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Abstract
The geometric structure of data is an important
inductive bias in machine learning. In this work,
we characterize the data manifolds entailed by
structural causal models. The strengths of the
proposed framework are twofold: firstly, the geo-
metric structure of the data manifolds is causally
informed, and secondly, it enables causal reason-
ing about the data manifolds in an interventional
and a counterfactual sense. We showcase the ver-
satility of the proposed framework by applying it
to the generation of causally-grounded counterfac-
tual explanations for machine learning classifiers,
measuring distances along the data manifold in a
differential geometric-principled manner.

1. Introduction
The manifold hypothesis states that most naturally occur-
ring datasets lie near a non-linear manifold embedded in the
feature space (Hastie & Stuetzle, 1989; Smola et al., 2001;
Belkin & Niyogi, 2003). The geometric structure of the data
manifold is a powerful inductive bias for a variety of ma-
chine learning tasks, such as classification, clustering, den-
sity estimation, representation learning, and transfer learn-
ing; across a diverse set of application domains, including
computer vision (Tosi et al., 2014; Arvanitidis et al., 2018;
2021), robotics (Scannell et al., 2021; Beik-Mohammadi
et al., 2021; 2022), human motion capture (Tosi et al., 2014)
and protein sequencing (Detlefsen et al., 2022).

Generative models offer an appealing framework to approx-
imately learn the data manifold from data (Arvanitidis et al.,
2018). Under certain smoothness conditions, a generative
model’s entailed data manifold is amenable to the study
of differential geometry. This allows to formally define a
set of fundamental operations on the data manifold (e.g.,
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interpolations, distances, measures) that are meaningfully
informed by its geometric structure (Hauberg, 2018).

In this work, we characterize the data manifolds entailed by
structural causal models (SCMs) (Pearl, 2009). SCMs are
generative models that, besides modeling the data distribu-
tion, incorporate additionally knowledge about the causal
relationships between the variables of the modeled system.
Importantly, SCMs provide a formal framework for reason-
ing about the data distribution under interventions to the
variables of the system, including counterfactual statements
pertaining to what would have or could have been given that
something else was actually observed.

Analogous to the observational, interventional, and coun-
terfactual distributions entailed by an SCM, we first derive
sufficient conditions for an SCM to induce observational,
interventional, and counterfactual smooth manifolds (§3);
and we show that SCM classes with broad causal identifia-
bility results (namely additive noise models, post-nonlinear
models, and location-scale noise models) satisfy such suffi-
cient conditions. Having established the foundations for a
differential geometric study of SCMs, we secondly discuss
Riemannian metrics that are informed by the causal knowl-
edge embedded in an SCM (§4.1). Thirdly, we endow the
smooth manifolds induced by an SCMs with a Riemannian
metric, thus characterizing as Riemannian manifolds the
observational, interventional, and counterfactual data man-
ifolds entailed by an SCM (§4.2.1). This characterization
allows us to define operations on the data manifold that are
informed by the causal structure of the data.

Lastly, we leverage the proposed framework to generate
counterfactual explanations for machine learning classifiers.
We propose methods to generate counterfactual explanations
that are both causally grounded and close to the data mani-
fold (§5). In contrast to previous approaches, we measure
distances along the data manifold in a differential geometric-
principled manner. We demonstrate the effectiveness of the
proposed methods on two real-world datasets (§6).

2. Background
2.1. Structural causal models

A structural causal model (SCM) M = (S, PU) (Pearl,
2009) over a set X = {X1, . . . , Xd} of d random variables
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(the endogenous variables) consists of:

(i) A set S =
{
Xi := fi

(
Xpa(i), Ui

)}d

i=1
of structural

assignments, each describing as a function fi the causal
relationship between a variable Xi, its direct causal
parents Xpa(i), and a random variable Ui representing
unobserved background factors of variation.

(ii) A joint distribution PU(U1, . . . , Ud) over the set of
exogenous noise variables U = {U1, . . . , Ud}.

We henceforth make two common assumptions:

Assumption 2.1 (Acyclicity). The causal graph G implied
by the structural assignments S, with nodes X ∪ U and
edges {(v,Xi) : v ∈ Xpa(i) ∪Ui}di=1, is acyclic.

Under acyclicity, each realization u of the exogenous vari-
ables U entails a unique realization x = f(u) of the endoge-
nous variables X, where f is the reduced-form mapping
obtained by recursive substitution of the structural assign-
ments S in topological order of the causal graph G. The
SCM M then entails a unique joint distribution PX over the
endogenous variables X, i.e., the observational distribution.

Definition 2.2 (Entailed distribution). The entailed distri-
bution PX of an SCM M := (S, PU) is the pushforward
measure of PU through the reduced-form mapping f of S

PX(X = x) := PU(U = f−1(x)) (1)

where f−1 is the preimage of the reduced-form mapping f .

We additionally assume that there are no hidden confounders
causally affecting more than one of the observables X:

Assumption 2.3 (Causal sufficiency). The exogenous vari-
ables U1, . . . , UD are independent, that is, their distribution
factorizes as PU = PU1

× . . .× PUD
.

Interventions SCMs allow for modeling and evaluating
the effect of external manipulation of the system modeled
by the SCM (Pearl, 2009). Interventions are modeled by
modifying some of the structural assignments, resulting in
a modified SCM MI = (SI, P I

U). Its entailed distribution
P I
X is then an interventional distribution. Hard interven-

tions I := do(XI = θ) (Pearl, 2009) fix the values of
a subset I ⊆ {1, . . . , d} of the endogenous variables to
some given value θ ∈ R|I|, such that SI

Ii
:= XIi

= θi for
i ∈ {1, . . . , |I|} and SI

i := Si ∀i ̸∈ I. Notably, hard inter-
ventions sever the causal relationship between intervened-
upon variables and all their causal ancestors.

Counterfactuals SCMs offer a principled framework to
reason about counterfactuals, that is, what would have hap-
pened under certain hypothetical interventions all else being

equal (Pearl, 2009). Formally, the counterfactual distri-
bution P I

X|x pertaining to some observation x under some
hypothetical intervention I is defined to be the entailed dis-
tribution of the modified SCM MI,X=x := (SI , PU|x),
where PU|x is posterior over U given the observed x. Es-
sentially, the posterior U|x amounts to the background con-
ditions likely to have resulted in the observation x, which
are propagated through the intervened-upon structural as-
signments SI. Under some hard intervention I, if f is
invertible then each observable x is mapped to exactly one
counterfactual xCF since the posterior U|x collapses to a
single realization of the exogenous variables. For a hypo-
thetical intervention I, we denote the map from factuals to
counterfactuals as xCF = CF(x, I).

