - xt - x]f?

(67)
3 2M*xt —x||°®
< BNt - xI? + iz - x|+ 2L
(62) 3
< SN - x|? + R llz - x)*.
Thus,
At 2 @ a4 2 | M|+ 3
gl =x|® = gl = x|+ T = x|
@ V2 o M ||y 3 3
> msl VA2 + Ext — x| — Ehllz — x|,
Substituting this bound into (65) completes the proof. O

Let us consider one phase of the algorithm. Telescoping bound (66) for the first m iterations and using triangle inequality,

k k
o =%kl < > lxi—xial =t >mi,
=1 =1

we obtain

Corollary C.4. Let M > 3mL. Then

2 5 m k 3
f(XO) _ f(Xm) > 244\/7 E IV £ (xx)]12 % z 3L <E 7"1‘)

19 £ (xi—1)II?
(68)
(48) 2
IV £ (i) 112
2 244« Z IV F k) 122

We are ready to prove the global complexity bound for Algorithm 2. Let us consider the constant choice of the regularization
parameter:

M = 3mL (69)

Theorem C.5. Let the objective function be convex and bounded from below: inf f(x) > f*. Let the regularization
X

parameter M be fixed as in (20). Assume that the gradients for previous iterations {x; }*_, are higher than a desired error
level ¢ > 0:

Vi)l = e (70)
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Then, the number of iterations of Algorithm 2 to reach accuracy ||V f(Xp+1)||« < € is at most

The total number of Hessian updates t during these iterations is bounded as
t < O<ﬁi€§§%f ) + %ln va(;‘l))‘l*> (72)

Proof. Without loss of generality we assume that & is a multiple of m: k& = tm. Then, for ¢th (1 < ¢ < t) phase of the
method, we have

(68) 2
K1) — f(Xmi) > —2— VG
f( ( 1)) f( ) = 244~/ M m(ifl)Egjgmi IV F(x;—1) 112
(73)
Qg2 (rLoseell )3
= 244mm(i—1)+1§j§mi IV f (x5 -1)l«
Telescoping this bound for all phases and using inequality between arithmetic and geometric means, we get
(73) 3/2 k X 1
* 9e IV £ Gei) Il
fro) = f* = flxo) = f(x) = 5075 J;(nW(xH)n*)z
o 9% (ﬁ 19 £Ge)lle )*k _ 0% (Wf(an*)ﬁ
= 244vVM i 1V 5Ge-1)ll- 244V M \ [IVf(x0)]l«
(70 3/2 % 3/2
9e°/“k e _ 9e°/“k 1 5
> s (rertam) it o (3 o)
9e3/%k _ 1y, IVl
> 244\/M(1 g 10 - )
Rearranging the terms gives (71). Inequality (72) follows immediately from ¢ = k/m. O

We see that the global complexity bounds for Algorithm 2 are the same (up to an additive logarithmic term) as those ones
for Algorithm 1. However, each iteration of Algorithm 2 is much easier to implement since it involves just one standard
matrix inversion.

D. Proofs for Section 5

We assume here that our objective is strongly convex with some parameter y > 0.
Vif(x) = uB, vx € R%. (74)
By strong convexity (74), we have a bound for the distance to the optimum x* ef argmin, f(x) using the gradient norm

(see, e.g. (Nesterov, 2018)), for all x € R%:
Ix—x*| < IV (75)

Now, let us look at one lazy Cubic Newton step T = T'3/(x, z) with some M > 0, for which we have:

— 74
ro= IT-x| 2 (V) + %B) VI, < V). (76)
Note that M = 0 corresponds to the classical pure Newton step with a lazy Hessian.
Then, applying Lemma A.1 with triangle inequality, we get
(40
VAL < MR+ Lellz—x|| < HFEe2 4 Drflx — x| + Lr|lz — x*||
(77)

(75),(76)
< MBLIVI)Z+ LIV - V@)

17



Second-order optimization with lazy Hessians

This inequality leads to a superlinear convergence of the method.

