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Abstract

We consider random walks on discrete state
spaces, such as general undirected graphs, where
the random walkers are designed to approximate a
target quantity over the network topology via sam-
pling and neighborhood exploration in the form of
Markov chain Monte Carlo (MCMC) procedures.
Given any Markov chain corresponding to a target
probability distribution, we design a self-repellent
random walk (SRRW) which is less likely to tran-
sition to nodes that were highly visited in the past,
and more likely to transition to seldom visited
nodes. For a class of SRRWs parameterized by
a positive real α, we prove that the empirical dis-
tribution of the process converges almost surely
to the the target (stationary) distribution of the
underlying Markov chain kernel. We then pro-
vide a central limit theorem and derive the exact
form of the arising asymptotic co-variance ma-
trix, which allows us to show that the SRRW with
a stronger repellence (larger α) always achieves
a smaller asymptotic covariance, in the sense of
Loewner ordering of co-variance matrices. Espe-
cially for SRRW-driven MCMC algorithms, we
show that the decrease in the asymptotic sampling
variance is of the order O(1/α), eventually going
down to zero. Finally, we provide numerical sim-
ulations complimentary to our theoretical results,
also empirically testing a version of SRRW with
α increasing in time to combine the benefits of
smaller asymptotic variance due to large α, with
empirically observed faster mixing properties of
SRRW with smaller α.
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1. Introduction
Random walk based techniques are a staple in statistics
and learning theory. Markov chains such as the Metropolis
Hastings random walk, designed to achieve any given target
probability distribution as its stationary measure, are widely
used as Markov chain Monte Carlo (MCMC) samplers and
in distributed optimization via stochastic gradient descent
(Sun et al., 2018; Hu et al., 2022). The local nature of the in-
formation required to compute state transition probabilities
means that the algorithms scale well and are robustly imple-
mentable over state spaces such as large graphs/networks
with general topologies. However, classic Markov chains
can often be victims of limitations set by the underlying
topology of the state space (communication matrix or adja-
cency matrix of the underlying network structure) leading to
correlated samples which can negatively affect the estimator
performance. It has also been well established that the time-
reversibility requirement for the classical MCMC samplers
is one of the causes for their slow convergence (see An-
drieu & Livingstone, 2021, Section 1). One way in which
this problem has been approached in the literature is via
construction of non-reversible versions of the base Markov
chain (Diaconis et al., 2000; Turitsyn et al., 2011; Chen &
Hwang, 2013; Ma et al., 2016; Thin et al., 2020), which
is often done by inducing some form of non-backtracking
behaviour, that is, avoiding states most recently visited by
the random walker (Alon et al., 2007). This involves the
random walker interacting with some of its own past his-
tory, and has been shown to possess better efficiency than
the original base Markov chain in the sense of the MCMC
estimator achieving a smaller asymptotic variance (Neal,
2004; Lee et al., 2012). Since these non-backtracking based
methods only utilize the most recent history of the random
walker and are still provably more efficient, it is natural to
consider the design of protocols where the random walker
interacts with its entire past history to speed up its diffusion
and increase its sampling efficiency, especially for sampling
over discrete state spaces. This is the approach taken in our
paper.

Let G(N , E) be an undirected, connected graph where N ≜
{1, · · · , N} denotes the set of nodes and E denotes the set
of edges, where we say (i, j) ∈ E if there is an edge between
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nodes i, j ∈ N . We use A = [aij ]i,j∈N to represent the
adjacency matrix of the graph, where aij > 0 if (i, j) ∈ E ,
and zero otherwise; N (i) ≜ {j ∈ N | (i, j) ∈ E} refers
to the set of neighbors of node i; deg(i) ≜

∑
j∈N aij will

refer to the degree of each node i ∈ N . Denote by Σ
the N -dimensional probability simplex over N , with Int(Σ)
denoting its interior, and let P ≜ [Pij ]i,j∈N be the transition
probability matrix of an ergodic, time-reversible Markov
chain over N , with its stationary distribution µ ≜ [µi]i∈N .
Without loss of generality, we assume Pij > 0 if and only
if aij > 0. In this setup, we design Self-Repellent Random
Walks (SRRWs) on general graphs1 indexed by a tunable
parameter α ≥ 0, all of which can sample from µ ∈ Σ,
and then study their sampling ‘efficiency’ as a function of α
(with α = 0 being equivalent to the baseline Markov chain
with transition kernel P).

The SRRW transition kernel: Consider the Markov
chain kernel (transition matrix) K[x] ≜ [Kij [x]]i,j∈N ,
whose transition probabilities are mappings Kij : Σ →
[0, 1], given by

Kij [x] ≜
Pijrµj (xj)∑

k∈N Pikrµk
(xk)

, (1)

for any probability vector x ≜ [xi]i∈N ∈ Σ. Here,
{rµi}i∈N is a family of positive functions rµi : [0, 1] → R+

parameterized by µi, with rµi
(xi) decreasing in xi ∈ [0, 1]

and rµi
(µi) = C, for all i ∈ N .2 Transition probability ker-

nels defined in this fashion, taking probability distributions
as argument, are called ‘nonlinear’ Markov kernels (An-
drieu et al., 2007a; 2011), as opposed to classical Markov
chains with kernels P that are often interpreted as linear
operators – the transition probabilities at each step being
independent of x (i.e., the case where rµi

(·) is a constant
function).

Stochastic processes utilizing nonlinear Markov kernels
are called nonlinear Markov chains, and can be sim-
ulated/generated using self-interacting Markov chains
(SIMCs) (see Del Moral & Miclo, 2004; 2006; Moral &
Doucet, 2010). Let {Xn}n≥0 be a random walker over
N , and let xn be its occupational measure or historical
empirical distribution up to time n ≥ 0, written as

xn ≜
1

n+ 1

n∑
k=0

δXk
, (2)

1We consider graphs because they represent a generalization of
(discrete) finite state spaces by imposing a communication (adja-
cency) matrix. The existence of an edge between two nodes (states)
represents a non-zero probability of state transitions between the
two nodes.

2As we shall see later, xi will be directly proportional to the
visit count to any node ∈ N , since vx ∈ Σ will be the empirical
distribution of the self-repellent random walk.

where δXk
is the delta measure whose Xk’th entry is one

and the rest are zero, thus recording the position of the
random walker at time k ≥ 0. The process {Xn}n≥0 be-
comes a SIMC if at each time step n ≥ 0, the random
walker makes transitions according to some nonlinear ker-
nel K[xn], not necessarily as defined in (1). We say that the
process {Xn}n≥0 is a SRRW if it is a SIMC with K[x] as
in (1). We use the term self-repellent since at each time step,
the transition probability to a node j ∈ N is proportional
to rµj

([xn]j) where [xn]j =
1
n

∑n
k=1 1{Xk=j}, and is thus

a decreasing function of the visit count to j ∈ N . In other
words, the walker is less likely to move to a node that has
been visited more often so far (thus self-repellent).

When Pij ∝ aij in (1) for each i ∈ N , the SRRW is a self-
repellent version of the well-known simple random walk
(SRW) procedure, with the target distribution being pro-
portional to the degree of the nodes, that is, µi ∝ deg(i)
for all i ∈ N . Like most general MCMC procedures,
the SRRW kernel can also be defined for any given sam-
pling distribution µ ∈ Int(Σ), for instance, by setting
P to be the transition matrix of a Metropolis Hastings
Random Walk (MHRW) with stationary distribution µ.
For example if µi = 1/N , that is µ = 1

N 1 – the uni-
form distribution over the set of nodes N , then we can
choose Pij = min

{
1

deg(i) ,
1

deg(j)

}
for all (i, j) ∈ E , with

Pii = 1−
∑

j ̸=i Pij . The matrix P defined in this manner
is the MHRW kernel with the uniform distribution as its
stationary measure, and is among the most commonly used
kernels for unbiased graph sampling (Li et al., 2015) and dis-
tributed optimization (Sun et al., 2018). The elegance in the
Metropolis Hastings algorithm and the key to its widespread
adaptation lies in the fact that at each time step, the entries of
µ need only to be known for the neighbouring nodes of the
random walkers (that is, only local information required),
and only up to a constant multiple. This property ensures a
robust, scalable implementation of the MHRW, since global
constants are often unknown for large networks a priori.

Our SRRW construction begins with rµi(·) taking a polyno-
mial form for all i ∈ N , given by

rµi(xi) ≜

(
xi
µi

)−α

, ∀ α ≥ 0, (3)

where the parameter α ≥ 0 can be perceived as the strength
of the self-repellence mechanism designed into the SRRW
transition kernel. Similar to the MHRW transition kernel,
only the local information regarding entries of µ needs to
be known at any given time step, and up to only a constant
multiple. For convenience, we formalize this property as
scale-invariance (S.I.): an SRRW kernel posesses S.I. if for
all i, j ∈ N

(i) Computing Kij [x] only requires knowing µk for k ∈
N (i), and only up to a constant multiple for any i ∈ N ;

2



SRRW on General Graphs

(ii) Kij [C
′x] = Kij [x] for any constant C ′ > 0.

Indeed, we show in Appendix D that out of all possible
forms for the functions rµi

(·), only the polynomial form as
in (3) possesses the S.I. property. Henceforth, we restrict
ourselves to the polynomial form of rµi(·).