Causal identifiability Identifying the true causal relation-
ships between variables (i.e., the causal graph G) from obser-
vational data alone is in general not possible without further
assumptions, such as restrictions on the function class of
the structural assignments S. Classes of SCMs identifiable
from observational data alone include additive noise models
of the form Si := fi(Xpa(i)) + Ui (Peters et al., 2017)1,
post-nonlinear models (Zhang & Hyvärinen, 2009), and
location-scale noise models (Immer et al., 2022).

2.2. Riemannian manifolds

A d-dimensional smooth manifold M is a topological space
which locally resembles Rd and has a smooth structure. A
Riemannian manifold (do Carmo, 1992) is a smooth mani-
fold M equipped with a Riemannian metric:
Definition 2.4 (Riemannian metric). A Riemannian met-
ric M : M → Sd

++ is a smooth function that assigns a
symmetric positive definite matrix to any point in M.

Intuitively, the Riemannian metric defines an infinitesimal
notion of distance on the manifold M, thus endowing the
manifold M with a particular metric structure. The length
of a smooth curve γ : [0, 1] → M on M is then defined as

L(γ) =
∫ 1

0

√
γ̇(t)T M(γ(t)) γ̇(t) dt (2)

where γ̇(t) := d
dtγ(t) denotes the velocity of the curve. A

natural notion of interpolation between two points p, q ∈ M
on the manifold M is the shortest curve on M that connects
p and q. Distances between points on the manifold M are
then defined as length of the shortest curve connecting them:
Definition 2.5 (Riemannian distance). The distance
dM(p, q) between two points p, q ∈ M on a Riemannian
manifold (M,M) is defined as the infimum of the length of
all smooth curves γ : [0, 1] → M connecting p and q

dM(p, q) = inf{L(γ) | γ(0) = p, γ(1) = q} (3)
1Both for non-Gaussian PU and for non-linear fi.
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The Riemannian volume measure The Riemannian vol-
ume measure VolM(p) :=

√
detM(p) provides a measure

of the magnitude of the local distortion of space at p ∈ M.
Curves which traverse regions of the manifold with large
volume measure tend to have large lengths, and shortest
paths between points of the manifold tend to avoid, if possi-
ble, such regions with large volume measure.

The pullback metric Let ϕ : W → M be a smooth
mapping between two smooth manifolds W , M, and let M
be equipped with a Riemannian metric M. Then, the metric
M can be “pulled back” to W via the pullback metric:

W(w) := (Dϕ(w))TM(ϕ(w))Dϕ(w) (4)

where Dϕ(w) is the Jacobian of ϕ at w ∈ W . Via the pull-
back W, the manifold W inherits the infinitesimal notion
of distance of the manifold (M,M). If ϕ is an immersion2,
then it holds that W is a Riemannian metric. If and only
if ϕ is additionally injective (i.e., a diffeomorphism3), then
ϕ is an isometry and the manifolds (W,W) and (M,M)
induce identical Riemannian distances:

dW(p, q) = dM(ϕ(p), ϕ(q)) (5)

Conformal equivalence Two metrics M, M′ in M are
conformally equivalent if there exists some smooth function
λ : M → (0,∞) such that M′(p) = λ(p)M(p) ∀p ∈ M.
The function λ is commondly denoted as the conformal
factor. Intuitively, M and M′ are identical “up to scale”.

3. SCMs Entail Smooth Manifolds
In this section, we present sufficient conditions for an SCM
to induce observational, interventional, and counterfactual
smooth manifolds. We will then equip these entailed smooth
manifolds with a suitable Riemannian metric in order to
characterize the entailed data manifolds of an SCM (§4).

Our starting point of study is the exogenous space U , that
is, the space of realizations of the exogenous variables U.
We argue that the exogenous space U is a smooth manifold
for typical modeling choices of the exogenous distribution
PU. In particular, under causal sufficiency it suffices that
the support of every marginal PUi

is a smooth manifold.
Observation 3.1. Under causal sufficiency, if the support
of every marginal PUi is a di-dimensional smooth manifold,
then the exogenous space U is a d-dimensional smooth
manifold, where d =

∑
i di.

For SCMs with real-valued variables, typical modeling
choices of the marginal distributions PUi

(e.g., Gaussian

2The rank of the Jacobian Dϕ(g) of ϕ at every point p ∈ W is
equal to the dimensionality of the manifold W . This ensures that
the pullback metric induces a positive-definite inner product.

3Alternatively, both ϕ and its inverse ϕ−1 are differentiable.

or Gamma distributions) satisfy the conditions of Observa-
tion 3.1, since their support is a non-empty open interval of
R, which is trivially a 1-dimensional smooth manifold.

Consequently, we argue that in practice the exogenous space
U generally admits a differential geometric treatment. We
will now consider the endogenous space X .

3.1. The endogenous space X

For acyclic SCMs, the endogenous space X (i.e., the space
of realizations of the endogenous variables X) is precisely
the image of the exogenous space U through the reduced-
form mapping f of the SCM, that is, X := f(U). We now
present sufficient conditions under which the endogenous
space X is a smooth manifold.

Lemma 3.2. Under acyclicity, if for all structural as-
signments it holds that fi is differentiable and its partial
derivative ∂Ui

fi(Xpa(i), Ui) is nonvanishing in U , then the
reduced-form map f : U → X is an immersion.

Lemma 3.3. Under acyclicity, if for all i ∈ {1, . . . , d} and
all u(1), u(2) ∈ U such that u(1)

i ̸= u
(2)
i it holds that

fi

(
xpa(i), u

(1)
i

)
̸= fi

(
xpa(i), u

(2)
i

)
(6)

then the reduced-form mappingf : U → X is injective.

Proposition 3.4. Under the conditions of Lemma 3.2 and
Lemma 3.3, if the exogenous space U is a smooth manifold
then the endogenous space X := f(U) is a smooth manifold
and the map f : U → X is a diffeomorphism.

Corollary 3.5. For additive noise models, post-nonlinear
models, and location-scale noise models, if the exogenous
space U is a smooth manifold and the structural assignments
fi are differentiable, then the endogenous space X := f(U)
is a smooth manifold and f : U → X is a diffeomorphism.

Note that the condition of Lemma 3.3 is weaker than injec-
tivity of every fi, since the functions fi are only required
to be injective with respect to Ui. Corollary 3.5 is a signifi-
cant result, since additive noise models and post-nonlinear
models are precisely the classes of SCMs with strong causal
identifiability guarantees (§2.1). Note that the differentia-
bility condition in Corollary 3.5 is generally required to
establish causal identifiability (Peters et al., 2017; Zhang &
Hyvärinen, 2009), and in that sense amounts to a relatively
mild condition on the structural assignments of the SCM.