Theorem D.1. Let M > 0. Assume that initial gradient is small enough:

2

IVf(xo)ll« < sarsn- (78)

Then, for the iterations of Algorithm 1, we have a superlinear convergence for the gradient norms:

2 (14m)™ ") (14-k mod m)
IVl < 55z (3) , k=0, (79)

where (k) is defined by (10).

Proof. According to (77), for one iteration of Algorithm 1, it holds
IVF(xre)lle < BGEEIVERIZ 4+ 21V k) - [V FKar) -

Let us multiply this inequality by ¢ := M2t§’L and denote sj, ||V f(xx) ]|« This yields the following recursion
Sk+1 < SEAF SkSa(k)s (80)
and by initial condition (78), we have sy < 1.
Required inequality from our claim is
sy < (3)0TOUTEL (81)

for any ¢ > 0 (phases of the method) and 0 < ¢ < m. We prove it by induction. Indeed,

(80) 81 2(1+4) (1+m) +2 (14+3)(14+m) +1+(14+m)*+1
1 1
Stmtitl < S?m-‘,—i + StmtiStm < (5) + (5)

(l) (244) (14+m) 42 n (

) (2+4) (14+m)*+2
2

< (%>(2+i)(1+'rn)t+17

1
2
which is (81) for the next index. [

Corollary D.2. Combining both Theorem 3.1 and 5.1, we conclude that for minimizing a strongly convex function by
Algorithm 1 with regularization parameter M given by (11) and starting from an arbitrary Xo, we need to do

m2L2(f(x0)—f* 2
ko< O( . (/1(30) ) + ln(ller) lnlnﬁ)

lazy steps to achieve ||V f(xx) ||« < e.

Let us also analyze the local behaviour of the lazy Newton steps with gradient regularization, that we perform in Algorithm 2.
Note that by strong convexity (74) we have the following bound for the length of one step, which is

(59)
Ix* —x|| =

1(V2F(z) + AB) VIl € IVI&). (82)

Therefore, we can estimate the norm of the gradient at new point taking into account the actual choice of the regularization
parameter (60). Our reasoning works for any M > 0.

Applying Lemma C.1 and triangle inequality, we get

©3
IVFH) < (5lxF —x+ A+ Liz —x[) - [x* — x|

(82)

(2 IV + A+ Lilz = x[l) - LIV ()]«
(83)

< (VI + A+ Lix = x*[ + Lllz — x*[]) - L IV (x)lls

(75),(60)
L VI + XXV + H IV V)]
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We see that the power of the gradient norm for the second term in the right hand side is 3/2, which is slightly worse than
2, that is in the cubic regularization (compare with (77)). However, it is still a local superlinear convergence, which is
extremely fast from the practical perspective.

Theorem D.3. Let M > 0. Assume that initial gradient is small enough:

2

IVixoll« < wEtzan: (84)

Then, for the iterations of Algorithm 2, we have a superlinear convergence for the gradient norms:

2 2(14+m/2)"® (14 (k mod m)/2)
VIl < waizan (3) ; k >0, (85)
where (k) is defined by (10).
Proof. According to (83), for one iteration of Algorithm 2, it holds
3/2
VGl < 2EIVFGR)I2 + 2LV FG) 12 + B IV e - 1V F (er) -
Let us multiply this inequality by ¢ := % and denote s, % ||V f(xx)||« This yields the following recursion
(compare with (80)):
sei1 < L(53+5Y7) + swsery, (86)
and by initial condition (84), we have so < 2%
Let us prove by induction that
s S (37 )
for any ¢ > 0 (phases of the method), and
Stmt+i < (%)“Hmp) Stms (83)
for 0 <4 < m. Then (85) clearly follows.
Note that from (87) we have
87) m t
%StlT/nQ“v‘%Stm < 282,{12 < (%)(H- /2) ) (89)

Then, assuming that (87) and (89) holds for the current iterate, we get

=

1.1/2

(86 (88),(87) . t
%( 2 3/2 ( )z(1+m/2) Stm(§8tm Jrgstm)

1
5tm+i+1 S Stm+i + Stm-i—i) + 5tnz+i5tm § b}

(89) ; m/2)t
< (%)(+1)(1+ /2) s

tm

which is (88) for the next index.