Our Contribution:

1. We show that given any MCMC kernel P which sam-
ples from a target distribution µ, the corresponding
SRRW is asymptotically more efficient as a random
walk based sampler. We do this by first showing that

xn
a.s.−−−−→

n→∞
µ, ∀ α ≥ 0. (4)

We then provide second-order convergence results in
the form of a central limit theorem (CLT); that is, we
show there exists an asymptotic co-variance matrix
V(α) ∈ RN×N parameterized by α ≥ 0, such that

√
n(xn − µ)

n→∞−−−−→
dist.

N(0,V(α)). (5)

We obtain these results by first viewing the SRRW as
a stochastic approximation (SA) algorithm with state-
dependent noise (Harold J. Kushner, 1997; Fort, 2015),
allowing us to form a connection between the stochas-
tic process and a deterministic system of ordinary dif-
ferential equations (ODEs). We establish global con-
vergence results for this ODE system, which lay the
foundations for proving almost sure convergence of the
stochastic SRRW process.

2. For any α ≥ 0 we derive the exact form of V(α) in
terms of α and the spectrum (eigenvalues and eigen-
vectors) of P. This allows us to show that kernels
parameterized by larger α are asymptotically more effi-
cient samplers; that is, they achieve smaller sampling
variance. This is done by showing that the asymptotic
covariance matrices follow a Loewner ordering:3

V(α1) <L V(α2), ∀ α1 > α2 ≥ 0. (6)

In other words, as long as the numerical/computational
stability of the random walk implementation can be
ensured, larger values of α are always more favourable
in terms of achieving a smaller (asymptotic) sampling
variance. We also derive an upper bound on the ratio of
its sampling variance over that of the baseline Markov
chain, and show that this upper bound goes down to
zero as α→ ∞ with speed O(1/α). This is surprising
because asymptotically for large enough α, the SRRW,

3Matrices A, B follow the Loewner ordering A ≤L B (A <L

B) if B−A is positive semi-definite (positive definite).

which is a stochastic process whose trajectories are
constrained by ‘walking’ on the underlying commu-
nication matrix of the network, achieves smaller sam-
pling variance than an i.i.d. sampler4 whose variance
is always a constant positive value.

3. We confirm our theoretical results by numerically ob-
serving the predicted asymptotic performance order-
ing of SRRW over a wide range of α ≥ 0 for the
task of MCMC sampling over various graph topolo-
gies. To effectively handle potentially slower mixing
of the SRRW process in the initial transient period for
large α, we provide simulation results for an SRRW
with time-varying α. Starting with smaller values of α
which monotonically increase with time, we show that
the empirically observed superior mixing of processes
with smaller α can be combined with the theoretically
proven asymptotic efficiency of SRRW with larger α,
resulting in a far more efficient MCMC algorithm.

Related Works: While numerous version of self-repelling
walks on countable state spaces have been studied in the past,
we are primarily interested in random walk kernels which
do not absolutely forbid (with probability one) transitions
to previously visited nodes. The SRRW defined in our
paper, which still allows transitions to past visited nodes
with positive probability, falls into a class of ‘weakly’ self-
avoiding random walks (Amit et al., 1983; Toth, 1995; Veto
& Toth, 2008; Grassberger, 2017). The works ibid. study
weakly self-avoiding random walks on topologies such as 1
or d-dimensional lattices, and provide theoretical results on
properties such as recurrence properties, escape times from
sets or average cover times. Thus, the analytical focus is not
on convergence properties of some statistical attributes of
the random walks to a particular target, making it difficult
to utilize these existing results to design algorithms for
learning and statistical inference on general graphs.

Works which do study convergence properties of empiri-
cal distributions of random walks with repellent dynamics
consider processes where the repellence is between two
(Chen, 2014) or more (Rosales et al., 2022) particles, and
the results are again limited to random walks on complete
graphs. Even thought the random walks therein are not self-
repellent in our sense, the analysis techniques used are simi-
lar to ours, and are substantially influenced by the stochastic
approximation framework in (Benaı̈m, 1997) for the anal-
ysis of vertex reinforced random walks (VRRW) (also see
Benaı̈m & Tarres, 2011; Benaı̈m et al., 2012). As the name

4This corresponds to a sampler that can visit any node i with
probability µi independent of its previous position at any given
time. Clearly, in the graph setting, this requires the sampler to
’jump’ to any other node by ignoring the underlying network struc-
ture altogether - something which random walkers on general
graphs are not permitted to do.
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might suggest, the nonlinear Markov kernels considered in
this literature are self-attractive, that is, the random walker
transitions to more frequently visited nodes with greater
probability. The formulation is very general, and the at-
traction is captured by generic, monotonically increasing
functions, which is in contrast to the monotonically decreas-
ing rµi

(xi) terms in our SRRW kernel as in (1). Even with
such a general formulation, results showing convergence of
the empirical measure to identifiable probability distribu-
tions are restricted to special cases such as complete graphs
(Benaı̈m et al., 2012). Consequently, the analytical focus is
shifted towards providing localization results, analyzing the
property of the VRRW to get trapped inside subsets of the
graph under consideration (Tarrès, 2004; Angel et al., 2014).
Thus, even though the dynamics of VRRWs may look simi-
lar at first to the ones studied in our paper, the two types of
random walks are essentially opposites of each other. The
SRRW is specifically constructed for sampling from any
arbitrarily given target distribution over any general graph,
while the VRRW has found applications in fields such as
ecology for understanding the behaviour of organisms like
certain bacteria (Stevens & Othmer, 1997; Pemantle, 2007),
and can be interpreted as learning an unknown target with
potential applications to solving certain optimization prob-
lems (Avrachenkov et al., 2021) over a special graph such
as a grid or a complete graph. Note that the SRRW kernel
with α < 0 in (3) is actually self-attractive, and therefore
a VRRW. Our analytical approach covers such cases, and
our first and second order convergence results actually hold
for all α greater than a certain negative threshold value. For
values of α smaller than this threshold (that is, the dynamics
are more self-attractive in nature), we numerically observe
non-convergence to the target distribution. This is analogous
to the phase-transition behaviour often observed for VRRWs
(Pemantle, 1988; Volkov, 2006; Akian et al., 2007) and puts
our work in line with the broader literature of reinforced
random walks.

As mentioned earlier, the SRRW described in this paper is
a self-interacting Markov chain (SIMC), which can them-
selves be categorized under adaptive MCMC algorithms,
with the kernel parameter being the empirical distribution
of the process itself (Fort et al., 2011; 2014). While nu-
merous works study such processes on continuous state
spaces (Andrieu et al., 2007a;b; 2008; 2011), they focus
on the construction of kernels employing random jumps to
other (potentially distant) states depending on their histori-
cal visit counts, and are typically designed to tackle specific
challenges such as sampling from multi-modal distributions
and sequential Monte Carlo sampling, with performance
improvements typically shown via simulation results. In
practice, however, information regarding the shape of the
target distribution such as its modality is unknown. These
methods are also largely inapplicable for finite state spaces

such as graphs where the underlying communication matrix
determines the possible state transitions, therefore prohibit-
ing jumps between non-neighbouring nodes.

Structure of the paper: In the rest of the paper, we first
present some preliminaries and set up the SRRW procedure
as a stochastic approximation in Section 2. In Section 3, we
then analyze a mean-field ODE system whose asymptotic
dynamics are closely related to our stochastic process; prov-
ing uniqueness of the target distribution µ ∈ Int(Σ) as its
fixed point and showing global convergence of its solutions
to µ with the help of a Lyapunov function. Our main results
corresponding to our contributions as discussed earlier in
the introduction are provided in Section 4, where we also
discuss the application of our SRRW scheme to MCMC
sampling. In Section 5 we provide numerical results sup-
porting our theoretical findings along with additional tests
that showcase the advantages of employing the SRRW with
time-varying α, before concluding in Section 6.

2. Algorithmic setup
In this section, we first standardize some basic notations
which will be used throughout the paper, and review prelim-
inary concepts regarding time-reversible Markov chains and
their spectrum. We then introduce the SRRW iteration as a
stochastic approximation algorithm along with a determinis-
tic system whose asymptotic dynamics are closely related
to our stochastic iteration.

2.1. Preliminaries

Basic Notations: We use lower-case boldface letters to
denote column vectors (e.g. v ≜ [vi]i∈N ∈ RN ), and
upper-case boldface letters to denote matrices (e.g. M ≜
[Mij ]i,j∈N ∈ RN×N ). The matrix I always denotes the
identity matrix (its dimension inferred by the context) and
for any vector v ∈ RN , we define Dv as the diagonal matrix
with vi as its i-th diagonal entry. Throughout the paper, the
terms P(·) and E[·] will stand for probability of an event and
expectation of a random variable respectively, and we use
∥ · ∥p to refer to the Lp norm.

Time-Reversible Markov Chains: The following defini-
tions and properties are classical in Markov chain literature
and will be stated without proof. We point the readers to (Al-
dous & Fill, 2002, Chapter 3.4) for a more comprehensive
review of the spectral properties stated below. A Markov
chain with kernel P ∈ [0, 1]N×N is time-reversible if there
exists a probability distribution µ ∈ Σ such that the pair
(P,µ) solve the detailed balance equation (DBE), that is,
µiPij = µjPji for all i, j ∈ N . Consequently, µ is also the
stationary distribution or invariant measure of P, and solves
µTP = µT . A time-reversible Markov chain’s kernel P
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has all eigenvalues on the real line. We denote by (λi,ui)
(by (λi,vi)) its left (right) eigenpair, where the eigenvalues
are ordered such that 1 = λN > λN−1 ≥ · · ·λ1 ≥ −1,
with uN = µ and vN = 1. Moreover, we can deduce that
ui = Dµvi and uT

i vi = 0 for all i ∈ N .