We have so far presented sufficient conditions for the en-
dogenous space X induced by an SCM to be a smooth
manifold, and showed that particularly notable classes of
SCMs satisfy such conditions. Analogous to the interven-
tional and counterfactual distributions entailed by an SCM,
we now present sufficient conditions for an SCM to entail
interventional and counterfactual smooth manifolds.
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3.2. Interventional smooth manifolds

An intervention I to some SCM M = (S, PU) results in a
modified SCM MI = (SI, P I

U). Similarly to §3.1, we de-
fine the endogenous space X I under an intervention I as the
image of the modified exogenous space UI := supp(P I

U)
through the reduced-form mapping fI of the intervened-
upon structural assignments SI, that is, X I := fI(UI). If
the modified SCM MI satisfies the conditions of Proposi-
tion 3.4, the interventional space X I is a smooth manifold,
which denote as an interventional manifold.

Hard interventions I := do(XI = θ) are arguably the most
common modeling choice for interventions. We show that
for hard interventions I, the interventional space X I is a
smooth manifold under strictly weaker conditions than those
presented in §3.1 for the observational setting.
Proposition 3.6. Let I := do(XI = θ) be a hard in-
tervention on the variables XI . If the structural assign-
ments fj ∀j ̸∈ I satisfy the conditions of Lemma 3.2
and Lemma 3.3, and UI is a smooth manifold, then in-
terventional space X I := fI(UI) is a (d−m)-dimensional
smooth manifold embedded in Rd, where d is the number
of endogenous variables and m := |I| is the number of
intervened-upon variables. Additionally, the reduced-form
mapping fI : UI → X I is a diffeomorphism.
Corollary 3.7. If an SCM M satisfies the conditions of
Proposition 3.4, then M entails interventional smooth mani-
folds X I under hard interventions I := do(XI = θ).

Consequently, when considering hard interventions, the in-
terventional space X I admits a differential geometric study
without requiring additional assumptions compared to the
observational setting discussed in §3.1.

3.3. Counterfactual smooth manifolds

The sufficient conditions presented in §3.1 and §3.2 im-
ply that the reduced-form mapping f is invertible. Then,
given some observation x, abduction results in the posterior
over exogenous variables U|x collapsing to a single real-
ization u = f−1(x). Consequently, under non-stochastic
interventions I (i.e., hard interventions) the entailed coun-
terfactual distributions collapse to single realizations of the
endogenous variables xCF. In order to meaningfully define a
notion of counterfactual manifolds given that counterfactual
distributions collapse to single counterfactuals, we instead
consider counterfactuals under a space of interventions H.

We argue that such counterfactual manifolds commonly
arise in counterfactual reasoning when considering the ef-
fects of competing hypothetical interventions; such as with
the query “What dietary intervention would most favorably
improve the health outcomes of some particular individual?”.
For simplicity, we restrict our analysis to spaces of hard in-
terventions of the form H := {do(XI = θ) | θ ∈ ∆}.

As introduced in §2.1, for any given SCM M let us denote
by CF the mapping between factual and counterfactuals for
some hard intervention I := do(XI = θ), such that xCF =
CF(x, I). We define the space of counterfactuals XH|x

for some observable x under some space of interventions
H as the image of H through the counterfactual mapping
CF, that is, XH|x := CF(x,H). We now present sufficient
conditions on M for XH|x to be a smooth manifold.
Proposition 3.8. Let H := {do(XI = θ) | θ ∈ ∆} be a
space of hard interventions on the variables XI , and let XD
be the causal descendants of XI , excluding XI . Under the
conditions of Lemma 3.3 (injectivity of f ), if the structural
assignments fi corresponding to the causal descendants
i ∈ D are differentiable and ∆ is a m-dimensional smooth
manifold, then the counterfactual space XH|x := CF(x,H)
is an m-dimensional smooth manifold, and the mapping
CF(x, ·) : H → XH|x is a diffeomorphism.
Corollary 3.9. If an SCM M satisfies the conditions of
Proposition 3.4, then M entails counterfactual smooth man-
ifolds XH|x under spaces of hard interventions H :=
{do(XI = θ) | θ ∈ ∆}, where ∆ is a smooth manifold.

Note that only the causal descendants D are required to have
differentiable structural assignments, and that there are no
requirements on the exogenous variables U. In particular,
the causal ancestors of the intervened-upon variables need
not be real-valued for the space of counterfactuals to admit
a differential geometric treatment. Such scenarios are com-
mon in socioeconomic settings, where root variables often
include categorical variables (e.g., gender or nationality).

Analogously to the interventional setting, when considering
hard interventions, the counterfactual space XH|x admits
a differential geometric study without requiring additional
assumptions compared to the observational setting (§3.1).

4. SCMs Entail Data Manifolds
In the previous section, we derived sufficient conditions on
an SCM M such that it induces observational, interventional,
and counterfactual smooth manifolds. In this section, we
discuss the inductive biases of different Riemannian metrics
informed by the SCM. Such metrics allow us to endow the
aforementioned smooth manifolds with metric structures
that are meaningfully informed by the causal structure of
the data. We then characterize as Riemannian manifolds
the observational, interventional, and counterfactual data
manifolds entailed by an SCM.

4.1. Riemannian metrics and their inductive biases

Insofar as geometric judgments are hypotheses about the
world (Riemann, 1868), the choice of Riemannian metric is
a fundamental modeling tool towards encoding appropriate
inductive biases for the system being modeled. Prior works
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in manifold learning typically considers locally Euclidean
metrics, which are then regularized to have large volume
measure in regions of the feature space far away from the ob-
served data (Hauberg et al., 2012; Tosi et al., 2014; Hauberg,
2018; Arvanitidis et al., 2016; 2018; 2022). Such model-
ing choice encodes the inductive bias that shortest paths on
the data manifold should remain close to the observed data,
since curves crossing regions of the feature space with low
data density will then necessarily have large length.

4.1.1. LOCALLY EUCLIDEAN METRICS

The sufficient conditions presented in §3 establish an isom-
etry between the exogenous space U and the endogenous
space X . Consequently, for any Riemannian metric MU
(resp. MX ) defined in U (resp. X ), there exists an equiva-
lent metric in X (resp. U ) defined by the pushforward (resp.
pullback) via the reduced-form map f of the structural as-
signments of the SCM, such that X (resp. U) inherits the
infinitesimal notion of distance defined by MU (resp. MX ).