It remains to observe that substituting ¢ := m into (88) we obtain (87) for the next phase. Indeed,

(88) t
1\m(1+m/2)
S+lym =  Stmtm < (5) Stm
(87) t t t+1
1\m(1+m/2)*+24+2(1+m/2)" 1\ 242(14+m/2)
< (3 = (3) - b

Corollary D.4. Combining both Theorem 4.1 and 5.3, we conclude that for minimizing a strongly convex function by
Algorithm 2 with regularization parameter M given by (20) and starting from an arbitrary Xo, we need to do

p < 0(m2L2<§jg‘°>*f*> + In LTS

Inln L)

mLe

1
+ In(14+m/2)

lazy steps to achieve |V f(xx)||« < e.
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E. Proofs for Section 6 and the Adaptive Regularized Newton
E.1. Proof of the General Case

The key to our analysis of Algorithm 3 is inequality (51) on m consecutive steps of the method. Note that it holds for any
value of M that is sufficiently big. Hence, there is no necessity to fix the regularization parameter. We are going to change
its value adaptively while checking the condition on the functional progress after m steps of the method.

The value M) is just an initial guess for the regularization constant, which can be further both increased or decreased
dynamically. This process is well defined. Indeed, due to (51), the stopping condition is satisfied as long as M; > 283°mL.
Hence, we ensure that all regularization coefficients always satisfy the following bound:

M; < max{2M,,2°3°mL}. (90)

Substituting this bound into the stopping condition, and telescoping it for the first £ > 0 phases, we get

flxo) = F* > f(x0) — F(xim) > 1 SV () 2. 1)

V/max{2M,2935mL} =

Thus, we obtain the following global complexity guarantee.
Theorem E.1. Let the objective function be bounded from below: inf f(x) > f* and let the gradients for previous iterates
{x; }™ during t phases of Algorithm 3 are higher than a desired error level & > 0:

IVl = e 92)

Then, the number of phases of Algorithm 3 to reach accuracy ||V f (Xtm+1) ||« < € is at most

to< Oy max{Xe, L} L2t 93)

The total number N of gradient calls during these phases is bounded as
M, ©9 293°m L (94)
N < (2t+log, m)m < 2tm + max{1,log, == }bm.

Proof. Bound (93) follows directly from (91) and (92).

To prove (94), we denote by n; the number of times the do ...until loop is performed at phase 0 < ¢ < ¢t — 1. By our
updates, it holds

nj—2 _ Miy
=2 = Miss. )

It remains to note that

t—1 ©5) -1 o u
N = (X n|m = [2t+ 3 log, 5 |m = (2t+log, 37t |m. O
i=0 ’

=0

Remark E.2. According to Theorem 6.1, the global complexity of the adaptive algorithm is the same as that one given by
Theorem 3.1 for the method with a fixed regularization constant. Due to (94), the average number of tries of different M,
per one phase is only two.

E.2. Adaptive Search for the Regularized Newton

Let us present an adaptive version of Algorithm 2, which is suitable for solving convex minimization problems (Algorithm 4
below).

Repeating the same reasoning as in section E.1 , we straightforwardly obtain the same global guarantees for this process as
in Theorem 4.1 for the method with a fixed Lipschitz constant. The cost of adaptive search again is only one extra try of
regularization parameter in average per phase.
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Algorithm 4 Adaptive Regularized Newton with Lazy Hessians

1: Input: xo € R4, m > 1. Fix some My > 0.
2: fort =0,1,... do
3:  Compute snapshot Hessian V2 f (x4, )

4 repeat

5 Update My = 2 - M,

6: fori=1,...,mdo

7: Denote k = tm + ¢ — 1 and set A\, = / M|V f(xx)|«

8 Compute lazy Newton step X1 = (V2 f(x¢m) + )\kB)ﬂVf(xk)
9 end for

10 until f(xim) = f(Xemem) 2 200 s IV (Xt |12
11: Set Mt+1 = i . Mt
12: end for

F. Composite Convex Optimization

Let us consider composite convex optimization problems in the following form:

min {Fx)  fx)+ 90}, (96)

x€edom ¢

where f : RY — R is a several times differentiable convex function, with Lipschitz continuous Hessian (3), and 1) : R? —
R U {400} is a proper closed convex function, that can be non-differentiable. However, we assume that it has a simple
structure which allows to solve efficiently corresponding minimization subproblems that involve (+).