2.2. SRRW iteration and the related mean-field ODE

Consider the SRRW on G(N , E) as defined in Section 1,
where for any ergodic and time-reversible P with corre-
sponding stationary measure µ, and any α ≥ 0, the function
rµi

(·) in the non-linear kernel in (1) is of the polynomial
form as in (3). In this setup, the transition kernel K[x] is
well-defined for all x ∈ Int(Σ), and we have the following
result, whose proof is deferred to Appendix A.

Proposition 2.1. For any x ∈ Int(Σ), there exists a unique
stationary measure π(x) ≜ [πi(x)]i∈N ∈ Int(Σ), where

πi(x) ∝
∑
j∈N

µiPij

(
xi
µi

)−α(
xj
µj

)−α

, ∀ i ∈ N , (7)

and the pair (K[x],π(x)) solves the DBE, that is,
πi(x)Kij [x] = πj(x)Kji[x] for all i, j ∈ N .

Since the transition probability Kij [x] for any node i
to j is only well defined when xj > 0 for each j ∈
N (i), we redefine xn (originally defined in (2)) as xn ≜
1

n+1 [ν +
∑n

k=1 δXk
] for some ν ∈ Int(Σ). This redefined

sequence of empirical measures {xn}n≥0, which satisfies
the recursion

xn+1 = xn +
1

n+2

(
δXn+1

− xn

)
, ∀ n ≥ 0, (8)

starts from x0 = ν ∈ Int(Σ), and satisfies xn ∈ Int(Σ)
which ensures that K[xn] is always well defined for every
finite n ≥ 0.
Remark 2.2. The S.I. property (ii) along with the form of
Kij [x] as in (1) means that knowing visit counts of each
neighboring node of the current position is enough for com-
puting the transition probabilities. This has benefits when
the random walker is exploring the graph while perform-
ing MCMC sampling on-the-fly. For example, the random
walker which associates one ‘fake’ visit to every newly dis-
covered neighboring node automatically ensures that the
SRRW iteration begins with ν ∝ 1 (uniform distribution)
without the need to know any global graph statistic. This
’fake’ visits can also be weighted - assigning it proportional
to the degree of the newly discovered neighboring node en-
sures that ν = d, where d = [deg(i)/

∑
k∈N deg(k)]i∈N

is the degree proportional distribution of the graph. It is
also important to note that our main results in Sections 4 are
invariant in the choice of ν ∈ Int(Σ).

The existence and uniqueness of the stationary distribution

π(xn) shown in Proposition 2.1 allows us to further decom-
pose the recursion in (8) as

xn+1 = xn + γn+1 [h(xn) + ϵ(Xn+1,xn)] , (9)

where γn ≜ 1
n+1 , h(x) ≜ π(x)− x and ϵ(X,x) ≜ δX−

π(x). The recursion in (9) is an example of a stochastic
approximation (SA) algorithm with controlled Markovian
dynamic (see Benveniste et al., 2012; Andrieu et al., 2005;
2015; Fort et al., 2014) and decreasing step sizes {γn}n≥0.
For each n ≥ 0, the random variable ϵ(Xn+1,xn) captures
the noise in the updates which, in this case, is driven by the
stochastic process {Xn}n≥0. SA algorithms have a strong
connection to ordinary differential equations (ODEs) via
its mean-field, which in our case is h : Int(Σ) → RN ; SA
iterates typically converge to ω-limit sets (fixed points and
limit cycles) of the semi-flow induced by h(·) as long as the
noise terms {ϵ(Xn,xn)}n≥0 are shown to have negligible
contribution to the SA iterations asymptotically (Harold
J. Kushner, 1997; Benaı̈m, 1999; Borkar, 2008). Studying
the asymptotic properties of the deterministic ODE system
given by

d

dt
x(t) = h(x(t)) = π(x(t))− x(t) (10)

are therefore vital to understanding those of the stochas-
tic iteration (9). For the SRRW kernel as in (1), we have
K[µ] = P for any α ≥ 0 since rµi(µi) = (µi/µi)

−α = 1
for all i ∈ N ; and from the balance equation π(µ)TP =
π(µ)T we have π(µ) = µ. Thus, the target measure µ
solves π(x) = x, the fixed point equation of (10).

3. Global convergence of the mean-field ODE
In this section we analyze the asymptotic behaviour of the
ODE, specifically the global asymptotic stability of the tar-
get distribution µ ∈ Int(Σ). The ODE system in (10) is
positively invariant in Int(Σ), that is, solutions of the sys-
tem starting in Int(Σ) stay in the same set for all times
t ≥ 0. Indeed, one can check that as xi(t) → 0 for any
i ∈ N , the corresponding πi(x) → 1, and the i-th entry
dxi

dt = πi(x)− xi of (10) will always be positive. With this,
we first provide the following results concerning the fixed
points of (10) in Int(Σ). The proofs of all results in this
section are deferred to Appendix B.

Proposition 3.1. For any α ≥ 0, the target stationary
measure µ ∈ Int(Σ) is the unique fixed point of ODE (10).

Our next step is to show convergence of ODE (10) to
its unique fixed point µ, which will be done via a Lya-
punov function. For any α ≥ 0, consider the function
w : Int(Σ) → R given by

w(x) =
∑
i∈K

∑
j∈N

µiPij

(
xi
µi

)−α(
xj
µj

)−α

(11)
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for all x ∈ Int(Σ). The following result shows that w(·) is
a strict Lyapunov function for ODE (10).
Lemma 3.2. The function w : Int(Σ) → R satisfies
∇w(x)Th(x) ≤ 0 for all x ∈ Int(Σ), with equality only
when x = µ. Moreover, w(x)→∞ as xi→0 for any i∈N .

The Lyapunov result in the form as stated above will be
especially vital in Section 4 for proving the first and second
order convergence results for the stochastic SRRW iteration
(8). Our next result, concerning the global convergence of
trajectories of (10), follows by application of the LaSalle
invariance principle (see Vidyasagar, 1993, Chapter 5) to
Lemma 3.2.
Theorem 3.3. For any α ≥ 0, the unique fixed point µ of
ODE (10) is globally asymptotically stable in Int(Σ); that is,
for any initial x(0) ∈ Int(Σ), we have x(t) → µ as t→ ∞.

For each α ≥ 0, let J(α) ≜ [Jij(α)]i,j∈N denote the
Jacobian of h(x) evaluated at x = µ, that is, Jij(α) ≜
∂hi(x)
∂xj

∣∣∣
x=µ

. We end this section with the following result

regarding the form of J(α) and its spectrum in terms of α,
P, and the spectrum of P. This result will be employed to
characterize the performance of SRRW in the next section.
Lemma 3.4. For any α ≥ 0, we have

J(α) = 2αµ1T − αPT − (α+1)I. (12)

Furthermore, let ζi denote the i-th eigenvalue of J(α). Then,
ζN = −1, and ζi = α(−1−λi)−1 for all i ∈ {1, · · · , N−1},
with ui (vi) of P now being the right (left) eigenvectors
corresponding to ζi for all i ∈ N .

4. Main results - Convergence and co-variance
ordering of SRRW

In this section, we provide our main results concerning
the convergence properties of the SRRW iterate sequence
{xn}n≥0 for all α ≥ 0. First, we prove that starting
from any initial x0 ∈ Int(Σ), the SRRW iterate sequence
{xn}n≥0 satisfying (9) converges almost surely to the target
distribution µ, and then provide a CLT where we charac-
terize the exact form of the arising asymptotic co-variance
matrix V(α) as a function of α ≥ 0. We use this to prove
our performance ordering as a Loewner ordering of asymp-
totic co-variance matrices, in the form of (6), as touched
upon previously in Section 1. We also provide corollar-
ies accompanying our main result for the special case of
MCMC sampling, showing that the asymptotic sampling
variance decreases in α ≥ 0 with speed O(1/α). All the
following results are proved under the assumption (A1) as
shown below, which we elaborate later in Remark 4.5.
(A1). For any (x0, X0) ∈ Int(Σ)×N , the iterate sequence
{xn}n≥0 is PX0,x0 - almost surely contained within a com-
pact subset of Int(Σ).

Theorem 4.1 (Almost sure convergence to target µ). Under
(A1), xn converges Px0,X0-almost surely to µ as n → ∞
for any initial (x0, X0) ∈ Int(Σ)×N and any α ≥ 0.
Theorem 4.2 (Central Limit Theorem). Under (A1),

√
n(xn − µ)

n→∞−−−−→
dist.

N(0,V(α)), (13)

for any α ≥ 0, where V(α) ∈ RN×N is given by

V(α) =

N−1∑
i=1

1

2α(1 + λi) + 1
· 1 + λi
1− λi

uiu
T
i . (14)

The explicit form of V(α) in Theorem 4.2 is derived by
applying Lemma 3.4 in conjunction with a version of
(Brémaud, 2020, Lemma 6.3.7) modified for our SRRW
case. This allows us to fully characterize the co-variance
matrix V(α), and we have the following performance order-
ing result as a corollary.
Corollary 4.3 (Ordering of asymptotic covariance). For
any α1 > α2 > 0, we have

V(α1) <L V(α2) <L V(0).