Locally Euclidean MX := I Encodes the inductive bias
that background conditions (i.e., the exogenous variables
U) should be considered similar if they lead to similar ob-
servations (i.e., the endogenous variables X) in a locally
Euclidean sense. Loosely, the resulting metric structure
places more weight on differences in outcomes rather than
differences in causes. Such choice of metric is addition-
ally well-justified for SCMs whose exogenous variables
merely encode the stochasticity in the relation between
causal variables, but their numerical values are arbitrary
(e.g., the model would be equally useful under elementwise
reparametrization of the exogenous variables). Importantly,
pulling back MX allows us to define a metric in the exoge-
nous space U that is grounded on the observed space X , and
that is invariant to diffeomorphic reparametrizations of U .

Locally Euclidean MU := I Encodes the inductive bias
that the similarity of observables should be measured in
terms of the similarity of the background conditions which
gave rise to said observables, in a locally Euclidean sense.
Intuitively, if the differences in “income” and “savings” of
two individuals can be explained solely due to their differ-
ence in “income” (which causally affects “savings”), then
their dissimilarity may be smaller than if we were to con-
sider two individuals for which their differences cannot be
explained in terms of a single common cause. However, we
emphasize that for MU := I to be a meaningful metric, the
exogenous variables themselves must be intrinsically mean-
ingful (i.e., not merely a device to encode the stochasticity
in the relation between causal variables). One prominient
class of models for which exogenous variables may be in-
trinsically meaningful are additive noise models, where they
indicate the deviation of an observed variable from its “ex-

pected” state given its observed causal parents.

4.1.2. REGULARIZING THE RIEMANNIAN METRIC

As stated previously, prior works in manifold learning regu-
larize the metric to have large volume measure in regions
of the feature space with low data density. SCMs model
the probability distribution PX of the endogenous variables,
formally defined as the pushforward measure of PU through
the reduced-form mapping f of the SCM. We draw in-
spiration from Arvanitidis et al. (2022), and propose to
scale the Riemannian metric MX by the conformal factor
λX(x) := (α · pX(x) + β)−2/d, where pX is the density of
PX and α, β > 0 upper and lower bound λX. The confor-
mal factor λX scales the volume measure of the manifold
inversely proportionally to the data density pX, such that

VolλXMX (x) =
VolMX (x)

α · pX(x) + β
(7)

The parameters α and β determine the local curvature of the
manifold as a function of the data density pX; determining
how strongly shortest paths are pulled towards regions of
the space with large data density. The values of α and
β are consequently a further modeling choice with which
practitioners may encode appropriate inductive biases.

4.2. Data manifolds entailed by SCMs

We now characterize the data manifolds entailed by an SCM,
by equipping the smooth manifolds described in §3 with
a Riemannian metric M which is regularized by the con-
formal factor motivated in §4.1.2. Note that we make no
assumptions on M and treat it as a modeling choice.

Definition 4.1 (Entailed data manifold). An entailed data
manifold of an SCM M := (S, PU) is a Riemmanian mani-
fold (X , λXM) comprised of a smooth manifold X := f(U)
(the endogenous space) equipped with a Riemannian metric
M scaled by some conformal factor λX

λX := (α · pX(x) + β)−2/d α, β > 0 (8)

where pX is the density of the probability distribution PX

entailed by the SCM M.

Analogous to an SCM’s entailed distribution (Defini-
tion 2.2), it is possible to reason about an SCM’s inter-
ventional and counterfactual data manifolds.

4.2.1. INTERVENTIONAL DATA MANIFOLDS

We define an SCM’s interventional data manifold under
some intervention I as an entailed manifold of the modified
SCM MI = (SI, P I

U). In particular, such interventional
data manifold is comprised of the interventional smooth
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manifold X I := fI(UI) equipped with a Riemannian met-
ric MI scaled by some conformal factor λI

X inversely pro-
portional to the density of the interventional distribution P I

X.

Note that an intervention I alters the observational data
manifold in multiple ways: firstly, by modifying the space
of possible realizations X I of the endogenous variables;
secondly, by modifying the distribution over observations
P I
X (i.e., the contents of the interventional space) which

curves the data manifold; and thirdly, by modifying the
Riemannian metric MI which endows the manifold with an
infinitesimal notion of distance (e.g., when considering the
pushforward metric through the modified reduced map fI).

4.2.2. COUNTERFACTUAL DATA MANIFOLDS

We define an SCM’s entailed counterfactual data manifold
by endowing the counterfactual smooth manifolds XH|x

introduced in §3.3 with a Riemannian metric MH|x. Note
that as discussed in §3.3, since we assume the reduced-form
mapping f to be invertible, the entailed counterfactual dis-
tributions of the SCM collapse to single counterfactuals. We
argue that a suitable alternative may be to simply consider
the conformal factor λX corresponding to the observational
data density pX, if the counterfactual space XH|x is a subset
of the support of PX; that is, the if the hypothetical counter-
factuals are somewhat consistent with the data distribution.

We argue that such choice of conformal factor is particularly
well justified for systems where the observed distribution
PX is a “snapshot” of some process in which individual
“units” x ∈ X naturally experience interventions, such as
socioeconomic systems. For instance, people regularly ex-
perience or decide on “interventions” such as changes in
their employment status. In such settings, we argue that
the data distribution implicitly contains some counterfactual
information. For instance, if the counterfactual xCF of some
observed x under an intervention I has arbitrarily small den-
sity pX(x), then it might be likely that the intervention I on
the individual x is not realistically feasible.

5. Implications for counterfactual explanations
Machine learning classifiers are increasingly being deployed
in consequential decision-making settings. Prior work has
argued that for such systems to be trustworthy, algorithmic
decisions should be accompanied by an explanation, such
that individuals are able to understand and possibly contest
such decisions (Wachter et al., 2017; Venkatasubramanian &
Alfano, 2020). Counterfactual explanations4 (CFEs) have
gained much popularity in recent years, as CFEs are gener-
ally thought to be both easily comprehensible and compliant
with some regulatory frameworks (Wachter et al., 2017).

4Despite their name, counterfactual explanations in ML are
generally not counterfactuals in the causal sense of Pearl (2009).

Consider the setting where a classifier h : X → {0, 1} is
used to assign either favourable or unfavourable outcomes
to individuals x ∈ X . For a negatively classified individual
x, counterfactual explanations seek to explain the classifier’s
decision by searching for the “closest” individual x′ that
would have been favourably classified, that is,

argmin
x′∈X

d(x, x′)

s.t. h(x′) = 1
(9)

The distance function d : X × X → [0,∞) amounts to a
modeling choice encoding the set of desiderata as to what
amounts to an “effective” counterfactual explanation x′. We
focus on two desiderata that have received much attention in
the literature: counterfactual explanations should be realistic
(i.e., well supported by the observed data) and consistent
with the underlying causal structure of the world (Verma
et al., 2020; Karimi et al., 2022).