In this section, we demonstrate how to generalize our analysis of the lazy Newton steps onto this class of problems. For
example, 1 can be an indicator of a simple closed convex set Q C R:

V) = {0’ =9

400, otherwise,

in which case problem (96) becomes constrained optimization problem:

xmeiél f(x).

F.1. Lazy Cubic Newton for Composite Problems

We replace the lazy Cubic Newton step (4) by the following one:

Tu(xz) = agmin{(V(x),y —x) + HV2 @)y - %),y - %)+ Lly - xP +v3)}. @7

y€dom ¢

Since we assume here that both f and v convex, the solution to (97) always exists and is unique due to the uniform
convexity of the cubic regularizer (Nesterov, 2008). Then, we can use this point exactly the same way as the basic step (4)
in Algorithm 1 and Algorithm 3.

Let us present the main inequalities that are needed for its theoretical analysis.

The stationary condition for T := T (x, z) is as follows, for any y € dom 1),

(V) + V2 f(2)(T = x) + FrB(T —x),y = T) +9(y) > (T), (98)
where r := || T — x|| as always. In other words, we have that
Y(T) € —Vf(x) = V2f(2)(T—x) - LrB(T—x) € 9y(T). (99)
Correspondingly, we denote
F(T) ¥ VHT)+¢/(T) € OF(T).

21



Second-order optimization with lazy Hessians

We can work with these objects in a similar way as with the new gradient of f in the basic non-composite case. Thus, we
can ensure the following inequalities, employing the Lipschitzness of the Hessian:

L & 2
= > |VAT) = Vf(x) -V f(z)(T —x)|.
2 IF(T) + MrB(T — x) + (V2 f(2) — V2f(x))(T — x)||.

(100)
> F(T)|l. = 25~ = || V2 f(2) - V2 f(x)]
2 P - 24— rLa - x|,
Hence, rearranging the terms we can prove the analogue of Lemma A.1 for the composite case (96):
Lemma F.1. For any M > 0, it holds that
|F(T)|. < 2?4 Lr|z —x|. (101)

Secondly, for the objective function value at new point, we get

F(T) = f(T)+4(T)

< f(x)+H(VFx), T —x)+ (V2 f(x)(T —x), T — x) + £r3 4 ¢(T)
< F(x)+ (Vf(x),T—x)+ (V2 f(x)(T —x), T —x) + £r3 + (¢/(T), T — x)

= F(x)+ 3(V2f(x)(T —x),T —x) — (V2f(2)(T — x), T — x) — 34=L;3
< F(x)+ 3H(Vf(x) = Vf(2)(T —x),T — x) — 3=L3

O

where we used convexity of f(-) in (x). Note that the form of this inequality exactly the same as in the proof of Lemma A.2.
Hence, we can establish its analogue fo the composite case (96):

Lemma F.2. For any M > 0, it holds that

F(x) - F(T) > MMoaL.s_ 3200, |3, (102)

Therefore, having these two main lemmas established, we can prove the global rates for the composite Cubic Newton
with Lazy Hessian updates using similar technique that were used before. Note that in the composite case, we ensure the
convergence in terms of the subgradient norm: || F’(xx)]||« — 0 with & — cc.