Corollary 4.3 states the asymptotic covariance matrix de-
crease monotonically (in terms of Loewner ordering) as
α increases. Recall that the case α = 0 coincides with a
purely Markovian random walker with kernel P, traversing
the state space with no self interaction. Thus, the empirical
distribution of any SRRW with α > 0 approximates the
target distribution with asymptotically smaller co-variance
than the underlying base Markov chain P. The CLT result in
(13) also leads to the following corollary on the convergence
of Lp norms of the scaled error term xn − µ.
Corollary 4.4. for any α ≥ 0 and integer p ∈ N, there
exists a constant Cp,α > 0 such that

√
nE [∥xn − µ∥p]

n→∞−−−−→ Cp,α. (15)

Remark 4.5. (A1) assumes the stability of the SRRW iterates
{xn}n≥0, and is a commonplace in convergence analysis of
SA algorithms. Proving (A1) for a given SA algorithm is
highly non-trivial in most practical applications, and can be
especially difficult for the case of SA with state-dependent
Markovian noise, where the state space is an open subset
of an RN (Andrieu et al., 2015; Karmakar, 2020) - the case
with our SRRW process. The issue of proving stability is
often dealt with by introducing modifications to the original
sequence, such as random restarts of the algorithm as the
iterates exit a growing sequence of compact subsets of the
open state space. In Appendix E, we use one such modifica-
tion as a tool to provide intuition behind why (A1) is very
likely to be satisfied, even though the formal proof remains
an open problem. The critical logic behind this intuition
revolves around the uniqueness of the target measure µ and
Lemma 3.2 regarding the Lyapunov function, and is further
supported by our numerical simulations in Section 5.
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SRRW for MCMC sampling: We show that the perfor-
mance improvement alluded by the form of V(α) from
Theorem 4.2 and Corollary 4.3 is realized when the SRRW
is used for MCMC sampling. Consider a sampling agent
following the SRRW process for an appropriate choice of
P and µ, for any given α ≥ 0 on a general graph G(N , E).
At each time step n > 0, it records a sample according to
its current location Xn, given by g(Xn) for some scalar
function g : N → R, whose vectorized form we denote by
g ≜ [g(i)]i∈N ∈ RN , and updates the MCMC estimator
ψn(g) ≜ 1

n

∑n
k=1 g(Xk) with the latest sample. Its goal

is to estimate the quantity gTµ = EX∼µ[g(X)]. We now
have the following:

Corollary 4.6. For any scalar valued function g : N → R
such that maxi∈N |g(i)| <∞, and for any α ≥ 0, we have

ψn(g)
n→∞−−−−→
a.s.

gTµ, (16)
√
n(ψn(g)− gTµ)

n→∞−−−−→
dist.

N(0,gTV(α)g). (17)

Corollary 4.7. Under the same assumption of Corollary
4.6, we have

gTV(α)g

gTV(0)g
≤ E

[
1

2α(1 + Λ) + 1

]
, (18)

where Λ∈(−1, 1) is a random variable taking values λi, i∈
{1,· · ·, N−1} with probability proportional to (gTui)

2.

Corollary 4.6 provides almost sure convergence and CLT for
the SRRW-driven MCMC estimator ψn(g), with its asymp-
totic variance in terms of g and V(α). Corollary 4.7 then
quantifies the improvement of the SRRW-driven sampler
with α > 0 over the baseline MCMC-driven by P (α = 0
case). We see that reduction ratio goes down to zero as
α → ∞ with speed O(1/α). Consider an i.i.d. random
variable Y with distribution µ for which the sampling vari-
ance is given by Var(g(Y )) = (g2)Tµ − (gTµ)2 > 0
for all non-trivial choices of function g(·) and µ.5 Since
gTV(α)g → 0 as α → ∞, there exists some α̂ > 0 such
that for each α > α̂, the SRRW as an MCMC estimator out-
performs even an i.i.d. sampler, asymptotically. While the
value of α̂ depends on the function g(·), target measure µ
and the spectrum of the underlying base chain P, we expect
that this crossover would take place for moderate values of
α, as seen from (18) with (at least) O(1/α) speed. This has
the advantage of offsetting potentially undesirable transient
behaviour resulting from employing very large α, as will
also be elaborated in the next section while presenting our
simulation results.

Before ending this section, we briefly show that for any
choice of baseline Markov chain P with stationary distri-
bution µ, one can construct an unbiased version of the

5Here, g2 is the vector with its i’th entry as g(i)2.

estimator ψn(g) which estimates the uniform average of the
function g(·), given by 1

N gT1 = EX∼unif.[g(X)]. This pro-
cedure is virtually identical to the importance-reweighting
typically done in MCMC applications (Lee et al., 2012),
but now sampled by SRRW instead of a Markov chain.
To be specific, consider a weight function w : N → R
where w(i) ∝ 1

µi
for all i ∈ N , and let h : N → R

be h(i) ≜ w(i)g(i) with h ≜ [h(i)]i∈N ∈ RN being its
vectorized form. Consider a new estimator, defined as

ψ̂n(g) ≜
ψn(wg)

ψn(w)
=

∑n
k=1 w(Xk)g(Xk)∑n

k=1 w(Xk)
. (19)

We then the following corollary, the proof of which follows
by application of Slutsky’s theorem (Ash & Doléans-Dade,
2000, pg. 332).

Corollary 4.8. For the estimator ψ̂n(g), results of Corol-
laries 4.6 and 4.7 hold with g and µ replaced by h and 1

N 1
respectively.

5. Simulation results
We now present simulation results which support our the-
oretical findings. We simulate the SRRW process over the
wiki-Vote graph (Leskovec & Krevl, 2014), which is an
undirected, connected graph with 889 nodes and 2914 edge.
We set P, the base Markov chain, to be the Metropolis Hast-
ings random walk (MHRW) - a commonly used Markov
chain for unbiased graph sampling. Our target measure µ
is therefore the uniform distribution, that is, µ = 1

N 1. We
also measure the average degree of the graph by employing
the estimator ψn(g), where g(i) = deg(i) for each i ∈ N ,
and gTµ =

∑
i∈N deg(i)/N .

To track the convergence of the stochastic process, we mea-
sure the Total Variation Distance (TVD), evaluated at each
time step as

TVD(xn,µ) =
1

2
∥xn − µ∥, (20)

where xn is the empirical distribution of the SRRW pro-
cess. The TVD is then averaged over the total number of
simulation runs. We also keep track of the Mean Square Er-
ror (MSE) of the estimator ψn(g) in estimating the average
degree, given by

MSE(ψn(g),g
Tµ) =

1

K

K∑
k=1

(ψk
n(g)− gTµ)2 (21)

where the mean is taken over the total number of simula-
tion runs K, and ψk

n(g) denotes the estimator for the k-th
simulation run.

Our final simulation results are shown in Figures 1(a) and
1(b), where the curves are obtained as averages over K =

7
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(b) Convergence of ψn(g) to the ground truth gT1/N .

Figure 1. Simulations of the SRRW process for values of α ∈ [0, 2], where α = 0 corresponds to MHRW - the underlying Metropolis-
Hastings base chain, with no self-repellence properties. The two sigmoid functions refer to the case where α is made to gradually increase
over time, from 0 to 2. Sigmoid-1 is of the type 1

0.5+e−n+0.25N while Sigmoid-2 is of the type n
100+0.5n

, where n ≥ 0 is the time
parameter. Further tuning of the sigmoid functions may lead to empirically more efficient MCMC algorithms.

500 simulation runs. For both, TVD and MSE, we observe
that larger values of α perform better asymptotically as
predicted by our theory, significantly outperforming the
case of α = 0 (the sampler driven by base chain MHRW).
We also observe for the MSE plot in Figure 1(b) that the
case of time-varying α provides better performance for the
task of estimating the average degree. While our theoretical
framework only supports constant values of α ≥ 0, the
numerically observed convergence and efficiency of the
time-varying case opens up possibilities for construction of
a more adaptive version of the SRRW algorithm, which can
be a possible future direction.

6. Conclusion
In this paper, we introduced a self-repellent random walk
which can be designed to sample from any target distri-
bution µ ∈ Int(Σ) via nonlinear interacting with its own
occupational measure. We provide convergence results for
the sequence of occupational measures by first analyzing
a closely related deterministic process whose convergence
is proved with the aid of a Lyapunov function, and then
utilizing results from stochastic approximation theory to
establish first and second order convergence results. We pro-
vide an explicit form for the asymptotic co-variance matrix
arising out of the CLT result, which enables us to prove that
the sampling variance decreases monotonically to zero as
α→ ∞, with speed at least O(1/α). Our results advocate
for study into the design of nonlinear Markov chains for
MCMC and other learning applications.
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Andrieu, C., Moulines, É., and Priouret, P. Stability
of stochastic approximation under verifiable conditions.

8

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html


SRRW on General Graphs

SIAM Journal on control and optimization, 44(1):283–
312, 2005.

Andrieu, C., Jasra, A., Doucet, A., and Del Moral, P. Non-
linear markov chain monte carlo. Esaim: Proceedings,
19:79–84, 01 2007a.