Realistic CFEs Prior works argue that for a CFE x′ to
be realistic, there must exist some plausible path of change
between the negatively classified individual x and the of-
fered CFE x′ (Joshi et al., 2019; Poyiadzi et al., 2020). This
desideratum is particularly notable if the intent of the CFE is
not only to aid the understanding of the classifier’s decision,
but also to inform individuals of what features they can real-
istically change in order to obtain a favourable classification
in the future; a setting known as algorithmic recourse (AR).
For instance, it may not be reasonable to recommend to an
unsuccessful life insurance applicant to play more sports if
said applicant is physically disabled (Poyiadzi et al., 2020).
While prior works aim to model the data manifold in order to
search for realistic CFEs (Joshi et al., 2019; Mahajan et al.,
2019; Pawelczyk et al., 2020; Downs et al., 2020; Poyiadzi
et al., 2020; Antoran et al., 2021), none adopt a principled
differential geometric approach. In contrast, we propose to
model the data manifold as a Riemannian manifold and to
consider Riemannian distances along the manifold as the
distance function d. Such principled approach ensures that
there exists some “minimally costly” path of change (i.e.,
shortest curve) connecting an individual x and the counter-
factual example x′ offered to them.

Causally grounded CFEs Prior works have proposed
methods to generate counterfactual examples within the rig-
orous causality framework of Pearl (2009). In particular,
Karimi et al. (2020; 2021); Dominguez-Olmedo et al. (2022)
search for a set of hypothetical hard interventions on the
features of the individual x such that the resulting coun-
terfactual would be favourably classified. In contrast, von
Kügelgen et al. (2023) argue for backtracking counterfac-
tuals, a non-interventional notion of causal counterfactuals
where one instead searches over different “background con-
tions” (i.e., exogenous variables) that would have given rise
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to a favourably classified counterfactual x′. However, nei-
ther of the two approaches consider the underlying data
manifold when generating counterfactual explanations.

We propose to leverage SCMs entailed data manifolds (§4)
to generate counterfactual examples that both respect the
underlying data manifold and are causally grounded. We
present methods to generate observational counterfactual
examples (i.e., “backtracking”) and interventional counter-
factual examples (i.e., causal algorithmic recourse).

5.1. Backtracking CFEs on the data manifold

Backtracking involves reasoning about counterfactuals by
varying the exogenous variables U|x (i.e., the background
conditions that plausibly gave rise to some observation x)
without altering the structural assignments S. Since S is
not intervened-upon, backtracking counterfactuals are also
know as “observational” counterfactuals, in contrast to the
“interventional” counterfactuals of Pearl (2009).

We assume access to a know SCM M = (S, PU) over
the features X used for the classification of individuals
x ∈ X . We additionally assume that the SCM M satisfies
the sufficient conditions of Proposition 3.4, such that the
endogenous space X is a smooth manifold. The reduced-
form mapping f : U → X is then invertible, and searching
for backtracking CFEs as formalized by von Kügelgen et al.
(2023) reduces to the following optimization problem:

min
u∈U

d
(
f−1(x), u

)
s.t. h(f(u)) = 1

(10)

where x ∈ X is a negatively classified individual for which
we seek an explanation, h is the decision-making classifier,
d : U × U → [0,∞) is a distance function on the exoge-
nous space U , and x′ := f(u) is the backtracking CFE. We
propose to instead search for backtracking counterfactual
examples along the data manifold induced by the SCM M.
Since by assumption the reduced-form map f is a diffeomor-
phism, the exogenous space U and the endogenous space
X are isomorphic. For any Riemannian metric in X , there
exists an equivalent Riemannian metric in U , and vice versa.
A differential geometric viewpoint thus provides a new per-
spective on the extent to which backtracking counterfactuals
are “observational”: searching for counterfactuals across
the observed features X and across the exogenous space U
is equivalent for equivalent choices of metric.

Without loss of generally, we search for backtracking coun-
terfactuals along the exogenous space U , for some choice of
metric M : U → Sd

++. We note that, as discussed in §4.1.1,
the exogenous space U may lack an intrinsically meaningful
metric structure, and it might be appropriate to consider the
pullback of a metric defined on X . We scale the metric
M with a conformal factor λU inversely proportional to

the density of PU, as motivated in §4.1.2. Consequently,
searching for counterfactual examples along the data man-
ifold entailed by the SCM M is equivalent to solving the
following optimization problem:

min
u∈U

dλUM

(
f−1(x), u

)
s.t. h(f(u)) = 1

(11)

where dλUM is the Riemannian distance function induced
by the Riemannian manifold (U , λUM).

5.2. Causal algorithmic recourse on the data manifold

Causal algorithmic recourse models recourse recommenda-
tions as hard interventions on some subset XI of the fea-
tures X of individuals x ∈ X , thus reasoning in a causally-
principled manner about the downstream causal effects of
the recourse recommendations offered to individuals. Let
H := {do(XI = θ) | θ ∈ ∆} be the set of hard interven-
tions actionable for some negatively classified individual x.
The causal algorithm recourse problem is formalized as the
following optimization problem (Karimi et al., 2021):

min
I∈H

d (x,CF(x, I))

s.t. h(CF(x, I)) = 1
(12)

where CF(x, ·) : H → XH|x denotes the mapping between
factuals and counterfactuals under hard interventions on XI ,
and typically d (x,CF(x, do(XI = θ))) = ∥xI − θ∥.

We propose to instead search for recourse interventions I
along a counterfactual data manifold entailed by the SCM
M. We assume that M satisfies the conditions stated in
Proposition 3.8, such that the space of counterfactuals XH|x

is a smooth manifold. For some appropriate choice of met-
ric M : XH|x → Sd

++, we propose to scale such metric
by a conformal factor λX inversely proportional to the den-
sity of the observational distribution PX, as motivated in
§4.2.2. We then consider the pullback metric M′ of λXM
via the counterfactual mapping CF(x, ·). Consequently,
we formalize the search for algorithmic recourse along the
counterfactual data manifold entailed by the SCM M as:

min
I∈H

dM′ (x,CF(x, I))

s.t. h(CF(x, I)) = 1
(13)

where dM′ is the Riemannian distance function induced
by the Riemannian manifold

(
XH|x,M′), and M′ is the

pullback metric of λXM via the mapping CF(x, ·).

6. Experiments
We evaluate the methods proposed in §5 against a variety
of previously proposed counterfactual explanation methods.

7



On Data Manifolds Entailed by Structural Causal Models

We open source our implementation and experiments5. We
consider the following prior art:

• Wachter et al. (2017): considers the objective function
minδ λ ∥δ∥2 + ℓ(h(x + δ), 1), where ℓ is the cross-
entropy loss and λ is gradually annealed.