Finally, let justify local superlinear convergence, when the smooth component of the objective is strongly convex: V2 f(x) =
uB, VY € RY. Then, we have the following inequality for the whole objective:

Fly) > F(x)+ (sx,y —x)+ 5y — x||2, Vx,y € dom F, sy € OF(x). (103)
Substituting x := x* into (103), we get, for any y € dom F":
Fly)-F* = §ly—x"|* (104)
At the same time, minimizing the left and right hand sides of (103) with respect to y independently, we obtain

F* > F(x) = g s«ll3- (105)
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Thus, combining (104) and (105) together, we ensure the following standard inequality, for any x € dom F and sy € OF(x):

Fllsslle > flx —x*]l. (106)
Further, for one lazy composite cubic step x — T := T (x, z), we obtain

©9)

prt < (V2f(2)(T - x), T —x) (Vf(x) +¢/(T),x — T) — 24,3

—~

*

< (s, x—T) = Yrd < psglls,

N

where we used convexity of ¢ in (x). Hence,

Cllsxlle > (107)
It remains to use Lemma F.1, which gives, for any M > 0:
(101)
[ F'(T)]]. < MiLy? 4 Lrllz— x| < MFEEr? 4 Lrfx — x*|| + Lr|z — x*|
(106),(107)
< MdElF ollE + S IE" ()]s - [1F7 (2) |-

That ensures local superlinear convergence in terms of the subgradient norm for our method in the composite case (compare
with (77)).

G. Extra Experiments

In this section, we include additional evaluation of our methods on several optimization problems: Logistic Regression
with {-regularization, Logistic Regression with a non-convex regularizer, and training a small Diagonal Neural Network
model. In all our experiments we observe that the use of the lazy Hessian updates significantly improve the performance of
the Cubic Newton method in terms of the total computational cost. We also show the convergence of the classic Gradient
Method (GM) as a natural baseline. We use a constant regularization parameter M (correspondingly the stepsize in the
Gradient Method), that we choose for each method separately to optimize its performance.

G.1. Convex Logistic Regression

The objective in this problem has the following form:

n
f(x) = 5 Y log(l+evtx) 4 2x|?,  xeRY,
i=1
where a1, ..., a, € R? are the feature vectors and y1,...,y, € {—1, 1} are the labels, given by the dataset > and A > 0 is

the regularization parameter, which we fix as A = % The results are shown in Figure 2.

Logistic regression: a9a, d = 123, n = 32561, L2-regularization

Grad. norm
Grad. norm

0 500 1000 1500 2000
Grad. computations

Figure 2: Logistic Regression with ¢2-regularization trained on the a9a dataset. The Cubic Newton method with Lazy Hessian updates
(m = d) shows the best overall performance.

2www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/.
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G.2. Non-convex Logistic Regression

In the following experiment, we consider the Logistic Regression model with non-convex regularizer:

-

fe) = 3

1

K3

d 2
log(1 + e vif@ix)) 4\ 37 i
=1 i

that was also considered in (Kohler & Lucchi, 2017), and we set A = % The results are shown in Figure 3.

Logistic regression: a9a, d = 123, n= 32561, Non-convex
10

Grad. norm

s e e
2 2 9 =
v

Grad. norm

—
5

0 500 1000 1500 0 20 40 60
Grad. computations Time, s

Figure 3: Logistic Regression with non-convex regularizer trained on the a9a dataset. The Cubic Newton method with Lazy Hessian
updates (m = d) shows the best overall performance.

G.3. Non-convex Diagonal Neural Network

Finally, we consider non-convex optimization problem with the following objective:
fxy) = [AxOy)-bI?, xyeR’

where A € R"*4 b € R" are generated randomly with the entries from Gaussian distribution, and © denotes the
coordinate-wise product. The results are shown in Figure 4. We see that there are many choices of parameter m > 1 (the
frequency of the Hessian updates) that lead to a considerable time saving without hurting the convergence rate. Notice that
m = d is not necessarily optimal for this problem. Our intuition is that the nature of the parametrization of our Diagonal
Neural Network implies a certain effective dimension that is smaller than the full dimension d. Hence, it can be an interesting

direction for further research to develop new strategies of the Hessian updates that are suitable for the problems with a
specific structure.

Digonal NN Regression d = 80, n = 10000

Grad. norm
Grad. norm

o
1

1077 A=——=m-q -
! —— m=10d

0 500 1000 1500 0.0 05 1.0 15
Grad. computations Time, s

Digonal NN Regression d = 200, n = 10000

Grad. norm
Grad. norm

0 500 1000 1500
Grad. computations

Figure 4: Performance of a Diagonal Neural Network trained on random data.
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