Andrieu, C., Jasra, A., Doucet, A., and Del Moral, P. Con-
vergence of the equi-energy sampler. In ESAIM: Proceed-
ings, volume 19, pp. 1–5. EDP Sciences, 2007b.

Andrieu, C., Jasra, A., Doucet, A., and Del Moral, P. A note
on convergence of the equi-energy sampler. Stochastic
Analysis and Applications, 26(2):298–312, 2008.

Andrieu, C., Jasra, A., Doucet, A., and Moral, P. D. On
nonlinear Markov chain Monte Carlo. Bernoulli, 17(3):
987 – 1014, 2011.

Andrieu, C., Tadić, V. B., and Vihola, M. On the stability
of some controlled markov chains and its applications to
stochastic approximation with markovian dynamic. The
Annals of Applied Probability, 25(1):1–45, 2015.

Angel, O., Crawford, N., and Kozma, G. Localization for
linearly edge reinforced random walks. Duke Mathemati-
cal Journal, 163(5):889–921, 2014.
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Brémaud, P. Markov chains gibbs fields, monte carlo simu-
lation, and queues. 2020.

Chen, J. Two particles’ repelling random walks on the
complete graph. Electronic Journal of Probability, 19
(none):1 – 17, 2014.

Chen, T.-L. and Hwang, C.-R. Accelerating reversible
markov chains. Statistics & Probability Letters, 83(9):
1956–1962, 2013.

Del Moral, P. and Miclo, L. On convergence of chains with
occupational self-interactions. Proceedings of the Royal
Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 460(2041):325–346, 2004.

Del Moral, P. and Miclo, L. Self-interacting markov chains.
Stochastic Analysis and Applications, 24:615–660, 07
2006.

Delyon, B. Stochastic approximation with decreasing gain:
Convergence and asymptotic theory. Technical report,
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A. Proof of results in Section 2
Proof of Proposition 2.1. It is enough to show that the form of π(x) specified in (7) satisfies the detailed balance equation.
For any i, j ∈ N , we have

πi(x)Kij [x] ∝

[∑
k∈N

µiPik

(
xi
µi

)−α(
xk
µk

)−α
]

Pij

(
xj

µj

)−α

∑
k∈N Pik

(
xk

µk

)−α × µi

µi

=

(
xi
µi

)−α
[∑
k∈N

µiPik

(
xk
µk

)−α
]

µiPij

(
xj

µj

)−α

∑
k∈N µiPik

(
xk

µk

)−α

= µiPij

(
xi
µi

)−α(
xj
µj

)−α

. (22)

Similarly, we can write

πj(x)Kji[x] ∝ µjPji

(
xi
µi

)−α(
xj
µj

)−α

, (23)

and using the fact that µiPij = µjPji due to the time-reversibility property of P with µ, (22) and (23) are equivalent, which
completes the proof.

B. Proof of results in Section 3
Proof of Proposition 3.1. We begin by using the form of π(x) derived in Proposition 2.1 to study the fixed point equation
for ODE (10), which can be written for each i ∈ N as

xi = πi(x) =
1

D

∑
j∈N

µiPij

(
xi
µi

)−α(
xj
µj

)−α

,

where the normalizing constant D is given by D =
∑
i∈N

∑
j∈N

µiPij

(
xi

µi

)−α(
xj

µj

)−α

. Consider a change of variable where

yi ≜ xi/µi for all i ∈ N , and rewrite the above equation to obtain

yi =
1

D
y−α
i

∑
j∈N

Pijy
−α
j . (24)

It is enough to show that the only possible positive solutions to (24) are of the type yi = c > 0 for all i ∈ N . To check that
it is indeed a solution, observe that

D = c−2α
∑
i∈N

∑
j∈N

µiPij = c−2α
∑
i∈N

∑
j∈N

µjPji = c−2α
∑
j∈N

µj

∑
i∈N

Pji = c−2α,

where the second equality comes from the time-reversibility of (µ,P), which means that µiPij = µjPji for all i, j ∈ N ,
and the fourth equality comes from P being a stochastic matrix. Substituting D = c−2α in (24) gives us

yi = c =
1

c−α
c−α

∑
j∈N

Pijc
−α = 1,

implying xi = µi for all i ∈ N .

Suppose there exists another positive solution y′ of (24) such that y′ ̸= c1 for some c > 0. Without loss of generality, we
assume y′1 = maxi∈N {y′i}, y′N = mini∈N {y′i}. Since y′ ̸= c1, we have y′1 > y′N , and from the fixed point equation (24)
we have

y′1 =
1

D
(y′1)

−α
∑
j∈N

P1j(y
′
j)

−α, (25a)
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y′N =
1

D
(y′N )−α

∑
k∈N

PNk(y
′
k)

−α. (25b)

Dividing (25a) by (25b) and rearranging some terms gives us(
y′1
y′N

)α+1

=

∑
j∈N P1jy

−α
j∑

k∈N PNky
−α
k

. (26)

Since α ≥ 0, we have (y′1)
−α ≤ (y′i)

−α ≤ (y′N )−α for all i ∈ N , and (26) has the upper bound(
y′1
y′N

)α+1

≤
(y′N )−α

∑
j∈N P1j

(y′1)
−α
∑

k∈N PNk
=

(
y′1
y′N

)α

,

which shows y′1/y
′
N ≤ 1 and contradicts y′1 > y′N , which completes the proof.

We can additionally prove that that Proposition 3.1 holds true for all α ∈ (−0.5, 0) as well. When α < 0, we have
(y′N )−α ≤ (y′i)

−α ≤ (y′1)
−α for all i ∈ N , and (26) has the upper bound(

y′1
y′N

)α+1

≤
(y′1)

−α
∑

j∈N P1j

(y′N )−α
∑

k∈N PNk
=

(
y′1
y′N

)−α

,

which leads to (y′1/y
′
N )2α+1 ≤ 1. If we additionally have 2α+ 1 > 0, or equivalently α ∈ (−0.5, 0), we have y′1 ≤ y′N ,

which contradicts y′1 > y′N , implying xi = µi for all i ∈ N even when α ∈ (−0.5, 0) and the random walker is
self-attractive.

Proof of Lemma 3.2. We use the notation
[
x
µ

]−α

to denote a vector with the i’th entry being
[
xi

µi

]−α

, for any α ∈ R. For

any vector v ∈ RN , we will occasionally use the notation [v]i to denote its i’th entry. Taking partial derivative of w(x) with
respect to xi, we have

∂w(x)

∂xi
=

−2α

µi

[
xi
µi

]−α−1
[
DµP

[
x

µ

]−α
]
i

(27)

Taking derivative of w(x) along trajectories of the ODE system (10), we get

d

dt
w(x) =

∑
i

∂w(x)

∂xi

dxi
dt

= ∇w(x)Th(vx) = −2α
∑
i∈N

(
1

µi

[
xi
µi

]−α−1
[
DµP

[
x

µ

]−α
]
i

)
· (πi(x)− xi)

= −2α
∑
i∈N

(
1

µi

[
xi
µi

]−α−1
[
DµP

[
x

µ

]−α
]
i

)
·

(
1

w(x)

[
xi
µi

]−α
[
DµP

[
x

µ

]−α
]
i

− xi

)

=
−2α

w(x)

∑
i∈N

(
1

µi

[
xi
µi

]−α−1
[
DµP

[
x

µ

]−α
]
i

)
·

([
xi
µi

]−α
[
DµP

[
x

µ

]−α
]
i

− w(x)xi

)

=
−2α

w(x)

∑
i∈N

Bi(x) + Ci(x), (28)

where

Bi(x) =

(
1

µi

[
xi
µi

]−α−1
[
DµP

[
x

µ

]−α
]
i

)
·

([
xi
µi

]−α
[
DµP

[
x

µ

]−α
]
i

)
,

and

Ci(x) =

(
1

µi

[
xi
µi

]−α−1
[
DµP

[
x

µ

]−α
]
i

)
· (w(x)xi) .

12
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Define a random variable Z(x) which takes values Zi(x) =
1
µi

[
xi

µi

]−α−1
[
DµP

[
x
µ

]−α
]
i

with probability xi. Then, we

can see that

Bi(x) =

(
1

µi

[
xi
µi

]−α−1
[
DµP

[
x

µ

]−α
]
i

)
·

(
1

µi

[
xi
µi

]−α−1
[
DµP

[
x

µ

]−α
]
i

)
· xi = Zi(x)

2xi,

and as a result, ∑
i∈N

Bi(x) =
∑
i∈N

Zi(x)
2xi = E[Z(x)2]. (29)

We can similarly write
∑

i∈N Ci(x) as

∑
i∈N

Ci(x) = −w(x)
∑
i∈N

1

µi

[
xi
µi

]−α−1
[
DµP

[
x

µ

]−α
]
i

· xi

= −

(∑
k∈N

1

µk

[
xk
µk

]−α−1
[
DµP

[
x

µ

]−α
]
k

· xk

)(∑
i∈N

1

µi

[
xi
µi

]−α−1
[
DµP

[
x

µ

]−α
]
i

· xi

)

= −

(∑
k∈N

Zk(x)xk

)(∑
i∈N

Zi(x)xi

)
= E[Z(x)]2. (30)

Substituting (29) and (30) in (28) gives us

d

dt
w(x) =

−2α

w(x)

∑
i∈N

Bi(x) + Ci(x) =
−2α

w(x)

(
E[Z(x)2]− E[Z(x)]2

)
=

−2α

w(x)
Var[Z(x)] ≤ 0. (31)

To show that the equality is only achieved at the fixed point, all we need to show is that Var[Z(x)] = 0 ⇐⇒ x = π(x).
The Variance term is zero if and only if Zi = Zj for all i, j ∈ N , that is

1

µi

[
xi
µi

]−α−1
[
DµP

[
x

µ

]−α
]
i

=
1

µi

[
xj
µj

]−α−1
[
DµP

[
x

µ

]−α
]
j

⇐⇒ πi(x)

xi
=
πj(x)

xj
(32)

for all i, j ∈ N , where the equality on the left hand size comes by rewriting the form for Zi as w(x)πi(x)/xi. Equation
(32) is true if and only if πi(x) = xi for all i ∈ N , which completes the proof.