• REVISE (Joshi et al., 2019): similar Wachter et al.
(2017) but the optimization problem is solved in the
latent space Z of a VAE trained to reconstruct the data.

• FACE (Poyiadzi et al., 2020): searches for the clos-
est counterfactual along a weighted nearest neighbour
graph constructed from the observed data.

• Causal recourse (Karimi et al., 2021): solves the opti-
mization problem presented in Equation 11.

• Backtracking counterfactuals (von Kügelgen et al.,
2023): solves the optimization problem presented in
Equation 10. We consider Euclidean distances in U .

For CFEs, we include REVISE as a representative method
of the several VAE-based approaches in the literature for
realistic CFE generation. We include FACE because it con-
siders some approximate notion of distance along the data
manifold via shortest paths in a nearest neighbour graph.
For causal AR, we consider the standard approach of Karimi
et al. (2021). For our proposed approach, we consider both
the setting where U is assumed locally Euclidean (Ours-U)
and the setting where X is locally Euclidean (Ours-X ).

Optimizing along the data manifold We solve the opti-
mization problems in Equation 11 and Equation 13 using
gradient descent. We compute Riemannian distances by
solving for the geodesic γ∗ : γ : [0, 1] → M which con-
nects the two points of interest γ∗(0) = u0, γ∗(1) = u1,
such that dM(u0, u1) := L(γ∗). We compute the geodesic
γ∗ by solving the boundary value problem (BVP)

γ̈t = g(γt, γ̇t) γ(0) = u0, γ(1) = u1 (14)

where g is a system of ordinary differential equations deter-
mined by the Riemannian metric of the manifold (do Carmo,
1992). We use the versatile automatic differentiation sys-
tem of JAX (Bradbury et al., 2018) to differentiate through
the boundary conditions of the BVP, which we solve using
a fourth order collocation algorithm with residual control
similar to Kierzenka & Shampine (2001).

SCMs and datasets We consider two real-world data sets:
the COMPAS recidivism dataset (Larson et al., 2016) and
the Adult demographic dataset (Kohavi & Becker, 1996),
for which we assume the causal graphs presented in Nabi
& Shpitser (2018). We assume additive noise model SCMs,

5https://github.com/RicardoDominguez/data-manifolds-scms

and we regress the structural equations using MLPs with
one hidden layer. We model the probability density of the
residuals (i.e., U) using kernel density estimation.

Evaluation metrics We evaluate the counterfactuals gen-
erated by each of the methods with the following metrics:

• L2: ℓ2 distance between the factual and counterfactual,
or norm of the recommended feature change ∥δ∥2.

• LU (resp. LX ): Riemannian distance induced by the
data manifold entailed by the SCM M, where the Rie-
mannian metric is locally Euclidean in U (resp. X ) and
scaled by a conformal factor λU (resp. λX) inversely
proportional to the density of PU (resp. PX).

• LM: Riemannian distance induced by a data manifold
constructed using kernel density estimation, with a lo-
cally Euclidean metric in feature space. We include
this metric to test whether, despite the restrictive func-
tional assumptions made on the SCM (i.e., additive
noise), the CFEs generated generalize well to mani-
folds learned without such functional assumptions.

Other experimental details For prediction, we train both
logistic regression (LR) classifiers as well as neural network
(NN) classifiers with two hidden layers. We search for
counterfactuals for the negatively classified individuals in
the test set. When searching for counterfactuals, we only
allow changes to real-valued features. The experimental
results are averaged over five random seeds.

6.1. Results for counterfactual explanations

We present the results for CFE generation in Table 1. As
expected, methods that do not explicitly consider the un-
derlying geometry of the data manifold (Wachter and back-
tracking counterfactuals) achieve lowest L2 distances for
most classifiers and datasets. We additionally observe that
FACE and REVISE generally result in counterfactuals that
are closer along the data manifold compared to the method
of Wachter et al. (2017). In contrast, backtracking produces
competitive results compared to FACE and REVISE, indicat-
ing that searching for counterfactuals along the exogenous
space of the SCM may be an effective approach to search
for counterfactuals along the data manifold.

As expected, our proposed methods result in counterfactu-
als which are closer along the entailed data manifolds of
the SCM (LU and LX ), since they precisely optimize for
such Riemannian distances. We observe that our proposed
methods also fare favourably in terms of the the data mani-
fold learned without the SCM (LM), indicating that, despite
the functional assumptions on the SCM (i.e., additive noise
models), the generated CFEs generalize well.
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Table 1. Experimental results: Counterfactual examples.

LINEAR CLASSIFIER NN CLASSIFIER
ADULT COMPAS ADULT COMPAS

METHOD LM L2 LU LX LM L2 LU LX LM L2 LU LX LM L2 LU LX

WACHTER 7.38 1.65 5.76 5.86 2.47 0.80 3.00 2.66 3.83 1.88 6.59 6.89 2.90 0.81 2.75 2.68
BACKTR 3.12 1.69 5.47 6.07 4.11 0.83 2.85 2.80 3.51 1.92 6.40 7.00 2.53 0.85 2.83 2.81
FACE 3.29 1.85 5.50 5.69 2.31 0.85 2.88 2.71 5.01 2.10 7.02 6.78 2.25 0.85 3.73 2.54
REVISE 5.64 2.18 9.02 8.71 2.22 0.92 2.57 2.53 3.87 2.21 6.35 6.46 2.55 0.96 2.83 2.90
OURS LU 2.79 1.71 3.21 3.48 2.77 0.84 2.33 2.33 3.25 1.95 4.02 4.58 2.74 0.86 2.51 2.52
OURS LX 2.75 1.70 3.43 3.48 2.18 0.81 2.35 2.27 3.64 1.94 4.29 4.36 2.19 0.83 2.41 2.51

Table 2. Experimental results: Algorithmic recourse.

LINEAR CLASSIFIER NN CLASSIFIER
ADULT COMPAS ADULT COMPAS

METHOD LM L2 LU LX LM L2 LU LX LM L2 LU LX LM L2 LU LX

KARIMI ET AL. 2.68 1.49 4.04 4.05 1.33 0.75 2.62 2.63 3.47 1.84 5.63 5.66 1.37 0.79 2.68 2.69
OURS LU 1.29 1.58 1.48 1.48 1.19 0.79 2.25 2.29 0.86 1.92 1.15 1.15 1.20 0.85 2.20 2.23
OURS LX 1.09 1.58 1.31 1.32 1.17 0.79 2.27 2.27 1.13 1.91 1.52 1.52 1.22 0.85 2.23 2.19

6.2. Results for algorithmic recourse

We present the results for causal algorithmic recourse in
Table 2. As expected, the approach of Karimi et al. (2021),
which precisely seeks to minimize the magnitude of the
recourse intervention, generates recourse recommendations
with smaller magnitude (L2) compared to our proposed
methods. However, our proposed methods achieve better
results for all distance measures that are informed by the
data manifold (LU , LX , LM). Insofar minimal distances
along the data manifold is a desideratum for algorithmic
recourse, our differential geometric-principled approach
bridges the gap between causal algorithmic recourse and
previously proposed manifold-based non-causal methods.