Proof of Theorem 3.3. The trajectories {x(t)}t≥0 starting from any x(0) ∈ Int(Σ) are relatively compact and bounded,
since the flow of the ODE system (10) leaves the probability simplex positively invariant. Then, the global asymptotic
stability of µ ∈ Int(Σ) follows by application of Proposition 3.1, Lemma 3.2, and the LaSalle Invariance principle (Theorem
3.1 in (Ball, 2016), Chapter 5 in (Vidyasagar, 1993), Chapter 3 in (Slotine & Li, 1991)).

Proof of Lemma 3.4. Consider fi(x) defined as

fi(x) ≜
∑
j∈N

µiPij

(
xi
µi

)−α(
xj
µj

)−α

for all i ∈ N , x ∈ Int(Σ), and let g(x) ≜
∑

k∈N hk(x). Then, for hi(x) = πi(x)− xi (the i’th entry of h(x) in (10)), we
have

hi(x) =
fi(x)

g(x)
− xi, (33)

for all i ∈ N and x ∈ Int(Σ), and its partial derivatives follow

∂hi(x)

∂xj
=
g(x)∂fi(x)∂xj

− fi(x)
∂g(x)
∂xj

g(x)2
− 1{i=j}. (34)
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To deduce ∂hi(x)
∂xj

∣∣
x=µ

, we evaluate each quantity of the above equation evaluated at x = µ, and then substitute them back
in the above expression. We have

fi(µ) =
∑
j∈N

µiPij = µi

∑
j∈N

Pij = µi, ∀ i ∈ N ,

g(µ) =
∑
i∈N

fi(µ) =
∑
i∈N

µi = 1,

∂fi(x)

∂xi

∣∣∣∣∣
x=µ

= − α

xi

∑
j∈N

µiPij

(
xi
µi

)−α(
xj
µj

)−α

− α

xi
µiPii

(
xi
µi

)−2α
∣∣∣∣∣
x=µ

= −α− αPii, ∀ i ∈ N ,

∂fi(x)

∂xj

∣∣∣∣∣
x=µ

= − α

xj
µiPij

(
xi
µi

)−α(
xj
µj

)−α
∣∣∣∣∣
x=µ

= −αµiPij

µj
= −αPji, ∀ i ̸= j ∈ N ,

∂g(x)

∂xi

∣∣∣∣∣
x=µ

= −2α

xi

∑
j∈N

µiPij

(
xi
µi

)−α(
xj
µj

)−α
∣∣∣∣∣
x=µ

= −2α, ∀ i ∈ N .

Substituting the above expressions in (34) and simplifying it yields

∂hi(x)

∂xi

∣∣∣∣∣
x=µ

= 2αµi − αPii − α− 1, ∀ i ∈ N ,

∂hi(x)

∂xj

∣∣∣∣∣
x=µ

= 2αµi − αPji, ∀ i ̸= j ∈ N ,

and by rewriting the above in matrix form, we get

J(α) = 2αµ1T − αPT − (α+ 1)I (35)

which is the same as (12).

We now prove the eigenvalue result in Lemma 3.4. For each µi for i ∈ {1, · · · , N}, we have

J(α)Tui = 2αµ1Tui − αPTui − (α+ 1)ui.

When i = N , that is ui = uN = µ, then we have µ1TuN = uN1Tµ = µ = uN , and PTuN = uN , and so the above
equation becomes

J(α)TuN = (2α− α− α− 1)uN = (−1)uN .

When i ̸= N , we have µ1Tui = µvT
Nui = 0, and PTui = λiui, and we similarly have

J(α)Tui = (0− αλi − α− 1)ui = (α(−1− λi)− 1)ui.

Similar steps follow when we start from vT
i J(α)

T instead, and ζN = −1, ζi = (α(−1−λi)−1) for all i ∈ {1, · · · , N−1}
are the eigenvalues of J(α) with ui and vi being the corresponding left and right eigenvectors. Since (−λi − 1) < 0 for all
i ∈ {1, · · · , N − 1}, ζi’s follow the same ordering as λi’s and this completes the proof.

C. Proof of results in Section 4
Before providing the proofs of our main results, we reproduce some key assumptions from (Delyon, 2000) required to apply
Theorems 15 and 25 therein, which are the almost sure convergence and the CLT result respectively.

(A) h is a continuous vector field on O ⊂ Rd; there exists a non-negative C1 function w such that

– ∇w(x)Th(x) ≤ 0 for all x ∈ O;
– the set S ≜ {x | ∇w(x)Th(x) = 0} is such that w(S) has an empty interior.
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(B) h is a continuous vector field on O ⊂ Rd; there exists a non-negative C1 function w and a compact set K ⊂ O such
that

– w(x) → ∞ if x → ∂O or ∥x∥ → ∞;
– ∇w(x)Th(x) < 0 if x /∈ K.

(C) The general SA iteration given by xn+1 = xn + γn+1[h(xn) + ηn+1] is A-stable (see Delyon, 2000, Definition 1) and
xn converges to some limit x∗. h is C1 in some neighborhood of x∗ with first derivatives Lipschitz, and the Jacobian
matrix of h evaluated at x∗ has all its eigenvalues with negative real part.

(D) The step size is decreasing and satisfies either {
1
γn

− 1
γn−1

→ 0;

γnn→ 1.

(MS) (Translated to the non-linear Markov chain setting) For every x, there exits a solution Q(x) to the Poisson equation

(I−K[x])Q[x] = I− 1π(x)T

has a solution; for any compact C ⊂ O,

sup
x∈K,i∈N

∥Q[x]Tei∥2 + ∥(I− 1π(x)T )Tei∥2 <∞

and there exists a continuous function ϕC , ϕC(0) = 0, such that for any x,x′ ∈ C,

sup
i∈N

∥ [K[x]Q[x]]·,i − [K[y]Q[y]]·,i ∥2 ≤ ϕC(∥x− y∥2).

Proof of Theorem 4.1. As mentioned in Section 2, the SRRW iteration (9) is a stochastic approximation algorithm with
controlled Markovian input, with its step size sequence given by γn = 1

n+1 . To prove the almost sure convergence, we show
that assumptions (A), (B) and (MS) in (Delyon, 2000) are satisfied, and then, under (A1), apply Theorem 15 therein. As a
result of Proposition 3.1 and Lemma 3.2, the set of fixed points, which is the singleton {µ} ⊂ Int(Σ), and the Lyapunov
function w : Int(Σ) → [0,∞) as defined in (11) satisfy assumptions (A) and (B) in (Delyon, 2000).

Since K[x] is irreducible for all x ∈ Int(Σ), the semigroup {et(K[x]−I)}t≥0 of the related CTMC kernel K[x]− I converges
exponentially towards 1π(x)T (geometric ergodicity). Thus, for all x ∈ Int(Σ), or equivalently for all x ∈ K for any
compact K ⊂ Int(Σ), the matrix

Q[x] =

∫ ∞

0

(
et(K[x]−I) − 1π(x)T

)
dt

is well defined. Moreover, it solves the Poisson equation, that is

(I−K[x])Q[x] =

∫ ∞

0

(
(I−K[x])e−t(I−K[x]) − (I−K[x])1π(x)T

)
dt

=

∫ ∞

0

(I−K[x])e−t(I−K[x])dt = I− 1π(x)T = I− et(K[x]−I)
∣∣∣∞
0

= I− 1π(x)T

where the last inequality is because −et(K[x]−I) the semi-group operator of an ergodic CTMC. The solution of the Poisson
equation Q[x], as well as the state dependent update (matrix) I− 1π(x)T , have bounded entries for all x ∈ K ⊂ Int(Σ),
which implies that

sup
x∈K,i∈N

∥Q[x]Tei∥2 + ∥(I− 1π(x)T )Tei∥2 = ∥Q[x]·,i∥2 + ∥δi − π(x)∥2 <∞.

Moreover, since K[x] and Q[x] are continuous, they are also Lipschitz in K. Thus fore each K, there exists a constant CK
such that for any x,y ∈ K,

sup
i∈N

∥ [K[x]Q[x]]·,i − [K[y]Q[y]]·,i ∥2 ≤ CK∥x− y∥2.

With this, we satisfy (MS) in (Delyon, 2000).
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Proof of Theorem 4.2. It suffices to show that assumptions (C), (D) and (MS) in (Delyon, 2000) are satisfied and apply
Theorem 25 therein, and then analyzing the form of the resulting co-variance matrix to prove our CLT result. Since we
already showed that (MS) is satisfied while proving Theorem 4.1, we focus on proving (C) and (D).

Our choice of step size, γn = 1
n+2 satisfies

∑
n∈N0

γn = ∞ and
∑

n∈N0
γ2n <∞. Besides,

γn − γn+1 =
1

n+ 2
− 1

n+ 3
=

(n+ 3)− (n+ 2)

(n+ 2)(n+ 3)
≤ 1

(n+ 2)2
.

Then, we have
∑

n∈N0
|γn − γn+1| ≤

∑
n∈N0

1/(n+ 2)2 <∞, and (D) in (Delyon, 2000) is satisfied.

Since our mean field F (x) is differentiable everywhere in Int(Σ) and therefore continuous, it is Lipschitz for all compact
subsets K ⊂ Int(Σ), and thus also Lipschitz over some neighborhood of d ∈ Int(Σ). Moreover linear stability of d follows
from the global stability of shown in Theorem 3.3, and all eigenvalues of Jh(d) have negative real parts. This ensures that
(C) in (Delyon, 2000) is satisfied.

This completes the proof of (13), and we will now show (14).

To obtain the closed form of U, we first provide Lemma 6.3.7 in (Brémaud, 2020)), but re-written for vector-valued functions
instead.

Lemma C.1 (Lemma 6.3.7 in (Brémaud, 2020)). Let {Xk}k≥0 be an ergodic Markov chain (reversible) with finite state
space [n], transition probability matrix P and stationary distribution µ. For any function f : [n] → Rd, we have

U(f) = 2FT diag(π)ZF− FT diag(π)F− FTµµTF, (36)

where U(f) is the asymptotic covariance matrix for function f , matrix F is given by F ≜ [f(1), · · · , f(n)]T , and Z ≜
(I−P+ 1µT )−1. Moreover, since P is reversible, we have (equation 6.34 in (Brémaud, 2020))

U(f) =

n−1∑
k=1

1 + λk
1− λk

FTuku
T
kF, (37)

where uk are the left eigenvectors of P with un = µ.

For our update rule (10), we have F = I− 1µT .6 The asymptotic covariance matrix U is the same for all α ≥ 0, since is
given with respect to F and the transition kernel P = K[µ]. Thus, we can write down U as

U =

N−1∑
k=1

1 + λk
1− λk

(I− µ1T )uku
T
k (I− 1µT ) =

N−1∑
k=1

1 + λk
1− λk

uku
T
k (38)

where the last equality is because uN = µ and vN = 1, and since uT
i vj = 0 for all i ̸= j.

Lemma 3.4 allows us to write down the spectral decomposition of et(J(α)+I/2) as

et(J(α)+I/2) =
∑
i∈N

et(ζi+1/2)uiv
T
i = e−1/2uNvT

N +

N−1∑
i=1

et(α(−1−λi)−1/2)uiv
T
i . (39)

Substituting (38) and (39) in (14), we get

V(α) =

∫ ∞

0

(
e−

1
2uNvT

N+

N−1∑
i=1

et(α(−1−λi)− 1
2 )uiv

T
i

)(
N−1∑
k=1

1 + λk
1− λk

uku
T
k

)(
e−

1
2uNvT

N+

N−1∑
i=1

et(α(−1−λi)− 1
2 )uiv

T
i

)T
dt

=

∫ ∞

0

(
N−1∑
i=1

et(α(−1−λi)−1/2)uiv
T
i

)(
N−1∑
k=1

1 + λk
1− λk

uku
T
k

)(
N−1∑
i=1

et(α(−1−λi)−1/2)uiv
T
i

)T

dt

=

∫ ∞

0

N−1∑
i=1

e2t(α(−1−λi)−1/2) 1 + λi
1− λi

uiu
T
i dt =

N−1∑
i=1

1

2α(1 + λi) + 1
· 1 + λi
1− λi

uiu
T
i

6The map f can be thought as a function to be estimated by sampled at Xn+1 and corresponding to the update rule evaluated at
xn = d, that is, FXn+1,· = f(Xn+1) = δXn+1 − d.
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where the first three equalities follow from orthonormality of the left and right eigenvectors. The last equality comes from
swapping the summation with the integral,7 and evaluating the latter. This completes the proof.

Proof of Corollary 4.3. For any α > 0 and any vector x ∈ RN , we have

xTV(α)x =

N−1∑
i=1

1

2α(1 + λi) + 1
· 1 + λi
1− λi

xTuiu
T
i x <

1 + λi
1− λi

xTuiu
T
i x = xTV(0)x,

where the inequality is because λi ∈ (−1, 1), and as a result, α(−λi − 1) < 0 for all i ∈ {1, · · · , N − 1}. In fact, the
ordering is monotone in α > 0. This completes the proof.

Proof of Corollary 4.6. Note that every Lp norm ∥ · ∥p is a continuous and bounded function on Σ. The implication then
follows by a direct application of the continuous mapping theorem (see Van der Vaart, 2000, Theorem 2.3) to the CLT shown
in Theorem (4.2).

Proof of Corollary 4.7. Recall that in Section 2, we had redefined xn as xn ≜ 1
n+1 (x0 +

∑n
k=1 δXk

), where x0 = ν ∈
Int(Σ) was set a-priori. We redefine the actual empirical distribution of the process as x̂n ≜ 1

n

∑n
k=1 δXk

, and rewrite xn as

xn =
1

n+ 1
x0 +

n

n+ 1
x̂n (40)

It is enough to show the almost sure convergence and CLT result for x̂n, since the result for ψn(g) = gT x̂n follows from
the boundedness assumption for g (which ensures square summability). From Theorem 4.1, and because x0/n+ 1 → 0, as
n→ ∞, we have that xnn/(n+ 1) → µ almost surely. Multiplying xnn/(n+ 1) by (n+ 1)/n, and since (n+ 1)/n→
1 <∞, we obtain that xn → µ almost surely.

From the CLT in Theorem 4.2, we have
√
n+ 1(xn − µ) → N (0,V(α)) in distribution. We will again break down xn to

obtain
n√
n+ 1

x̂n −
√
n+ 1µ

dist−−−−→
n→∞

N (0,V(α)),

where the x0 term is not present since 1√
n+1

x0 → 0. We multiply the above by
√
n+ 1/

√
n to get

√
n+ 1√
n

(
n√
n+ 1

x̂n −
√
n+ 1µ

)
dist−−−−→

n→∞
N (0,V(α)),

where the convergence holds because
√
n+ 1/

√
n→ 1 <∞ and by applying Slutsky’s theorem. Additionally, observe that

√
n+ 1√
n

(
n√
n+ 1

x̂n −
√
n+ 1µ

)
=

√
n(x− µ) +

1

n
µ,

where the term 1
nµ → 0, implying that

√
n(x− µ)

dist−−−−→
n→∞

N (0,V(α)). This completes the proof.

D. Scale invariance of SRRW transition probabilities with polynomial form of rµi
(xi)

In Section 1, we briefly mentioned that the polynomial form of rµi
(xi) as introduced in (3) for all i ∈ N is the only possible

choice where transition probabilites Kij [x] are scale invariant - the entries of the target distribution µi and empirical
measure xi only need to be known up to a constant multiple for neighboring nodes of the random walker’s position at each
time step. This is equivalent to saying that for any µi ∈ R (for any xi ∈ R), we have rµi

(Cxi) = g(C)rµi
(xi) (we have

rCµi
(xi) = g(C)rCµi

(xi)) for some function g : R → R. Indeed, observe that for any i, j ∈ N and rµi
(xi) as discussed,

we have

Kij [Cx] =
Pijrµj

(Cxj)∑
k Pikrµk

(Cxk)
=

Pijg(C)rµj
(xj)∑

k Pikg(C)rµk
(xk)

=
Pijrµj

(xj)∑
k Pikrµk

(xk)
= Kij [x].

The following result shows such scale-invariance is only a property of polynomial choice of rµi
(xi) for all i ∈ N .

7From Fubini’s theorem, the order of summation and integrals can be swapped if the summands are all positive terms - which stands
true for our case.
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Proposition D.1. For any function r : R → R, there exists a function g : R → R such that

r(C1x) = g(C1)r(x) (41)

for any C1 ∈ R if and only if r(x) is of the form r(x) = C2x
α for any C2, α ∈ R.

Proof. The reverse implication of the statement is true for any polynomial function r : R → R of type r(x) = C2x
α with

g(C1) = Cα
1 . We now prove the forward direction. Differentiating (41) on both sides, we get

C1r
′(C1x) = g(C1)r

′(x) (42)

and dividing the two sides of (41) by those of (42) yields

r(C1x)

r′(C1x)
= C1

r(x)

r′(x)
. (43)

Setting f(x) ≜ r(x)/r′(x) for all x ∈ R, substituting in (43), and then differentiating once more gives us

f ′(C1x) = f ′(x) (44)

for all C1, x ∈ R. This is only possible if f : R → R is a linear function, which by its definition is only possible if r(x) is a
polynomial function of the type r(x) = C2x

α, for some C2, α ∈ R.

E. Discussion on Assumption (A1)
We first describe the modified stochastic approximation procedure with restarts of the process upon hitting the boundaries
of a sequence of (expanding) compact subsets of Int(Σ). Define a sequence of compact subsets {Kn}n∈N0

of Int(Σ) such
that Kn ⊂ Kn+1 for all n ∈ N0, and ∪n∈N0

Kn = Int(Σ). Let {γ̄m}m∈N0
be a family of step size sequences, where

γ̄m ≜ {γk,m}k∈N0
for all m ∈ N0, with γk,m ≜ γk+m,0 ≜ 1/(k +m+ 2), for all k,m ∈ N0.