7. Conclusion and Outlook
In this work, we have analyzed SCMs from a novel dif-
ferential geometric perspective. We first derived sufficient
conditions for SCMs to admit a differential geometric study
(i.e., induce smooth manifolds) in the observational, in-
terventional and counterfactual settings; and showed that
these conditions are satisfied by well-studied classes of
SCMs with broad idenfibiality results, namely additive noise
models, post-nonlinear models, and location-scale models.
Drawing inspiration from the prior works in manifold learn-
ing, we then proposed a Riemannian characterization of the
data manifolds entailed by SCMs. This characterization
enables us to define operations on the data manifold (e.g.,
distance computations) that are informed by the causal struc-
ture of the data; and it enables to causally reason about the

data manifold in an interventional and counterfactual sense.

We then leveraged the proposed framework to generate coun-
terfactual explanations for machine learning classifiers. In
contrast to previous manifold-based methods for generating
counterfactual explanation, we measure distances along the
data manifold in a differential-geometric principled manner,
leveraging the pertinent entailed observational data mani-
folds. Lastly, we novelly consider the problem of manifold-
based causal algorithmic recourse, for which we instead
leverage the entailed counterfactual data manifolds.

The study of causal models from a differential geometric
perspective is a promising avenue of future research, since
both causality and manifold learning allow the introduc-
tion of strong inductive biases for machine learning. In
this work, we characterize the data manifolds entailed by
SCMs as deterministic manifolds; however, future work
may consider different causal models (i.e., causal graphical
models) and/or manifold characterizations (i.e., statistical
manifolds). Lastly, in this work we leveraged the observa-
tional and counterfactual data manifolds entailed by SCMs
to generate counterfactual explanations. Future works may
instead consider tasks that require reasoning about the inter-
ventional data manifolds entailed by SCMs.
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A. Proofs
A.1. Observation 3.1

Under causal sufficiency, the exogenous distribution PU factorizes as PU = PU1 × . . .×PUd
and consequently its support is

the Cartesian product of every marginal, that is, suppPU = suppPU1
× . . .× suppPU1

. The Cartesian product of n-many
di-dimensional smooth manifolds is a d-dimensional smooth manifold, where d =

∑n
i=0 di.

A.2. Lemma 3.2

Under acyclicity of the causal graph it is possible to construct the reduced-form mapping f : U → X by recursive
substitution of the structural assignments fi in topological order of the causal graph. If all fi are differentiable, then it
follows that f is differentiable, since the composition of differentiable functions is differentiable. Therefore, its Jacobian
Df ∈ Rd×d is well-defined in its domain U , where d is the number of exogenous variables.

Since the causal graph is acyclic, let us assume without loss of generality that the endogenous variables are ordered such that
i < j =⇒ Xj /∈ Xpa(i). Then, the partial derivatives ∂Ui

fj = 0 vanish for all i > j, which implies that the Jacobian Df is
lower-triangular, and consequently det (Df) =

∏d
i=1 ∂Uifi. Therefore, if all partial derivatives ∂Uifi are non-vanishing in

U , it holds that detDf(u) ̸= 0 ∀u ∈ U ; and consequently, rank(Df(u)) = d ∀u ∈ U . Since X is defined as the image of
U through f , and f is differentiable and its Jacobian has everywhere rank d, under the assumption that U is a d-dimensional
smooth manifold, then by definition f : U → X is an immersion (Crampin & Pirani, 1994, pp. 243).

A.3. Lemma 3.3

Under acyclicity of the causal graph it is possible to construct the reduced-form mapping f : U → X by recursive
substitution of the structural assignments fi in topological order of the causal graph. Without loss of generality, let us
assume that the endogenous variables are ordered such that i < j =⇒ Xj /∈ Xpa(i). Let us denote by f̃j the recursive
substitution of the structural assignments up to Xj , where f̃j is a map from Uj = suppPU1 × . . .× suppPUj to (Xi)

j
i=1.

Note that the reduced-form mapping f is by definition f̃d.

By the condition in Equation 6 it trivially holds that X1 := f1(U1) is injective (note that necessarily Xpa(1) = ∅).

Let us assume that f̃j−1 is injective. Let u∗, u′ ∈ Uj such that u∗ ̸= u′. If u′
j ̸= u∗

j , then f̃j(u
′) ̸= f̃j(u

∗) since they must
differ in Xj (by the condition of Equation 6). If u′ ̸= u∗ but u′

j = u∗
j , then f̃j(u

′) ̸= f̃j(u
∗) since they must differ in some

Xi for i < j by assumption that f̃j−1 is injective. Consequently, f̃j is injective.

By induction, f̃d is injective, where d is the number of exogenous variables. Therefore the reduced-form map f is injective.

A.4. Proposition 3.4

Under Lemma 3.2, if U is a d-dimensional smooth manifold then the reduced-form mapping f : U → X is an immersion. By
Lemma 3.3, f is injective. Consequently, f : U → X is a smooth embedding, such that U is diffeomorphic to its image. By
assumption U is a d-dimensional smooth manifold, it follows that X is a d-dimensional manifold and f a diffeomorphism.

A.5. Corollary 3.5

A.5.1. ADDITIVE NOISE MODELS

For additive noise models of the form Xi = f(Xpa(i)) + Ui. It holds that ∂Ui
fi = 1 for all Ui ∈ suppPUi

and
i ∈ {1, . . . , d}, and therefore, the conditions of Lemma 3.2 (i.e., non-vanishing partial derivative in U) are satisfied.
Furthermore, for any xpa(i) it holds that u(1) ̸= u(2) =⇒ fi(xpa(i), u

(1)) ̸= fi(xpa(i), u
(2)) since fi(xpa(i)) + u(1) ̸=

fi(xpa(i)) + u(2) ∀u(1), u(2) ∈ U s.t. u(1) ̸= u(2). Consequently, the conditions of Lemma 3.3 are satisfied, and therefore
Proposition 3.4 holds.
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A.5.2. POST-NONLINEAR MODELS

For post-nonlinear models, the structural equations take the form fi(Xpa(i), Ui) = g
(1)
i (g

(2)
i (Xpa(i)) + Ui) for invertible

g
(1)
i . For differentiable fi, then ∂Ui

fi(Xpa(i), Ui) = ∂Ui
g
(1)
i

(
g
(2)
i (Xpa(i))

)
which is non-vanishing per assumption

that g(1)i is invertible, thus satisfying the assumptions of Lemma 3.2. Furthermore, for any xpa(i) it holds that u(1) ̸=
u(2) =⇒ fi(xpa(i), u

(1)) ̸= fi(xpa(i), u
(2)), since per g(1)i invertible it holds that fi(xpa(i), u

(1)) ̸= fi(xpa(i), u
(2)) ⇐⇒

g
(2)
i (xpa(i)) + u(1) ̸= g

(2)
i (xpa(i)) + u(1), where the RHS is satisfied ∀u(1), u(2) ∈ U s.t. u(1) ̸= u(2). Consequently, the

conditions of Lemma 3.3 are satisfied, and therefore Proposition 3.4 holds.

A.5.3. LOCATION-SCALE NOISE MODELS

For location-scale noise models, the structural equations take the form fi(Xpa(i), Ui) = g
(1)
i ((Xpa(i))) + g

(2)
i (Xpa(i))Ui

where g
(2)
i is strictly positive (i.e., maps to R+). Consequently, ∂Ui

fi = g
(2)
i (Xpa(i)) which is non-vanishing since

g
(2)
i is strictly positive, thus satisfying the assumptions of Lemma 3.2. Furthermore, for any xpa(i) it holds that
u(1) ̸= u(2) =⇒ fi(xpa(i), u

(1)) ̸= fi(xpa(i), u
(2)), since per assumption that gi is strictly positive g

(2)
i (xpa(i))u

(1) ̸=
g
(2)
i (xpa(i))u

(1) ∀u(1), u(2) ∈ U s.t. u(1) ̸= u(2). Consequently, the conditions of Lemma 3.3 are satisfied, and therefore
Proposition 3.4 holds.

A.6. Corollary 3.7

The Corollary follows directly, since for any I ⊆ {1, . . . , d}, if fi ∀i ∈ {1, . . . , d} satisfies the conditions of Lemma 3.2
and Lemma 3.3, then fi ∀i ̸∈ I necessarily satisfies the conditions of Lemma 3.2 and Lemma 3.3.

A.7. Proposition 3.6

Let us consider the a hard intervention I := do(XI = θ), where I ⊂ {1, . . . , d} with cardinality m := |I|, and let us
denote the remaining indices by J := {1, . . . , d} \ I corresponding to the non-intervened-upon variables.

Since by assumption PU satisfies the conditions of Proposition 3.1, then it also holds that P I
U := PUJ1

× . . .× PUJn−m
is a

(n−m)-dimensional smooth manifold (i.e., the Cartesian product of (n−m)-many 1-dimensional smooth manifolds).

Consider the interventional structural assignments SI, where SI
I := θ and SI

J := SJ . Note that, since by assumption
the causal graph G of M is acyclic (Lemmas 3.2 and 3.3), then the interventional causal graph GI must also be acyclic,
since edges are only removed from G to obtain GI. Consequently, the interventional reduced-form map fI : UI → X I

J
can be readily obtained by recursive substitution of the structural assignments SI in topological order of the causal graph
GI. Since every fi is differentiable (per assumption in Lemma A.2), and the composition of differentiable functions is
a differentiable function, then it follows that fI is differentiable. Following the same argument as Proposition 3.4, the
Jacobian DfI ∈ R(n−m)×(n−m) has rank equal to n−m if ∂Ui

fi is non-vanishing for i ∈ J , which holds by assumption
that the SCM M meets the conditions of Proposition 3.2.

If the injetivity conditions of Lemma 3.3 on fi are satisfied, then the reduced-form map fI is injective, following the
same argument of Appendix A.3. Consequently, fI is a smooth embedding, and the interventional space X I is a (n−m)-
dimensional manifold embedded in Rd.

A.8. Proposition 3.8

By assumption the reduced-form mapping f of the SCM is invertible, and consequently, the observed x ∈ X corresponds
to a unique realization u = f−1(x) of the exogenous variables. Let I ⊂ {1, . . . , d} be the indices of the intervened-upon
variables, with cardinality m := |I|, and let us denote the remaining indices by J := {1, . . . , d} \ I . Additionally, let D be
the set of indices corresponding to the causal descendants of XI (excluding XI).

By assumption, the space of intervention values θ is a m-dimensional smooth manifold ∆. Consider the interventional
structural equations S

do(XI=θ)
I := θ and S

do(XI=θ)
J := SJ . Recursive substitution of such structural equations in

topological order of the acyclic interventional graph GI results in the counterfactual reduced-form map fCF : ∆ → R|I|+|D|

from the intervention variables θ to the values of the intervened upon variables XI and its causal descendants XD; where

13
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the exogenous variables are kept fixed to u and the intervention values θ ∈ ∆ are allowed to vary.

By assumption, the structural assignments corresponding to the causal descendants XD are differentiable, and thus the
Jacobian DfCF ∈ R(|I|+|D|)×|I| is well-defined. Without loss of generality, let us assume that the endogenous variables are
ordered such that i < j =⇒ Xj /∈ Xpa(i) in the interventional graph GI corresponding to hard intervening in XI . Then, it
follows that the partial derivatives ∂θif

CF
j = 0 vanish for all i > j, and consequently since det (Df) =

∏m
i=1 ∂θif

CF
i = 1

everywhere, it holds that rank
(
DfCF

)
= m. Consequently, fCF is an immersion into its image in R|I|+|D|.

Let us denote by D∗ = {1, . . . , d} \ (I ∪ D) the indices of the endogenous variables that are neither intervened upon
nor causal descendants of intervened-upon variables. Consider the modified reduced-form fCF′

: ∆ → Rd such that
fCF′

(θ) :=
(
XD∗ , fCF(θ)

)
. Since fCF is differentiable and its Jacobian has rank m everywhere, it trivially holds that fCF′

also is differentiable and its Jacobian has rank m everywhere. Then, by definition fCF′
is an immersion into its image in Rd.

Such image is precisely defined as the space of counterfactual XH|x := fRM′
(∆). Since f is assumed invertible, then each

fi is injective and fCF′
is also injective following the same argument as Lemma 3.3. It then holds that fCF′

is a smooth
embedding, and XH|x is a m-dimensional smooth manifold embedded in Rd.

A.9. Corollary 3.9

The Corollary follows directly, since if an SCM satisfies the conditions of Proposition 3.4, then fi ∀i ∈ {1, . . . , d} satisfy
the conditions of Lemma 3.2 and Lemma 3.3, the latter implying that fi ∀i ∈ D is differentiable for any given set of causal
descendants D of the intervened-upon variables I.
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