Setting x0 ∈ K0, where K0 is the active set, and setting the step-size sequence to be γ̄0, we run the iteration

xn+1 = (1− γn,m)xn + γn,mδXn+1
, (45)

where m = 0 and Xn+1 ∼ KXn,·[xn], until the iterate leaves the active set K0. Upon this event (also called a truncation),
we ‘expand’ the active set by incrementing its index and setting it to be K1, set the new step size sequence to be γ1, and
restart the iteration (45) with these incremented active sets and step size sequences, and with a new initial point x0 ∈ K0, in
an i.i.d. manner upon each restart. This process of truncation and restarts keeps repeating, and as part of the proof of our
first order convergence results, we show that the number of restarts is always finite Px0,X0

- almost surely.

This SA procedure with truncations can also be written more comprehensively. Let the step-size sequence be γ̄ ≜ {γk}k∈N0 ,
where γk ≜ γk,0 = 1/(k + 2). At each step n ∈ N0, let ςn, κn and νn be counters keeping track of the step-size index, the
index of the active set, and the number of iterations since the last truncation event, respectively. With x0 ∈ K0, X0 ∈ N as
before, and ς0 = 0, κ0 = 0, and ν0 = 0, the SA procedure with truncations can be written as

set: xn+ 1
2
= xn + γςn+1(δXn+1

− xn),

update: (xn+1, ςn+1, κn+1, νn+1) =

{
(xn+ 1

2
, ςn+1, κn, νn+1), if xn+ 1

2
∈ Kκn

(x0, ςn+1−νn, κn+1, 0), otherwise.

(46)

Proposition E.1. The iterates {xn}n≥0 of (46) satisfy assumption (A1).

Before stating the proof, we make the case for why our SRRW iterates in (9) are almost surely contained within compact
subsets8 of Int(Σ), without the need of any truncation at boundaries of an increasing sequence of compact sets. Let the
increasing sequence of compact sets be given by Kn ≜ {x ∈ Int(Σ)|xi ∈

[
1

n+M , 1− 1
n+M

]
}, whereM can be any positive

real number. As explained in (Andrieu et al., 2005), the requirement that x0 ∈ K0 is under the condition that K0 is a subset

8The compact subset may depend on the sample path.
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of a region where iterates eventually experience a positive drift towards the equilibrium point. However, the uniqueness of
the µ ∈ Int(Σ) as the fixed point of our mean-field ODE shown in Lemma 3.1, and the form of our strict Lyapunov function
as in Lemma 3.2 allows us to get rid of this requirement, allowing K0 to be any compact subset of Int(Σ). This allows us to
choose the parameter M defining the size of K0 to be large enough so that K0 ≈ Int(Σ) and as a result, Kn ≈ Int(Σ) for all
n ≥ 0. In this manner, the effect of increasing the truncation set is made nearly redundant, and are likely not the key factor
to maintaining stability of iterates {xn}n≥0 of (46).

Proof of Proposition E.1. We prove this result for any step size sequence {γn}n≥0 satisfying

B1
∑
k≥0

γk = ∞, and
∑
k≥0

γ2−ϵ
k <∞ for some ϵ ∈ (0, 1).

Which includes the step size γn = 1
n+1 considered in our paper. The above assumption is only slightly stricter than the

typical one where ϵ = 0, such as (A4) in (Fort, 2015) and (D) in (Delyon, 2000) , and we show that ϵ need only be very
small. Therefore in practice, B1 is nearly indistinguishable from (A4) in (Fort, 2015) and (D) in (Delyon, 2000). For our
choice of step-size γn = 1

n+1 , there exists ϵ > 0 small enough such that (γn, ϵ) satisfy B1.

We first introduce a sequence {εn} where εn = 2γδn for some δ ∈ (0, 1) (and thus 2γn < εn). The condition for acceptance
of xn+ 1

2
can then be rewritten as requiring ∥xn+ 1

2
− xn∥ < ϵςn along with xn+ 1

2
∈ Kκn

, where the former is trivially
satisfied since ∥xn+ 1

2
− xn∥ ≤ γςn∥δXn+1−xn∥ ≤ 2γςn < εςn . With this modification, update rule (46) is then a special

case of the general SA algorithm described in Section 3.2 in (Andrieu et al., 2005). The rest of the proof will then be
checking that the assumptions required for applying Theorem 5.4 in (Andrieu et al., 2005) are satisfied.

Assumption (A1) in (Andrieu et al., 2005) is satisfied with V (x) in (11) as the choice of Lyapunov function. A1(i)–(iv) in
(Andrieu et al., 2005) all follow from Lemma 3.2, coupled with the fact that x∗ = d ∈ Int(Σ) is the unique fixed point; the
set of equilibria L = {d} is a singleton and therefore a closed set with non-empty interior, and the constants M0 and M1

can be any real numbers such that V (d) < M0 < M1 <∞.

Assumption (A2) in (Andrieu et al., 2005) is naturally satisfied by the construction of our SA algorithm, since K[x] is
irreducible for any x ∈ Int(Σ).

We now check the set of assumptions (DRI) in (Andrieu et al., 2005). The condition (DRI1) is satisfied by any ergodic
Markov chain [cite], and therefore also by K[x] for any x ∈ K ⊂ Int(Σ) with V (i) = 1 for all i ∈ N , where K
is any compact subset of Int(Σ). Condition (DRI2) when translated to our setting requires checking for any compact
K,K′ ⊂ Int(Σ) that

sup
x∈K

∥δi − x∥ ≤ C1, and sup
(x,y)∈K×K′

∥y − x∥−β∥y − x∥ ≤ C1

for some C ∈ R and β ∈ [0, 1]. This clearly holds true with C1 = 2 and β = 1. The condition (DRI3) when translated to
our setting requires showing for any (x,y) ∈ K ×K′ that there exists C2 ∈ R such that

∥K[x]u−K[y]u∥ ≤ C2∥u∥∥x− y∥β , ∀u ∈ RN , ∥u∥ <∞.

This is again clearly holds with β = 1 and for some C2 < ∞, since K[·] is not just continuous but also Lipschitz in any
compact subset of Int(Σ). Thus, update rule (46) satisfies (DRI) which implies (A3) in (Andrieu et al., 2005).

In order to satisfy (A4) in (Andrieu et al., 2005), we need to show that the sequences {γn}n≥0 and {εn}n≥0 are non-
increasing, positive, and satisfy

∑
k≥0 γk = ∞, limk→∞ εk = 0, and∑

k≥0

{
γ2k + γkϵ

a + (ϵ−1
k γk)

p
}
<∞.

Here, we can set 0 < a < β = 1 and p ≥ 2 (these can be deduced from the drift conditions (DRI), as discussed in Section 6
of (Andrieu et al., 2005)). By setting εn = 2γδn for some small δ ∈ (0, 1), the condition boils down to choosing α ∈ (0, 1)
such that ∑

k≥0

γaδ+1
k <∞.9

9This implies summability of γ2
k term, while that of the (ε−1

k γk)
p is ensured by setting p ≥ 2 to a large enough value.
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By setting ϵ = 1− aδ > 0 in assumption B1, we can see that (A4) in (Andrieu et al., 2005) is satisfied. Note that aδ can be
chosen to be very close to 1, which implies that in practice, B1 is no stricter than the square suitability assumption typically
found in SA literature.

We can now apply Theorem 5.4 in (Andrieu et al., 2005) and the number of restarts are finite Px0,X0
-almost surely, implying

that the iterate sequence will eventually remain in a compact subset of Int(Σ).

F. Additional numerical results
In this appendix, we provide supplementary numerical results to those in Section 5. We compare the sampling performance
SRRW with the MHRW as its base chain, with the Metropolis-Hastings with delayed acceptance (MHDA) sampler introduced
in (Lee et al., 2012). The MHDA works by reducing the inherent backtracking probability of MHRW by interacting with its
most recently visited state (see Lee et al., 2012, Section 4.3 for the detailed definition of the transition probabilities). We
provide our numerical results for two different graphs over the same set of nodes. As mentioned in the captions for Figures
2(a) and 2(b), the base MHRW chain for both these graphs have different mixing properties.

The simulation setup is similar to the one in Section 5, the numerical results are shown Figure 2 where we focus on the MSE
of the estimators. For values of α > 0 which are only moderately large, the SRRW significantly outperforms the MHDA
sampler, showing the performance improvement in the asymptotic regime from interacting with the entire history of the
random walker instead of only the most recently visited state. We also observe that performance benefits of SRRW with
larger α kick in earlier when the the underlying base chain is faster mixing, which is the case on the Erdos-Renyi random
graph in Figure 2(b).
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(a) Convergence of ψn(g) to the ground truth gT1/N for the wikiVote graph
(889 nodes, 2914 edges, SLEM = 0.99). Base MHRW mixes slower.
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(b) Convergence of ψn(g) to the ground truth gT1/N for an Erdos-Renyi
random graph (889 nodes, 3927 edges, SLEM = 0.93). Base MHRW mixes
faster.

Figure 2. Simulations of the SRRW process for values of α ∈ [0, 4], where α = 0 corresponds to MHRW - the underlying Metropolis-
Hastings base chain, with no self-repellence properties.
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